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Abstract For a closed subgroup of a locally compact group the Rieffel induction process gives rise to a
C∗-correspondence over the C∗-algebra of the subgroup. We study the associated Cuntz–Pimsner algebra
and show that, by varying the subgroup to be open, compact, or discrete, there are connections with the
Exel–Pardo correspondence arising from a cocycle, and also with graph algebras.
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1. Introduction

Let H be a closed subgroup of a locally compact group G. Then the Rieffel induction pro-
cess involves a C∗(G) − C∗(H) correspondence X, and restricting to H (more precisely,
composing the left C∗(G)-module structure on X with the canonical homomorphism from
C∗(H) into M(C∗(G))) makes X into a correspondence over C∗(H). We examine prop-
erties of the Cuntz–Pimsner algebra of this correspondence in terms of how H sits as a
subgroup of G.

The C∗(H)-correspondence X has some special properties, e.g., it is non-degenerate
and full. Our results are sharpest when X is regular, i.e., C∗(H) acts on the left faithfully
by compact operators, which seems to entail H being open and of finite index in G. In this
case the representations of the Cuntz–Pimsner algebra OX correspond to representations
U of H together with an explicit unitary equivalence between U and (IndGH U)|H . If H
is open and central in G, then the Cuntz–Pimsner algebra OX is the tensor product of
C∗(H) and a Cuntz algebra.

WhenG is discrete, any choice of cross section ofG/H inG gives rise to a cocycle for the
action of H on G/H by translation, and OX is isomorphic to an associated Exel–Pardo
algebra (for the action of H on a directed graph with one vertex), generated by a Cuntz
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algebra and a representation of H whose interaction with the Cuntz algebra involves
the cocycle. Alternatively, this is described by a self-similar action of H in the sense
of Nekrashevych. The cohomology class of the cocycle seems to be determined by the
subgroup H itself, explaining the independence of OX upon the choice of cross section.

When the subgroup H is compact the Peter–Weyl theorem says that C∗(H) is a c0-
direct sum of finite-dimensional algebras, so is Morita equivalent to a commutative C∗-
algebra with the same spectrum as H. It follows that, by a theorem of Muhly and Solel,
OX is Morita equivalent to the Cuntz–Pimsner algebra of a correspondence over this
commutative algebra, and hence (by a result of Patani and the first and third authors)
to the C∗-algebra of a directed graph E that can be computed in terms of multiplicities
of irreducible representations of H induced across the correspondence X. If H is already
abelian, then OX is isomorphic to this graph algebra C∗(E).

In § 7 we specialize further to a finite group G. Then Mackey’s subgroup theorem allows
us to compute the multiplicities (and hence the directed graph E) using the double H-
cosets. It turns out that interesting examples arise even when H has order 2, and we
examine this case in some detail. C∗(E), and hence OX , is a UCT (i.e., satisfies the
Universal Coefficient Theorem) Kirchberg algebra that is classifiable by its K-theory,
which only depends upon how large the centralizer of H is in G, more precisely upon two
positive integers r and q, where the first is the index of H in its centralizer and r + 2q
is the index of H in G. When r = 1 we have K0 = Zq ⊕ Z and K1 = Z, and it follows
(taking into account also the class of the identity in K0) that OX is isomorphic to the C∗-
algebra of the category of paths given by the positive submonoid of a Baumslag–Solitar
group, studied by Spielberg. When q is also 1, OX is Morita equivalent to two C∗-algebras
studied by Laca and Spielberg, involving a projective linear group acting on the boundary
of the upper half plane or alternatively the Ruelle algebra of a 2-adic solenoid. On the
other hand, when r > 1 the K1 group is trivial, and the K0 group depends upon whether
r + q − 1 and q are coprime. If they are coprime, the K0 group is finite cyclic, and hence
OX is a matrix algebra over a Cuntz algebra. But if r + q − 1 and q are not coprime then
K0 is a direct sum of two finite cyclic groups, and unfortunately we do not know any
other famous Kirchberg algebras with this K-theory.

In the last section we briefly discuss a curious connection with Doplicher–Roberts
algebras studied by Mann et al. The situation is decidedly different (in particular, not
involving induced representations), but the results are uncannily similar.

2. Preliminaries

We record our notation and conventions for C∗-correspondences. First of all, if X is an A-
correspondence, with left A-module structure given by the homomorphism ϕ = ϕA : A→
L(X), we will freely switch back and forth between the notations ax and ϕ(a)x for a ∈
A, x ∈ X. We call the the correspondence X faithful if ϕ is faithful, and non-degenerate
if ϕ(A)X = X.

A (Toeplitz) representation of X in a C∗-algebra B is a pair (ψ, π), where ψ : X → B
is a linear map and π : A→ B is a homomorphism such that for a ∈ A, x, y ∈ X we have

ψ(ax) = π(a)ψ(x),

ψ(x)∗ψ(y) = π(〈x, y〉A)
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(and hence ψ(xa) = ψ(x)π(a)). If H is a Hilbert space and B is the algebra B(H) of
bounded operators on H, we say (ψ, π) is a representation of X on H. A representation
(ψ, π) of X on a Hilbert space H is non-degenerate if the C∗-algebra generated by ψ(X) ∪
π(A) acts non-degenerately on H. If X is non-degenerate as a correspondence then a
representation (ψ, π) of X on H is non-degenerate if and only if the representation π of
A is non-degenerate.

The Toeplitz algebra TX of X is universal for Toeplitz representations. K(X) denotes
the algebra of (generalized) compact operators onX, which is the closed linear span of the
(generalized) rank-one operators θx,y given by θx,yz = x〈y, z〉A. For any representation
(ψ, π) ofX in B, there is a unique homomorphism ψ(1) : K(X) → B such that ψ(1)(θx,y) =
ψ(x)ψ(y)∗ for all x, y ∈ X.

The Katsura ideal of A is JX := ϕ−1(K(X)) ∩ (kerϕ)⊥, where for any ideal I of A the
orthogonal complement of I is the ideal I⊥ := {a ∈ A : ab = 0 for all b ∈ I}. A representa-
tion (ψ, π) of X in B is Cuntz–Pimsner covariant if π(a) = ψ(1) ◦ ϕ(a) for all a ∈ JX , and
the Cuntz–Pimsner algebra OX is universal for Cuntz–Pimsner covariant representations,
and is generated as a C∗-algebra by a universal Cuntz–Pimsner covariant representation
(kX , kA). For any Cuntz–Pimsner covariant representation (ψ, π) of X, we write ψ × π
for the unique homomorphism of OX satisfying

ψ = (ψ × π) ◦ kX and π = (ψ × π) ◦ kA.

If X is non-degenerate as an A-correspondence, then the homomorphism kA : A→ OX is
non-degenerate in the sense that kA(A)OX = OX .

Our primary object of study will be the Cuntz–Pimsner algebra of a correspondence
over the C∗-algebra of a subgroup H of a locally compact group G. Thus it is relevant
to consider what sorts of representations of H will occur as part of a Cuntz–Pimsner
covariant representation. The remainder of this section is devoted to some general remarks
concerning representations of C∗-correspondences. We claim no originality for these –
they are either readily available in the literature, or folklore. We refer to [25, § 2.4] for
background on induced representations.

Lemma 2.1. The Toeplitz representations of an A-correspondence X on a Hilbert
space H are in one-to-one correspondence with the pairs (π, V ), where π is a representa-
tion of A on H and V : X ⊗A H → H is an isometry implementing a unitary equivalence
between X-Indπ and a subrepresentation of π.

Proof. Let (ψ, π) be a representation of X on H. The Rieffel induction pro-
cess yields a representation of L(X) on B(X ⊗A H), and composing with the left-
module homomorphism ϕ : A→ L(X) gives an induced representation X-Indπ : A→ B
(X ⊗A H).

Borrowing from [6], we can define an isometry V : X ⊗A H → H by

V (x⊗A ξ) = ψ(x)ξ for x ∈ X, ξ ∈ H.

Conjugating by V , [6, Proposition 1.6] gives a unique representation ρ : L(X) → B(H)
with essential subspace

Hψ := span{ψ(X)H} = ranV
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such that
ρ(T )ψ(x)ξ = ψ(Tx)ξ for T ∈ L(X), x ∈ X, ξ ∈ H,

and moreover ρ(θx,y) = ψ(x)ψ(y)∗.
A quick computation shows that the diagram

X ⊗A H
X-Indπ(a)

��

V

��

X ⊗A H

V

��
H

π(a)

�� H

commutes. This also shows that (ψ, π) is Cuntz–Pimsner covariant on the invariant
subspace Hψ, because if ϕ(a) ∈ K(X) then for all x ∈ X we have

ψ(1)(ϕ(a))ψ(x) = ρ(ϕ(a))ψ(x) = ψ(ax) = π(a)ψ(x).

Thus V implements a unitary equivalence between X-Indπ and a subrepresentation of
π, namely the restriction of π to Hψ.

For the converse, suppose we have a representation π : A→ B(H) and an isometry
V : X ⊗A H → H, with range L, such that

AdV ◦X-Indπ(a)ξ = π(a)ξ for all a ∈ A, ξ ∈ L.

We must show that there exists a linear map ψ : X → B(H) such that (ψ, π) is a Toeplitz
representation and V (x⊗A ξ) = ψ(x)ξ for x ∈ X, ξ ∈ H. For x ∈ X, define ψ(x) : H → H
by

ψ(x)ξ = V (x⊗A ξ).
Using that V is isometric, it follows that (ψ, π) is a Toeplitz representation of X. We
omit the details.

Finally, it is obvious from the constructions that if we now start with this newly
manufactured ψ then the intertwining isometry defined as in the first part of the proof
agrees with V . �

Before considering the Cuntz–Pimsner covariant representations, we specialize the
correspondence.

Definition 2.2. We call an A-correspondence X regular if JX = A, i.e., A acts
faithfully by compact operators on X.

Remark 2.3. If X is non-degenerate and regular, then k
(1)
X : K(X) → OX is non-

degenerate, because kA is.

Recall that for a representation (ψ, π) of X on a Hilbert space H we write Hψ =
span{ψ(X)H}.

After we had completed this paper, we learned that the following lemma is essentially
the same as [1, Proposition 2.5].
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Lemma 2.4. A non-degenerate representation (ψ, π) of a non-degenerate regular
A-correspondence X on a Hilbert space H is Cuntz–Pimsner covariant if and only if
Hψ = H.

Proof. First assume that Hψ = H. By [6, Proposition 1.6 (1)] there is a unique
representation ρ : L(X) → B(H), with essential subspace Hψ, such that

ρ(S)ψ(x)ξ = ψ(Sx)ξ for S ∈ L(X), x ∈ X, ξ ∈ H,

and moreover the restriction of ρ to K(X) coincides with the canonical representation
ψ(1). For a ∈ JX , we must show that π(a) = ψ(1) ◦ ϕ(a). Since Hψ = H, by density and
continuity it suffices to note that for all x ∈ X and ξ ∈ H, since ϕ(a) ∈ K(X),

ψ(1) ◦ ϕ(a)ψ(x)ξ = ρ(ϕ(a))ψ(x)ξ

= ψ(ϕ(a)x)ξ

= ψ(ax)ξ

= π(a)ψ(x)ξ.

Conversely, assume that (ψ, π) is Cuntz–Pimsner covariant. Since π is non-degenerate,
it suffices to show that

π(A) ⊂ span{ψ(X)ψ(X)∗}.

But since JX = A, by Cuntz–Pimsner covariance we have

π(A) ⊂ ψ(1)(K(X)) = span{ψ(1)(θx,y) : x, y ∈ X}
= span{ψ(X)ψ(X)∗}. �

Corollary 2.5. The Cuntz–Pimsner covariant representations of a non-degenerate
regular A-correspondence X on a Hilbert space H are in one-to-one correspondence with
the pairs (π, V ), where π is a representation of A on H and V : X ⊗A H → H implements
a unitary equivalence between X-Indπ and π.

3. Subgroups

Now let H be a closed subgroup of a locally compact group G, and let X be the
C∗(G) − C∗(H) correspondence for Rieffel induction, see for example [25, § 2.4 and
Appendix C]. We will assume henceforth that G is second countable. Composing the left
C∗(G)-module structure with the canonical non-degenerate homomorphism C∗(H) →
M(C∗(G)), X becomes a C∗-correspondence over A := C∗(H).

Note that the left-module homomorphism ϕ = ϕA : A→ L(X) is non-degenerate, and
the A-correspondence X is full. It still seems to be unknown (at least to us) whether the
correspondence X is always faithful in the sense that ϕA is faithful, equivalently whether
the canonical homomorphism C∗(H) →M(C∗(G)) is faithful (see [26, paragraph follow-
ing Proposition 4.1]). It is faithful if the subgroup H is either open [26, Proposition 1.2]
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or compact (this follows from [5, Corollary 3 of Theorem 5.5]), and also if H is amenable,
since then C∗(H) = C∗

r (H) and the composition

C∗
r (H) →M(C∗(G)) →M(C∗

r (G))

is always faithful. It seems to us that examples where C∗(H) →M(C∗(G)) is not faithful,
if they exist, will be somewhat exotic.

Hypothesis 3.1. We will tacitly assume throughout that the subgroup H of G is such
that the correspondence X is faithful, equivalently C∗(H) →M(C∗(G)) is faithful.

Question 3.2. When will ϕA map C∗(H) into the algebra K(X) of compact operators?

Note that the imprimitivity theorem, cf. e.g. [25, Theorem C.23] says

K(X) = C0(G/H) �G.

If H is open then the natural inclusion Cc(H) ↪→ Cc(G) extends to a faithful embedding
C∗(H) ⊂ C∗(G) [26, Proposition 1.2]. If H is cocompact in G, i.e., G/H is compact,
then C0(G/H) = C(G/H) is unital, so iG(C∗(G)) ⊂ C(G/H) �G. So, if H is open and
cocompact then ϕ(A) ⊂ K(X).

On the other hand, if H is not cocompact, then C0(G/H) is not unital, and it follows
from Lemma 3.3 below that ϕ(A) ∩ K(X) = {0}. If H is cocompact but not open, the
situation is not clear to us in general, and we will not seriously study this case.

In the preceding paragraph we appealed to the following lemma, which must be folklore.

Lemma 3.3. If α is an action of a locally compact group G on a non-unital C∗-algebra
A, then

iG(M(C∗(G))) ∩ (A�α G) = {0}.

Proof. First note that it suffices to show that iG(C∗(G)) ∩ (A�G) = {0}, because
then if we had any non-zero m ∈M(C∗(G)) for which iG(m) ∈ A�G, then we could
choose c ∈ C∗(G) such that mc �= 0, and then iG(mc) would be a non-zero element of
iG(C∗(G)) ∩ (A�G).

The action extends continuously to the unitization Ã, and we have a split short exact
sequence

0 �� A
ι �� Ã

ρ

�� C

σ
�� �� 0

that is G-equivariant. Taking crossed products, we get a split short exact sequence

0 �� A�G
ι�G

�� Ã�G
ρ�G

�� C
∗(G)

iÃG
�� �� 0,

where iÃG : C∗(G) → Ã�G is the canon-ical homomorphism, which coincides with σ �G.
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The canonical covariant pair (iA, iAG) : (A,G) →M(A�α G) is compatible with the pair
(iÃ, i

Ã
G) in the following sense: first of all, the non-degenerate homomorphism iA : A→

M(A�G) extends canonically to iA : Ã→M(A�G), the pair (iA, iAG) : (Ã,G) →
M(A�G) is covariant and the diagram

A�G
ι�G

��
� �

��

Ã�G
iA×iAG

��������������

M(A�G) C∗(G)
iAG

		

iÃG





commutes. Combining diagrams, if we had a non-zero c ∈ C∗(G) such that iAG(c) ∈ A�G,
then iÃG(c) would be a non-zero element of Ã�G that lies in the ideal A�G, which would
give

0 �= c = (ρ�G) ◦ iÃG(c) = (ρ�G) ◦ (ι�G) ◦ iAG(c) = 0,

a contradiction. �

Corollary 3.4. When H is open, we have a dichotomy: G/H is either finite, in which
case JX = A, or infinite, in which case JX = {0} and OX = TX .

Remark 3.5. In any case, if H is cocompact in G and (ψ, π) is a Toeplitz repre-
sentation of the A-correspondence X on a Hilbert space H, then for a ∈ A, x ∈ X we
have

π(a)ψ(x) = ψ(ax) = ψ(1)(ϕ(a))ψ(x),

so the restriction of (ψ, π) to the invariant subspace Hψ is Cuntz–Pimsner covariant.

Here are the two extremes for how H can sit inside G: if H = {1}, then X is the Hilbert
space L2(G), regarded as a C-correspondence, so OX is the Cuntz algebra OL2(G). Note
that, due to our standing hypothesis that G is second countable, the Hilbert space L2(G)
is separable, and so OL2(G) is either the Cuntz algebra On if G is finite of order n, or O∞ if
G is infinite. At the other extreme, ifH = G, thenX is the identity C∗(G)-correspondence
C∗(G), so OX = C(T) ⊗ C∗(G).

Here are a couple of obvious general properties of X and OX . If H is exact, then so
is C∗(H), so OX is exact by [10, Theorem 7.1]. Similarly, if H is amenable, or more
generally if C∗(H) is nuclear, then OX is nuclear, by [10, Corollary 7.4].

4. H open

Suppose that H is an open subgroup of G. Then every double H-coset HtH is open,
and Cc(HtH) is closed under left and right multiplication by Cc(H) (in the convolution
algebra Cc(G)). Note that Cc(G) is the algebraic direct sum of the vector subspaces
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Cc(HtH). If f ∈ Cc(HtH) and g ∈ Cc(HsH) then

〈f, g〉A(h) = (f∗ ∗ g)(h)

=
∫
G

f∗(r)g(r−1h) dr

=
∫
G

f(r−1)Δ(r−1)g(r−1h) dr

=
∫
G

f(r)g(rh) dr

=
∫
HtH

f(r)g(rh) dr

which is 0 unless HtH = HsH. It follows that the norm closures XHtH of the
sets Cc(HtH) in X are mutually orthogonal A-subcorrespondences, and we get a
decomposition

X =
⊕

HtH∈H\G/H
XHtH

of correspondences. This might be of use in later investigations, but at present we only
apply it to the following special case.

Proposition 4.1. Let H be open and normal in G. Choose a cross section η : G/H →
G, with η(H) = 1. Let A = C∗(H). For each tH ∈ G/H, let AtH be the A-correspondence
associated to the automorphism Ad η(tH)−1 of A, i.e., it is the standard Hilbert A-module
A but with left A-module structure given by

a ·tH b = Ad η(tH)−1(a)b for a, b ∈ A.

Then

X �
⊕

tH∈G/H
AtH

as A-correspondences.

Proof. More precisely, for s ∈ G the associated automorphism Ad s of A involves the
modular function: if f ∈ Cc(H) then Ad s(f) is the function in Cc(H) defined by

(Ad s(f))(h) = f(s−1hs)Δ(s).

Note that since H is open and normal in G, the modular function and Haar measure on
H are the restrictions of those on G. Since H is normal, the double cosets HtH are just
cosets tH, so by the discussion preceding the proposition we have a decomposition

X =
⊕

tH∈G/H
XtH ,

where XtH is the closure of Cc(tH) in X. It now suffices to show that for all tH ∈ G/H
we have XtH � AtH as A-correspondences.
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We use the conventions from [25, Theorem C.23] for the correspondence X; more
precisely, the formulas in [25] are for the (C0(G/H) �G) − C∗(H) imprimitivity bimod-
ule structure on X, and we can restrict the left module multiplication to C∗(G),
and then we restrict further to the subalgebra A = C∗(H). Define a linear bijection
Ψ: Cc(tH) → Cc(H) by

(Ψx)(h) = x(η(tH)h).

Then for k ∈ Cc(H), x ∈ Cc(tH), and h ∈ H we have, letting s = η(tH),

(Ψkx)(h) = (kx)(sh)

=
∫
G

k(r)x(r−1sh) dr by [25, (C.21)]

=
∫
H

k(r)x(r−1sh) dr since supp k ⊂ H

=
∫
H

k(srs−1)Δ(s−1)x(sr−1h) dr

=
∫
H

Ad s−1(k)(r)x(sr−1h) dr

=
∫
H

Ad s−1(k)(r)(Ψx)(r−1h) dr

= (Ad s−1(k)Ψx)(h) convolution product in Cc(H)

= (k ·tH Ψx)(h).

Thus Ψ preserves the left Cc(H)-module structure.
For the inner products, if x, y ∈ Cc(tH) and h ∈ H then, by [25, Equation (C.20)],

since the modular quotient function γ in that reference is identically 1 since the modular
function on H is the restriction of the one on G, we have

〈Ψx,Ψy〉A(h) =
∫
G

(Ψx)(r)(Ψy)(rh) dr

=
∫
G

x(η(tH)r)y(η(tH)rh) dr

=
∫
G

x(r)y(rh) dr

= 〈x, y〉A(h).

Since Ψ preserves the inner products and the left module structure, it automatically pre-
serves the right Cc(H)-module structure. Thus Ψ extends by continuity to an isomorphism
of A-correspondences, and we are done. �

And now we specialize even further.
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Corollary 4.2. If H is open and central in G, then

X � �2(G/H) ⊗A,

where on the right-hand side we mean the external tensor product of the C-correspondence
�2(G/H) and the standard A-correspondence A. Consequently, by Lemma 4.3 below,

OX � O�2(G/H) ⊗A.

Corollary 4.2 referred to the following lemma, which is probably folklore, although we
could not find a convenient reference for it. It could almost (but not quite) be deduced
from [20, Theorem 5.4], but our special case is much more elementary.

Lemma 4.3. Let A be a C∗-algebra, let H be a Hilbert space, and let H⊗A be the
A-correspondence given by the external tensor product of the C-correspondence H and
the standard A-correspondence A. Then

OH⊗A � OH ⊗A.

Proof. Tensoring the universal Cuntz–Pimsner covariant representation of H in OH
with the identity map on A gives a Toeplitz representation of H⊗A in OH⊗A. If
dim(H) = ∞, then JH⊗A = {0}, and so the representation is automatically Cuntz–
Pimsner covariant. On the other hand, if dim(H) <∞, then K(H) = B(H), and so
JH⊗A = A since K(H) ⊗A � K(H⊗A). After choosing an orthonormal basis for H, rou-
tine calculations show that the representation is Cuntz–Pimsner covariant. The induced
homomorphism from OH⊗A to OH ⊗A is clearly surjective, since its range contains the
generators of OH ⊗A. Tensoring the gauge action on OH with the identity map on A
gives a gauge action on OH ⊗A compatible with the representation, and so injectiv-
ity follows from an application of the gauge-invariant uniqueness theorem [10, Theorem
6.4]. �

Remark 4.4. We formulated Corollary 4.2 to get the conclusion regarding OX , but
since X is isomorphic to the external tensor product of �2(G/H) and A we could deduce
other facts as well. For example,

K(X) � K(�2(G/H) ⊗A) � K(�2(G/H)) ⊗A.

Since K(X) � C0(G/H) �G by Rieffel’s imprimitivity theorem, we have a tensor-product
decomposition of the crossed product:

C0(G/H) �G � K(�2(G/H)) ⊗ C∗(H).

Of course, this observation is not new; for example, since G acts trivially on the open
central subgroup H, we could deduce this decomposition from [7, Corollary 2.10].

Remark 4.5. There is a unique continuous action α : H → AutO�2(G/H) such that

αh(StH) = ShtH for h ∈ H, tH ∈ G/H. (4.1)

This is routine: H acts continuously on the discrete space G/H, giving a strongly con-
tinuous unitary representation of H on the Hilbert space �2(G/H), which by universal
properties determines a continuous action of H by automorphisms on O�2(G/H).
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5. G discrete

Suppose that G is discrete and H is any subgroup. We identify a group element s ∈ G
with the characteristic function of {s}, so that

cc(G) = spanG

is a dense subspace of the C∗(H)-correspondence X. Similarly, we have cc(H) = spanH,
which is a dense *-subalgebra of A = C∗(H).

In the discrete case we will modify our notation for Toeplitz representations of the
C∗(H)-correspondence X: we use U rather than π for a representation of A, to remind
us that it is the integrated form of a unitary representation of the discrete group H.

Choose a cross section η : G/H → G, and define κ : H ×G/H → H by

κ(h, tH) := η(htH)−1hη(tH).

Lemma 5.1. With the above notation, κ is a cocycle for the action of H on G/H.

Proof. This is just the canonical cocycle G×G/H → H restricted to H ×G/H. �

For s, t ∈ G we have

〈s, t〉A =

{
s−1t if sH = tH,

0 otherwise.

Thus for h ∈ H,

θs,ssh = s〈s, sh〉A = sh,

while θs,s = 0 on span{t : t /∈ sH}.
In the correspondence X, the set of representatives {η(tH) : tH ∈ G/H} is orthonor-

mal, and we have

hη(tH) = η(htH)κ(h, tH) for h ∈ H, tH ∈ G/H. (5.1)

Our analysis of OX will depend on whether the index [G : H] is finite or infinite.
If [G : H] <∞, then X is algebraically finitely generated, so X is finitely generated
projective as a Hilbert A-module, which simplifies things a great deal. Rather than appeal
to general theory, though, we show how this works in our special situation. Because G/H
is finite, in L(X) we have ∑

tH∈G/H
θη(tH),η(tH) = 1. (5.2)

In particular, K(X) = L(X). Thus the correspondence X is regular, i.e., JX = A – of
course we already knew this because H is open and has finite index in G. Also, OX is
unital, and for every Cuntz–Pimsner covariant representation (ψ,U) of X the associated
homomorphism k

(1)
X of K(X) is unital.

Proposition 5.2. LetH be a subgroup of a discrete group G, and let B be a unital C∗-
algebra. Then the Cuntz–Pimsner covariant representations of the C∗(H)-correspondence
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X in B are in one-to-one correspondence with pairs (Ψ, U), where Ψ: O�2(G/H) → B is
a unital homomorphism, U : H → B is a unitary homomorphism, and

UhΨ(StH) = Ψ(ShtH)Uκ(h,tH) for h ∈ H, tH ∈ G/H. (5.3)

Proof. First suppose that (ψ,U) is a Cuntz–Pimsner covariant representation of X in
B. Then for tH, uH ∈ G/H we have

ψ(η(tH))∗ψ(η(uH)) = U〈η(tH),η(uH)〉A
=

{
1 if tH = uH,

0 otherwise,

since the set {η(tH) : tH ∈ G/H} is orthonormal in the Hilbert A-module X. Thus the
ψ(η(tH)) are isometries with mutually orthogonal ranges.

If [G : H] <∞ then, since the correspondence X is regular and non-degenerate, the
homomorphism ψ(1) : K(X) → B is unital, so∑

tH∈G/H
ψ(η(tH))ψ(η(tH))∗ =

∑
tH∈G/H

ψ(1)(θη(tH),η(tH)) = ψ(1)(1) = 1.

Thus in all cases there is a unique unital homomorphism Ψ: O�2(G/H) → B such that

Ψ(StH) = ψ(η(tH)) for tH ∈ G/H.

For (5.3), if h ∈ H and tH ∈ G/H then by (5.1)

UhΨ(StH) = ψ(hη(tH)) = ψ(η(htH)κ(h, tH)) = Ψ(ShtH)Uκ(h,tH).

Now suppose that (Ψ, U) is a pair as in the proposition. Since the map (tH, h) �→
η(tH)h from G/H ×H to G is bijective, the set

{η(tH)h : tH ∈ G/H, h ∈ H}
is a linear basis for cc(G), so there is a unique linear map ψ : cc(G) → B such that

ψ(η(tH)h) = Ψ(StH)Uh.

Since X is the completion of the cc(H)-precorrespondence cc(G), the following computa-
tions imply that the pair (ψ,U) is a Toeplitz representation of X in B: for tH, uH ∈ G/H
and h, k ∈ H,

ψ(η(tH)h)∗ψ(η(uH)k) = (Ψ(StH)Uh)∗Ψ(SuH)Uk

= U∗
hΨ(StH)∗Ψ(SuH)Uk,

which, since the Ψ(StH) are isometries with mutually orthogonal ranges and the
representatives {η(tH) : tH ∈ G/H} are orthonormal, equals U〈η(tH)h,η(tH)k〉A

. Further,

Uhψ(η(tH)k) = UhΨ(StH)Uk

= Ψ(ShtH)Uκ(h,tH)Uk

= Ψ(ShtH)Uκ(h,tH)k

= ψ(η(htH)κ(h, tH)k)

= ψ(hη(tH)k).
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If [G : H] = ∞, the Toeplitz representation (ψ,U) is automatically Cuntz–Pimsner covari-
ant. On the other hand, if [G : H] <∞, we must verify Cuntz–Pimsner covariance: for
h ∈ H, since

ϕ(h) = ϕ(h)1

=
∑

tH∈G/H
ϕ(h)θη(tH),η(tH)

=
∑

tH∈G/H
θhη(tH),η(tH),

we have

ψ(1)(ϕ(h)) =
∑

tH∈G/H
ψ(1)(θhη(tH),η(tH))

=
∑

tH∈G/H
ψ(hη(tH))ψ(η(tH))∗

=
∑

tH∈G/H
UhΨ(StH)Ψ(StH)∗

= Uh.

Thus we have defined procedures going both ways: starting with a Cuntz–Pimsner
covariant representation (ψ,U) ofX in B, we produced a pair (Ψ, U) as in the proposition,
and on the other hand, starting with a pair (Ψ, U) as in the proposition, we produced a
Cuntz–Pimsner covariant representation (ψ,U) ofX inB. We verify that these procedures
are inverse to each other: first, if we use (ψ,U) to produce (Ψ, U), and then in turn use
that to produce (ψ′, U), then for all tH ∈ G/H, h ∈ H we have

ψ′(η(tH)h) = Ψ(StH)Uh

= ψ(η(tH))Uh

= ψ(η(tH)h),

and it follows that ψ′ = ψ. On the other hand, if we use (Ψ, U) to produce (ψ,U), and
then in turn use that to produce (Ψ′, U), then for all tH ∈ G/H we have

Ψ′(StH) = ψ(η(tH)) = Ψ(StH),

and it follows that Ψ′ = Ψ. �

Remark 5.3. If [G : H] <∞, then the correspondence X is non-degenerate and reg-
ular, so Corollary 2.5 applies, and hence the Cuntz–Pimsner covariant representations of
X on a Hilbert space H are in one-to-one correspondence with the pairs (U, V ), where
U is a unitary representation of H on H and V : X ⊗A H → H implements a unitary
equivalence between X-IndU and U . Comparing with Proposition 5.2 above, it makes
sense to ask, given a pair (Ψ, U), where Ψ is a unital representation of O�2(G/H) on H and
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U is a unitary representation of H on H satisfying (5.3), what is the associated unitary
intertwiner V ? Comparing the proofs of Lemma 2.1 and Proposition 5.2, it is easy to see
that V : X ⊗A H → H is the unique bounded linear map such that

V (η(tH) ⊗ ξ) = Ψ(StH)ξ for tH ∈ G/H, ξ ∈ H.

However, it turns out that it would not save any time or effort to use Corollary 2.5 to
help prove Proposition 5.2.

Remark 5.4. If [G : H] <∞, then Proposition 5.2 is closely related to (indeed, essen-
tially a special case of) [8, discussion on p. 298]. To see this, recall from [8] that a finite
set {y1, . . . , yn} ⊂ X is called a basis for X if x =

∑n
i=1 yi〈yi, x〉A for all x ∈ X, and then

for all a ∈ A and all j we have

ϕ(a)yj =
n∑
i=1

yiaij ,

where aij = 〈yi, ϕ(a)yj〉A. In [8] it is shown that OX is the universal C∗-algebra generated
by A and n elements S1, . . . , Sn satisfying:

• S∗
i Sj = 〈yi, yj〉A,

•
∑n
i=1 SiS

∗
i = 1, and

• aSj =
∑n
i=1 Siaij for all a ∈ A and j = 1, . . . , n.

In our setting, we have A = C∗(H), and we are assuming that H has finite index n in G.
Then (5.2) shows that {η(uH)}uH∈G/H is a basis of the C∗(H)-correspondence X. By
the discussion preceding (5.2), this basis is orthonormal. Thus by [8] OX is universally
generated by A and a Cuntz family of isometries {SuH}uH∈G/H satisfying

hStH =
∑

uH∈G/H
SuHauH,tH ,

where

auH,tH = 〈η(uH), hη(tH)〉A.

Now,

hη(tH) = η(htH)κ(h, tH),

therefore

〈η(uH), hη(tH)〉A = 〈η(uH), η(htH)κ(h, tH)〉A

=

{
κ(h, tH) if uH = htH,

0 if uH �= htH,
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and so the scheme of [8] says that

hStH = ShtHκ(h, tH),

which is the condition (5.3) of Proposition 5.2.

Remark 5.5. Inspection of (5.3) shows that if the cocycle κ : H ×G/H → H satisfies
κ(h, tH) = h for all (h, tH) ∈ H ×G/H, then the Cuntz–Pimsner algebra OX is isomor-
phic to the crossed product OG/H �α H, where α : H → AutOG/H is the action defined
by (4.1). The condition on κ is satisfied, for example, if the cross section η : G/H → G is
equivariant for the left H-actions:

hη(tH) = η(htH) for h ∈ H, tH ∈ G/H,

which however forces H = {1} since H acts freely on G but has a fixed point in G/H.
The referee has kindly pointed out to us that the condition is also satisfied when G is
abelian or when H = G and η(H) = 1.

Corollary 5.6. Let G be discrete, let E be the directed graph with one vertex and
edge set E1 = G/H, and let H act on E by fixing the vertex and acting on the edges by
left translation on the homogeneous space. Then κ is a cocycle for the action of H on
the graph E in the sense of [2, Definition 3.3], and the correspondence X is isomorphic
to the associated correspondence Y κ of [2, Definition 3.6], and so the Cuntz–Pimsner
algebra OX is isomorphic to the Exel–Pardo algebra OY κ of [2, Definition 3.8]. If H has
finite index in G, then the graph E is finite, and so X is isomorphic to the associated
correspondence M of [4, § 10], and so OX is isomorphic to the algebra OH,G/H of [4,
Definition 3.2].

Proof. Recall from [2, Definition 3.6] that the correspondence Y κ is constructed as
follows: first of all, since E has only one vertex we can identify c0(E0) �H with A =
C∗(H). Now give the set G/H ×H the following operations, for tH, uH ∈ G/H, h, k ∈
H:

• (tH, k)h = (tH, kh);

• 〈(tH, h), (uH, k)〉A =

{
h−1k if tH = uH,

0 otherwise;

• h(tH, k) = (htH, κ(h, tH)k).

Then the linear span cc(G/H ×H) becomes a cc(H)-precorrespondence, whose comple-
tion is Y κ. It is routine to check that the map

(tH, h) �→ η(tH)h : G/H ×H → G

integrates to an isomorphism Y κ � X as C∗(H)-correspondences. �

Remark 5.7. Since the graph E described in Corollary 5.6 has only one vertex, we
are actually in the situation of a self-similar group action, so OX is isomorphic to the
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C∗-algebra O(H,G/H) of [22, Definition 3.1] (see also [15, Proposition 3.2 and Remark 3.6]
or [4, Example 3.3]).

Remark 5.8. The Cuntz–Pimsner algebra OX does not have anything directly to
do with the cross section η, but obviously the Exel–Pardo correspondence Y κ does. So
Corollary 5.6 raises an obvious issue: how is the independence of OX upon η reflected
in OY κ? More precisely, if we choose another cross section η′ : G/H → G, and use it to
define another cocycle κ′ : H ×G/H → H, then clearly the Exel–Pardo algebras OY κ and
OY κ′ must be isomorphic, since they are both isomorphic to OX ; could we have predicted
this just using the theory of cocycles? The answer is yes, because the cocycles κ and κ′

will be cohomologous. For completeness, we include a reminder. Two cocycles κ, κ′ for
the action of H on G/H are called cohomologous if there is a map ν : G/H → H such
that

κ′(h, tH) = ν(htH)−1κ(h, tH)ν(tH) for h ∈ H, tH ∈ G/H.

Let κ be defined using the cross section η : G/H → G as above. Given a map ν : G/H →
H, we get another cross section

η′(tH) = η(tH)ν(tH),

and conversely, given another cross section η′ : G/H → G, we get a map ν : G/H → H
defined by

ν(tH) = η(tH)−1η′(tH),

and it is well known that the two cocycles associated to the cross sections η, η′ are
cohomologous:

κ′(h, tH) = η′(htH)−1hη′(tH)

=
(
η(htH)ν(htH)

)−1
hη(tH)ν(tH)

= ν(htH)−1η(htH)−1hη(tH)ν(tH)

= ν(htH)−1κ(h, tH)ν(tH).

It then follows that the two correspondences Y κ and Y κ
′
, and hence the associated

Exel–Pardo algebras OY κ and OY κ′ , are isomorphic [2, Theorem 4.8].
It might be of interest to interpret the above in terms of a classification result of

Zimmer: the orbits of the action of H on G/H are the double cosets in H\G/H. Thus
the cocycle κ is uniquely determined by the restricted cocycles κ|H×HtH . For each coset
tH ∈ G/H the stability subgroup of the action of H is

HtH := H ∩ η(tH)Hη(tH)−1 = {h ∈ H : htH = tH}.

Then the action on the orbit HtH is conjugate to the action of H on the coset space
H/HtH , and a result of Zimmer [29, 4.2.13] (also recorded in a form more convenient for
our purposes in [2, Lemma 2.8]) classifies those: the cohomology classes of such cocycles
are in one-to-one correspondence with the set of conjugacy classes of homomorphisms
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from HtH to H. The restricted cocycle

κtH : H ×H/HtH → H

is given by
κtH(h, kHtH) = κ(h, ktH) for h, k ∈ H.

The homomorphism τtH : HtH → H associated with the restricted cocycle κtH is given
by

τtH(h) = κtH(h,HtH) = κ(h, tH) for h ∈ HtH .

Conversely, starting with a homomorphism τ : HtH → H, the associated cocycle μ : H ×
H/HtH → H is constructed by first choosing a cross section γ : H/HtH → H with
γ(HtH) = 1, and then defining

μ(h, kHtH) = γ(hkHtH)−1hγ(kHtH).

In the case of the Rieffel A-correspondence X, the unique cohomology class of cocycles
is determined by the inclusion homomorphisms HtH ↪→ H for each tH ∈ G/H.

Question 5.9. Corollary 5.6 leads to another obvious question: what Exel–Pardo
algebras arise in this manner? Put another way, what cocycles κ arise from the above
procedure? More precisely, if we start with an action of H on a set T and a cocycle
κ : H × T → H for this action, when will there exist a group G containing H as a sub-
group such that G/H can be identified with T and κ arises as above? There is one obvious
obstruction: there must be at least one fixed point in T , since H fixes the coset H in G/H.
Are there any other obstructions? For example, can we realize all of Katsura’s algebras
OA,B [11] (also see [4, Example 3.4]), which include all Kirchberg algebras in the UCT
class?

Another obstruction is the cohomology class of the cocycle: as we mentioned in
Remark 5.8, for every double coset HtH the cohomology class of the restricted cocy-
cle corresponds to the inclusion homomorphism HtH ↪→ H. Thus it would appear that
we do not get all cocycles.

6. H compact

In this section we show that the Cuntz–Pimsner algebra arising from a compact sub-
group is Morita equivalent, and often isomorphic, to a graph algebra. Recall that we
are assuming that our group G is second countable, so that the C∗(H)-correspondence
X is separable. First we need some preliminaries. Recall from [3, § 4.1.1 and Adden-
dum 4.7.20(iv)] that a C∗-algebra is called elementary if it is isomorphic to the algebra
of compact operators on a Hilbert space, and dual if it is a c0-direct sum

A =
⊕
μ∈Ω

Aμ

of elementary algebras. We can identify the spectrum Â of A with the set Ω. Any two dual
algebras with spectrum Ω are Morita equivalent, and we need a particular consequence
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regarding Cuntz–Pimsner algebras. In keeping with our blanket separability hypotheses,
we assume that Ω is countable and that every Aμ is separable.

Let A and B be dual algebras with spectrum Ω, and with component elementary
algebras Aμ and Bμ. For each μ ∈ Ω choose an Aμ −Bμ imprimitivity bimodule Mμ, and
define an A−B imprimitivity bimodule M by

M =
⊕
μ∈Ω

Mμ.

Let X be a faithful non-degenerate A-correspondence, and define a faithful non-
degenerate B-correspondence Y by

Y = M∗ ⊗A X ⊗AM.

Then X and Y are Morita equivalent correspondences in the sense of [21, Definition 2.1],
and hence by [21, Theorem 3.5] the Cuntz–Pimsner algebras OX and OY are Morita
equivalent. Note that, since A and B are separable by assumption, so is M , and hence
so is Y .

In the particular case where all the Bμ are 1-dimensional, so that B is commutative,
by [9, Theorem 1.1] Y is isomorphic to the correspondence associated to a directed graph
E with vertex set Ω and in which for μ, ν ∈ Ω the cardinality of μE1ν is the dimension
of the Hilbert space pμY pν , where pμ denotes the identity element of Bμ, regarded as a
central projection in B. Thus OY � C∗(E), and hence OX is Morita equivalent to the
graph algebra C∗(E). For this to be useful, we would like to be able to find the edges of
the graph E directly using the A-correspondence X. For each μ ∈ Ω choose associated
irreducible representations πμ of A and τμ of B. Then by the construction of E in [9], the
cardinality of μE1ν coincides with the multiplicity of τμ in the induced representation
Y -Ind τν . Thus we expect the following.

Lemma 6.1. For all μ, ν ∈ Ω, the cardinality of μE1ν equals the multiplicity of πμ in
the representation X-Indπν .

Proof. It suffices to show that for all μ, ν ∈ Ω the multiplicity of πμ in X-Indπν
equals the multiplicity of τμ in Y -Ind τν . This is almost obvious, and we include the
routine computation. By [25, Theorem 3.29], we have unitary equivalences

M -Ind τμ � πμ for all μ ∈ Ω.

Fix ν ∈ Ω, and decompose X-Indπν into irreducibles:

X-Indπν �
⊕
μ∈Ω

nμπμ,

where nμ is the multiplicity of πμ in X-Indπν . Then we have

Y -Ind τν �M∗-IndX-IndM -Ind τν

�M∗-IndX-Indπν

https://doi.org/10.1017/S0013091518000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000317


Subgroup correspondences 1145

�M∗-Ind
⊕
μ∈Ω

nμπμ

�
⊕
μ∈Ω

M∗-Indnμπμ (by [25, Proposition 2.69])

�
⊕
μ∈Ω

nμM
∗-Indπμ

�
⊕
μ∈Ω

nμτμ,

and the result follows. �

Corollary 6.2. When X is a separable faithful non-degenerate correspondence over a
separable dual C∗-algebra A, the Cuntz–Pimsner algebra OX is Morita equivalent to the
graph algebra C∗(E) of a directed graph with vertex set Â and in which, for all π, σ ∈ Â,
the number of edges from σ to π is the multiplicity of π in X-Indσ. If A is commutative
then OX � C∗(E).

Now let H be a compact subgroup of our second countable group G, let A = C∗(H),
and let X be the A-correspondence for Rieffel induction. Note that we can identify the
spectrum of C∗(H) with the set Ĥ of irreducible unitary representations of H (see [28,
Remark 2.41]). Then A is a dual algebra by [28, Proposition 3.4], so by the above we
have the following.

Corollary 6.3. When H is compact the Cuntz–Pimsner algebra OX is Morita equiv-
alent to the graph algebra C∗(E) of a directed graph with vertex set Ĥ and in which, for

all U, V ∈ Ĥ, the number of edges from V to U is the multiplicity of U in X-IndV . If H
is abelian then OX � C∗(E).

Question 6.4. Which directed graphs arise as in Corollary 6.3? It follows from
[5, Corollary 3 of Theorem 5.5] that any such graph has at least one loop edge at every
vertex.

Remark 6.5. One could push the above machinery further, to classify up to isomor-
phism all faithful non-degenerate A-correspondences, where A =

⊕
μ∈ΩAμ is a countable

direct sum of separable elementary C∗-algebras Aμ, but since we do not need this for our
results we only give a very rough outline. As above, let B =

⊕
μ∈ΩBμ be a commuta-

tive C∗-algebra with spectrum Ω. For each μ ∈ Ω there is up to isomorphism a unique
Aμ −Bμ imprimitivity bimodule Mμ, namely any Hilbert space of the appropriate dimen-
sion, and as before let M =

⊕
μ∈ΩMu be the associated A−B imprimitivity bimodule.

Every faithful non-degenerate A-correspondence X gives rise to a faithful non-degenerate
B-correspondence Y = M∗ ⊗A X ⊗AM , and this process is reversible:

M ⊗B M∗ ⊗A X ⊗AM ⊗B M∗ � A⊗A X ⊗A A � X,

since AX = X. The B-correspondence Y is characterized up to isomorphism by the
directed graph E with vertex set Ω and the number of edges from ν to μ given by
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the dimension of the Hilbert space pμY pν , where pμ is the identity element of Bμ,
regarded as a minimal projection in B. Up to isomorphism, the A-correspondence X
can be decomposed as ⊕

μ,ν∈Ω

M∗
μ ⊗Bμ

pμY pν ⊗Bν
M∗
ν ,

which depends only upon the dimensions of the Hilbert spaces pμY pν .

7. Examples

Interesting examples arise already with finite groups. So, let H be a subgroup of a finite
group G. Since H is finite, it is compact, so by Corollary 6.3 the Cuntz–Pimsner algebra
OX is Morita equivalent to the C∗-algebra of a directed graph E with E0 = Ĥ and in
which, for U, V ∈ Ĥ, the cardinality of UE1V is the multiplicity of U in X-IndV . To com-
pute these multiplicities, we appeal to Mackey’s Subgroup Theorem [16, Theorem 7.1],
which in our situation can be expressed in the form

X-IndV �
⊕

HsH∈H\G/H
IndHHs

V s,

where
Hs = H ∩ s−1Hs and V s = V ◦ Ad s|Hs

,

and where in the direct sum we take one representative s from each double coset HsH.
Note that H\G/H is finite since G is.

As we observed in § 3, the cases H = {1} or H = G are boring, so we focus on proper
non-trivial subgroups. The case H = Z2 = Z/2Z is already interesting, so we examine it
in some detail. First note that, since Z2 is abelian, by Corollary 6.3 we actually have
OX � C∗(E) for the above directed graph E.

If the subgroup H = Z2 is normal, then it is central (and open, since G is finite), so
by Corollary 4.2 we have OX � O[G:H] ⊗ C

2. So we assume from now on that H is non-
normal. Then the action of H on G/H has at least one fixed point (namely H) and at
least one 2-element orbit. Let

r be the number of fixed points in G/H, and

q the number of 2-element orbits.

Note that r is the index [ZG(H) : H] of H in its centralizer ZG(H), and [G : H] = r + 2q.
What pairs (r, q) can occur?

Proposition 7.1. With the above notation, a pair (r, q) of positive integers can arise
if and only if r | 2q.

Proof. First suppose that H is a proper non-normal subgroup of a finite group G with
H � Z2. As above, put r = [ZG(H) : H], and let [G : H] = r + 2q, so that q is a positive
integer. We have |G| = 2r + 4q. Also,

|ZG(H)| = 2r,

which must divide |G|, i.e., 2r | (2r + 4q). Thus 2r | 4q, so r | 2q.
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Conversely, let r and q be positive integers with r | 2q, say 2q = mr. We must show
that there exists a finite group G containing a subgroup H � Z2 such that

[ZG(H) : H] = r and [G : H] = r + 2q.

Case 1. m is even. Put

G = Zr × (Zm+1 � Z2),

where H = Z2 acts on Zm+1 by the automorphism n �→ −n. Since m+ 1 is odd, this
automorphism has no fixed points other than the identity element 0, so

ZG(H) = Zr × Z2,

and hence [ZG(H) : H] = r. Further,

[G : H] = r(m+ 1) = r + rm = r + 2q.

Case 2. m is odd. Then r is even, say r = 2j. Put

G = Zj × (Z2(m+1) � Z2),

where again H = Z2 acts on Z2(m+1) by n �→ −n. In this case, the fixed-point subgroup
under this action is {0,m+ 1}, so

ZG(H) = Zj × {0,m+ 1} × Z2,

and hence [ZG(H) : H] = j · 2 = r. Further,

[G : H] = j · 2(m+ 1) = r(m+ 1) = r + 2q,

as desired. �

Now we continue the investigation of the directed graph E, begun in the first paragraph
of this section. Note that for each s ∈ ZG(H) we have Hs = H and V s = V , so the fixed
points in G/H contribute a summand rV in X-IndV .

Each 2-element orbit in G/H is a disjoint union sH � hsH, where s /∈ ZG(H) and h is
the generator of H. We have Hs = {1} and consequently V s is (equivalent to) the trivial
character 1, and so

IndHHs
V s = IndH{1} 1,

which is the regular representation λH of H. As H is a finite abelian group, we have

λH �
⊕
U∈Ĥ

U.

Combining, we see that for each V ∈ Ĥ,

X-IndV � rV ⊕ q
⊕
U∈Ĥ

U = (r + q)V ⊕ qU,
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where U is the character of H different from V . Consequently, the associated graph E
has the form

U(r+q) ��
(q)

�� V (r+q)��

(q)


where U, V are the two characters of H, and where a number in parentheses indicates
the number of edges from the first vertex to the second. Because we are assuming that
H is a proper non-normal subgroup, we have q > 0. Thus the graph E is finite and
transitive (meaning that vE1w �= ∅ for all v, w ∈ E0), and every cycle has an entry, so
by [13, Corollary 3.11] C∗(E) is unital, simple, and purely infinite. By [24, Remark 4.3],
C∗(E) is nuclear and in the bootstrap class. Thus OX , being isomorphic to C∗(E),
is classifiable up to Morita equivalence by its K-theory, according to the classification
theorem of Kirchberg and Phillips [12,23]. In fact, since OX is unital, it is classifiable
up to isomorphism by K0, K1, and the class [1]0 in K0 of the identity 1OX

.
To compute the K-theory, by [24, Theorem 7.16] we can use the vertex matrix A,

indexed by E0, where the ij-entry is the number of edges from the jth vertex to the ith
one. And then the algorithm tells us that, identifying the matrix B := At − 1 with an
endomorphism of the free abelian group Z

E0
, we have

K1(C∗(E)) � kerB

K0(C∗(E)) � cokerB = Z
E0
/BZ

E0
,

where the isomorphism for K0 is given by sending the class of the vertex projection [pv]0
to 1v +BZ

E0
. (The usual formulation involves 1 −At, but in our case the matrix At − 1

is more convenient, and the results are the same.) In our situation we have E0 = {U, V },
and

A =
(
r + q q
q r + q

)
,

and so

B = At − 1 =
(
r + q − 1 q

q r + q − 1

)
.

Let p = r + q − 1. Then p ≥ q > 0, and we have

K1 = kerB

K0 = Z
2/BZ

2.

Since the graph algebra C∗(E) is unital, we must compute the class [1]0 in K0 of the
identity 1C∗(E). For this, we need to compute the classes [pv]0 of the vertex projections
and then add them up. In our case, we have

[1]0 =
(

1
1

)
+BZ

2.

To compute the cokernel of B, we appeal to the standard theory which identifies it with
a direct sum of abelian groups via computing the Smith normal form of B. We recall from
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e.g. [19, § 3.22] how this works. Let B ∈Mn(Z), and suppose B has rank k for some k ≤ n.
For each j = 1, . . . , k, if B has at least one non-zero j-square subdeterminant, define fj
as the greatest common divisor of all j-th order subdeterminants of B. Set f0 = 1. Note
that fj−1 divides fj for all j = 1, . . . , k. The Smith normal form of B is the diagonal
matrix N with diagonal entries

qj := fj/fj−1 for j = 1, . . . , k.

Note that qj divides qj+1 for all j = 1, . . . , k. Moreover, there are invertible matri-
ces C,D ∈Mn(Z) such that B = CND and the map x→ C−1x on Z

n induces an
isomorphism

Φ: Z
n/BZ

n → Z
n/NZ

n.

To compute the class of the identity in K0 we will compute its image in Z
n/NZ

n under
Φ. To get explicit formulas, we split up the analysis into several cases.

Case 1. r = 1. Then B = ( q qq q ). Thus K1 = kerB is the cyclic subgroup of Z
2 generated

by
(

1−1

)
, so K1 � Z.

Clearly, B has rank 1. In the above notation we have B = CND for

C =
(

1 0
1 1

)
, N =

(
q 0
0 0

)
, D =

(
1 1
0 1

)
.

Denote by (m,n) the transpose of a column-vector (mn ) in Z
2. The map (m,n) �→

(m(mod q), n) has kernel NZ
2, and so induces an isomorphism

Ψ : Z
2/NZ

2 → Zq ⊕ Z.

Composing Ψ with Φ gives an isomorphism

K0 � Zq ⊕ Z,

and since C−1 carries ( 1
1 ) to ( 1

0 ) we have, in Zq ⊕ Z,

[1]0 = (1, 0).

By [27, Theorem 4.8 (3)], the C∗-algebra of the category of paths given by the positive
submonoid Λ of the Baumslag–Solitar group

BS(1, q + 1) = 〈a, b | ab = bq+1a〉

is UCT Kirchberg (by [27, Corollary 4.10]) and has K-theory (Zq ⊕ Z,Z), with [1]0 =
(1, 0), and hence when r = 1 we have OX � C∗(Λ).

Example 7.2. Here is one of the simplest examples of the above: let H = Z2 as a
subgroup of the group G = S3 of permutations of a 3-element set, and let X be the asso-
ciated C∗(H)-correspondence. It follows from the above analysis that OX is isomorphic
to the algebra of the following graph:

• ����

�� •��
��

��
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With the above notation, we have r = q = 1, so the K-groups of OX are both Z. The
crossed product of PSL(2,Z) acting on the boundary of the upper half plane, and the
Ruelle algebra associated to the 2-adic solenoid are purely infinite simple C∗-algebras
with this K-theory [14, Application 15], so OX is Morita equivalent to both of these.

Case 2. r > 1. We have

B =
(
p q
q p

)
,

where p > q > 0. Then

K1 = kerB = 0.

We turn to computing K0. Since B has rank two, we find that f0 = 1, f1 = gcd(p, q)
and f2 = detB = p2 − q2. Denote d = p2 − q2.

We first suppose that p and q are coprime, so that f1 = 1. The Euclidean algorithm
gives s, t ∈ Z such that

sp+ tq = 1.

The Smith normal form of B and the associated invertible matrices C,D are given as
follows

C =
(
p −t
q s

)
, N =

(
1 0
0 d

)
, D =

(
1 tp+ sq
0 1

)
.

The map (m,n) �→ (0, n(mod d)) induces an isomorphism

Ψ: Z
2/NZ

2 → Z1 ⊕ Zd,

and the composition Ψ ◦ Φ gives an isomorphism

K0 � Z1 ⊕ Zd = Zd.

Since the isomorphism Φ carries the class of the identity in K0 into

C−1

(
1
1

)
=

(
s t
−q p

) (
1
1

)
=

(
s+ t
p− q

)
,

it follows that the image of [1]0 in Zd is identified as

[1]0 = p− q.

Now,

d = p2 − q2 = (p− q)(p+ q),

so [1]0 divides the order of the cyclic group K0. If p− q = 1, then it is a generator of K0,
and so

OX � Od+1.

On the other hand, if p− q > 1, then

OX �Mp−q(C) ⊗Od+1.
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Now suppose that p and q are not coprime. Rename a = f1 = gcd(p, q) and note that
the Smith normal form of B is the matrix

N =
(
a 0
0 d/a

)
.

Write p = au and q = av. Then u and v are coprime, and d = a2g, where g = u2 − v2

is the determinant of the matrix

B1 =
(
u v
v u

)
.

We then have B = aB1, where the analysis of the coprime case applies to B1. Choosing
z, w ∈ Z such that zu+ wv = 1, the matrix that plays the role of C is now

C1 =
(
u −w
v z

)
.

By the coprime case, we get an isomorphism

K0 � Za ⊕ Zag.

For the class of the identity in K0, in Za ⊕ Zag we have

[1]0 = (z + w, u− v),

where we can find suitable z, w using either zu+ wv = 1 or zp+ wq = a.

Example 7.3. If r = 2, then p = q + 1 is coprime to q. We have p− q = 1, d = p+ q =
2q + 1, K0 � Z2q+1, [1]0 = 1, and

OX � O2q+2.

Example 7.4. If q = 1, then r = 2 (since we must have r | 2q and we are assuming
that r > 1), so this is a special case of Example 7.3: we have p = 2, giving

B =
(

2 1
1 2

)
,

d = 3, K0 � Z3, [1]0 = 1, and

OX � O4.

Example 7.5. If r = q = 2, then again we are in a special case of Example 7.3, and
this time p = 3, giving

B =
(

3 2
2 3

)
,

d = 5, K0 � Z5, [1]0 = 1, and

OX � O6.
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Example 7.6. If r = q > 2, then p = 2q − 1, which is coprime to q since

−p+ 2q = 1.

Thus p− q = q − 1, d = (q − 1)(3q − 1), K0 � Z(q−1)(3q−1), [1]0 = q − 1, and

OX �Mq−1(C) ⊗O(q−1)(3q−1)+1.

Example 7.7. As a special case of Example 7.6, if r = q = 3, then p = 5, p− q = 2,
d = 16, K0 � Z16, [1]0 = 2, and

OX �M2(C) ⊗O17.

Example 7.8. If r = 3 and q = 6, then p = 8 is not coprime to q. We have a =
gcd(p, q) = 2, p− q = 2, u = (p/a) = 4, v = (q/a) = 3, g = u2 − v2 = 7, and K0 � Z2 ⊕
Z14. Since

8 − 6 = 2,

we can take z = 1 and w = −1, so

[1]0 = (z + w, u− v) = (0, 1).

Note that if r = 3 then, since r | 2q by Proposition 7.1, we must have 3 | q, so in some
sense this is the next biggest example after the preceding one, and the smallest one with
p and q not coprime.

Example 7.9. If r = 3 and q = 9, then p = 11 is coprime to q. We have p− q = 2,
d = 40, K0 � Z40, [1]0 = 2, and

OX �M2(C) ⊗O41.

Example 7.10. If r = 6 and q = 9, then p = 14 is coprime to q, and we have p− q = 5,
d = 115, K0 � Z115, [1]0 = 5, and

OX �M5(C) ⊗O116.

8. Connection with [18]

If the subgroup H is a compact Lie group, then we can choose a faithful finite-dimensional
unitary representation ρ. In this situation, [17,18] study the Doplicher–Roberts algebra
Oρ, and show that it is Morita equivalent to a Cuntz–Krieger algebra – equivalently,
a graph algebra, although at the time [17,18] were written, the technology of graph
C∗-algebras had not yet appeared.

The finite-dimensional Hilbert space H of the representation ρ can be regarded as an
A− C correspondence, where A = C∗(H) as before, but there does not appear to be a
natural way to give H the structure of an A-correspondence. Nevertheless, something
interesting happens: the method that [18, § 1] uses to construct a graph E from ρ is
strikingly similar to our construction in Lemma 6.1. In [18] the construction is as follows:
let R be the set of equivalence classes of irreducible representations of H occurring in the
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various tensor powers ρ⊗n; if H is finite then R = Ĥ. The graph E has vertex set R, and
for each π1, π2 ∈ R the number of edges in E from π2 to π1 is the multiplicity of π2 in
π1 ⊗ ρ, whereas in our Lemma 6.1 we define E0 = Ĥ, and the number of edges from π2

to π1 is the multiplicity of π1 in X-Indπ2. The similarity is uncanny, particularly because
the Hilbert space of X-Indπ2 is X ⊗A Hπ2 .

Moreover, although in [18] the construction of the Doplicher–Roberts algebra Oρ does
not explicitly involve an A-correspondence, in the cases where R = Ĥ the graph E with
E0 = R gives a correspondence over c0(E0), and which is Morita equivalent to A, and
hence the method outlined in Remark 6.5 gives an A-correspondence X with OX Morita
equivalent to C∗(E), and therefore to Oρ. That being said, at present this observation
remains little more than a curiosity.

Acknowledgements. We thank Jack Spielberg for numerous helpful conversations.
This research was initiated during the visit of the second named author to Arizona State
University and she thanks her two collaborators and Jack Spielberg for their hospitality.
Some of this research was done during a visit of the third author to the University of
Oslo, and he thanks Erik Bédos, Nadia Larsen, and Tron Omland for their hospitality.
We are grateful to the anonymous referee for many useful suggestions that significantly
improved the paper.

References

1. S. Albandik and R. Meyer, Product systems over Ore monoids, Doc. Math. 20 (2015),
1331–1402.

2. E. Bédos, S. Kaliszewski and J. Quigg, On Exel–Pardo algebras, J. Operator Theory,
78(2) (2017), 309–345.

3. J. Dixmier, C∗-algebras (North-Holland, Publishing Company, New York, 1977).

4. R. Exel and E. Pardo, Self-similar graphs, a unified treatment of Katsura and
Nekrashevych C*-algebras, Adv. Math. 306 (2017), 1046–1129.

5. J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer.
Math. Soc. 110 (1964), 424–447.

6. N. J. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana
Univ. Math. J. 48(1) (1999), 155–181.

7. P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36(1) (1980), 88–104.

8. T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C∗-
algebras generated by Hilbert bimodules, J. Funct. Anal. 159(2) (1998), 295–322.

9. S. Kaliszewski, N. Patani and J. Quigg, Characterizing graph C∗-correspondences,
Houston J. Math. 38 (2012), 751–759.

10. T. Katsura, On C∗-algebras associated with C∗-correspondences, J. Funct. Anal. 217(2)
(2004), 366–401.

11. T. Katsura, A construction of actions on Kirchberg algebras which induce given actions
on their K-groups, J. Reine Angew. Math. 617 (2008), 27–65.

12. E. Kirchberg and N. C. Phillips, Embedding of exact C∗-algebras in the Cuntz algebra
O2, J. Reine Angew. Math. 525 (2000), 17–53.

13. A. Kumjian, D. Pask and I. Raeburn, Cuntz–Krieger algebras of directed graphs,
Pacific J. Math. 184 (1998), 161–174.

14. M. Laca and J. Spielberg, Purely infinite C∗-algebras from boundary actions of discrete
groups, J. Reine Angew. Math. 480 (1996), 125–139.

https://doi.org/10.1017/S0013091518000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000317


1154 S. Kaliszewski, N. S. Larsen and J. Quigg

15. M. Laca, I. Raeburn, J. Ramagge and M. F. Whittaker, Equilibrium states on the
Cuntz–Pimsner algebras of self-similar actions, J. Funct. Anal. 266(11) (2014), 6619–6661.

16. G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2)
55 (1952), 101–139.

17. M. H. Mann, I. Raeburn and C. E. Sutherland, Representations of compact groups,
Cuntz–Krieger algebras, and groupoid C∗-algebras, in Miniconference on probability and
analysis (Sydney, 1991), Proceedings of the Centre for Mathematics and its Applications
Volume 29, pp. 135–144 (The Australian National University, Canberra, 1992).

18. M. H. Mann, I. Raeburn and C. E. Sutherland, Representations of finite groups and
Cuntz–Krieger algebras, Bull. Aust. Math. Soc. 46(2) (1992), 225–243.

19. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and
Bacon Series in Advanced Mathematics (Allyn and Bacon, Boston, MA, 1964).

20. A. Morgan, Cuntz–Pimsner algebras associated to tensor products of C∗-
correspondences, J. Aust. Math. Soc. 102(3) (2017), 348–368.

21. P. S. Muhly and B. Solel, On the Morita equivalence of tensor algebras, Proc. Lond.
Math. Soc. (3) 81(1) (2000), 113–168.

22. V. Nekrashevych, C∗-algebras and self-similar groups, J. Reine Angew. Math. 630
(2009), 59–123.

23. N. C. Phillips, A classification theorem for nuclear purely infinite simple C∗-algebras,
Doc. Math. 5 (2000), 49–114 (electronic).

24. I. Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics, Volume
103 (Conference Board of the Mathematical Sciences, Washington, DC, 2005).

25. I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C∗-algebras,
Mathematical Surveys and Monographs, Volume 60 (American Mathematical Society,
Providence, RI, 1998).

26. M. A. Rieffel, Induced representations of C∗-algebras, Adv. Math. 13 (1974), 176–257.

27. J. Spielberg, C∗-algebras for categories of paths associated to the Baumslag–Solitar
groups, J. Lond. Math. Soc. (2) 86(3) (2012), 728–754.

28. D. P. Williams, Crossed products of C∗-algebras, Mathematical Surveys and Monographs,
Volume 134 (American Mathematical Society, Providence, RI, 2007).

29. R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics,
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