
https://doi.org/10.1086/69976
Explanation of Molecular Processes
without Tracking Mechanism Operation
Ingo Brigandt*y

Philosophical discussions of systems biology have enriched the notion ofmechanistic ex-
planation by pointing to the role of mathematical modeling. However, such accounts still
focus on explanation in terms of tracking a mechanism’s operation across time (by means
of mental or computational simulation). My contention is that there are explanations of
molecular systems in which the explanatory understanding does not consist in tracking a
mechanism’s operation and productive continuity. I make this case by a discussion of bi-
furcation analysis in dynamical systems, articulating the distinctive way in which explan-
atory understanding is provided, especially about the reversibility or irreversibility of
molecular processes.
1. Introduction. Mechanisms and mechanistic explanation continue to be
core issues for contemporary philosophy of biology. Beyond the focus on
mechanistic research in the style of classical molecular biology (Craver and
Darden 2013), many recent philosophical discussions have begun to call at-
tention to scientific studies of large-scale networks and complex molecular
processes in the domain of systems biology, which often involve computa-
tional and mathematical modeling tools. Some philosophers have concluded
that the theories of systems biology do not qualify as mechanistic (Braillard
2010; Issad and Malaterre 2015). Others have granted that systems biology
is in continuity with paradigmatic mechanistic research, while likewise un-
derscoring that this biological domain contains distinctive types of theoriz-
ing that simply have not been addressed by prior philosophical accounts of
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mechanisms (Levy and Bechtel 2016; Brigandt, Green, and O’Malley 2017;
Green et al. 2018). My account will be in the latter spirit, as I deem it to be
more insightful to articulate diverse ways of biological theorizing (especially
those that have been neglected by philosophers) than to defend a uniquely cor-
rect notion of ‘mechanistic’. Indeed, quite different things can be addressed
under the mechanism label: whether scientists’ particular objects of investiga-
tion are mechanisms, whether an explanation put forward is mechanistic, or
whether the experimental methods or reasoning strategies employed are in-
stances of mechanistic research.

The topic of my discussion is explanation. Recent philosophical discus-
sions of systems biology have emphasized from the outset the important role
of mathematical modeling as something neglected by previous accounts of
mechanistic explanation (e.g., Bechtel andAbrahamsen 2010; Brigandt 2013).
Yet my contention is that even these accounts have focused on what is only
one type of model-based explanation. Their (perfectly legitimate) starting
point has been that in addition to pointing to the components and organiza-
tion of a mechanism, a mechanistic explanation also has to epistemically lay
out how the operation of the mechanism generates the phenomenon to be
explained. In the case of a relatively simple mechanism, this explanatory un-
derstanding comes frommentally simulating the mechanism’s operation, where
this mental simulation can be aided by a mechanism diagram (Bechtel and
Abrahamsen 2005; Bechtel 2011; Brigandt 2013; Levy and Bechtel 2013).1 In
the case of a mechanism whose behavior depends on quantitative interactions
or its complex organization (e.g., feedback loops), the explanation laying out
how the explanandumphenomenon is generated is provided instead by a com-
puter simulation: “the purpose of a computational simulation (likemental sim-
ulation in the basic mechanistic account) is . . . to determine whether the pro-
posedmechanismwould exhibit the phenomenon” (Bechtel 2011, 553). Bechtel
and Abrahamsen (2010) have dubbed this type of explanation ‘dynamic mech-
anistic explanation’, and I have echoed this vision: “the explanation has to show
how (or at least that) the explanandum results from this. If the mechanism’s
operation cannot be understood by mental simulation, . . . a computer sim-
ulation is needed” (Brigandt 2015, 161).

Although such recent accounts have pointed to one important way inwhich
mathematical modeling in systems biology generates explanations, by effec-
tively equating the providing of explanatory understanding with tracking a
mechanism’s operation (up to the explanandum phenomenon resulting), these
accounts have thereby focused on a computer simulation representing how a
1. “When mechanisms are organized in this [simple] way, basic mechanistic explana-
tion, in which one characterizes the functioning of the overall mechanism qualitatively
in terms of the contribution of each of its parts and mentally rehearses (simulates) how it
produces the phenomenon, suffices” (Bechtel 2012, 235).
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system’s components and variables change across time.2 In contrast, I argue
that there are various ways in which the analysis of mathematical models in
systems biology provides explanatory understanding without tracking a
mechanism’s operation and productive continuity. Something analogous
has been previously maintained by Huneman (2010), in the context of what
he calls topological explanations, which explain in terms of a network’s ab-
stract structure. Although Levy and Bechtel (2013) deem explanations in
terms of a system’s structural organization to be mechanistic, Huneman claims
topological explanations to be nonmechanistic on the grounds that they neither
list specific activities nor appeal to a temporal sequence of events. The latter is
similar to my perspective, although rather than pointing to examples of ‘expla-
nation that is nonmechanistic’ I more precisely argue for ‘explanation without
trackingmechanismoperation’.More importantly,whereasHuneman addresses
explanation in terms of a network’s static structure, my discussion crucially
involves the explanation of system dynamics.

In what follows, I discuss the mathematical analysis of dynamical models.
Although there are in fact different kinds of model analysis, resulting in dif-
ferent types of explanation, in this article I can only focus on one type, namely,
bifurcation analysis. I will explain what kind of important explanatory under-
standing is provided by bifurcation analysis without tracking a mechanism’s
operation across time (as would be done by a computer simulation).

2. Different Types of Bifurcations. Like many other models in systems
biology, dynamical models are developed using mechanistic information of
the system at hand, such asmechanism diagrams ormore complex reaction net-
works showing which gene products, enzymes, or metabolites interact with
each other. The variables of the model are often the concentrations of such en-
tities within a cell. Ordinary or partial differential equations are used to capture
how because of molecular interactions a change in one variable results from
changes in other variables, where the reaction kinetics parameters are exper-
imentally known or are estimated by fitting them to limited experimental data.
This at least models a system’s change across time, although occasionally spa-
tial changes (e.g., across different cells) are captured as well.

In addition to mathematically analyzing the properties of dynamical sys-
tems, one way of visually representing some relevant features is in terms of
phase spaces. A phase space is a multidimensional space where each axis rep-
resents one system variable, such as the concentration of an enzyme ormetab-
olite within a cell. The phase space encompasses all possible system states
2. “Computational simulations . . . involves writing differential equations describing
how the rates of individual operations are affected by various parameters and using com-
puters to show how a system involving such operations would change over time”
(Bechtel 2010, 320–21).
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(each point of the space is one possible state), so that a system’s dynamic
change across time is a point moving along a trajectory within phase space.
A few of these dimensions and thus selected aspects of a system can be visu-
ally represented. Figures 1 and 2 are phase spaces, where the ‘input’ and ‘out-
put’ axes represent two system variables, while in figure 3 all axes represent
system variables. Note that such phase spaces are not mechanism diagrams.
Phase spaces do not represent mechanism entities (e.g., a certain molecule)
but possible system states (the possible concentrations of a molecule), and
they do not capture the spatial organization and concomitant interactions of
mechanism entities.

A steady state is any state of a system that when reached will not change.
There are stable steady states, to which the system will converge from any-
where in the steady state’s vicinity, so that the system will return to this state
even when perturbed. This is often visually captured by a diagram in which
the vertical axis represents the system’s energy state F, as in figures 1 and
2, where the dynamic behavior of the system is ‘downward’ toward lower
energy states and the stable steady states show up as the bottom of a valley.
There are also unstable steady states, which show up as the top of a hill. If the
Figure 1. Pitchfork bifurcation (at W), yielding a process that is reversible: it re-
turns to the original steady state when input is withdrawn again. Reprinted from
Ferrell (2012) with permission from Elsevier.
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system is exactly in such a state, it will remain there, but the slightest pertur-
bation (e.g., because of molecular noise inside a cell) will make the system
move away from this unstable steady state. Some systems have just one stable
steady state and are called monostable. Systems that have two stable steady
states (valleys) separated by a hill (an unstable steady state) are called bistable
(Ferrell 2012). Bistability is of biological significance, as even though each of
the two stable cellular states is maintained in the face of cellular noise, transi-
tions between these states are possible (if other system components move it
across the hill).
Figure 2. Saddle-node bifurcation (at SN), yielding a locally irreversible process:
new, high-output steady state is maintained even when input is withdrawn again.
Reprinted from Ferrell (2012) with permission from Elsevier.
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A bifurcation is a location in phase space exhibiting a qualitative change
in topology and thus dynamics of the system, such as a change in the num-
ber and types of steady states. Figure 1 depicts a pitchfork bifurcation, in
which a monostable configuration (upper part) changes atW to a bistable con-
figuration. The solid lines represent stable steady states, while the dashed line
depicts an unstable steady state (a hilltop in between two stable steady states).
This kind of topology is well known fromWaddington’s epigenetic landscapes,
which depict development as a series of branching events leading to different
possible developmental outcomes. But note that a pitchfork bifurcation yields
a reversible process: the system starts out in one steady state, but regardless of
whether the left or right arm of the bifurcation was chosen after an increase in
the input (the concentration of a cellular entity controlling the system), when
the input is reduced again the system ends up in the very steady state where it
started out. Such a reversible bifurcation would not be ideal and may not ac-
tually obtain for many of the instances of developmental differentiation that
Waddington had in mind (but see Ferrell [2012] for examples exhibiting this
type of bifurcation).

The type of bifurcation shown in figure 2 is theoretically and biologically
more interesting. Although it is likewise a transition between a monostable
and a bistable configuration, this saddle-node bifurcation is locally irreversible.
The black solid and dashed lines represent again the steady states (the unstable
ones being at the ‘saddle’ of the landscape), while the gray dashed line with the
arrowhead simply depicts a trajectory of the system. At low concentrations of
the input stimulus, the system is bistable, with a steady state on the left (corre-
sponding to low output) and one on the right. Assume that the system starts in
the left steady state. As soon as the input is increased past the saddle-node bi-
furcation point SN, this steady state disappears and the system converges to the
other, right-hand-side steady state (corresponding to high output). The crucial
feature—and difference to the above pitchfork bifurcation—is that even if the
input stimulus is reduced to the starting condition, the systemwill remain in the
right-hand steady state. The transition from the low-output to the high-output
steady state is thus irreversible—it is maintained even if the stimulus that trig-
gered the transition is fully withdrawn (Ferrell 2012).

3. Biological Examples of Locally or Globally Irreversible Dynamical
Profiles. A bifurcation analysis consists in mathematically investigating a
dynamical model to reveal such aspects of its dynamical profile as the number
and types of bifurcations, or regions where the system exhibits bistability. (I
am calling it a ‘dynamical’ profile, as it includes knowledge about the direc-
tion in which change from a possible state would occur, given the underlying
system dynamics.) There are many more types of bifurcations than the two
mentioned in the previous section, but now it is time to illustrate bifurcation
analysis in a concrete biological case—the progression of the cell cycle. The
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standard eukaryotic cell cycle consists of the S phase (in which DNA synthe-
sis and replication occurs), followed by theG2 gap phase and theMphase (mi-
tosis as the division of the cell). Then both daughter cells enter the G1 gap
phase (during which the cell size increases), after which we are back to the
S phase. Crucial in themechanism underlying the progression of the cell cycle
are various cyclins and cyclin-dependent kinases, which are synthesized and
degraded at different phases.

The example I use is the model of the budding yeast cell cycle by Chen
et al. (2000). As in many studies, they investigate various aspects of their
model, but my focus will be on the result of the analysis depicted in figure 3
(for additional background and a similar bifurcation analysis, see also Novak
et al. [1998]). As in the above examples, this phase space depicts stable steady
states by solid lines and unstable ones by a dashed line. The vertical axis is
the output, where a low activity of Clb-dependent kinases corresponds to the
Figure 3. Result of a bifurcation analysis of Chen et al.’s yeast cell cycle model. Cell
cycle progression is controlled by the input on the horizontal axis, resulting in the
cell being in either the G1 phase or in the S and following M phase. The system has
two saddle-node bifurcations (where either solid linemeets the dashed line), which en-
sure that a switch to a new cell cycle phase is maintained after removal of the trigger,
although this switch can eventually be reversed. Reprinted from Chen et al. (2000)
with permission from the American Society for Cell Biology.
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G1 phase and a high activity yields the S phase and the following M phase. In
yeast there is no recognizable G2 phase in between. The horizontal axis depicts
the input, using the ratio of two cyclins that trigger the transitions between the
phases. In addition to their mathematical analysis, the arrows in the center of
the figure depict how Chen et al. (2000) experimentally confirmed the bista-
bility of the yeast system modeled, where experimental expression of Clb5
and Sic1 results in a shift to the new phase, depending onwhether this stimulus
is large enough to move the system beyond the unstable steady state.

The important feature is the presence of two bifurcations, located where
either of the two solid lines meets the dashed line in figure 3. They are saddle-
node bifurcations (the type we encountered in fig. 2) and thus locally irrevers-
ible, which in the current case has the advantage that a switch to the next cell
cycle phase is maintained even if there are fluctuations in the factor that trig-
gered the switch (so that there is no constant flip-flopping between phases).
Assume the cell is in the G1 phase. A rise in the concentration of cyclin Cln2
(an increasing value on the horizontal axis) activates a corresponding cyclin-
dependent kinase and pushes the state of the system rightward past the point
labeled a and one of the bifurcation points, so that the systemmoves past ‘Start’
and converges toward a new steady state with a quite different, high concen-
tration of Clb-dependent kinases, thereby entering the S phase. Underlying
cellular processes remove Cln2 again, but because of the locally irreversible
bifurcation the cell remains in this new steady state. To be sure, the overall dy-
namical profile yields a globally reversible process. Once the cell has made it
into the M phase, a rise in the Cdc20 concentration (a sufficiently decreasing
value on the horizontal axis) pushes the state of the system past point c and the
second bifurcation point, so that it converges back to the original steady state
corresponding to the G1 phase.

Thus, the locally irreversible bifurcations ensure that the cell progresses to
the next phase of the cell cycle (without immediately moving one phase back-
ward), while the globally reversible configuration is needed to make a cycle
possible.3 Tracing one system trajectory from a via b and c to d and again to
a is indeed an instance of tracking a mechanism’s operation; however, the ex-
planatory question of interest tomy discussion is why the system exhibits local
irreversibility yet global reversibility. This involves considerations about what
states and changes are possible or impossible for the system, to be explained by
the nature of the bifurcations (capturing local dynamical potentialities) and by
the global dynamical profile (capturing possible trajectories).

It is instructive to compare this locally irreversible yet globally reversible
dynamical profile with a globally irreversible bifurcation configuration. A case
3. This overall situation is also an instance of what in engineering is known as hyster-
esis, which is the possibility of moving back and forth between two outcomes, but with-
out unwanted frequent switching.
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in point is apoptosis, that is, programmed cell death. Apoptosis of a cell can be
triggered by a stimulus fromoutside of the cell (via the cell’s death receptor and
the so-called extrinsic pathway) or by a signal at the cell’s mitochondria (in re-
sponse to cytotoxic stress via the intrinsic pathway). Downstream of these trig-
gers, the initiation of apoptosis is molecularly regulated by a network of inter-
actions involving proteases called caspases, among other entities. Focusing on
the intrinsic pathway, Legewie, Blüthgen, and Herzel (2006) mathematically
investigate the role of theX-linked inhibitor of apoptosis protein (XIAP) in reg-
ulating apoptosis. Themechanism diagram in the upper-right corner of figure 4
Figure 4. Bifurcation analysis results of Legewie et al.’s apoptosis modeling. The re-
alistic apoptosis regulation mechanism is shown at the top, and it yields the steady state
profile depicted in black. A counterfactual mechanism (shown at the bottom) was also
modeled, resulting in the profile in gray.While the latter is a globally reversible config-
uration, bifurcation analysis of the realistic mechanism shows why the transition from
the negligible to the high C3* output steady state is globally irreversible. Reprinted from
Legewie, Blüthgen, and Herzel (2006) with Creative Commons license.
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shows their ‘wild-type model’, which is most similar to the situation found in
nature. The pathway starting at themitochondria activatesApaf-1, subsequently
stimulating the ‘initiator’ caspase Casp9, which, if leading to a high concen-
tration of the ‘effector’ caspase active Casp3, results in execution of the down-
stream apoptosis mechanism. To theoretically scrutinize the role of XIAP, the
researchers also modeled modified, counterfactual mechanisms (‘mutant mod-
els’), one of which is shown in the lower-right corner of figure 4. Compared to
the real mechanism it lacks the Casp9←Casp3 feedback.4

The mutant model yields the globally reversible dynamical profile that fig-
ure 4 depicts in gray. It is exactly the one we have previously encountered in
the case of the cell-cycle progression (fig. 3)—a biological context in which
global reversibility is in fact needed. However, a cell’s commitment to apopto-
sis better be irreversible, so that the apoptotic cell’s damaged components are
fully removed. Irreversibility does in fact obtain for the wild-typemodel—the
actual mechanism. Moreover, the bifurcation analysis explains this global ir-
reversibility by yielding the dynamical profile depicted in black in figure 4.
The model equations also have negative solutions, but negative concentra-
tions (the region indicated by the gray shading in fig. 4) have of course no rel-
evance for the possible behaviors of the biological system. Starting in the
steady state with a negligible active Casp3 output, once the active Apaf-1 in-
put increases so as to push the system past the saddle-node bifurcation (the
point labeled 2), the system settles in a new steady statewith a high activeCasp3
output (point 3). Unlike in the earlier situation (fig. 3), there is no second bi-
furcation (in the range of positive concentrations), so that the system remains
in the new steady state even if the Apaf-1 input concentration is fully reduced
to zero (point 4).

4. Bifurcation Analysis Explains without Tracking Mechanism Opera-
tion. The motivation for my discussion of bifurcation analyses of dynam-
ical models has been previous accounts along the lines of dynamic mecha-
nistic explanation. Based on the point that in the case of simple mechanisms
the explanatory understanding comes from mentally simulating a mecha-
nism’s operation (that generates the explanandum phenomenon), these ac-
counts have focused on the analogous situation for complex mechanisms:
explaining by tracking a mechanism’s operation, as done by a computer sim-
ulation of a mathematical model.
4. While in this as in the wild-type model each XIAP molecule (out of a limited concentra-
tion) can inhibit either a Casp9 or a Casp3molecule, in a secondmutant model a XIAPmol-
ecule is permitted to bind to Casp9 and Casp3 simultaneously. See Legewie et al. (2006), in
particular theirfig. 4, formore detailed results (including an explanation ofwhy even thefirst
mutant model without any positive feedback loop yields bistability). Although it can be
counted as an instance of mechanistic reasoning, this comparison across theoretically pos-
sible systems is not a case of tracking a mechanism’s operation across time either.
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My central claim is that there are kinds of analyses of mathematical mod-
els that also are genuine explanations, yet the explanatory understanding
does not consist in tracking a mechanism’s operation and productive conti-
nuity across time. This argument can be illustrated by comparing computer
simulationwith bifurcation analysis in the case of apoptosis. Figure 5 depicts
the results of several computer simulations (in this case of the extrinsic ap-
optosis pathway, modeled by Eissing et al. [2004]), each simulation starting
with a different active Casp8 (C8*) input concentration. These results suggest
bistability (negligible as opposed to high active Casp3 output as the two states),
andwe learn that once a certain input threshold is crossed, the output will rise
and happen to remain at a high concentration. However, even multiple com-
puter simulations do not explain why this is the case. Most importantly, no
explanation of irreversibility—why a withdrawal of the input would not re-
sult in a return to the negligible output state—has been given. In contrast, the
bifurcation analysis yielding the dynamical profile shown in black in figure 4
explains global irreversibility in the manner laid out in the previous section:
the bifurcation is locally irreversible, and there is no further bifurcation (in the
range of nonnegative concentrations) that would permit a global reversal. The
same holds for explaining why global reversibility holds in other systems (see
fig. 3), which is also not about tracking a mechanism’s actual operation across
Figure 5. Multiple computer simulations (each starting with a different input con-
centration) of Eissing et al.’s apoptosis model. A stimulus from the cell’s death re-
ceptor activates C8* (active Casp8). Reprinted from Eissing et al. (2004) with per-
mission from the American Society for Biochemistry and Molecular Biology.
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time (corresponding to one trajectory in phase space) but consists in an anal-
ysis of what system changes are possible or impossible. Furthermore, an ex-
planation of local irreversibility in terms of a saddle-node bifurcation makes
plain that more than what is strictly depicted in figure 3 is involved (fig. 2
alone depicts some additional relevant information) and that the complete ex-
planation includes additional analytical knowledge, for instance, about the
presence and the nature of saddle-node bifurcations. Generally, bistability, ir-
reversibility, and reversibility have a modal aspect, and their explanation in-
volves local modal features (e.g., the direction in which a system would
change from a possible state, or the type of a bifurcation) and sometimes fea-
tures of the global profile (e.g., the number of bifurcations and the overall to-
pology of bifurcations and stable and unstable steady states).5

When arguing that bifurcation analysis explains in this manner, I do not
maintain that there are no other explanations—possibly standard mechanistic
ones—being put forward in the scientific studies discussed. For there are even
cases in which one and the same phenomenon can be explained in very differ-
ent yet legitimate ways, as made plain by Sterelny’s (1996) use of the distinc-
tion between actual-sequence and robust-process explanations in the context
of evolutionary biology. An actual-sequence explanation traces the sequence
of phylogenetic modifications up to the explanandum trait, which is analo-
gous to tracking a mechanism’s operation. A robust-process explanation, in
contrast, accounts for the explanandum trait as having been favored by nat-
ural selection, so as to indicate that the outcome would have resulted regard-
less of deviations from the actual phylogenetic sequence. The above systems
biological explanations invoking local or global irreversibility are closer to
robust-process explanations. Overall, a mathematical model of a molecular
system can be investigated in various ways, resulting in several explanations
and possibly different types of explanations. All these explanations are in-
deed based on the mechanism’s components and its organization (possibly
also considering modifications of the mechanism), but what matters for
my purposes is how the analysis of some system aspects proceeds, resulting
in a distinct way in which explanatory understanding is provided. In the case
of bifurcation analysis, this does not consist in tracking a mechanism’s op-
eration across time (not even in tracking multiple operations with different
starting conditions), although other explanations based on this mathematical
model may do the latter.

While my discussion has focused on bifurcation analysis, I take it that
there are other types of explanation used in systems biology that do not con-
5. Bifurcation analysis may also be an instance of ‘structural explanation’, which on Hune-
man’s (2018) recent account is an explanation in which the explanandum directly follows
from a topological or other mathematical property (so that a general mathematical depen-
dency rather than the concrete mechanistic model accounts for the explanandum at hand).
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sist in tracking a mechanism’s operation. Apart from topological explana-
tions in terms of a network’s structure (Huneman 2010) as mentioned in
the introduction, there are also design explanations, which do not consist
in a particular structure mechanistically explaining some functioning but
go in the opposite direction by the function explaining the class of structures
that can realize the function (Braillard 2010; Brigandt et al. 2017). Systems
biology generally explains the features of biological systems in terms of con-
siderations about sensitivity or stability, capabilities and impossibilities, hier-
archical control and the differential contributions made by different system
components, leaving these diverse ways in which explanatory understanding
is provided for future philosophical investigation.
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