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Abstract

Two different ways of trimming the sample path of a stochastic process in D[0, 1]: global
(‘trim as you go’) trimming and record time (‘lookback’) trimming are analysed to find
conditions for the corresponding operators to be continuous with respect to the (strong)
J1-topology. A key condition is that there should be no ties among the largest ordered
jumps of the limit process. As an application of the theory, via the continuous mapping
theorem, we prove limit theorems for trimmed Lévy processes, using the functional
convergence of the underlying process to a stable process. The results are applied to a
reinsurance ruin time problem.
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1. Introduction

By ‘trimming’ a process we mean identifying ‘large’ jumps of the process, in some sense,
and deleting them from it. The term has its origins in the statistical practice of identifying
‘outliers’ in a sample of independent and identically distributed (i.i.d.) random variables, then
removing them from a statistic of interest, typically, the sample sum, which can be considered
as a stochastic process in discrete time. More recently, the techniques have been transferred
to processes such as extremal processes and Lévy processes indexed by a continuous-time
parameter, where asymptotic properties of the trimmed process were solved for a number of
interesting cases. The asymptotic studied may be large time (t → ∞), as in the statistical
situation, or, for continuous-time processes, small time (t ↓ 0). The small time case extends
our understanding of local properties of the process and can have direct application as, for
example, in Maller and Fan [8] and Maller and Schmidli [10]; the large time case has the
statistical applications alluded to, such as the robustness of statistics, and insurance modelling,
and so on, as we discuss later.

This area of research can be regarded as combining studies on properties of extremes of
the jumps of a process with those of the process itself; the former, a version of extreme value
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theory; the latter relating, for example, to domains of attraction of the process. A combination
of the two fields enriches both, and the trimming idea is a natural way of approaching this.
Research in a similar direction has been carried out by Silvestrov and Teugels [11]; see also
their references.

In this paper we extend some earlier work of the present authors to consider various ways
of trimming the sample path of a stochastic process in the space D[0, 1] of càdlàg functions.
The initial setup is very general. We begin in Section 2 by establishing continuity properties (in
the Skorokhod (strong) J1-topology) of operators which remove extremes. There are a number
of intuitively reasonable ways of defining such operators. Not all of them behave in the same
way, and Section 2 is devoted to teasing out the differences between them. We take a dynamic
sample path approach which brings into focus some interesting and distinctive features not
previously apparent. Proofs for Section 2 are in Section 4.

An application of the ideas to the functional convergence of a Lévy process in the domain
of attraction of a stable law is then given. Statements for these are in Section 3, and their
proofs in Section 5. Continuity properties of certain extremal operators are closely related to
the occurrence, or otherwise, of tied (equal) values in the large jumps of the limiting process
and consequently we need to analyse these too. Finally, in Section 6 we develop a motivating
application to a reinsurance ruin time problem.

2. Extremal operators on Skorokhod space

Let D([0, 1], R) =: D be the space of all càdlàg functions: [0, 1] → R endowed with the
Skorokhod (strong) J1-topology. Denote the sup norm by ‖ · ‖, so that ‖x‖ = sup0≤τ≤1 |x(τ)|,
where, for each x ∈ D, x(τ) is the value of x at time τ ∈ [0, 1]. Convergence in the J1-topology
is characterised as follows. Let � be the set of all continuous and strictly increasing functions
λ : [0, 1] → [0, 1] with λ(0) = 0 and λ(1) = 1. Denote by I : [0, 1] → [0, 1] the identity

map. Let αn ∈ D. Then αn
J1→ α in D if there exists a sequence (λn) ∈ � such that

‖λn − I‖ ∨ ‖αn ◦ λn − α‖ → 0 as n→∞.

Intuitively, J1-convergence requires ‘matching jumps’ at ‘matching points’ after a deformation
of time. We refer the reader to Jacod and Shiryaev [6, ChapterVI] and Billingsley [1, Section 12]
for more information on the Skorokhod space. For other topologies on D, we refer the reader
to Skorokhod [12] and Whitt [14].

We proceed by setting out some basic methods of trimming extremes.

2.1. Global (pointwise) trimmers (‘trim as you go’)

Let x = (x(τ ))0≤τ≤1 ∈ D with jump process � = �x(τ) := x(τ) − x(τ−))τ>0. Set
�x(0) ≡ 0. Define the following extremal operators mapping D into D:

(I) S(x)(·) = sup0≤s≤· x(s);

(II) S̃(x)(·) = sup0≤s≤· |x(s)|;
(III) S±�(x)(·) = S�(±x)(·) := sup0≤s≤·�(±x)(s) ∨ 0; and

(IV) S̃�(x)(·) = sup0≤s≤· |�x(s)|.
In (I), S(x) is the running supremum process of x, and in (II), S̃(x) is the running supremum
process for |x|. In (III), S+�(x)(τ ) represents the magnitude of largest (positive) jump of x
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up to time τ , and S−�(x)(τ ) represents the largest magnitude of the negative jumps of x up to
time τ ; while in (IV), S̃�(x)(τ ) represents the magnitude of largest jump in modulus of x up
to time τ .

With these operators we can define what we call global, or pointwise, trimming operators.
Let N := {1, 2, . . .}, N0 := N ∪ {0}. Take r = 2, 3, . . . and define iteratively

(V) the rth extremal positive (negative) trimming operators

T (1,±)
trim (x) = x ∓ S±�(x) and T (r,±)

trim (x) = T (1,±)
trim ◦ T (r−1,±)

trim (x);
(VI) the rth extremal positive (negative) jump operators

S(1,±)
� (x) = S±�(x) and S(r,±)

� (x) = S(1,±)
� ◦ T (r−1,±)

trim (x);
(VII) the r, s trimming operators (for s ∈ N)

T (r,s)
trim (x) = T (r,+)

trim ◦ T (s,−)
trim (x) = T (s,−)

trim ◦ T (r,+)
trim (x);

(VIII) the rth extremal modulus trimming operators

T̃trim(x) = T̃ (1)
trim(x) = x − S̃�(x) and T̃ (r)

trim(x) = T̃trim ◦ T̃ (r−1)
trim (x);

(IX) and the rth extremal modulus jump operators

S̃(1)
� (x) = S̃�(x) and S̃(r)

� (x) = S̃� ◦ T̃ (r−1)
trim (x).

In (V), T (r,+)
trim (x)(τ ) is x with the r largest jumps of x up to time τ subtracted, and T (r,−)

trim (x)(τ )

is similar with the r negative jumps of largest magnitude subtracted. In (VII), T (r,s)
trim (x) has the r

positive and s negative jumps of largest magnitudes subtracted, while in (VIII), T̃ (r)
trim(x)(τ ) has

the r largest jumps in modulus of x up to time τ removed from x. In (VI) and (IX), S(r,±)
� (x)

and S̃(r)
� (x) are the rth largest values in magnitude for positive (negative), or in modulus, jumps

of the corresponding processes.
We call the operators in (V), (VII), and (VIII), ‘trim as you go’ operators because at each

point in time, the designated number of largest positive (negative) jumps up to that point are
removed from the process. See Figure 1 in Section 2.3 for an illustration with a schematic
insurance risk process.

To analyse the convergence of these operators in D, we need the following considerations.
We say that an operator � : D → D is ‖ · ‖-continuous at x ∈ D if limn→∞ ‖xn − x‖ = 0
implies that limn→∞ ‖�(xn)−�(x)‖ = 0. We say that � is J1-continuous at x ∈ D if xn

J1→x

implies that �(xn)
J1→ �(x) as n → ∞. In general, � being ‖ · ‖-continuous at x does not

imply that � is J1-continuous at x. However, this is true if, in addition, � is �-compatible,
by which we mean �(x) ◦ λ = �(x ◦ λ) for all x ∈ D, λ ∈ �. The operator � is called
jointly J1-continuous at x if, for any sequence xn converging to x in the J1-topology, there
exists (λn) in � such that, simultaneously as n→∞, ‖λn− I‖ → 0, ‖xn ◦ λn− x‖ → 0, and
‖�(xn) ◦ λn −�(x)‖ → 0. The following simple proposition summarises.

Proposition 1. Let � : D → D be �-compatible and take x ∈ D. Suppose that � is ‖ · ‖-
continuous at x. Then � is jointly J1-continuous at x.
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Proof. Assume that � is �-compatible and ‖ · ‖-continuous at x ∈ D. Since �(xn) ◦ λn =
�(xn ◦ λn), xn

J1→x, i.e. limn→∞ ‖xn ◦ λn − x‖ = 0, together with � being ‖ · ‖-continuous
at x, implies that limn→∞ ‖�(xn) ◦ λn − �(x)‖ = 0, i.e. �(xn)

J1→�(x), thus proving the
proposition. �
Proposition 2. Each of the operators defined in (I)–(IX) is

(i) ‖ · ‖-Lipschitz, hence, continuous in ‖ · ‖ norm;

(ii) �-compatible; and, consequently, by Proposition 1, jointly J1-continuous.

Proof. (i) For example, we prove (III). When x, y ∈ D,

‖S�(x)− S�(y)‖ = sup
0<t≤1

∥∥∥ sup
0<s≤t

(x(s)− x(s−))− sup
0<s≤t

(y(s)− y(s−))

∥∥∥
≤ sup

0<s≤1
‖(x(s)− x(s−))− (y(s)− y(s−))‖

≤ 2‖x − y‖, (1)

using the triangle inequality |‖α‖ − ‖β‖| ≤ ‖α − β‖ ≤ ‖α‖ + ‖β‖.
(ii) We prove this for (IV), for example. Let x ∈ D, λ ∈ �, and t ∈ [0, 1]. Then

S̃�(x ◦ λ)(t) = sup
0≤s≤t

|�(x ◦ λ)(s)| = sup
0≤s≤t

|�x(λ(s))| = sup
0≤s≤λ(t)

|�x(s)| = S̃�(x)(λ(t)),

completing the proof. �
Remark 1. We refer the reader to Jacod and Shiryaev [6, Section IV.2] for other continuity
properties of common mappings in the Skorokhod topology.

2.2. Signed modulus trimmers

In Section 3 we will consider a Lévy process X = (Xt )t≥0 which is to be trimmed. Before
this, in the present subsection, we want to draw attention to an issue that arises with modulus
trimming when considered pathwise. There may be one or more jumps equal in magnitude to
the largest of |�Xs | = |Xs − Xs−| for 0 ≤ s ≤ t . We refer to these as ‘tied’ values (for the
modulus, with a similar concept for the positive and negative jumps).

Buchmann et al. [2] defined a ‘modulus trimmed Lévy process’ as follows. Denote the
largest modulus jump of X up to time t , i.e. the jump corresponding to the largest of |�Xs |,
0 ≤ s ≤ t , by �̃X

(1)

t . When there is no tie for sup0≤s≤t |�Xs |, the sign of �̃X
(1)

t is uniquely
determined. When there is a tie, the procedure in [2] is to nominate a jump chosen at random
among the almost surely (a.s.) finite number of tied values according to a discrete uniform
distribution on the collection of ties. While appropriate in the context of [2], this definition
is problematic when we consider the sample path of the process on [0, 1]. To see why, take
a simple example. Suppose that for some ω, the largest modulus jump up to time t is tied at
values 0 < s1 < s2 < t with opposite signs, say

�Xs1(ω) = |�̃X
(1)

t (ω)| and �Xs2(ω) = −|�̃X
(1)

t (ω)|,

while |�̃X
(1)

s (ω)| = |�̃X
(1)

t (ω)| for all s ∈ [s2, t]. For each s ∈ [s2, t], if we were to choose
from {�Xs1 , �Xs2} with equal probability to be trimmed from Xs(ω), the sample path of the
resulting trimmed process would not be in D.
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Thus, we need to design a way to define signed modulus trimming on the sample path of X

so as to stay within D. One way to do this is as follows (we now revert to the general setup).
For x ∈ D, define the last modulus record time process on [0, 1] as

L̃τ (x) := sup{s ∈ [0, τ ] : |�x(s)| = S̃�(x)(τ )} for each τ ∈ [0, 1]. (2)

Then the signed largest modulus jump up to time τ ∈ [0, 1] is �x(L̃τ (x)), and the signed largest
trimmer can be defined as Ttrim(x) := x−�x(L̃τ (x)). More generally, interpret T(0)

trim(x) = x,
let T

(1)
trim(x) := Ttrim(x), and, for r = 2, 3, . . . , set

T
(r)
trim(x) := Ttrim(T

(r−1)
trim (x)).

Now T
(1)
trim is not, in general, globally J1-continuous, that is, it is not J1-continuous at all

x ∈ D. Take, for example, x = 1[1/3, 2/3) and xn = x + (1/n) 1[1/3, 1]. Then xn
J1→x, but

T
(1)
trim(x) = 1[2/3, 1] and T

(1)
trim(xn) = − 1[2/3, 1] .

However, Ttrim is continuous when there is no sign change of ties in the limit. This is shown
in Theorem 1, which uses the following notation. For each τ ∈ [0, 1], collect the times of
occurrence of the largest values, and the times of occurrence of values having largest modulus,
into sets A

±
τ (x) and Ãτ (x); thus,

A
±
τ (x) := {0 < s ≤ τ : �x(s) = S±�(x)(τ )} (3)

and
Ãτ (x) := {0 < s ≤ τ : |�x(s)| = S̃�(x)(τ )}. (4)

We use the convention that when x is continuous on [0, τ ] then A
±
τ (x) = Ãτ (x) = ∅. Recall

that a càdlàg function has only finitely many jumps with magnitude bounded away from 0,
so A

±
τ (x) and Ãτ (x) are finite sets (we include in this the possibility that one or other of them

may be empty) for functions x ∈ D. Collect the sign changing largest modulus jumps contained
in Ãτ (x) = {s1, . . . , s#Ãτ (x)} into the set

Bτ (x) := {sk ∈ Ãτ (x) : �x(sk) = −�x(sk−1), where k = 2, . . . , #Ãτ (x)}.
Note that #Ãτ (x) = 1 implies that #Bτ (x) = 0. Conversely, #Bτ (x) = 0 implies that
Ãτ (x) = A

+
τ (x) or Ãτ (x) = A

−
τ (x).

In the next theorem, we show that when there is no sign change among ties of large modulus
jumps in x and its trimmed versions T

(j)
trim(x) for all 0 ≤ j ≤ r−1, T(r)

trim is jointly J1-continuous
at x. The next theorem is proved in Section 4.

Theorem 1. It holds that Ttrim is jointly J1-continuous at x if supτ∈[0,1] #Bτ (x) = 0. Con-

sequently, T
(r)
trim is jointly J1-continuous at x if supτ∈[0,1] #Bτ (T

(j)
trim(x)) = 0 for all j =

0, . . . , r − 1, when r ∈ N.

2.3. Record times trimmers (‘lookback trimming’)

On the function space D, we can extend the idea of trimming by including a random location
where trimming starts and, hence, define a second kind of trimming. For x ∈ D, define the first
(positive) record time in [0, 1] by

Rτ (x) := inf{s ∈ [0, τ ] : �x(s) = S+�(x)(τ )} for 0 < τ ≤ 1, (5)
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and, similarly, we could define the first (negative) record time. Likewise,

R̃τ (x) := inf{s ∈ [0, 1] : |�x(s)| = S̃�(x)(τ )} (6)

yields the first modulus record time. The corresponding record time trimmers are

Rtrim(x) := x −�x(R1(x)) 1[R1(x), 1], R̃trim(x) := x −�x(R̃1(x)) 1[R̃1(x), 1] . (7)

Expanding, Rtrim(x)(τ ) can be written for τ ∈ [0, 1] as

Rtrim(x)(τ ) =
⎧⎨
⎩

x(τ)− sup
0<s≤τ

�x(s) if R1(x) ≤ τ ,

x(τ) otherwise.

Thus, x is trimmed at time τ if the record occurs before τ , otherwise not. In Figure 1 we
present an illustration of the two trimming types for a compound Poisson risk process as used
in insurance risk modelling (see Section 6).

Set R(0)
trim(x) = x. For r ∈ N, define the rth order record times trimmers as

R(r)
trim(x) := Rtrim(R(r−1)

trim (x)) = R(r−1)
trim (x)−�R(r−1)

trim (R1 ◦R(r−1)
trim (x)) 1[R1◦R(r−1)

trim (x), 1],
(8)

and, for R̃(r)
trim(x), replace each R1 and Rtrim in (8) by R̃1 and R̃trim.

While the record trimming functionals are �-compatible, they are not, however, of the type
described in Section 2.1. In fact they are not globally J1-continuous.

Example 1. (Rtrim is not globally norm or J1-continuous.) First, Rtrim is not ‖ · ‖-continuous.
To see this, let x := 1[1/3, 1] + 1[2/3, 1]. For n ∈ N, set xn := x + (1/n) 1[2/3, 1]. Observe that
limn→∞ ‖xn − x‖ ≤ limn→∞ 1/n = 0. In particular, xn

J1→x as n→∞. However,

R1(x) = 1
3 , Rtrim(x) = 1[2/3, 1], R1(xn) = 2

3 , n ∈ N,
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Figure 1: A realization of the compound Poisson risk insurance model Xt = ct +∑Nt

i=1ξi , t ∈ [0, 1], is
represented by the solid grey line. The ξi are i.i.d. with a Pareto(1, 2) distribution, c = −110, and Nt is
Poisson with E(N1) = 100. Left: the sample path of T (1,+)

trim ((Xt )t∈[0,1]) (‘trim as you go’) is represented
by the solid black line. Right: the sample path of Rtrim((Xt )t∈[0,1]) (‘lookback trimming’) is represented
by the solid black line. This path coincides with the original process before R1((Xt )t∈[0,1]) and with the

T (1,+)
trim ((Xt )t∈[0,1]) path after.
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and
Rtrim(xn) = 1[1/3, 1], ‖Rtrim(xn)−Rtrim(x)‖ = 1, n ∈ N.

Thus, Rtrim is �-compatible, but not ‖ · ‖-continuous in x.
Second, Rtrim also is not J1-continuous. To see this, take (λn) ⊆ � with limn→∞ ‖λn−I‖ =

0. Then limn→∞ λ−1
n ( 1

3 ) = 1
3 , hence, for n ∈ N, once λ−1

n ( 1
3 ) < 2

3 ,

‖Rtrim(x)−Rtrim(xn ◦ λn)‖ = ‖Rtrim(x)−Rtrim(xn) ◦ λn‖
≥ ∣∣Rtrim(x)

(
λ−1

n

( 1
3

))−Rtrim(xn)
( 1

3

)∣∣
= 1[1/3, 2/3]

( 1
3

) = 1.

Consequently, we have xn
J1→x, but not Rtrim(xn)

J1→Rtrim(x).

Recall the definitions of A
±
τ and Ãτ in (3) and (4). Our main result of this section is that

the record time trimmer Rtrim is jointly J1-continuous at x if and only if x does not admit ties.
The next theorem is proved in Section 4.

Theorem 2. Let x ∈ D and r ∈ N.

(i) If #A
+
1 (x) ≤ 1 then Rtrim is jointly J1-continuous at x. Consequently, if

#A
+
1 (R

(j)
trim(x)) ≤ 1 for all j = 0, . . . , r − 1

then R(r)
trim is jointly J1-continuous at x.

(ii) If Rtrim is J1-continuous at x then #A
+
1 (x) ≤ 1.

The same holds with Rtrim replaced by R̃trim and #A
+
1 (x) replaced by #Ã1(x).

3. Functional laws for Lévy processes

A number of interesting processes can be derived by applying the operators in Section 2
to Lévy processes. In the present section, X = (Xt )t>0, X0 = X0− = 0, will be a real-
valued càdlàg Lévy process with canonical triplet (γ, σ 2 = 0, 
X). The positive, negative,
and two-sided tails of the Lévy measure 
X are, for x > 0,



+
X(x) := 
X{(x,∞)}, 


−
X(x) := 
X{(−∞,−x)}, 
X(x) := 


+
X(x)+


−
X(x).

The jump process of X is (�Xt = Xt −Xt−)t≥0, the positive jumps are �X+t = �Xt ∨ 0,
and the magnitudes of the negative jumps are �X−t = (−�Xt)∨ 0. The processes (�X+t )t≥0
and (�X−t )t≥0, when present, are nonnegative independent processes. For any integers r, s >

0, let �X
(r)
t be the rth largest positive jump, and let �X

(s),−
t be the sth largest jump in

{�X−s , 0 < s ≤ t}, i.e. the negative of the sth smallest jump. These types of ordered jumps
were carefully defined in [2], allowing for the possibility of tied values. (Recall the discussion
in Subsection 2.2.) We can similarly define �X

(r)
t− and �X

(s),−
t− for the ordered jumps in

{�Xs, 0 < s < t}.
Throughout, for small time convergence (t ↓ 0), we assume that 
X(0+) = ∞when dealing

with modulus trimming and 

+
X(0+) = ∞ or 


−
X(0+) = ∞ (or both when appropriate) when

dealing with one-sided trimming. In particular, these ensure there are infinitely many jumps
�Xt , or �X±t , a.s. in any bounded interval of time.
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As demonstrated in Section 2, the largest modulus trimming as defined in [2] is not natural

for the functional setting, so here we adopt a modified definition. Write �̃X
(r)

t to denote the
rth largest jump in modulus up to time t , taking the sign of the latest rth largest modulus jump.
Then define the trimmed Lévy processes

(r,s)Xt := Xt −
r∑

i=1

�X
(i)
t +

s∑
j=1

�X
(j),−
t and

(r)
X̃t := Xt −

r∑
i=1

�̃X
(i)

t ,

which we call the asymmetrically trimmed and modulus trimmed processes, respectively. With
the convention

∑0
1 ≡ 0, taking r = 0 or s = 0 in asymmetrical trimming yields one-sided

trimmed processes (r)Xt := (r,0)Xt and (s,−)Xt := (0,s)Xt .
In this section we apply a functional law for Lévy processes attracted to a nonnormal stable

law to obtain two theorems for trimmed Lévy processes. We say that Xt is in a nonnormal
domain of attraction at small (large) times if there exist nonstochastic functions at ∈ R and
bt > 0 such that

Xt − at

bt

d−→ Y as t ↓ 0 (t →∞), (9)

where Y is an a.s. finite, nondegenerate, nonnormal random variable. Then (9) implies that the
two-sided tail 
X of X is regularly varying (at 0 or∞, as appropriate), with index α ∈ (0, 2).
The limit random variable Y has the distribution of Y1, where (Yτ )0≤τ≤1 ≡ Y is a stable(α)
Lévy process. The canonical triplet for Y will be taken as (0, 0, 
Y ), where 
Y has tail function

Y (x) = cx−α , x > 0, for some c > 0.

In the small time case, conditions on the Lévy measure for (9) to hold can be deduced from
Maller and Mason [9, Theorem 2.2], whose result can also be used to show that (9) can be
extended to convergence in D; that is,

�t = {�t (τ )}0≤τ≤1 :=
(

Xτt − τat

bt

)
0≤τ≤1

→ (Yτ )0≤τ≤1 = Y, (10)

weakly as t ↓ 0 with respect to the J1-topology. Large time (t →∞) convergence in (10) also
follows from (9) as is well known.

Assuming the convergence in (10), we can prove a variety of interesting functional limit
theorems for X by applying the operators in Section 2. We list some examples in Theorem 3
and prove them in Section 5.

In Theorem 3(i)–(iii) we consider lookback trimming, two-sided (or one-sided, with r or s

taken as 0) trimming, and signed modulus trimming defined as in Subsection 2.2, respectively.
To specify the lookback trimming in this situation, recall the definition of the record time
trimming functionals in (7) and (8). Using them, we define, for X, lookback trimmed paths of
order r , based on positive jumps, being processes on τ ∈ [0, 1], indexed by t > 0, as

((1)XR
tτ )τ∈[0,1] = Rtrim((Xtτ )τ∈[0,1]),

and, for r = 2, 3, . . . ,

((r)XR
tτ )τ∈[0,1] = R(r)

trim((Xtτ )τ∈[0,1]) =: Rtrim(R(r−1)
trim ((Xtτ )τ∈[0,1])).

Theorem 3. Assume that (Xt )t≥0 is in the domain of attraction of a stable law at 0 with
nonstochastic centering and norming functions at ∈ R, bt > 0, so that (9) and (10) hold. In
the following, convergences are with respect to the J1-topology in D.
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(i) Suppose that 

+
X(0+) = ∞ and r ∈ N. Then, for the same at and bt ,( (r)XR
τt − τat

bt

)
0≤τ≤1

d−→ ((r)YR
τ )0≤τ≤1 =: (r)YR in D as t ↓ 0. (11)

(ii) Assume that 

+
X(0+) = 


−
X(0+) = ∞ and r, s ∈ N0. Then, for the same at and bt ,( (r,s)Xτt − τat

bt

)
0≤τ≤1

d−→ ((r,s)Yτ )0≤τ≤1 =: (r,s)Y in D as t ↓ 0. (12)

(iii) Suppose that only 
X(0+) = ∞ and r ∈ N. Then, for the same at and bt ,

( (r)
X̃τ t − τat

bt

)
0≤τ≤1

d−→ (
(r)

Ỹτ )0≤τ≤1 =: (r)Ỹ in D as t ↓ 0. (13)

Remark 2. (i) Buchmann et al. [2] and also Maller and Mason [9] included convergence of the
quadratic variation of X in their expositions. Using these as basic convergences (i.e. together
with (9) and (10)) would lead to functional convergences of the jointly trimmed process together
with its trimmed quadratic variation process, and we could then consider self-normalised
versions. But we omit the details of these.

(ii) Fan [3] proved the converses of Theorems 3(ii) and 3(iii) for t ↓ 0, i.e. if the convergence
in (12) or (13) holds for a fixed τ > 0, then X is in the domain of attraction of a stable law
with index α ∈ (0, 2) at small times. When Y is N(0, 1), a standard normal random variable,
the large jumps are asymptotically negligible with respect to bt and (11) and (12) remain true
with (r,s)Y and (r)Ỹ a standard Brownian motion; see [4].

We conclude this section by mentioning that the same methods can be used to obtain
functional convergence for jumps of an extremal process together with trimmed versions. Again,
we omit further details.

4. Proofs for Section 2

For the proof of Theorem 1 we need a preliminary lemma. Let C(rn) denote the set of
accumulation points of a sequence (rn) ⊆ R as n → ∞. Recall that L̃τ and R̃τ , the last and
first modulus record time processes, are defined in (2) and (6); Rτ , the first positive record time
process, is defined in (5).

Lemma 1. Take x ∈ D and suppose that (xn) ⊆ D with xn
J1→x. Then, for each τ ∈ [0, 1],

(i) if Ãτ (x) �= ∅ then C(R̃τ (xn)) ⊆ Ãτ (x) and C(L̃τ (xn)) ⊆ Ãτ (x);

(ii) if A
+
τ (x) �= ∅ then C(Rτ (xn)) ⊆ A

+
τ (x);

(iii) if ‖xn − x‖ → 0 and #Ãτ (x) = 1 then, for all sufficiently large n, R̃τ (xn) = L̃τ (xn) =
R̃τ (x) = L̃τ (x) for each τ ∈ [0, 1].

Proof. (i) We consider the A
+ case only; Ã can be argued similarly.

(ii) Take x ∈ D and let (xn) ⊆ D with xn
J1→x. Then there are λn ∈ � such that ‖λn − I‖ ∨

‖yn − x‖ → 0 for yn := xn ◦ λn. This also means that ‖�yn −�x‖ → 0.
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Fix a time τ ∈ [0, 1] and assume that A
+
τ (x) �= ∅. Recall that A

+
τ (x) is a finite set. Let

A
+
τ = {s1, . . . , sN } �= ∅ with s1 = Rτ (x) = min A

+
τ (x). Observe that Rτ (yn) = λ−1

n (Rτ (xn))

and, thus, since ‖yn−x‖ → 0, C(Rτ (xn)) = C(Rτ (yn)). To complete the proof, it thus suffices
to show that C(Rτ (yn)) ⊆ A

+
τ (x).

To see this, note that there exist δ > 0 and n0 ∈ N such that, for all n ≥ n0, 8(1 +
#A
+
τ (x))‖yn − x‖ ≤ δ (because ‖yn − x‖ → 0 and A

+
τ (x) is finite), and, also,

S�

(
x −

∑
s∈A+τ (x)

�x(s) 1[s,1]
)

(τ ) < �x(Rτ (x))− δ. (14)

To explain (14): the quantity (
x −

∑
s∈A+τ (x)

�x(s) 1[s,1]
)

(τ )

is x with all positive jumps equal in magnitude to the largest jump up to time τ subtracted.
Applying the operator S� to this produces the largest of the remaining jumps, hence, the second
largest jump in magnitude of x up to time τ . This is strictly smaller than the magnitude of the
largest jump, which is �x(Rτ (x)). So indeed there is a δ > 0 such that (14) holds.

Let α ∈ C(Rτ (yn)) be the limit along a subsequence (n′) ⊆ (n). Contrary to the hypothesis,
suppose that α /∈ A

+
τ (x) and, thus, αn′ := Rτ (yn′) /∈ A

+
τ (x) for all sufficiently large n′. For

those n′ also being larger than n0, observe that

�x(Rτ (x)) = S�(x)(τ )

≤ S�(yn′)(τ )+ 2‖yn′ − x‖
= S�

(
yn′ −

∑
s∈A+τ (x)

�yn′(s) 1[s,1]
)

(τ )+ 2‖yn′ − x‖.

Here the second equality holds because αn′ /∈ A
+
τ (x) implies that �yn′(s) ≤ S�(yn′)(τ ) for

any s ∈ A
+
τ (x), for large n′, and, thus, subtracting any such jumps from yn′ does not affect the

value of S�(yn′). Using (1) again now yields

�x(Rτ (x)) ≤ S�

(
x −

∑
s∈A+τ (x)

�x(s) 1[s,1]
)

(τ )+ 4(1+ #A
+
τ (x))‖yn′ − x‖

≤ �x(Rτ (x))− δ + 1
2δ

= �x(Rτ (x))− 1
2δ,

where the last inequality holds by (14). This contradiction yields α ∈ A
+
τ (x), completing the

proof that C(Rτ (yn)) ⊂ A
+
τ (x).

(iii) Again, suppose that ‖λn− I‖∨‖yn− x‖ → 0 and, in addition, #A
+
τ (x) = 1. We can take

16‖yn − x‖ ≤ δ and (14) now takes the form

S�(x −�x(Rτ (x)) 1[Rτ (x), 1])(τ ) < �x(Rτ (x))− δ for some δ > 0 and all n ≥ n0.

Suppose that Rτ (yn) �= Rτ (x) for some n. Then we must have n < n0, as otherwise

�x(Rτ (x)) ≤ |�yn(Rτ (x))| + 2‖yn − x‖
≤ |�yn(Rτ (yn))| + 2‖yn − x‖
≤ |�x(Rτ (yn))| + 4‖yn − x‖
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< �x(Rτ (x))− δ + 1
3δ

= �x(Rτ (x))− 2
3δ.

This contradiction proves the result. �
Proof of Theorem 1. Assume that supτ∈[0,1] #Bτ (x) = 0. We first show that Ttrim is �-

compatible. Let λ ∈ � and recall from Proposition 2 that S̃� is �-compatible. Since

L̃τ (x ◦ λ) = sup{0 ≤ s ≤ τ : �x(λ(s)) = S̃�(x)(λ(τ))}
and

L̃λ(τ)(x) = sup{0 ≤ s ≤ λ(τ) : �x(s) = S̃�(x)(λ(τ))},
we have λ−1 ◦ L̃λ(τ)(x) = L̃τ (x ◦ λ). Thus,

�(x ◦ λ)(L̃τ (x ◦ λ)) = �(x ◦ λ)(λ−1 ◦ L̃λ(τ)(x)) = �x(L̃λ(τ)(x)).

Then Ttrim is �-compatible, since

Ttrim(x ◦ λ) = x ◦ λ−�(x ◦ λ)(L̃τ (x ◦ λ))

= x ◦ λ−�x(L̃τ (x)) ◦ λ

= (x −�x(L̃τ (x)) ◦ λ

= Ttrim(x) ◦ λ.

It remains to show that Ttrim is ‖ · ‖-continuous at x. Suppose that ‖xn − x‖ → 0. If
Ãτ (x) = ∅ then Ttrim(x) = x, hence, Ttrim is trivially ‖ · ‖-continuous. Alternatively, suppose
that Ãτ �= ∅. Then

‖Ttrim(xn)− Ttrim(x)‖ ≤ ‖xn − x‖ + sup
0≤τ≤1

|�xn(L̃τ (xn))−�x(L̃τ (x))|.

The first term on the right-hand side tends to 0 and the second term on the right-hand side does
not exceed

sup
0≤τ≤1

|�xn(L̃τ (xn))−�x(L̃τ (xn))| + sup
0≤τ≤1

|�x(L̃τ (xn))−�x(L̃τ (x))|

≤ 2‖xn − x‖ + sup
0≤τ≤1

|�x(L̃τ (xn))−�x(L̃τ (x))|. (15)

By Lemma 1, C∞(L̃τ (xn)) ⊆ Ãτ (x) for each τ ∈ [0, 1]. If L̃τ (xn)→ L̃τ (x) then the second
term on the right-hand side of (15) tends to 0. Suppose that L̃τ (xn)→ s1 �= L̃τ (x) = s2, where
s1, s2 ∈ Ãτ (x). Then |�x(s1)| = |�x(s2)|. But since #Bτ (x) = 0 for all τ ∈ [0, 1], we also
have �x(s1) = �x(s2). Thus, sup0≤τ≤1 |�x(L̃τ (xn)) − �x(L̃τ (x))| → 0. This completes
the proof. �

Proof of Theorem 2. Again, we only consider the A
+
1 case.

(i) Let xn
J1→x in D and #A

+
1 (x) ≤ 1. Then there exists a sequence λn ∈ � such that

‖λn − I‖ ∨ ‖x ◦ λn − x‖ → 0. If A
+
1 (x) = ∅ then S�(x) ≡ 0 and Rtrim(x) = x, so

‖Rtrim(xn) ◦ λn −Rtrim(x)‖ = ‖Rtrim(xn ◦ λn)− x‖
≤ ‖xn ◦ λn − x‖ + |�(xn ◦ λn)(R1(xn ◦ λn))|
= ‖xn ◦ λn − x‖ + ‖S�(xn ◦ λn)− S�(x)‖
≤ 3‖xn ◦ λn − x‖
→ 0 as n→∞.
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Alternatively, if #A
+
1 = 1 then by Lemma 1 there is an n0 ∈ N such that R1(xn◦λn) = R1(x)

for all n ≥ n0 and, for those n, we also have

Rtrim(xn) ◦ λn = Rtrim(xn ◦ λn) = xn ◦ λn −�xn(R1(x)) 1[R1(x), 1] .

As n→∞, the right-hand side converges uniformly (in the supremum norm) to

x −�x(R1(x)) 1[R1(x), 1] = Rtrim(x),

which shows that Rtrim is jointly J1-continuous at x. For r = 2, recall the definition of R(2)
trim

from (8). Since Rtrim is J1-continuous at x and Rtrim is assumed J1-continuous at Rtrim(x), then
the composition R(2)

trim(x) = Rtrim(Rtrim(x)) is J1-continuous at x. An analogous argument
holds for r > 2.

(ii) Contrary to the hypothesis, assume that {s1, s2} ⊆ A
+
1 (x) for some 0 < s1 < s2 ≤ 1.

Noting that s1 = R1(x) and Rtrim(x) = x −�x(s1) 1[s1, 1], we introduce

xn := x + 1

n
1[s2, 1], n ∈ N.

As n→∞, we have ‖xn−x‖ = 1/n→ 0 and, in particular, xn
J1→x. Observe that R1(xn) = s2

and Rtrim(xn) = x −�x(s2) 1[s2, 1], n ∈ N. Hence, for all n,

‖Rtrim(xn)−Rtrim(x)‖ ≥ |Rtrim(xn)(s1)−Rtrim(x)(s1)| = |�x(s1)| > 0.

Finally, let (λn) ⊆ � be such that limn→∞ ‖λn − I‖ = 0. Then limn→∞ λ−1
n (s1) = s1. As

Rtrim(x) is continuous at s1 = R1(x),

δn := Rtrim(x)(s1)−Rtrim(x)(λ−1
n (s1))→ 0 as n→∞,

and, thus,

‖Rtrim(xn ◦ λn)−Rtrim(x)‖ = ‖Rtrim(xn)−Rtrim(x) ◦ λ−1
n ‖

≥ |Rtrim(xn)(s1)−Rtrim(x)(λ−1
n (s1))|

= |�x(s1)+ δn|
→ |�x(s1)| > 0 as n→∞.

To summarise, we showed that xn
J1→x, but not Rtrim(xn)

J1→Rtrim(x), contradicting the J1-
continuity of Rtrim at x. �

5. Proof of Theorem 3

Let (�Xs)0<s≤t be the jumps of a Lévy process (Xs)0<s≤t having Lévy measure 
X, with

ordered jumps (�X
(i)
t )i≥1 and (�X

(j),−
t )j≥1, as specified in Section 3. In what follows, we

will assume that 

+
X(0+) = 


−
X(0+) = ∞ throughout, so there are always infinitely many

positive and negative jumps of X, a.s., in any interval of time.
Let (Ei )i≥1 be an i.i.d. sequence of exponentially distributed random variables with common

parameter EEi = 1 and let �r :=∑r
i=1Ei with r ∈ N. Write



+,←
X (x) = inf{y > 0 : 
+X(y) ≤ x}, x > 0,
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for the right-continuous inverse of the right tail 

+
X (with similar notation for the left tail 


−
X

and the two-sided tail 
X). The following distributional equivalence can be deduced from [2,
Lemma 1.1]:

(�X
(i)
t )1≤i≤r

d=
(



+,←
X

(
�i

t

))
1≤i≤r

, t > 0, r ∈ N. (16)

We refer the reader to [2] for more background information on the properties of the extremal
processes (�X

(r)
t )t≥0 and the trimmed Lévy processes.

Proof of Theorem 3. (i) We state proofs just for t ↓ 0; t → ∞ is very similar. Recall the
definition of {�t (τ )}τ∈[0,1] from (10) and assume the convergence of �t to a stable process Y as
in (10). The process Y has Lévy measure 
Y which is diffuse (continuous at each x ∈ R\ {0}).

For each τ ∈ (0, 1], the jump of �t at τ is

��t (τ ) := �t (τ )− �t (τ−) = Xtτ − τat

bt

− Xtτ− − τat

bt

= �Xtτ

bt

. (17)

Hence, S�(�t )(τ ) = S�(Xtτ /bt ) for each t > 0, and we can write( (r)XR
τt − τat

bt

)
τ∈[0,1]

= R(r)
trim(�t ).

We want to apply the continuous mapping theorem and deduce the convergence in (11) from
this. By Theorem 2, to apply the continuous mapping theorem it is enough to verify that there
are no ties a.s. among the first r largest positive jumps in the limit process Y. Let C := {x ∈
D : #A

+
1 (R

(j)
trim(x)) ≤ 1 for all j = 0, . . . , r − 1}. We wish to show that P(Y ∈ C) = 1.

Denote by �Y
(j)
1 the j th largest jump of Y up to time 1. Note that

P(Y ∈ C) ≥ 1−
r∑

j=1

P(�Y
(j)
1 = �Y

(j+1)
1 ).

Since 
Y is diffuse, we have 

+
Y (


+,←
Y (v)) = v = 


+
Y (


+,←
Y (v)−) for all v > 0. Thus, by

(16) (with X and 
X replaced by Y and 
Y ),

P(�Y
(j)
1 = �Y

(j+1)
1 ) = P{
+,←

Y (�j ) = 

+,←
Y (�j + Ej+1)}

=
∫ ∞

0
P{
+,←

Y (v) = 

+,←
Y (v + Ej+1)}e−v vj−1

(j − 1)! dv

=
∫ ∞

0
P{0 ≤ Ej+1 ≤ 


+
Y (


+,←
Y (v)−)− v}e−v vj−1

(j − 1)! dv

= 0.

So we can apply Theorem 2 as forecast and complete the proof.
(ii) We first prove (12) and consider only the trimming operator T (1,+)

trim (T (r,s)
trim is treated

analogously). By (17) we can write, for each τ ∈ (0, 1] and t > 0,

T (1,+)
trim (�t )(τ ) = Xτt − τat

bt

− sup
0<s≤τ

��t (s) =
(1)Xτt − τat

bt

.
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Since T (1,+)
trim is globally J1-continuous on D by Proposition 2, we can apply the continuous

mapping theorem to obtain( (1)Xτt − τat

bt

)
0≤τ≤1

= T (1,+)
trim (�t )

d−→ T (1,+)
trim (Y) = ((1)Yτ )0≤τ≤1

in J1 as t ↓ 0 or t →∞. This completes the proof of (12).
(iii) Again, by (17) we have( (r)

X̃τ t − τat

bt

)
0≤τ≤1

= T
(r)
trim(�t ).

From Theorem 1, recall that T
(r)
trim is J1-continuous on C̃, where

C̃ := {x ∈ D : #Bτ (T
(j)
trim(x)) = 0 for all τ ∈ [0, 1], j = 0, . . . , r − 1}.

Thus, in order to apply the continuous mapping theorem, we need to show that P(Y ∈ C̃) = 1.
Note that C̃ ⊇ Ṽ, where

Ṽ := {x ∈ D : #Ãτ (T
(j)
trim(x)) ≤ 1 for all τ ∈ [0, 1], j = 0, . . . , r − 1}.

Hence, it is enough to show that P(Y ∈ Ṽ) = 1, or, equivalently,

P

( ⋃
1≤j≤r

⋃
0<τ<1

{|�̃Y
(j+1)

τ | = |�̃Y
(j)

τ |}
)
= 0, (18)

where �̃Y
(j)

τ denotes the j th largest modulus jump of Y up to time τ .
To simplify notation, for the remainder of this proof, write �t for the modulus jumps

|�Yt |, and for their ordered values in the intervals [0, t] or [0, t), write �
(j)
t = |�̃Y

(j)

t | or
�

(j)
t− = |�̃Y

(j)

t− |, t > 0, j = 1, 2, . . .. We aim to show that

P

( ⋃
0<τ<1

{�(j+1)
τ = �(j)

τ }
)
= 0, j = 1, 2, . . . , r, (19)

from which (18) will follow immediately.
We consider first the first case j = 1. Define a sequence of random times (τk)k≥0 by

τ0 = 1 and τk+1 := inf{0 < t < τk : �t = �
(1)
τk−}, k = 0, 1, . . . . (20)

Since limt↓0 �
(1)
t = 0 a.s., we have 0 < τk+1 < τk ≤ 1 and limk→∞ τk = 0 a.s. On

{τk+1 ≤ t < τk}, we have �
(1)
t = �

(1)
τk−, hence, on the event {�(2)

t = �
(1)
t },

1 = �
(2)
t

�
(1)
t

≤ �
(2)
τk−

�
(1)
τk−
≤ 1.

This implies that⋃
0<τ<1

{�(2)
τ = �(1)

τ } =
⋃
k≥0

⋃
t∈[τk+1,τk)

{�(2)
t = �

(1)
t }

=
⋃
k≥0

{�(2)
τk− = �

(1)
τk−}

= {�(2)
t− = �

(1)
t− for some t ≤ 1 with �t > �

(1)
t−}

=: E.
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Define S =∑
0<t<1δ(t,�t ), where δ(t,�t ) denotes a point mass at (t, �t ). Also, S is a Poisson

random measure on (0, 1)× (0,∞) with intensity dt ×
Y (dx). Let

N =
∫

(0,1)×(0,∞)

1{�(2)
t−=�

(1)
t−<x} S(dt × dx)

be the number of points (t, �t ) which satisfy �
(2)
t− = �

(1)
t− < �t with t < 1. Then, recalling

that �
(j)
t = |�̃Y

(j)

t |, event E has probability

P(E) = P(N ≥ 1)

≤ E(N) (by Markov’s inequality)

=
∫ 1

0
dt

∫
x>0

E 1{�(2)
t−=�

(1)
t−<x}
Y (dx)

=
∫ 1

0
dt

∫
x>0

∫


←
Y (y/t)<x

P

(
y + E2 ≤ t
Y

(


←
Y

(
y

t

)
−

))
P(E1 ∈ dy)
Y (dx)

=
∫ 1

0
dt

∫
x>0

∫


←
Y (y)<x

P(E2 ≤ t (
Y (

←
Y (y)−)− y))e−ty dy
Y (dx)

= 0. (21)

In the second equality we used the compensation formula, and in the third we used a version

of (16) appropriate to the |�̃Y
(j)

t |. The last expression in (21) is 0 because 
Y is diffuse, so

Y (


←
Y (v)) = v = 
Y (


←
Y (v)−) for all v > 0. This means, with probability 1, that there

are no tied values among the largest jumps in (�τ )0<τ<t for all t ∈ (0, 1). (Note that this is
ostensibly a much stronger statement than requiring there be no tied values among the largest
jumps up until a fixed time t .)

Next we consider j = 2. It is enough to show that P(
⋃

0<t<1{�(3)
t = �

(2)
t }) = 0. We restrict

ourselves to the event F := ⋂
0<t<1{�(2)

t �= �
(1)
t }, which we have proved has probability 1.

On this event, there are no ties for the largest value among (�t )0<t≤1. Recall the definition of
the sequence (τk) in (20). The largest jump �

(1)
t remains constant on the interval τk+1 ≤ t < τk .

We aim to subdivide the interval [τk+1, τk) so that the second largest jump up to time t , which
is strictly less than �τk+1 , is constant within that subinterval. First, we consider the case when
�

(2)
t = �τk+1 . Define, for each k ∈ N0 := N ∪ {0},

sk := sup{0 < t < τk : �τk+2 = �
(2)
t }.

Note that sk ≥ τk+1 as �τk+2 = �
(2)
τk+1 . Next, define a further sequence (σm(k))m≥1 in [sk, τk)

such that σ0(k) = τk and, for m = 1, 2, . . . ,

σm(k) = inf{0 < t < σm−1(k) : �t = �
(2)
σm−1(k)−} ∨ sk.

Then we can decompose

⋃
0<t<1

{�(3)
t = �

(2)
t } =

⋃
k≥0

( ⋃
τk+1≤t<sk

⋃ ⋃
m≥1

⋃
σm(k)≤t<σm−1(k)

)
{�(3)

t = �
(2)
t }. (22)
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When �
(3)
t = �

(2)
t and {τk+1 ≤ t < sk}, we have �

(2)
t = �

(2)
sk− = �τk+2 , hence,

1 = �
(3)
t

�
(2)
t

≤ �
(3)
sk−

�
(2)
sk−
≤ 1.

When �
(3)
t = �

(2)
t and {σm+1(k) ≤ t < σm(k)}, m ≥ 1, k ∈ N0, we have �

(2)
t = �

(2)
σm(k)−,

hence,

1 = �
(3)
t

�
(2)
t

≤ �
(3)
σm(k)−

�
(2)
σm(k)−

≤ 1.

So the events on the right-hand side of (22) are subsets of⋃
k≥0

{�(3)
t− = �

(2)
t− for some t ∈ [τk+1, τk) with �t > �

(2)
t−}

=
⋃
k≥0

⋃
t∈[τk+1,τk)

{�(3)
t− = �

(2)
t− , �t > �

(2)
t−}

= {�(3)
t− = �

(2)
t− for some t < 1 with �t > �

(2)
t−}. (23)

The probability of the event on the right-hand side of (23) can be computed to be 0 in a similar
way as in (21). Hence, reverting to the original notation, we have

P

( ⋃
0<t<1

{|�̃Y
(3)

t | = |�̃Y
(2)

t |}
)
≤ P

( ⋃
0<t<1

{|�̃Y
(3)

t | = |�̃Y
(2)

t |}, F
)
+ P(F c) = 0.

For j ≥ 3, we can proceed iteratively with similar arguments to arrive at (19), hence, (18). This
completes the proof of (13). �

6. Applications to reinsurance

Many examples can be generated from the convergences in (11)–(13) using the continuous
mapping theorem. Here we mention one that is of particular interest in reinsurance. The idea is
that the largest claim up to a specified time incurred by an insurance company (the ‘cedant’) is
referred to a higher level insurer (the ‘reinsurer’). See Fan et al. [5] for details and references to
the applications literature. This is known as the largest claim reinsurance (LCR) treaty: having
set a fixed follow-up time t , we delete from the process the largest claim occurring up to and
including that time. We refer the reader to [7] and [13] for more detailed expositions.

The LCR procedure can be made prospective by implementing it as a forward looking
dynamic procedure in real time, from the cedant’s point of view. Designate as time 0 the time
at which the reinsurance is taken out. The first claim arriving after time 0 is referred to the
reinsurer and not debited to the cedant. Subsequent claims smaller than the initial claim are
paid by the cedant until a claim larger than the first (the previous largest) arrives. The difference
between these two claims is referred to the reinsurer and not debited to the cedant. The process
continues in this way so that at time t , the accumulated amount referred to the reinsurer is equal
to the largest claim up to that time. This procedure has the same effect as applying the ‘trim
as you go’ operator to the risk process. (It is also possible to apply ‘lookback’ trimming to a
reinsurance model in a natural way.)

A primary quantity of interest is the ruin time, at which the process (Xt )t≥0 describing the
claims incoming to the company reaches a high level, u > 0. After reinsurance of the r highest
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claims, the process is reduced to ((r)Xt )t≥0, with ruin time T (r)(u) = inf{t > 0 : (r)Xt > u}.
Supposing that X is Lévy with heavy-tailed canonical measure 
X, not uncommon assumptions
in the modern insurance literature, we assume that (9) holds with no centering necessary,
and from the continuous mapping theorem immediately deduce an asymptotic distribution for
sup0<τ≤1

(r)Xtτ /bt as t → ∞, and, hence, for T (r)(·), for high levels. Specifically, if (12)
holds with t →∞ and s = 0 then

lim
t→∞P(T (r)(ubt ) > t) = P(T

(r)
Y > u), u > 0,

where T
(r)
Y = inf{t > 0 : (r)Yt > 1}.
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