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Summary

The available tools and approaches to inform conservation decisions commonly assume
detailed distribution data. We examine how well-established ecological concepts about patterns
in local richness and community turnover can help overcome data limitations when planning
future protected areas. To inform our analyses, we surveyed tree species in protected areas in the
southern Appalachian Mountains in the eastern USA. We used the survey data to construct
predictive models for alpha and beta diversity based on readily observed biophysical variables
and combined them to create a heuristic that could predict among-site richness in trees (gamma
diversity). The predictive models suggest that site elevation and latitude in this montane system
explain much of the variation in alpha and beta diversity in tree species. We tested how well
resulting protected areas would represent species if a conservation planner lacking detailed spe-
cies inventories for candidate sites were to rely only on our alpha, beta and gamma diversity
predictions. Our approach selected sites that, when aggregated, covered a large proportion of
the overall species pool. The combined gamma diversitymodels performed even better whenwe
also accounted for the cost of protecting sites. Our results demonstrate that classic community
biogeography concepts remain highly relevant to conservation practice today.

Introduction

Habitat destruction remains a key driver of biodiversity loss (Wilcove et al. 1998, Maxwell et al.
2016), and preventing biodiversity loss is a primary goal of conservation efforts (Johnson et al.
2017). To protect biodiversity, conservation organizations often set aside land from development
with the goal of keeping its natural habitat intact (Chape et al. 2008, Le Saout et al. 2013), but they
often face important funding shortfalls (McCarthy et al. 2012). As such, organizations active in
land protection must prioritize their investments to maximize their progress towards protecting
biodiversity (Moilanen et al. 2009, Groves&Game 2016). This requires both protecting places rich
in species and also ensuring that different parts of the protected area network cover locations that
are important for complementary sets of species (Gaston et al. 2006). Community biogeography
has long focused on understanding such patterns of species distribution, both in local richness and
in community turnover (Koleff & Gaston 2002, Mena & Vázquez-Domínguez 2005, Qian &
Ricklefs 2012). Here, we re-examine the potential for using ideas from community biogeography
to help prioritize areas for protection.

Historically, total area of protected land has been cited as a metric of progress towards pre-
serving biodiversity (Chape et al. 2005). However, because of inconsistency in the quality of
protected areas and in the type of habitat protected, total protected area coverage alone is
not an adequate indicator of biodiversity preservation or of habitat protection (Nagendra
2008, Joppa & Pfaff 2009, Nelson & Chomitz 2011). Simply maximizing protected area coverage
favours protecting ‘cheap’ areas – land with few alternative competing uses. Indeed, historical
protection biases have led to high-elevation, rugged environments with poor-quality soils being
disproportionately represented among protected areas (Joppa & Pfaff 2009, Aycrigg et al. 2013).
So how should a conservation organization approach prioritizing sites for protection in order to
conserve biodiversity? Very commonly, such organizations will not have the luxury of perform-
ing detailed on-site inventories of species before committing resources for each land acquisition
they are pursuing. Instead, theymust rely onmodels or other estimationmethods to decide what
species a site is likely to contain (Le Saout et al. 2013).

One common current practice is first to model the distributions of each individual species
within some taxon of interest (Early et al. 2008, de Pous et al. 2011, Villero et al. 2017). Typically,
these are modelled independently (but see Pollock et al. 2014, Rougier et al. 2015). The
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individual species distributions are then usually combined to esti-
mate biodiversity patterns, something we will refer to as a stacked
distribution model approach. Stacked distribution models are used
to prioritize locations for protection based on howwell they sample
the combined set of estimated distributions for species in the
community. However, modelled species distributions are known
to suffer from commission errors (reporting false occurrences).
It can be very challenging to understand and account for how these
errors accumulate and affect resulting prioritizations when combin-
ing distribution maps for many different species (Araujo & Guisan
2006, Feeley & Silman, 2011 Franklin 2013). Dissatisfaction with
these methods has led researchers to consider ways to prioritize land
acquisition that do not require species data at all. Instead, priorities
could be based on habitat types or ecosystem properties (e.g., soils,
topography). The idea behind this is established in a body of
literature that describes ‘conserving nature’s stage’ as a way to strat-
egize conservation based onmore easily observed physical properties
of land (Anderson et al. 2015, Beier et al. 2015, Lawler et al. 2015).
This framework emphasizes the protection of geodiversity, or differ-
ent types of landscapes, to set aside land in a way that is robust to a
changing environment. The ‘actors’ – the species supported on those
landscapes – can then move around those landscapes as needed.

Here, we explore a third approach, one sourced in well-estab-
lished ideas from community biogeography. Specifically, we
explore the performance of prioritization methods that are based
on trying to predict community-level properties (local richness and
turnover). This is in contrast to an approach of first disaggregating
to predict individual species distributions and then re-aggregating
predictions to understand biodiversity patterns, or to one of ignor-
ing species information altogether.

In summarizing community-level properties, we will refer
throughout to the ecological principles of alpha, beta and gamma
diversity, which are well-known to conservation practitioners.
Alpha diversity refers to the value of biodiversity contained within
a local area. Species richness within a protected area, for example, is
a measure of alpha diversity (Gering & Crist 2002). Beta diversity,
in contrast, describes the turnover in diversity between discrete
sites (Whittaker 1960, 1972, Legendre & De Cáceres 2013,
Socolar et al. 2016). For example, two sites containing many of
the same species might each be high in alpha diversity, but their
beta diversity value would be low because of the overlap in species
between the sites. Measures such as the Jaccard index and
Sorensen–Dice index are commonly used for quantifying beta
diversity between sites, but many methods for calculating beta
diversity exist in the literature. These methods are summarized
in reviews by Ellison (2010) and Tuomisto (2010a, 2010b), and
a comparison is made by Legendre and De Cáceres (2013). New
methods continue to be proposed, such as those described in
Baselga (2010), Podani and Schmera (2011) and Carvalho et al.
(2012). Given that so many different approaches exist, working
with beta diversity can be confusing in practice. However, all beta
diversity methods place a common emphasis on dissimilarity in
species representation across multiple sites. Conservation planning
approaches emphasizing representation (e.g., Chadés et al. 2015,
Chauvenet et al. 2017) are in effect seeking to account for some
measure of beta diversity, and so calculating some metric for it
is therefore important (Jost 2007).

Alpha and beta diversity are important to consider jointly for
most conservation objectives, given that neither alpha nor beta
diversity values alone guarantee adequate species coverage by pro-
tected areas. Gamma diversity is the number of species contained
in a region and therefore considers both the biodiversity within

individual sites (alpha diversity) and the turnover in biodiversity
between them (beta diversity), which are independent from one
another, to describe the total biodiversity across a landscape
(Gering et al. 2003, Jost 2007, Tuomisto 2010a, 2010b). Gamma
diversity is traditionally formulated as being the product of alpha
and beta diversity (Whittaker 1960, 1972), although more recent
approaches have considered an additive relationship (Lande
1996, Veech et al. 2002). Regardless, we suggest that predicted val-
ues of alpha and beta diversity could be a useful approach for pre-
dicting total diversity among a set of sites (gamma diversity) to
then prioritize areas for protection.

In this paper, we test this approach by applying it to data
obtained from surveying tree diversity on a set of sites protected
by The Nature Conservancy (TNC), a large non-profit land trust
(Birchard 2005). The study sites in question were protected in part
to conserve forested regions of the southern Appalachian
Mountains. This region contains many tree species that are dispro-
portionately under-protected and that will be important for future
biodiversity conservation (Jenkins et al. 2015). It also contributes
an elevational gradient and a north–south movement corridor that
could act as a buffer for species responses to climate change (Lawler
et al. 2013). We use the ecological properties of the sites to build
two predictive models, evaluating both alpha and beta diversity.
We then demonstrate how the predictions from the two models
can be used jointly to estimate gamma diversity, or total biodiver-
sity, across groups of sites. We show that these gamma diversity
estimates can improve protected area selection under two different
selection regimes, one focused only on representing species within
protected areas and one that also considers the cost of securing that
protection.

Methods

Data collection

We surveyed tree species diversity on 27 TNC protected areas
(hereafter ‘sites’) distributed across 10 states within the Central
Appalachian Forest, Southern Blue Ridge, and Cumberland and
Southern Ridge and Valley ecoregions of the eastern USA
(Fig. 1). These ecoregions constitute part of the Appalachian
Mountains of the eastern USA. This region is a conservation prior-
ity and is known for its diversity of tree species (Currie & Paquin
1987, Stein et al. 2000, Jenkins et al. 2015).

We used a spatial random point generator (ArcMap version
10.1, ESRI, Redlands, CA, USA) to identify 20 survey points prior
to visiting each protected area – 10 of which were near (within
100 m of) the protected area edge and 10 of which were in the core.
We visited each sampling site betweenMay and September of 2013.
At each point, location data were recorded using handheld GPS
(Garmin E-Trex 20).We then identified the 10 trees nearest to each
point to the species level (5400 trees in total). Resampled and aver-
aged accumulation curves from each site are provided in
Supplementary Fig. S1 (available online) to show that our sampling
procedure adequately characterized the relative contributions of
each site to tree diversity in the study. We considered trees that
had a diameter at breast height (dbh) greater than 10 cm, but
counted any dbh scrub oak (Quercus ilicifolia) as a tree because
it is the dominant tree species in the scrub oak–heath community
that is a conservation priority at some of our protected areas (The
Nature Conservancy 1997), and it rarely exceeds 10 cm dbh. All
species nomenclatures follow Kirkman et al. (2007), except species
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only found north of Maryland, which follow Elias (1980). All
Crataegus and Amelanchier were identified to the genus level only.

The tree sampling data were paired with GPS location data for
each point. Elevation data for each sampled location were obtained
from the NASA Shuttle Radar Topography Mission (Rodriguez
et al. 2006). For our analysis, all data were aggregated at the level
of the protected area using the mean values of the 20 points in the
protected area to determine the protected area mean elevation and
mean latitude. The distance between the highest and lowest sam-
pling points was used to calculate the elevation range within each
protected area.

Across sites, mean site elevation ranged from 130 to 1700 m;
latitude ranged from 34° to 41.5°; within-site elevation change var-
ied from 30 to 400 m; and parcel area ranged from 10 ha to nearly
900 ha (Table 1).

Data on protected area parcel sizes and costs were provided by
TNC (Table 1). The protected areas were acquired by TNC at dif-
ferent times between 2000 and 2009. As such, we needed to correct
the cost information for inflation. Therefore, we converted this cost
information to 2000 US$ equivalents using a state-level housing
price index.

Models of alpha, beta and gamma diversity

To model alpha diversity, we fit a generalized linear model to test
the predictive capacities of site latitude, mean site elevation,

within-site elevation range and site area for estimating within-site
richness. We limited our analysis to these variables to avoid over-
parameterizing ourmodel given our limited sample size (Zuur et al.
2007). Because we present alpha diversity as counts of site species
richness, we assumed the dependent variable to be Poisson-distrib-
uted. We tested predictor variables for collinearity and found them
to be sufficiently independent from one another to proceed. We
added a quadratic term for site latitude because an examination
of residuals when only linear terms were included strongly sug-
gested a non-linear effect of latitude. Introduction of this quadratic
term resulted in large reductions in Akaike information criterion
(AIC) values for the alpha diversity model and in a higher pseudo-
R2 value, indicating that the model was explaining more variance.
We did not consider other interaction effects, having no a priori
reason to expect any particularly strong interaction effects from
among the many that are possible.

To model beta diversity, we performed a multiple regression on
matrices of pairwise distances between sites’ ecological variables
(MRM; see Lichstein 2007). MRM, an extension of the Mantel test
(Mantel 1967) to a regression framework, is a flexible multivariate
method for examining relationships between a series of predictive
matrices and a response matrix. A MRM can be constructed to
accommodate linear as well as more complex relationships
(Lichstein 2007). In our analysis, the response variable matrix con-
sisted of a Sorensen–Dice dissimilarity index, which is one of the
most common ways to represent beta diversity among pairs of sites

Fig. 1. Sites that were surveyed for tree diversity. Area (ha) is scaled using the natural logarithm, and the relative scaled values are represented on the map by dot diameters,
ranging on a continuous scale from small to large. Surveyed species richness at each site is represented by the colour of each dot, ranging on a continuous scale from light to dark.
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(Chao et al. 2006, Anderson et al. 2011, Legendre & De Cáceres
2013). We chose this particular metric because it is well-known,
easy to calculate and therefore very interpretable, particularly
within our prioritization that emphasizes species representation.
The Sorensen–Dice dissimilarity index describes turnover in spe-
cies richness between sites and is calculated as follows for each cell
in the distance matrix, where sets X and Y are composed of species
observed in each of two sites:

Dissimilarity ¼ 1� 2 X \ Yj j
Xj j þ Yj j

Each cell in the response variable matrix therefore represents
the magnitude of turnover among species present between two
sites. The independent variables chosen were the same as in the
alpha diversity model, although now structured as pairwise dis-
tance matrices: site latitude, site elevation, site area and within-site
elevation range. In these matrices, each cell represents the differ-
ence in values for the variable in question between two sites. Model
predictors were again examined for collinearity. Pairwise distances
between site areas were natural-log-transformed, and distances in
terms of latitude squared were not included in this regression
because the distribution of the residuals did not warrant including
the extra term.

We used our models of alpha and beta diversity to explore how
estimated gamma diversity could be used to inform selection of
protected areas. The following heuristic equation for estimating
gamma diversity between two sites incorporates alpha and beta
diversity into the site selection process:

�ab ¼ �a þ �bð Þ � βab

Here, �a and �b refer to individual site richness values and βab
refers to the Sorensen–Dice dissimilarity index for the two sites.
We chose this gamma diversity metric again because of its simple
transparency and because it adequately captures common under-
standing about the relationships between alpha, beta and gamma
diversity. This choice of index makes clear that as the alpha diver-
sity indices of the two sites increase, or as the dissimilarity between
the sites increases, the gamma diversity index between the two sites
will also increase (see Veech et al. 2002 for a discussion of alterna-
tive ways to combine alpha and beta diversity into measures of
gamma diversity).

We constructed a matrix of pairwise gamma diversity estimates
using predicted values for each site from the alpha and betamodels.
The average of all pairwise gamma diversity indices including a

specific site was used as a proxy for the site’s overall contribution
to gamma diversity.

Protected area selection strategies

After building models predicting alpha, beta and gamma diversity,
we examined how thesemodels could be used to select sites for pro-
tection. In reality, all 27 sites included in our data collection were
actually protected. For our analysis, we focused on hypothetical
scenarios of what would have happened had TNC not had suffi-
cient funding to protect all 27 sites. If the organization were more
limited in funding, which of these sites should be the very top pri-
orities? We also set a goal of ensuring as many species as possible
received at least some protection within a selected protected area
network. Other protection goals, such as ensuring a particular
number of occurrences of each species within selected protected
area networks, are also possible (Willis et al. 1996, Rodrigues
et al. 2000).

We benchmarked the relative performance of different strate-
gies for selecting protected areas against the best possible choice
and a random selection strategy. To calculate the maximum pos-
sible coverage of species by a protected area network of a given
number of sites, we iterated through all possible choice combina-
tions (exhaustive search). The maximal possible coverage of spe-
cies by a reserve network of a given size was found by counting
the number of species present on at least one protected site for
every combination of selected sites. We also calculated the
expected species coverage if choosing protected areas at random
fromwithin the set of 27 sites. One hundred randomly selected sets
of sites were drawn for each budget level and the average number of
species included in the set of protected sites was calculated.

Next, we used our models of alpha, beta and gamma diversity to
guide the selection of sites to protect. The alpha diversity model
was used to predict which site would have the highest alpha diver-
sity based on predictor variables, and new sites were added in order
of decreasing alpha diversity. For beta diversity, sites were selected
in order of decreasing mean value across the predicted matrix of
pairwise Sorensen–Dice values, so that sites that were predicted
to be most different from the other sites were generally selected
first. To account for variance in model predictions, this process
was repeated for 100 random samples through the variance of pre-
dictions for each of the two models. As detailed above, we com-
bined our alpha and beta diversity models to estimate a site’s
overall contribution to gamma diversity. To test how this could
be used to inform decisions about which sites to protect, we
selected sites in order of decreasing mean predicted gamma diver-
sity value across all of each site’s pairwise gamma diversity esti-
mates, so that priority was given to sites that were predicted to
have high richness and also not to overlap much with other sites.
This was repeated for 100 random samples through the mean
squared error of predictions by the alpha and beta diversitymodels.

In addition to considering the performance of different
approaches given specific numbers of sites selected in a protected
area network, we also considered the ability of our models to per-
form well when considering the cost of the protected areas. To
include cost information, we considered the one-time acquisition
costs of different sites and considered a range of budget intervals
(23 values spread logarithmically from US$18 000 to US$20 000
000) to select sites for the protected area network. For our analyses
of the role of costs, we focused on the gamma diversity strategy, as

Table 1. Summary of site characteristics. For each variable, we report the mean
with SD in parentheses. Alpha diversity is shown in units of species and beta
diversity is represented by the averaged pairwise Sorensen–Dice dissimilarity
indices. Costs are adjusted to year 2000 US$ and represent the acquisition
cost for each site.

Variable Mean (SD)

Elevation 571 m (330 m)
Latitude 37.6° (2.5°)
Elevation change 156 m (109 m)
Area 189 ha (207 ha)
Alpha diversity 19.2 species (6.0 species)
Beta diversity 0.58 (0.09)
Acquisition cost per site $793 000 ($943 000)

78 Patrick F McKenzie et al.

https://doi.org/10.1017/S0376892921000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0376892921000060


it was the best performing of those based on the diversity models
when considering only biodiversity data.

Results

Tree diversity survey results

Our field sampling effort identified a total of 94 species across the
5400 individual trees on 27 sites. The mean sampled species rich-
ness (alpha diversity) of these sites was 19.2 tree species, with a
minimum of 9 tree species and a maximum of 30 tree species
(Table 1). The average Sorensen–Dice dissimilarity (beta diversity)
across the 27 sites was 0.58, reflecting substantial turnover among
sites (Table 1). Between individual sites, the turnover was highly
variable; for instance, the highest turnover was between a site
sampled in Alabama and a site sampled in North Carolina. Of
the 39 species observed across the two sites, only 1 was recorded
at both sites (Sorensen–Dice dissimilarity= 0.95). In contrast,
the lowest turnover was observed between a site sampled in
Tennessee and one in Virginia, where for the 30 species observed
across both sites, 22 were shared (Sorensen–Dice
dissimilarity= 0.15).

A few tree species were very frequent across all sites, but infre-
quent species contributed to our sampled diversity, with 30 of the
94 observed tree species recorded just five times or fewer. The most
commonly observed species was Acer rubrum, accounting for
about a tenth (531) of all observations; however, it was the most
common tree at only one site, in Tennessee. Across sites, dominant
species included those in the genera Pinus, Liriodendron, Prunus,
Betula, Nyssa, Robinia, Picea, Fraxinus, Celtis or Tsuga, mirroring
an expectation of highly heterogeneous community composition
and high diversity across Appalachia.

Diversity models

Model coefficients for the two latitude terms indicate that alpha
diversity increases with latitude at the lowest latitudes, but
decreases with latitude at higher latitudes (Table 2).
Additionally, site elevation has a negative relationship with site
alpha diversities. Altogether, the alpha diversity model explained
some of the variation in tree richness values of sites (R2 = 0.33).
Perhaps surprisingly, neither site area nor within-site elevation
range contributed significant predictive capacity to the models.

The beta diversity model used pairwise differences in latitude,
elevation, within-site elevation ranges and ln(area) values to pre-
dict pairwise Sorensen–Dice dissimilarity values (Table 3).
Pairwise distances between site latitude values and site elevation
values were significant (p< 0.001) predictors of Sorensen–Dice
dissimilarity indices. The positive coefficient for distance between
latitudes implies that differences in latitude contribute to high val-
ues for species turnover, as does the positive coefficient for distance
between site elevations. The McFadden R2 value of 0.25 indicates
that a moderate amount of the variance in beta diversity is
explained by just the few predictors included in the model. As
in the alpha diversity model, pairwise distances between site areas
and within-site elevation ranges were not significant predictors of
species turnover between sites.

Protected area selection strategies

We compared the number of species covered by different protected
area strategies when limited by the number of sites that can be pro-
tected (Fig. 2). The filled circles in Fig. 2 are themaximum coverage

solutions and represent the ‘best possible’ answer, namely the
combination of sites that would be selected to maximize species
richness if we had perfect knowledge of species presence. The dis-
tance between these solutions and the results from the other meth-
ods is a consequence of ‘hiding’ the species presence data and
instead making predictions based on site characteristics alone
(e.g., latitude, elevation, etc.) from our alpha, beta and gamma
diversity models. Of these methods, our gamma diversity estima-
tion method performed best. Selection by predicted alpha diversity
alone performed well at low thresholds, but lost its advantage at
selection sizes of 15 sites or greater. Selection by predicted beta
diversity performed significantly worse than random selection at
low selection sizes.

We then also integrated information on the cost of protecting
sites and repeated site prioritizations for a range of budget thresh-
olds. We first used known information about species richness at
each site to sample sites under each price threshold and to produce
a ‘near maximum richness’ set of site selections. Because we could
not exhaustively sample all possibilities at each threshold, each
value might be slightly underestimated. We then used the pre-
dicted number of species at each site (using only the gamma diver-
sity predictionmodel) tomake site selections under each threshold,
andwe compared these results to that of random selection. Gamma
diversity-estimated site selection performed much better than ran-
dom site selection at each price threshold (Fig. 3).

With both prioritization scenarios (limited by site number or
limited by cost), the gamma diversity selection method performed
better than random selection. The gamma diversity model worked
particularly well in comparison to random site selection when price
thresholds were considered, covering over 98% of the area under
the maximum solution curve while random selection only covered
c. 90% of the area under the curve.

Discussion

We aimed to determine whether abiotic factors such as latitude and
elevation would help prioritize the purchasing of a protected area
network thatmaximizes tree species coverage.We surveyed 27 sites
recently acquired by TNC in the southern Appalachian Mountains
for tree diversity, and we paired these data with data on the physical
characteristics of the protected areas. We then revisited the com-
munity biogeography principles of alpha, beta and gamma diver-
sity to separately model local patterns of species richness and
regional patterns of species turnover among the tree diversity data.
We modelled alpha and beta diversity separately. We then com-
bined predictions from alpha and beta diversity models into an
estimate of gamma diversity. Our gamma diversity estimate per-
formed well under two scenarios for prioritizing protected area
selections: one scenario in which we were limited by the number
of protected areas in the network and one in which we were limited
by total cost.

Table 2. Alpha diversity regression results.

Variable B P-value R2

0.33
Constant 0.41 1.00
Latitude Dist 0.03 1.00e–6
Elev Dist 2.52e–4 6.22e–4
ElevRange Dist 6.68e-6 0.96
ln(Area) Dist –5.96e–4 0.96
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Our results use classic ideas about diversity partitioning to
make predictions about species coverage (Gering & Crist 2002,
Jost 2007, Socolar et al. 2016). The simplicity of the models dem-
onstrates the predictive power of just a handful of variables. We
found that variables such as latitude and elevation of the protected
areas influenced both the alpha diversity of individual sites and the
beta diversity between pairs of sites. Incorporating predictions of
the separate models for alpha and beta diversity for protected area
prioritization allowed us to optimize our choices to include sites
with high local species richness while also favouring sites that were
likely to include species different from those already in the net-
work. Including additional predictors could further increase the
explanatory power of the analysis (e.g., see Albuquerque & Beier
2015). However, fitting models that include more variables would
require survey data from more sites.

Including cost thresholds improved the performance of our
method relative to the selection scenario that was limited by num-
ber of sites. This suggests a disconnect between the cost of individ-
ual parcels and their contribution to species coverage in a protected
area network, which our site selection procedure leveraged to accu-
mulate many species compared to random selection as price
thresholds increased. Costs are one of many socioeconomic factors

that could be considered, and our method would likely improve
further under other socioeconomic constraints (e.g., threats or
proximity to urban areas; Armsworth et al. 2017). Additionally,
further analyses might benefit from also considering management
costs, since previous work has found that management costs did
not correlate with acquisition costs (Armsworth et al. 2011).

A conventional approach to predicting species diversity might
be to make predictions about occupancy from stacked species dis-
tribution models (SDMs) (Villero et al. 2017). However, conserva-
tion planners anticipating that species diversity data may not be
available, or may change in the future, have sought to use abiotic
characteristics to guide site prioritizations (Anderson et al. 2015,
Beier et al. 2015). We show here that very simple abiotic site char-
acteristics can meaningfully inform site selection in comparison to
empirical data on species coverage. Moreover, the predictions
made by the models presented here are specifically informed by
data at the site level, and they might not be as susceptible to prob-
lems at fine scales as SDM-based methods (Hernandez et al. 2006,
Lobo et al. 2010).

Wemade a number of choices with our research design. First, we
examined a particular conservation context. Our data were obtained
from a sample of sites protected by a single conservation

Table 3. Beta diversity regression results.

Variable B SE P-value AIC McFadden R2

150.40 0.25
Constant –60.61 14.42 2.63e–5
AvgSiteLatitude 3.46 0.77 7.00e–6
AvgSiteLatitude2 –0.05 0.01 5.34e–6
AvgPtElevation –6.98e–4 1.63e–4 1.82e–5
ElevationRange 6.66e–4 4.98e–4 0.18
ln(Area) –0.04 0.04 0.32

AIC = Akaike information criterion.
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Fig. 2. Site selection efficacy by number of sites. Filled
circles: maximum coverage solutions. Triangles: average
coverage by site selection using pairwise gamma diver-
sity estimates from alpha/beta model predicted values.
Empty circles: random site selection. Empty squares: site
selection by predicted alpha diversity alone. Crossed
squares: site selection by predicted beta diversity alone.
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Fig. 3. Site selection efficacy with price thresholds.
Filled circles: maximum richness possible at each price
interval. Black triangles: average number of species
included at each interval if selecting sites by gamma
approximation. Empty circles: average number of species
included at each interval by random selection.
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organization, albeit one that operated a similar land protection mis-
sion to many other land trusts and regional public agencies during
the time these sites were protected. Even when working with one
organization, many factors contribute to determining just which
particular properties end up being protected. Acquisitions of the
particular set of protected areas we consider were guided by a col-
laborative ecoregional planning process, but were constrained by
what landwas available for purchase and what funding was available
(Groves 2003, McDonald-Madden et al. 2008, Lennox et al. 2017).
The outcome of this process is encapsulated in TNC’s ecoregional
plans for the study area (e.g., The Nature Conservancy 2000) cover-
ing the period of these acquisitions. In identifying our sample of sites
for this work, we also examined internal TNC documents detailing
why each individual parcel was acquired andwe consultedwith indi-
vidual TNC staff involved in the relevant land deals. All of the par-
cels in question were acquired at least partly to protect forested
ecosystems, and the diversity of these forest ecosystems was com-
monly highlighted. A related point was that the data came from sites
that were actually protected. As such, our analysis is most relevant
when considering sites that are candidates for selection and, again,
differences in diversity patterns may have resulted if we included
sites at random from across the landscape.

Next, we focused on a conservation goal of species coverage.
Conservation organizations, including TNC, pursue a multiplicity
of objectives when protecting land, of which protecting biodiver-
sity is often one. When considering how well protected area net-
works perform in terms of biodiversity, species coverage – our
focus here – is one particularly relevant criteria (Church et al.
1996, Veach et al. 2017). However, we recognize that there are
others that also warrant consideration. For example, if prioritizing
rare species, the models presented here could also be adapted to
maximize metrics weighted for representation of species of higher
conservation priority (Arponen et al. 2005, Veach et al. 2017).
Alternatively, one might assign greater weight to ensuring persist-
ence of species covered somewhere within the protected area net-
work (e.g., by valuing repeat occurrences of the species at different
protected sites). Other design choices we made should also be con-
sidered to contextualize our results, including limiting our sampled
sites to the southern Appalachian Mountains (a region known for
high levels of tree diversity and that spans a substantial range of
elevations) and sampling from randomly selected points within
protected areas. Lastly, our approach here was limited specifically
to considering diversity of tree species andmight not be as effective
for other species groups, such as those that are very mobile or are
especially sensitive. Other metrics for site prioritization that do not
require extensive on-the-ground surveying have been shown to be
effective for other groups of species, such as predicted importance,
predicted rarity-weighted richness and metrics related to environ-
mental diversity and velocity (Albuquerque & Beier 2015, 2016,
Carroll et al. 2017).

Biodiversity partitioning using alpha, beta and gamma diversity
is rooted in fundamental concepts about patterns in species distri-
butions. Here, we have revisited biodiversity partitioning as a tool
for conservation planning and have demonstrated its continued
relevance for explaining patterns in diversity and for guiding con-
servation decision-making.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892921000060
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