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LATP, UMR 6632, Université de Provence, 39 rue F. Joliot-Curie,
13453 Marseille cedex 13, France (sili@univ-tln.fr)

(MS received 30 March 2010; accepted 27 October 2010)

We study, via an asymptotic analysis, an elliptic eigenvalue problem in a 1D–1D
multidomain and in a 1D–2D multidomain filled with anisotropic material. The
corresponding isotropic cases were considered in a previous work by Gaudiello and
Sili.

1. Introduction and main results

In what follows, x = (x1, . . . , xN−1, xN ) = (x′, xN ) denotes the generic point of R
N ,

N � 2. Moreover, D, Dx′ and ∂xN
stand for the transposed gradient with respect

to all the components of x, for the transposed gradient with respect to the first
N − 1 components of x and for the derivative with respect to the last component
of x, respectively.

For every n ∈ N, let Ωn ⊂ R
N be a thin multidomain consisting of two vertical

cylinders, one placed upon the other: the first one with height 1 and small cross-
section rnω, the second one with small thickness hn and cross-section ω, where ω is
a bounded, open, connected regular subset of R

N−1 containing the origin of R
N−1,

and rn and hn are two vanishing positive parameters. Specifically,

Ωn = (rnω × [0, 1[ ) ∪ (ω × ]−hn, 0[ )

(for example, see figure 1 when N = 2 and figure 2 when N = 3).
In Ωn we consider the following eigenvalue problem:

− div(An(x)DUn) = λUn in Ωn,

Un = 0 on Γn = (rnω × {1}) ∪ (∂ω × ]−hn, 0[ ),
An(x)DUnν = 0 on ∂Ωn \ Γn,

⎫⎪⎬
⎪⎭ (1.1)
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Figure 1. The thin multidomain when N = 2.

where ν denotes the exterior unit normal to Ωn, rnω × {1} is the top of the upper
cylinder, ∂ω × ]−hn, 0[ is the lateral surface of the lower one, and

An(x′, xN ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A

(
x′

rn
, xN

)
a.e. in Ωa

n = rnω × ]0, 1[ ,

A

(
x′,

xN

hn

)
a.e. in Ωb

n = ω × ]−hn, 0[ ,

(1.2)

A(x) = (aij(x))i,j=1,...,N being a measurable, bounded, uniformly elliptic and sym-
metric matrix valued function defined in ω × ]−1, 1[ . Note that assumption (1.2)
allows us to consider different types of materials in Ωn. For instance, one can
consider a homogeneous isotropic material, a homogeneous anisotropic material,
a non-homogeneous anisotropic material where the matrix is independent of x′ in
Ωa

n and independent of xN in Ωb
n, or a cylinder Ωa

n composed of two materials: a
cylindrical hearth enveloped by a cylindrical shell made by a different material (see,
for example, [15]), etc.

It is well known (see, for example, [17, theorem 6.2-1]) that, for every n ∈ N,
there exist an increasing divergent sequence of positive numbers {λn,k}k∈N and a
L2(Ωn)-Hilbert orthonormal basis {Un,k}k∈N such that {λn,k}k∈N forms the set of
all the eigenvalues of problem (1.1) and, for every k ∈ N,

Un,k ∈ Vn = {V ∈ H1(Ωn) : V = 0 on Γn}

is an eigenvector of (1.1) with eigenvalue λn,k. Moreover, {λ
−1/2
n,k Un,k}k∈N is a

Vn-Hilbert orthonormal basis, by equipping Vn with the inner product

(U, V ) ∈ Vn × Vn →
∫

Ωn

AnDUDV dx.

The aim of this paper is to study the asymptotic behaviour, as n diverges, of
the sequences {(λn,k, Un,k)}n∈N, for every k ∈ N, when hn � rN−1

n . In this way we
obtain a more manageable eigenvalue problem for the 1D–(N − 1)D limit domains.
Specifically, the following result will be proved.
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Figure 2. The thin multidomain when N = 3.

Theorem 1.1. For every n ∈ N, let {(λn,k, Un,k)}k∈N be a sequence as above.
Assume that

lim
n

rn = 0 = lim
n

hn, lim
n

hn

rN−1
n

= q ∈ ]0, +∞[

Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N

such that

lim
n

λn,k = λk, ∀k ∈ N, (1.3)

and {λk}k∈N is the set of all the eigenvalues of the following problem:

− d
dxN

(
āa(xN )

dua

dxN
(xN )

)
= λua(xN ) in ]0, 1[ ,

− div(Āb(x′)Dx′ub(x′)) = λub(x′) in ω,

ua(1) = 0, āa(0)
dua

dxN
(0) = 0, ub = 0 on ∂ω

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.4)

if N � 3; of the following:

− d
dx2

(
āa(x2)

dua

dx2
(x2)

)
= λua(x2) in ]0, 1[ ,

− d
dx1

(
Āb(x1)

dub

dx1
(x1)

)
= λub(x1) in ]c, 0[ ∪ ]0, d[ ,

ua(1) = 0, ub(c) = 0, ub(d) = 0,

ua(0) = ub(0), āa(0)
dua

dx2
(0) = qĀb(0)

(
dub

dx1
(0−) − dub

dx1
(0+)

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.5)
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if N = 2 and ω = ]c, d[ , where Āb is symmetric, āa and Āb are measurable, bounded
and uniformly elliptic, and are defined by

āa : xN ∈ ]0, 1[ →
∫

ω

AN (x′, xN )
(

Dx′ ŷa(x′, xN )
1

)
dx′,

Āb : x′ ∈ ω →
( ∫ 0

−1

(
aij(x′, xN ) − aiN (x′, xN )aNj(x′, xN )

aNN (x′, xN )

)
dxN

)
i,j=1,...,N−1

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.6)
and, for almost every xN ∈ ]0, 1[ , ŷa(·, xN ) is the unique solution of the following
problem:

− divx′

(
A′(x′, xN )

(
Dx′ ŷa(x′, xN )

1

) )
= 0 in ω,

A′(x′, xN )
(

Dx′ ŷa(x′, xN )
1

)
ν = 0 on ∂ω,

∫
ω

ŷa(x′, xN ) dx′ = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.7)

where ν denotes the exterior unit normal to ω, and A′ and AN denote the sub-matrix
of A composed of the first N − 1 rows of A and of the last row of A, respectively.

There exist an increasing sequence of positive integer numbers {ni}i∈N and a se-
quence {(ua

k, ub
k)}k∈N ⊂ V (which may depend on the selected subsequence {ni}i∈N)

where

V = {(va, vb) ∈ H1( ]0, 1[ ) × H1(ω) :

va(1) = 0, vb = 0 on ∂ω (and va(0) = vb(0) if N = 2)},

such that

lim
i

∫
rni

ω × ]0,1[

(∣∣∣∣Uni,k − r−(N−1)/2
ni

ua
k

∣∣∣∣
2

+
∣∣∣∣Dx′Uni,k − r−(N−1)/2

ni
(Dx′ ŷa)

(
x′

rn
, xN

)
dua

k

dxN

∣∣∣∣
2

+
∣∣∣∣∂xN

Uni,k − r−(N−1)/2
ni

dua
k

dxN

∣∣∣∣
2)

dx = 0 (1.8)

and

lim
i

∫
ω × ]−hni

,0[

(∣∣∣∣Uni,k − r−(N−1)/2
ni

ub
k

∣∣∣∣
2

+
∣∣∣∣Dx′Uni,k − r−(N−1)/2

ni
Dx′ub

k

∣∣∣∣
2

+
∣∣∣∣∂xN

Uni,k + r−(N−1)/2
ni

N−1∑
j=1

aNj

(
x′,

xN

hn

)

× a−1
NN

(
x′,

xN

hn

)
∂xj u

b
k

∣∣∣∣
2)

dx = 0

(1.9)
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as i → +∞, for every k ∈ N, and uk = (ua
k, ub

k) is an eigenvector of problem (1.4)
if N � 3 (problem (1.5) if N = 2) with eigenvalue λk. Moreover, {uk}k∈N is a
L2( ]0, 1[ ) × L2(ω)-orthonormal basis with respect to the inner product

|ω|
∫ 1

0
uava dxN + q

∫
ω

ubvb dx′,

and {λ
−1/2
k uk}k∈N is a V -Hilbert orthonormal basis with respect to the inner product∫ 1

0
āa dua

dxN

dva

dxN
dxN + q

∫
ω

ĀbDx′ubDx′vb dx′.

If N � 3, the eigenvalues of problem (1.4) are obtained by gathering the eigen-
values of the following two independent problems:

− d
dxN

(
āa(xN )

dua

dxN
(xN )

)
= λua(xN ) in ]0, 1[ ,

ua(1) = 0, āa(0)ua′(0) = 0,

⎫⎪⎬
⎪⎭ (1.10)

and
− divx′(Āb(x′)Dx′ub(x′)) = λbub(x′) in ω,

ub = 0 on ∂ω.

}
(1.11)

Moreover, each eigenvalue of problem (1.10) or problem (1.11) preserves its mul-
tiplicity if it is an eigenvalue only of problem (1.10) or only of problem (1.11),
otherwise its multiplicity is obtained by adding the multiplicity as eigenvalue of
problem (1.10) and the multiplicity as eigenvalue of problem (1.11).

If N = 2, the limit problem in ]0, 1[ is coupled with the limit problem in ω = ]c, d[
by the junction conditions

ua(0) = ub(0) and āa(0)
dua

dx2
(0) = qĀb(0)

(
dub

dx1
(0−) − dub

dx1
(0+)

)
.

In theorem 1.1, by virtue of (1.3), the multiplicity of λn,k for sufficiently large n
is less than or equal to the multiplicity of λk. Consequently, if λk is simple, then
λn,k is also simple for sufficiently large n. Then, arguing as in [22] (see also [3]), if
λk is simple, fixing one of the two normalized eigenvectors uk of the limit problem
with eigenvalue λk, it is possible to choose, for sufficiently large n, one of the two
normalized eigenvectors Un,k ∈ Vn of problem (1.1) with eigenvalue λn,k such that
convergences (1.8) and (1.9) hold true for the whole sequence.

It is not necessary that the two cylinders are scaled to the same one or that the
first cylinder has height 1. In fact, the result is essentially unchanged if one assumes

Ωn = (rnωa × [0, l[ ) ∪ (ωb × ]−hn, 0[ ),

with ωa, ωb ⊂ R
N−1, 0′ ∈ ωb and l ∈ ]0, +∞[ .

This paper generalizes [6], where we considered the same problem for the Lapla-
cian, i.e. A = Id. Now, having reformulated the problem on a fixed domain through
appropriate rescalings of the kind proposed in [2], and having introduced suitable
weighted inner products, by using the min–max principle and some estimates proved
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in [6], we obtain an a priori estimate (with respect to n) of λn,k. Then, by applying
some results proved in [8, 9] and based on the method of oscillating test functions
introduced in [20], we derive a system for the limit eigenvalue problem depend-
ing on auxiliary unknowns that are weak limits of some quantities. Having written
these unknowns in terms of solutions of some elementary problems, as proposed
in [18,19], we give the final form of the limit problem involving the diffusion along
the axis of the upper cylinder and the diffusion along the horizontal section of the
lower cylinder. In particular, we show that the limit matrices are uniformly elliptic.
We point out that these auxiliary unknowns are specific to the anisotropic case,
since they are zero in the Laplacian case. Finally, we conclude as in [6] by adapting
techniques used in [22] for showing that all the eigenvalues of the limit problem
have been reached.

The result of theorem 1.1 considering An(x) = A(x) (with A also continuous)
in (1.1) is clear: the limit problem is equivalent to that obtained starting from a
matrix independent of x′ in Ωa

n and independent of xN in Ωb
n. For brevity, we do

not discuss the cases where hn � rN−1
n and rN−1

n � hn. For interested readers,
these can be easily obtained by coupling the techniques adapted in this paper with
those in [6].

The study of the eigenvalues in 1D–1D or 2D–2D joined elastic structures was
performed in [14]. Regarding multistructures, we also refer to [1,3,13,16,21] and the
references quoted therein. For a thin multistructure as considered in this paper, we
refer the reader to [4,5,7–12]. Specifically, the model, as described in [8] through its
integral energy and in [9] through the related constitutive equations, is a quasilinear
Neumann second-order scalar problem. A Neumann second-order problem with
maps in S2 is considered in [5]. A Neumann fourth-order problem is studied in [7]
in the scalar case, and in [4] in the non-convex case. Problems in linear elasticity
are considered in [11] and [10], while problems in nonlinear elasticity are considered
in [12].

2. Limit of the rescaled problem

Let
Ωa = ω × ]0, 1[ , Ωb = ω × ]−1, 0[ ,

where ω is a bounded open connected regular set of R
N−1, N � 2, containing the

origin of R
N−1, and {rn}n∈N, {hn}n∈N ⊂ ]0, 1[ are two sequences such that

lim
n

hn = 0 = lim
n

rn. (2.1)

Let
A : x ∈ ω × ]−1, 1[ → A(x) = (aij(x))i,j=1,...,N ∈ MN×N

s (2.2)

be a measurable function such that there exists

α, β ∈ ]0, +∞[ : α|ξ|2 � ξA(x)ξ, |A(x)ξT| � β|ξ|, a.e. x ∈ ω × ]−1, 1[ , ∀ξ ∈ R
N ,

(2.3)

where MN×N
s denotes the set of N × N symmetric real matrices.
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For every n ∈ N, let Hn be the space L2(Ωa) × L2(Ωb) equipped with the inner
product

(·, ·)n : (u, v) = ((ua, ub), (va, vb)) ∈ (L2(Ωa) × L2(Ωb))2

→
∫

Ωa

uava dx +
hn

rN−1
n

∫
Ωb

ubvb dx, (2.4)

and let Vn be the space

Vn = {v = (va, vb) ∈ H1(Ωa) × H1(Ωb) : va = 0 on ω × {1},

vb = 0 on ∂ω × ]−1, 0[ , va(x′, 0) = vb(rnx′, 0) a.e. x′ ∈ ω} (2.5)

equipped with the bilinear form

an : (u, v) = ((ua, ub), (va, vb)) ∈ V 2
n

→
∫

Ωa

A

⎛
⎝ 1

rn
Dx′ua

∂xN
ua

⎞
⎠

⎛
⎝ 1

rn
Dx′va

∂xN
va

⎞
⎠ dx

+
hn

rN−1
n

∫
Ωb

A

⎛
⎝ Dx′ub

1
hn

∂xN
ub

⎞
⎠

⎛
⎝ Dx′vb

1
hn

∂xN
vb

⎞
⎠ dx, (2.6)

where, from now on, if w, z ∈ R
k, wTzT stands for the usual inner product in R

k,
that is, wz.

We point out that the norm induced on L2(Ωa) × L2(Ωb) by the inner product
(·, ·)n is equivalent to the usual (L2(Ωa) × L2(Ωb))-norm. Moreover, by virtue of
(2.2) and (2.3), an is an inner product in Vn and its induced norm is equivalent
to the (H1(Ωa) × H1(Ωb))-norm. Consequently, Vn is continuously and compactly
embedded into Hn. Furthermore, since C∞

0 (Ωa)×C∞
0 (Ωb) ⊂ Vn, it results that Vn

is dense in Hn. Then (see, for example, [17, theorems 6.2-1 and 6.2-2]), for every
n ∈ N, there exist an increasing diverging sequence of positive numbers {λn,k}k∈N

and an Hn-Hilbert orthonormal basis {un,k}k∈N such that {λn,k}k∈N forms the set
of all the eigenvalues of the following problem:

un ∈ Vn, an(un, v) = λ(un, v)n, ∀v ∈ Vn, (2.7)

and, for every k ∈ N, un,k ∈ Vn is an eigenvector of (2.7) with eigenvalue λn,k.
Moreover, {λ

−1/2
n,k un,k}k∈N is a Vn-Hilbert orthonormal basis. Furthermore, for every

k ∈ N, λn,k is characterized by the following min–max principle:

λn,k = min
Ek∈Fk

max
v∈Ek,v �=0

an(v, v)
(v, v)n

, (2.8)

where Fk is the set of the subspaces Ek of Vn with dimension k.
The min–max principle and proposition 2.1 of [6] immediately involve the follow-

ing a priori estimates for the eigenvalues of problem (2.7).

https://doi.org/10.1017/S0308210510000521 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000521


746 A. Gaudiello and A. Sili

Proposition 2.1. For every n, k ∈ N, let λn,k be as above. Then, it results that

0 < λn,k � βk2π2, ∀n, k ∈ N, (2.9)

where β is given in (2.3).

Proof. Let

ãn : (u, v) = ((ua, ub), (va, vb)) ∈ V 2
n

→
∫

Ωa

1
r2
n

Dx′uaDx′va + ∂xN
ua∂xN

va dx

+
hn

rN−1
n

∫
Ωb

Dx′ubDx′vb +
1
h2

n

∂xN
ub∂xN

vb dx.

Since it results in

an(v, v) � βãn(v, v), ∀v ∈ Vn,

by the min–max principle (2.8) and proposition 2.1 of [6], it follows that

λn,k = min
Ek∈Fk

max
v∈Ek,v �=0

an(v, v)
(v, v)n

� β min
Ek∈Fk

max
v∈Ek,v �=0

ãn(v, v)
(v, v)n

� βk2π2, ∀n, k ∈ N.

By using a diagonal argument, proposition 2.1 provides the existence of an
increasing sequence of positive integer numbers {ni}i∈N and an increasing sequence
of non-negative numbers {λk}k∈N, such that

lim
i

λni,k = λk, ∀k ∈ N.

For characterizing the sequence {λk}k∈N, when

lim
n

hn

rN−1
n

= q ∈ ]0, +∞[ , (2.10)

let us introduce the space:

H = {v = (va, vb) ∈ L2(Ωa) × L2(Ωb) :

va is independent of x′, vb is independent of xN} (2.11)

equipped with the inner product

[·, ·]q : (u, v) = ((ua, ub), (va, vb)) ∈ H2 → |ω|
∫ 1

0
uava dxN + q

∫
ω

ubvb dx′, (2.12)
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and the space

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{v = (va, vb) ∈ H1(Ωa) × H1(Ωb) :
va is independent of x′, vb is independent of xN ,

va(1) = 0, vb = 0 on ∂ω, va(0) = vb(0)} if N = 2,

{v = (va, vb) ∈ H1(Ωa) × H1(Ωb) :
va is independent of x′, vb is independent of xN ,

va(1) = 0, vb = 0 on ∂ω} if N � 3,

(2.13)

equipped with the following bilinear form:

αq : ((ua, ub), (va, vb)) ∈ V 2

→
∫ 1

0
āa(xN )

dua

dxN

dva

dxN
dxN + q

∫
ω

Āb(x′)Dx′ubDx′vb dx′, (2.14)

where āa and Āb are defined in (1.6). Note that, for almost every xN ∈ ]0, 1[ ,
problem (1.7) admits a unique weak solution by virtue of (2.3).

The proof of theorem 2.2 shows that Āb(x′) ∈ MN×N
s for almost every x′ ∈ ω,

āa ∈ L∞( ]0, 1[ ), Āb ∈ (L∞(ω))N−1 and āa and Āb are uniformly elliptic. Con-
sequently, αq is an inner product in V and the induced norm is equivalent to the
(H1( ]0, 1[ )×H1(ω))-norm. Since the norm induced on H by the inner product [·, ·]q
is equivalent to the (L2( ]0, 1[ )×L2(ω))-norm, it follows that V is continuously and
compactly embedded into H. Moreover, since

C∞
0 ( ]0, 1[ ) × C∞

0 (ω) ⊂ V if N � 3,

C∞
0 ( ]0, 1[ ) × {v ∈ C∞

0 (ω) : v(0) = 0} ⊂ V if N = 2,

we obtain that V is dense in H. Then, for the following eigenvalue problem:

u ∈ V, αq(u, v) = λ[u, v]q, ∀v ∈ V, (2.15)

all classic results hold true (see [17, theorems 6.2-1 and 6.2-2]).
The main result of this paper is the following.

Theorem 2.2. For every n ∈ N, let {λn,k}k∈N be the increasing diverging sequence
of all the eigenvalues of problem (2.2)–(2.7), and {un,k}k∈N be a Hn-Hilbert ortho-
normal basis such that {λ

−1/2
n,k un,k}k∈N is a Vn-Hilbert orthonormal basis and, for

every k ∈ N, un,k is an eigenvector of problem (2.2)–(2.7) with eigenvalue λn,k.
Assume (2.1) and (2.10).

Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N

such that
lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of problem (2.11)–(2.15). More-
over, there exist an increasing sequence of positive integer numbers {ni}i∈N and
a (H, [·, ·]q)-Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected
subsequence {ni}i∈N) such that, for every k ∈ N, uk ∈ V is an eigenvector of
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problem (2.11)–(2.15) with eigenvalue λk, and

uni,k → uk strongly in H1(Ωa) × H1(Ωb), ∀k ∈ N, (2.16)

1
rni

Dx′ua
ni,k → dua

k

dxN
Dx′ ŷa strongly in (L2(Ωa))N−1, ∀k ∈ N, (2.17)

1
hni

∂xN
ub

ni,k → −
N−1∑
j=1

aNj

aNN
∂xj

ub
k strongly in L2(Ωb), ∀k ∈ N, (2.18)

as i → +∞, where ŷa is given by (1.7). Furthermore, {λ
−1/2
k uk}k∈N is a (V, αq)-

Hilbert orthonormal basis.

Proof. We have that,

un,k ∈ Vn, an(un,k, v) = λn,k(un,k, v)n, ∀v ∈ Vn, ∀n, k ∈ N, (2.19)

and
(un,k, un,h)n = δh,k, ∀n, k, h,∈ N, (2.20)

where δh,k is the Kronecker delta.
By choosing v = un,k in (2.19) and by taking into account (2.20) and proposi-

tion 2.1, we have that

an(un,k, un,k) = λn,k(un,k, un,k)n = λn,k � βk2π2, ∀n, k ∈ N.

Consequently, using (2.1), (2.3), (2.10), [8, proposition 2.1] and a diagonal argu-
ment, it is easy to see that there exist an increasing sequence of positive integer
numbers {ni}i∈N, an increasing sequence of non-negative numbers {λk}k∈N and a Change OK?

sequence {uk}k∈N ⊂ V (depending possibly on the selected subsequence {ni}i∈N)
such that

lim
i

λni,k = λk, ∀k ∈ N, (2.21)

uni,k ⇀ uk weakly in H1(Ωa) × H1(Ωb)

and strongly in L2(Ωa) × L2(Ωb), ∀k ∈ N, (2.22)

as i → +∞. Then, adapting the proofs of [9, theorem 1.1] and [9, theorem 1.2],
from (2.10), (2.21), (2.22), (2.19) and (2.20) it follows that (2.16) holds true and
that there exists a sequence

{(ya
k , yb

k)}k∈N ⊂ L2(0, 1; H1
m(ω)) × L2(ω; H1

m( ]−1, 0[ )) (2.23)

such that

1
rni

Dx′ua
ni,k → Dx′ya

k strongly in (L2(Ωa))N−1, ∀k ∈ N, (2.24)

1
hni

∂xN
ub

ni,k → ∂xN
yb

k strongly in L2(Ωb), ∀k ∈ N, (2.25)

as i → +∞,
[uk, uh]q = δh,k, ∀k, h ∈ N (2.26)
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and, for every k ∈ N, uk = (ua
k, ub

k), yk = (ya
k , yb

k) solves the following system:

uk = (ua
k, ub

k) ∈ V, (ya
k , yb

k) ∈ L2(0, 1; H1
m(ω)) × L2(ω; H1

m( ]−1, 0[ ))

∫
Ωa

A′

⎛
⎝Dx′ya

k

dua
k

dxN

⎞
⎠ Dx′za dx = 0,

∫
Ωb

AN

(
Dx′ub

k

∂xN
yb

k

)
∂xN

zb dx = 0,

∫
Ωa

AN

⎛
⎝Dx′ya

k

dua
k

dxN

⎞
⎠ dva

dxN
dx + q

∫
Ωb

A′

(
Dx′ub

k

∂xN
yb

k

)
Dx′vb dx = λk[uk, v]q,

∀v = (va, vb) ∈ V, ∀(za, zb) ∈ L2(0, 1; H1
m(ω)) × L2(ω; H1

m( ]−1, 0[ )),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.27)

where, for S = ω or S = ]−1, 0[ , H1
m(S) denotes the space of elements of H1

m(S)
with zero average.

To obtain a suitable representation of ya
k , we begin by showing that the function

ŷa defined by (1.7) satisfies the following property:

ŷa ∈ L∞(0, 1; H1
m(ω)). (2.28)

This property is known if A ∈ (C∞(ω̄ × [0, 1]))(N−1)×(N−1). Otherwise, using a con-
volution argument, one can build a sequence

{Aε}ε ⊂ (C∞(ω̄ × [0, 1]))(N−1)×(N−1)

of equibounded and uniformly elliptic matrices with the same ellipticity constant,
such that

Aε → A′ strongly in (L2(ω × ]0, 1[ ))(N−1)×(N−1). (2.29)

For a.e. xN ∈ ]0, 1[ , let yε(·, xN ) be the unique solution of the following problem:

yε(·, xN ) ∈ H1
m(ω),∫

ω

Aε

(
Dx′yε

1

)
Dx′ ẑa dx′ = 0, ∀ẑa ∈ H1

m(ω).

⎫⎪⎬
⎪⎭ (2.30)

By choosing ẑa = yε(·, xN ) as a test function in (2.30), one immediately obtains
that {yε}ε is bounded in L∞(0, 1; H1

m(ω)). Consequently, there exists a function
ȳ ∈ L∞(0, 1; H1

m(ω)) such that, on extraction of a suitable subsequence (not rela-
belled),

yε ⇀ ȳ weakly∗ in L∞(0, 1; H1
m(ω)), (2.31)

as ε tends to zero. By passing to the limit as ε tends to zero, in (2.30), having
multiplied the equation by ϕ ∈ C∞

0 ( ]0, 1[ ) and having integrated with respect to
xN on ]0, 1[ , it follows from (2.29) and (2.31) that

ȳ ∈ L∞(0, 1; H1
m(ω)),∫

[0,1]×ω

A′
(

Dx′ ȳ

1

)
Dx′ ẑaϕ dx = 0, ∀ẑa ∈ H1

m(ω), ∀ϕ ∈ C∞
0 ( ]0, 1[ ),
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which involves that, for almost every xN ∈ ]0, 1[ , ȳ(·, xN ) is the unique solution of
the following problem:

ȳ(·, xN ) ∈ H1
m(ω),∫

ω

A′
(

Dx′ ȳ

1

)
Dx′ ẑa dx′ = 0, ∀ẑa ∈ H1

m(ω).

⎫⎪⎬
⎪⎭ (2.32)

Finally, comparing (2.32) with the weak formulation of problem (1.7),

ŷa(·, xN ) ∈ H1
m(ω),∫

ω

A′
(

Dx′ ŷa

1

)
Dx′ ẑa dx′ = 0, ∀ẑa ∈ H1

m(ω),

⎫⎪⎬
⎪⎭ (2.33)

one deduces that, for almost every xN ∈ ]0, 1[ , ŷa(·, xN ) = ȳ(·, xN ) a.e. in ω, that
is,

ŷa = ȳ ∈ L∞(0, 1; H1
m(ω)),

and so (2.28) is proved.
Now, for every k ∈ N, set

ỹa
k = ŷa dua

k

dxN
, a.e. in Ωa.

The properties of ua
k, (2.28) and (2.33) entail that ỹa

k solves the following problem:

ỹa
k ∈ L2(0, 1; H1

m(ω)),

∫
Ωa

A′

⎛
⎝Dx′ ỹa

k

dua
k

dxN

⎞
⎠ Dx′za dx = 0, ∀za ∈ L2(0, 1; H1

m(ω)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.34)

Since, by (2.3), this problem admits a unique solution, by comparing (2.34) with
the first equation in (2.27), one deduces that

ya
k = ŷa dua

k

dxN
, a.e. in Ωa, ∀k ∈ N. (2.35)

By combining (2.23) with (2.35), one obtains (2.17).
In what concerns yb

k, for every vb ∈ H1(ω), set

yvb = −
N−1∑
j=1

∫ xN

0

aNj(x′, t)
aNN (x′, t)

dt∂xj v
b

+
N−1∑
j=1

∫ 0

−1

∫ xN

0

aNj(x′, t)
aNN (x′, t)

dt dxN∂xj v
b, a.e. in Ωb.

By (2.3), yvb is well defined, and it evidently solves the following algebraic equation:

AN

(
Dx′vb

∂xN
yvb

)
= 0, a.e. in Ωb.
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Consequently, yvb also solves the following problem:

yvb ∈ L2(ω; H1
m( ]−1, 0[ )),∫

Ωb

AN

(
Dx′vb

∂xN
yvb

)
∂xN

zb dx = 0, ∀zb ∈ L2(ω; H1
m( ]−1, 0[ )).

⎫⎪⎬
⎪⎭ (2.36)

Since, by (2.3), this problem admits a unique solution, by comparing (2.36) when
vb = ub

k with the second equation in (2.27), we deduce that

yb
k = −

N−1∑
j=1

∫ xN

0

aNj(x′, t)
aNN (x′, t)

dt∂xj u
b
k

+
N−1∑
j=1

∫ 0

−1

∫ xN

0

aNj(x′, t)
aNN (x′, t)

dt dxN∂xj
ub

k, a.e. in Ωb, ∀k ∈ N. (2.37)

By combining (2.25) with (2.37), we obtain (2.18).
By replacing (2.35) and (2.37) in the last equation in (2.27), we obtain

uk = (ua
k, ub

k) ∈ V,∫
Ωa

AN

(
Dx′ ŷa

1

)
dua

k

dxN

dva

dxN
dx

+ q

∫
Ωb

A′

⎛
⎜⎜⎝

Dx′ub
k

−
N−1∑
j=1

aNj

aNN
∂xj

ub
k

⎞
⎟⎟⎠ Dx′vb dx = λk[uk, v]q, ∀v = (va, vb) ∈ V,

or, equivalently,

uk = (ua
k, ub

k) ∈ V,∫ 1

0
āa dua

k

dxN

dva

dxN
dxN + q

∫
ω

ĀbDx′ub
kDx′vb dx′ = λk[uk, v]q, ∀v = (va, vb) ∈ V,

⎫⎪⎬
⎪⎭

(2.38)
where āa and Āb are defined in (1.6). Then, by taking into account (2.26), we have
proved that {uk}k∈N is an orthonormal sequence in (H, [·, ·]q) and, for every k ∈ N,
uk is an eigenvector for problem (2.15) with eigenvalue λk. Moreover, (2.26) and
(2.38) give

αq(λ
−1/2
k uk, λ

−1/2
h uh) = δh,k, ∀k, h ∈ N. (2.39)

Now, note that Āb(x′) ∈ MN×N
s for almost every x′ ∈ ω, āa ∈ L∞( ]0, 1[ ), Āb ∈

(L∞(ω))N−1, by virtue of (2.2), (2.3) and (2.28). Moreover, āa and Āb are uniformly
elliptic. In fact, from (1.6), (2.33) and (2.3), it follows that

āa(xN ) =
∫

ω

AN

(
Dx′ ŷa

1

)
dx′

=
∫

ω

AN

(
Dx′ ŷa

1

)
dx′ +

∫
ω

A′
(

Dx′ ŷa

1

)
Dx′ ŷa dx′
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=
∫

ω

A

(
Dx′ ŷa

1

) (
Dx′ ŷa

1

)
dx′

� α

∫
ω

∣∣∣∣
(

Dx′ ŷa

1

) ∣∣∣∣
2

dx′

� α|ω|, a.e. xN ∈ ]0, 1[ ,

and

Āb(x′)ξξ =
∫ 0

−1
A′

⎛
⎜⎜⎝

ξ

−
N−1∑
j=1

aNj

aNN
ξj

⎞
⎟⎟⎠ ξ dxN

=
∫ 0

−1

⎡
⎢⎢⎣A′

⎛
⎜⎜⎝

ξ

−
N−1∑
j=1

aNj

aNN
ξj

⎞
⎟⎟⎠ ξ + AN

⎛
⎜⎜⎝

ξ

−
N−1∑
j=1

aNj

aNN
ξj

⎞
⎟⎟⎠

N−1∑
j=1

−aNj

aNN
ξj

⎤
⎥⎥⎦ dxN

=
∫ 0

−1
A

⎛
⎜⎜⎝

ξ

−
N−1∑
j=1

aNj

aNN
ξj

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ξ

−
N−1∑
j=1

aNj

aNN
ξj

⎞
⎟⎟⎠ dxN

� α

∫ 0

−1

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

ξ

−
N−1∑
j=1

aNj

aNN
ξj

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

2

dxN

� α|ξ|2, a.e. x′ ∈ ω, ∀ξ ∈ R
N−1.

Then, αq is an inner product in V and its induced norm is equivalent to the
(H1( ]0, 1[ )×H1(ω))-norm. Hence, taking into account (2.39), it results that every
λk is a strictly positive number and {λ

−1/2
k uk}k∈N is an orthonormal sequence

in (V, αq). Moreover, note that

lim
k

λk = +∞ (2.40)

in fact, or (2.40) holds true, or {λk}k∈N is a finite set. In the second case, by virtue
of (2.26), problem (2.15) would admit an eigenvalue of infinite multiplicity. But this
is not possible, due to Fredholm’s alternative theorem.

By arguing as in step 2 of the proof of theorem 2.5 of [6] (see also [3,22]), we can
prove that there does not exist (ū, λ̄) ∈ V × R satisfying the following problem:

ū ∈ V,

αq(ū, v) = λ̄[ū, v]q, ∀v ∈ V,

[ū, uk]q = 0, ∀k ∈ N,

[ū, ū]q = 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.41)

This property shows that the sequence {λk}k∈N forms the whole set of the eigen-
values of problem (2.15).
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By arguing as in [6], we can prove that the set of finite combinations of ele-
ments of {λ

−1/2
k uk}k∈N is dense in (V, αq), which entails that the set of the finite

combinations of elements of {uk}k∈N is dense in (H, [·, ·]q), since V is continuously
embedded into H, with dense inclusion.

In conclusion, since the sequence {λk}k∈N can be characterized by the min–max
principle (see, for example, [17, theorem 6.2-2]), for every k ∈ N, convergence (2.21)
holds true for the whole sequence {λn,k}n∈N.

Proof of theorem 1.1. For every n ∈ N, let {(λn,k, Un,k)}k∈N be a sequence as at
the beginning of § 1. Problem (1.1) can be reformulated on a fixed domain through
an appropriate rescaling that maps Ωn into Ω = ω × ]−1, 1[ . Namely, by setting

ũn,k(x)

=

{
ũa

n,k(x′, x3) = Un,k(rnx′, x3), (x′, x3) a.e. in Ωa = ω × ]0, 1[ ,
ũb

n,k(x′, x3) = Un,k(x′, hnx3), (x′, x3) a.e. in Ωb = ω × ]−1, 0[ ,
∀n, k ∈ N,

(2.42)

we have that, for every n ∈ N, {λn,k}k∈N forms the set of all the eigenvalues of
problem (2.7), un,k = r

(N−1)/2
n ũn,k ∈ Vn is an eigenvector of (2.7) with eigenvalue

λn,k, {un,k}k∈N is an Hn-Hilbert orthonormal basis and {λ
−1/2
n,k un,k}k∈N is a Vn-

Hilbert orthonormal basis, where Vn and Hn are as defined at the beginning of this
section. Then theorem 1.1 is an immediate consequence of theorem 2.2.

Acknowledgements

The authors wish to thank the Laboratory of Analysis, Topology and Probability
(LATP) of the University of Provence (Aix-Marseille I), where A.G. was invited
as visiting professor in March 2010, and where this research was developed. This
paper is part of the Italian PRIN 2008 project ‘Modelli avanzati per strutture
sottili composite’. It is also part of Marie Curie actions FP7, Project PIIF2-GA-
2008-219690.

References

1 P. G. Ciarlet. Plates and junctions in elastic multistructures: an asymptotic analysis,
Research in Applied Mathematics, vol. 14 (Springer, 1990).

2 P. G. Ciarlet and P. Destuynder. A justification of the two-dimensional linear plate model.
J. Méc. 18 (1979), 315–344.

3 D. Cioranescu and J. Saint Jean Paulin. Homogenization of reticulated structures, Applied
Mathematical Sciences, vol. 136 (Springer, 1999).

4 G. Gargiulo and E. Zappale. A remark in the junction in a thin multi-domain: the non
convex case. NoDEA. Nonlin. Diff. Eqns Applic. 14 (2007), 699–728.

5 A. Gaudiello and R. Hadiji. Asymptotic analysis, in a thin multidomain, of minimizing maps
with values in S2. Annales Inst. H. Poincaré Analyse Non Linéaire 26 (2009), 59–80.
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