
Combinatorics, Probability and Computing (2015) 24, 687–722. c© Cambridge University Press 2015

doi:10.1017/S0963548315000012

Monotone Cellular Automata

in a Random Environment
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In this paper we study in complete generality the family of two-state, deterministic,

monotone, local, homogeneous cellular automata in Z
d with random initial configurations.

Formally, we are given a set U = {X1, . . . , Xm} of finite subsets of Zd \ {0}, and an initial set

A0 ⊂ Z
d of ‘infected’ sites, which we take to be random according to the product measure

with density p. At time t ∈ N, the set of infected sites At is the union of At−1 and the set

of all x ∈ Z
d such that x+X ∈ At−1 for some X ∈ U . Our model may alternatively be

thought of as bootstrap percolation on Z
d with arbitrary update rules, and for this reason

we call it U -bootstrap percolation.

In two dimensions, we give a classification of U -bootstrap percolation models into three

classes – supercritical, critical and subcritical – and we prove results about the phase

transitions of all models belonging to the first two of these classes. More precisely, we show

that the critical probability for percolation on (Z/nZ)2 is (log n)−Θ(1) for all models in the

critical class, and that it is n−Θ(1) for all models in the supercritical class.

The results in this paper are the first of any kind on bootstrap percolation considered

in this level of generality, and in particular they are the first that make no assumptions of

symmetry. It is the hope of the authors that this work will initiate a new, unified theory of

bootstrap percolation on Z
d.

2010 Mathematics subject classification: Primary 60K35

Secondary 60C05

1. Introduction

Cellular automata are dynamical systems on graphs in which vertices have one of a finite

number of states at discrete times t. The states of the vertices change according to an

https://doi.org/10.1017/S0963548315000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000012


688 B. Bollobás, P. Smith and A. Uzzell

update rule that is homogeneous (the same rule applies to every vertex) and local (the rule

depends on only a finite neighbourhood of the vertex under consideration). These systems

were first introduced by von Neumann (see [22], for example) at the suggestion of Ulam

[19]. The subject of this paper is a substantial extension of, and has its roots in, bootstrap

percolation, a particular type of cellular automaton proposed in 1979 by Chalupa, Leath

and Reich [11].

In the simplest and most widely studied model of bootstrap percolation, called r-

neighbour bootstrap percolation, we are given a graph G and a subset A ⊂ V (G) of the

vertices of G. The elements of A are initially infected, and at each time t, infected vertices

stay infected, and among the uninfected vertices of G, those that have at least r infected

neighbours become infected. In keeping with the percolation literature, we use the words

‘vertex’ and ‘site’ interchangeably. The set of all vertices in G that are eventually infected

is called the closure of A and denoted [A]. If A is such that [A] = V (G), then we say that

A percolates G, or simply that there is percolation.

The key problem is to analyse the behaviour of the r-neighbour model acting on

an initial set A chosen randomly according to a product measure with density p. In

particular, one would like to know how large p should be for there to be percolation with

high probability (for a sequence of graphs with size of vertex set tending to infinity) or

almost surely (for a single infinite graph). The results in relation to this phase transition

are usually framed in terms of the critical probability, defined as

pc(G, r) := inf{p : Pp

(
[A] = V (G)

)
� 1/2}. (1.1)

A considerable amount is now known about pc(G, r) in the case of lattice graphs: a graph

G is a (d-dimensional) lattice graph if it is (isomorphic to) a (not necessarily planar)

translation-invariant locally finite graph with vertex set Z
d. (Equivalently, G is a lattice

graph if (there is an isomorphism between V (G) and Z
d under which) there exists a

finite symmetric set X ⊂ Z
d \ {0} such that the neighbourhood of any vertex x is the

set x+X.) The most natural lattice graph, and the one that has attracted the greatest

amount of study, is the nearest neighbour graph on Z
d. Indeed, the first rigorous result

in the field of bootstrap percolation, which was proved by van Enter [20], was that

pc(Z
2, 2) = 0. Schonmann [18] later showed that pc(Z

d, r) is equal to 0 if r � d and 1

otherwise. Aizenman and Lebowitz [1] were the first to recognize that there is much

more to say about the model in the context of finite subgraphs of lattice graphs, and

they proved that pc([n]
d, 2) = Θ(1)/(log n)d−1. Holroyd [15] went considerably further in

the case d = r = 2, proving that pc([n]
2, 2) = (1 + o(1))π2/18 log n. Vast generalizations of

these results on [n]d for general d and r were obtained in the weak sense by Cerf and

Cirillo [9] and Cerf and Manzo [10], and in the sharp sense by Balogh, Bollobás and

Morris [5] and Balogh, Bollobás, Duminil-Copin and Morris [4].

Bootstrap percolation has been studied on a number of other lattice graphs, not

only on Z
d and [n]d; for a small selection of these results, see [3, 6, 7, 8, 13, 14, 17].

In particular, Gravner and Griffeath [13, 14] studied r-neighbour bootstrap percolation

on general two-dimensional lattice graphs. (Gravner and Griffeath called their model

‘threshold dynamics’, but it is easily seen to be equivalent to r-neighbour bootstrap
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percolation on two-dimensional lattices.) Unfortunately, not all of the results in [13, 14]

were rigorously proved, and in some cases they were not even correct (see, for example,

[21]).

The first departure from the study of bootstrap percolation on lattice graphs came from

Duarte [12], who introduced a two-dimensional directed model (in fact, the introduction

by Duarte of this model predates the introduction by Gravner and Griffeath of r-

neighbour models on general lattices). He again took the nearest neighbour graph on Z
2

with threshold r = 2, but he took horizontal edges to be directed rightwards, and vertical

edges to be directed in both directions (alternatively one could think of the vertical edges

as being undirected, or replaced by two edges, one directed each way). Under this model,

an uninfected vertex x becomes infected if at least two of its in-neighbours are infected;

that is, if we take X to be the set {(−1, 0), (0, 1), (0,−1)}, then a site x becomes infected if

x+X contains at least two infected vertices. It is easy to see that this model causes a drift

in the growth of the infected set: new sites only become infected to the right of existing

sites. The critical probability for the Duarte model was determined up to a constant factor

by Mountford [16]; he showed that pc(
−→
Z

2
n, 2) = Θ

(
(log log n)2/ log n

)
, where

−→
Z

2
n is the

nearest neighbour graph on the torus Z
2
n with horizontal edges directed rightwards and

vertical edges undirected. The correct constant in place of the ‘Θ(·)’, or even the existence

of a constant, is still not known.

However, even general r-neighbour models on directed lattice graphs, without any

additional assumptions, are far less general than the models we introduce and analyse in

the present paper. Our aims are threefold:

• to define a new family of percolation models, which generalize all previously studied

models of bootstrap percolation on Z
d, and to derive a number of basic properties of

these models in two dimensions;

• to divide the two-dimensional models into three classes according to the nature of

their large-scale behaviour, and to prove general results about the critical probabilities

of models in two of these classes;

• to pose a number of open questions about these new general models.

We hope through achieving these aims to initiate a new, unified understanding of all

bootstrap percolation models on the square lattice.

We go considerably further than all previous authors in the following specific sense:

rather than taking a single special model or a special class of models, we take all local,

homogeneous, monotone models. This means that we fix an s and take all neighbourhoods

of x that consist only of sites at distance at most s from x; for each of these we say

whether or not x becomes infected given that all the sites in the neighbourhood are

infected, subject to the condition that the neighbourhoods that infect x form an up-set

(this is part of what we mean by monotone; we also mean that infected vertices never

become uninfected). The same rule is then applied to every site x. The formal definition

is as follows.

Definition 1.1. Fix an integer d � 2. Let m ∈ N, and for each i ∈ [m] let Xi ⊂ Z
d \ {0} be

finite and non-empty. Let U = {X1, . . . , Xm}. We call U an update family and each Xi an

https://doi.org/10.1017/S0963548315000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000012


690 B. Bollobás, P. Smith and A. Uzzell

Figure 1. An example of an update family U consisting of six rules. If there is a translation of one of the rules

such that all of the sites marked with dots are infected, then the site marked with a cross will become infected

too. It is easy to verify that U is critical. Our methods can be used to show that pc(Z
2
n,U ) = Θ(1/ log n), and

therefore that U has the same large-scale behaviour as two-neighbour bootstrap percolation.

update rule. Let A ⊂ Z
d. In U -bootstrap percolation with update family U and initial set

A = A0, for each t � 0 we set

At+1 := At ∪ {x ∈ Z
2 : Xi + x ⊂ At for some Xi ∈ U}.

Thus, there is a set A of initially infected sites and at each time step, whenever

a translation of a configuration Xi by an element of Z
d is completely infected, the

corresponding translation of the origin also becomes infected. The closure of A under U
is defined to be [A] := ∪∞

t=0At. When the closure of A is the whole of Z
d, we say that A

percolates Z
d under U , or more usually, when d, U and A are understood from the context,

we say simply that there is percolation.

The r-neighbour model is easily seen to be an example of U -bootstrap percolation:

one takes the update rules X1, . . . , Xm to be the m :=
(|N |
r

)
subsets of size r of the graph

(in-)neighbourhood N of the origin. However, these are only a very special subclass of

our models, and in general, our models look nothing like r-neighbour models. The family

in Figure 1 is an example of the kind of general model we have in mind.

For the remainder of the paper, except for a discussion of open problems in Section 8,

we shall restrict our attention to the case d = 2. Gravner and Griffeath [13, 14], in their

study of two-dimensional r-neighbour bootstrap percolation, took the underlying lattice

graphs to be undirected. The result of this was that the bootstrap processes had a strong

symmetry property, namely that X ∈ U if and only if −X ∈ U . While this may seem

natural, quite the opposite is true: symmetry vastly restricts the range and behaviour of

the possible models. We have already seen a glimpse of this with the result of Mountford

on the Duarte model, which shows that critical probabilities are not always negative

powers of log n. In Section 2 we explain in greater detail why symmetry is such a

powerful property for a bootstrap process to have; here we mention briefly that the main

reason is that it allows one to constrain growth to one-dimensional strips (and in higher

dimensions, to lower-dimensional strips). Gravner and Griffeath imposed an additional

restriction on their models, which had the effect of simplifying the analysis even further.

The restriction was that the process should be ‘balanced’, meaning in their case roughly
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that the four hardest directions in which to grow are equally hard. The reason why this

constraint is useful is that, together with symmetry, it implies the existence of bounding

parallelograms, all four of whose sides are equally difficult from which to grow, and which

can be controlled one-dimensionally in two independent directions.

We emphasize that we impose none of these additional constraints. In particular, most

importantly, we do not impose any symmetry constraints on our models, and in general

our models will not exhibit any symmetry at all. This is one of the key strengths of our

results, and one of the key advances over results by other authors.

Let Λ denote either Z
2 or the discrete torus Z

2
n := (Z/nZ)2. Like most previous authors,

we are interested in the random setting, in which sites of the lattice Λ are included in the

initial set A independently with probability p ∈ (0, 1). We describe a set A chosen in this

way as p-random, and we write Pp for the product probability measure. The U -bootstrap

percolation analogue of the critical probability for r-neighbour models defined in (1.1) is

as follows:

pc(Λ,U ) := inf{p : Pp

(
A percolates in U -bootstrap percolation on Λ

)
� 1/2}, (1.2)

where A is a p-random subset of Λ.

1.1. The classification of U -bootstrap percolation processes in two dimensions

For each u ∈ S1, let Hu := {x ∈ Z
2 : 〈x, u〉 < 0} be the discrete half-plane with boundary

perpendicular to u (we use 〈·, ·〉 to denote the usual Euclidean inner product). The following

simple definition is one of the most important of the paper; it will form the basis of our

tripartition of update families in Definition 1.3.

Definition 1.2. A unit vector u ∈ S1 is a stable direction for U if [Hu] = Hu. We denote

by S = S(U ) the set of all stable directions for U and we call S the stable set for U . If

u ∈ Sc = S1 \ S , then we call u an unstable direction for U . A stable direction u is said to

be strongly stable for U if it is contained in an open interval of stable directions in S1.

One of the key properties of the U -bootstrap process that we establish in this paper

is that the approximate large-scale behaviour of the process is governed primarily by

the geometry of the stable set S alone. This assertion is encapsulated by the following

definition, which is our classification of U -bootstrap percolation models.

Definition 1.3. Let U be a (two-dimensional) update family with stable set S . We say that

U is

• supercritical if there exists an open semicircle C ⊂ S1 such that S ∩ C = ∅;

• critical if S ∩ C �= ∅ for every open semicircle C ⊂ S1 and there exists an open

semicircle C ⊂ S1 not containing any strongly stable directions;

• subcritical if every open semicircle C ⊂ S1 contains a strongly stable direction.

The most important of the three classes of U -bootstrap models is the critical class,

which includes all previously studied models of bootstrap percolation on Z
2.
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A similar classification in the special case of r-neighbour models is given by Gravner

and Griffeath [13, 14]. They define a process to be supercritical if there exist finite subsets

of Z
2 with infinite closures, to be subcritical if there exist closed cofinite proper subsets of

Z
2, and to be critical otherwise. Our definitions coincide precisely with their definitions in

the case of the small subclass of our models that they consider. Moreover, the distinction

between supercritical and critical is the same in all cases, although not obviously so; in

fact, this statement is the content of Theorem 7.1. The distinction between critical and

subcritical in general is not the same, however: one can show that the Gravner–Griffeath

definition is equivalent to the statement that every direction is stable, while we only require

every open semicircle to contain a strongly stable direction. Theorem 1.10 implies that

there is an infinite collection of families U that fall under our definition of subcritical but

not under the Gravner–Griffeath definition.

Among the results of this paper, which we state formally next, we prove that the

distinction made in Definition 1.3 between supercritical and critical families is the right one,

in the specific sense that the critical probabilities of supercritical families are polynomial

in t and the critical probabilities of critical families are polylogarithmic in t. We are

not able to prove that the distinction between critical and subcritical families given here

is also correct, although we conjecture that this is the case, in the specific sense that

the critical probabilities of subcritical models should be bounded away from zero1 (see

Conjecture 8.1). We defer further discussion until Section 8.

1.2. Results

As stated earlier in the Introduction, our aims in this paper are threefold: to define and

prove basic results about U -bootstrap percolation; to prove the first results about the

critical probabilities of critical and supercritical models; and to pose a number of open

questions about these new models.

Our main results concern the second of these aims. We state these results first in terms

of the infection time of the origin (Theorems 1.4 and 1.5), and then in their more usual

(and essentially equivalent) form in terms of critical probabilities (Theorem 1.7). Given a

set A ⊂ Z
2, define the stopping time

τ = τ(A,U ) := min{t � 0 : 0 ∈ At}.

Thus, τ is the time at which the origin becomes infected in U -bootstrap percolation with

initial set A. In the statements of all theorems (and throughout the paper), constants,

implicit or otherwise, are quantities that depend only on U .

The following is our main theorem.

Theorem 1.4. Let U be a critical two-dimensional bootstrap percolation update family.

Then, with high probability as p → 0,

τ = exp
(
p−Θ(1)

)
.

1 Since the submission of this paper, Balister, Bollobás, Przykucki and Smith [2] have proved that this conjecture

is true.
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We also prove the following theorem for supercritical families.

Theorem 1.5. Let U be a supercritical two-dimensional bootstrap percolation update family.

Then, with high probability as p → 0,

τ = p−Θ(1).

We remark that the lower bound of Theorem 1.5 is a triviality: there must be at least

one initially infected site within distance O(τ) of the origin. The content of the theorem is

the upper bound.

As a corollary of Theorems 1.4 and 1.5, we have that for any critical or supercritical

update family and any p > 0, a p-random subset of Z
2 almost surely percolates.

Corollary 1.6. Let U be a critical or supercritical two-dimensional bootstrap percolation

update family, let p ∈ (0, 1], and let A be a p-random subset of Z
2. Then

Pp

(
[A] = Z

2
)

= 1.

This is immediate from the previous theorems: the probability that any given site is not

eventually infected is zero, and there are countably many sites.

As stated above, there are essentially equivalent versions of the first two theorems stated

in terms of critical probabilities. We combine these into the following theorem.

Theorem 1.7. Let U be a two-dimensional bootstrap percolation update family.

(i) If U is critical, then

pc(Z
2
n,U ) =

(
1

log n

)Θ(1)

.

(ii) If U is supercritical, then

pc(Z
2
n,U ) = n−Θ(1).

We shall not prove Theorem 1.7 explicitly, but we note here that it follows from exactly

the same methods as Theorems 1.4 and 1.5.

Remark 1.8. For certain critical update families U , our methods can be used to be used

to determine pc(Z
2
n,U ) up to a constant factor. This is the case, for example, with the

2-neighbour model, and thus we recover the theorem of Aizenman and Lebowitz [1] as a

special case of our results (see Theorem 4.1 and Remark 6.3). However, we do not believe

that our methods can be used without further improvements to determine pc(Z
2
n,U ) up to

a constant factor for general critical models.

Remark 1.9. Theorem 1.7 is a statement about critical probabilities of U -bootstrap

percolation on the discrete torus Z
2
n. The corresponding statement with Z

2
n replaced by
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the grid [n]2 is false. This is for trivial reasons: the infection would not in general be able

to reach the corners of the grid unless p = 1 − o(1).

Returning to the first of our aims, let us now be clearer about what we mean by proving

‘basic results’ about U -bootstrap percolation: we mean establishing general properties of

stable sets and the action of the processes on half-planes. This is the subject of Section 3.

The main result of that section is the following classification of stable sets. Let us say

that a unit vector u ∈ S1 is rational if it has either rational or infinite slope relative to the

standard basis vectors.

Theorem 1.10. Let S ⊂ S1. Then there exists a two-dimensional bootstrap percolation up-

date family U of which S is the stable set if and only if S can be expressed as a finite union

of closed intervals in S1 with rational end-points.

1.3. Organization of the paper

In the next section we introduce several key aspects of the proofs and a number of

important definitions. Owing to the level of generality of our model, the need for some

notational complexity is unfortunately unavoidable. However, we have tried to keep the

burden as light as possible, and have gathered together many of the definitions for ease

of reference.

In Section 3 we prove some basic properties of stable sets, culminating in the proof

of Theorem 1.10. Following that, we move on to the main aim of this paper: the proof

of Theorem 1.4 for critical update families. In Section 4, we prove the lower bound of

Theorem 1.4. In Section 5 we set out the deterministic framework for the growth of

‘droplets’ that we shall use to prove the upper bounds of both Theorem 1.4 (for critical

families) and Theorem 1.5 (for supercritical families). We then complete the proofs of

these theorems in Sections 6 and 7 respectively.

Finally, in Section 8, we discuss open problems and conjectures, including the behaviour

of subcritical families, sharpening our results, and generalizations to higher dimensions.

2. Some aspects of the proofs

In this section we introduce several important definitions and ideas from the proofs of

Theorems 1.4 and 1.5. We begin with two definitions that may be familiar to the reader

in the context of certain specific models (such as the 2-neighbour model or ‘balanced’

threshold models); in each case, the definition we give here generalizes previous definitions.

The first, that of a set being ‘internally filled’, is our formal way of saying that a set becomes

fully infected in U -bootstrap percolation without external help.

Let us fix an update family U , so that (for example) the operation of taking the closure

of a set is well-defined.

Definition 2.1. A set X ⊂ Z
2 is internally filled by A if X ⊂ [X ∩ A].
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In the literature, the expression ‘internally spanned’ is frequently used to describe this

property; we feel that the word ‘filled’ better emphasizes that the whole of X must be

contained in the closure [X ∩ A].

The second definition is that of a ‘T -droplet’, which is a finite subset of Z
2 used as a

basis for growth.

Definition 2.2. Let T ⊂ S1. A T -droplet is any finite set of the form

D =
⋂
u∈T

(
Hu + au

)
,

where {au ∈ Z
2 : u ∈ T } is a collection of sites in Z

2. If u ∈ T and D is a T -droplet, then

the u-side of D is the set

{x ∈ D : 〈y, u〉 � 〈x, u〉 for all y ∈ D}.

Thus, a droplet is an intersection of half-planes. Since the stable directions for the

2-neighbour process are (±1, 0) and (0,±1), if T is the set of these four unit vectors

then a T -droplet is just a rectangle, precisely as a ‘droplet’ is usually taken to be in the

2-neighbour model.

Let us make two remarks about Definition 2.2. First, we have defined droplets with

respect to a set T ⊂ S1, not with respect to an update family U . This is because, for a

given update family U , we shall need to define and work with different sets of directions

to the stable set in both the upper and lower bound parts of the proof, and in each case

we shall need a correspondingly different notion of a droplet.

Second, as we have just alluded to, droplets will be important in the proofs of both parts

of Theorem 1.4. From the point of view of the lower bound, they are important because

they restrict growth. If T ⊂ S , then the closure of a subset of a T -droplet is again a subset

of the same T -droplet. From the point of view of the upper bound, droplets form the

basis of growth. With the help of a bounded number of new sites along one of its edges,

under certain circumstances a T -droplet will grow into a new, larger T -droplet. In fact,

ensuring that these ‘certain circumstances’ always hold is one of the central components

of the proof of the upper bound of Theorem 1.4. We return to this in Section 2.2.

Now that we have Definitions 2.1 and 2.2, let us also make a brief remark about

symmetry. One might think that the lack of symmetry should make only trivial, technical

differences to the arguments, and that its assumption would cause only a little loss of

generality, as was supposed in [13, 14]. However, nothing could be further from the truth:

symmetry is the most important instrument at one’s disposal in proofs of lower bounds for

critical probabilities in bootstrap percolation. Before explaining why, let us be clear what

we mean by ‘symmetry’. We mean principally symmetry of the stable set: the property

that u ∈ S implies −u ∈ S . Almost always in the past, though, authors have assumed

much more that this, namely that X ∈ U if and only if −X ∈ U . Why should symmetry

be so useful? The main reason is that it allows one to restrict growth one-dimensionally.

Suppose that u and −u are stable directions, and that the initial set A ⊂ Z
2 does not

intersect an infinite strip with sides orthogonal to u of at least a certain width depending
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only on U . Then [A] cannot intersect that strip either. This allows tight (and easy) control

of the growth of a droplet in terms only of sites near to its perimeter. It also gives an easy

necessary condition for a droplet to be internally filled, which immediately implies, among

other things, a certain extremal lemma (which we discuss in the next subsection). Since we

do not have symmetry, we have to work much harder to obtain corresponding properties.

Indeed, dealing with the lack of symmetry is the single most important challenge of the

general model.

2.1. Lower bounds for critical probabilities

At the most basic level, our proofs of both the upper and lower bounds of Theorem 1.4

follow the corresponding proofs of Aizenman and Lebowitz [1] for the 2-neighbour model.

In [1], the starting point for the lower bound is to show that if 0 ∈ At then there exists an

internally filled droplet at the scale of roughly log t within distance t of the origin. Our

starting point is similar, except that the property of being internally filled is too strong a

property to ask for in general, so instead we use a certain notion of being ‘approximately

internally filled’; we say a little more precisely what we mean by this shortly.

In order to find and bound the probability of an approximately internally filled droplet

of size roughly log t, we need two main ingredients. The first is a statement that says that

if a droplet at a certain scale is approximately internally filled then it necessarily contains

approximately internally filled droplets at all smaller scales. We call a statement of this

form, or a close variant, an Aizenman–Lebowitz-type lemma. The second ingredient is a

statement that says that if a droplet D of ‘size’ k is approximately internally filled, then

D ∩ A must have cardinality at least δk, where δ > 0 may depend on U but not on k. We

call a statement of this form an extremal lemma.

In the case of the 2-neighbour model, it turns out that one can prove both of these

lemmas (with ‘approximately’ replaced by ‘exactly’) using the same idea. (There are many

ways of the proving the extremal lemma, but this is the only known way of proving the

Aizenman–Lebowitz lemma. In fact, if one has a weak symmetry property, such as a

pair of stable directions u and −u, and one does not care about optimizing δ, then the

extremal lemma is immediate.) The idea in both cases is to use an algorithm called the

rectangles process, which builds up the closure of a finite set of sites by ‘merging’ nearby

internally filled droplets one-by-one. To be precise, the algorithm proceeds by looking for

two rectangles within �1 distance 2 of each other, and replacing them by the smallest

rectangle containing both. The two crucial properties of the algorithm are, first, that at

each step, every rectangle in the current collection is internally filled, and second, that

the perimeter length of the largest rectangle in the current collection does not more than

double between steps.

The natural generalization of the rectangles process – replacing ‘rectangles’ by ‘T -

droplets’ for some T ⊂ S1 – is of no use. The issue is that the closure of two nearby

T -droplets need not be a larger T -droplet, so we lose the first of the two crucial

properties mentioned above, namely that the T -droplets at each stage of the process be

internally filled. Our solution, as mentioned above, is to weaken the requirement that the

droplets be internally filled. The precise way in which we do this is to introduce a new,

related algorithm, which we call the covering algorithm. The algorithm starts by placing
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a T -droplet (for a certain set T ) around as many disjoint ‘breakthrough blocks’ in a finite

initial set K ⊂ Z
2 as possible, where ‘breakthrough blocks’ are defined as follows.

Definition 2.3. A breakthrough block for X ∈ U is any set of the form X ∩ (Hu)
c, or a

translation by an element of Z
2 of such a set, for some u ∈ S .

The idea is that a breakthrough block is a minimal set of sites that allows at least one

new site to become infected with the help of a T -droplet, where T ⊂ S . The covering

algorithm then proceeds by merging nearby T -droplets in a manner similar to the original

rectangles process. One can show that if the definition of the covering algorithm we have

just sketched is suitably formalized, and if the final collection of T -droplets at the end

of algorithm is D1, . . . , DT , then [K] \K ⊂ D1 ∪ · · · ∪ DT , and therefore that the covering

algorithm ‘approximately dominates’ the U -bootstrap process. Crucially, one can also

prove an Aizenman–Lebowitz-type lemma and an extremal lemma for so-called ‘covered

droplets’, which are simply droplets D such that the set {D} is a possible output of the

covering algorithm with input D ∩ A. Recall that these are the two main lemmas we need

to prove the lower bound.

The precise definition of the covering algorithm, statements and proofs of the Aizenman–

Lebowitz-type lemma and the extremal lemma, and the proof of the lower bound of

Theorem 1.4 are given in Section 4.

2.2. Upper bounds for critical probabilities

For most of this discussion we shall assume that U is critical. At the end we indicate

how our methods for proving the upper bound of Theorem 1.4 for critical families can be

applied to prove Theorem 1.5 for supercritical families as well.

The first issue we encounter with the upper bounds is that the stable set S may be

quite large: indeed it may contain a closed semicircle. This means that droplets may not

in general grow in all directions. However, in order to show that droplets grow in at

least one direction, we only need a weaker property, which follows from the definition

of a critical update family and Theorem 1.10. This property is that there exists an open

semicircle C ⊂ S1 such that |S ∩ C| < ∞.

We remarked after Definition 2.2 that ensuring that droplets grow into droplets is one

of the central parts of the proof of the upper bound of Theorem 1.4. What we mean by

‘droplets growing into droplets’, or more specifically, ‘T -droplets growing into T -droplets’,

is that for each T -droplet D and each u ∈ T , there exists a set Z ⊂ Z
2 \ D of bounded size

(that is, of size depending on U and T but not on D) such that [D ∪ Z] contains an entire

new ‘row’ of sites on the u-side, extending all the way to the corners of the u-side. Thus,

[D ∪ Z] is itself a T -droplet. Once we have a statement of this form, then our proof of the

upper bound of Theorem 1.4 follows by methods similar to those used by van Enter and

Hulshof [21] to determine the critical probability of a particular so-called ‘unbalanced’

model.

The growth property that we have just described itself hinges on two further properties.

The first is that if u ∈ S1 is such that there exists an open interval in I ⊂ S1 with u ∈ I

but such that S ∩ I \ {u} = ∅, then there exists a finite set Z ⊂ �u such that �u ⊂ [Hu ∪ Z],

https://doi.org/10.1017/S0963548315000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000012


698 B. Bollobás, P. Smith and A. Uzzell

where

�u := {x ∈ Z
2 : 〈x, u〉 = 0}.

(Of course, if u /∈ S then Z = ∅ will do here.) This property, which is Lemma 5.2, will

allow us to grow to within a constant distance of the corners of the T -droplet. However,

if we choose our set T to be such that T ⊂ S – as in all previous proofs of this type of

theorem – then the new row of infected sites does not in general grow all the way to the

corners. The second property that we need in order to rectify this problem is that there

exists a finite set Q ⊂ S1, which we call the set of quasi-stable directions, such that if T
is the union of Q and a certain subset of S , then this corners property holds. This is the

content of Lemma 5.3.

Let us briefly observe that both of the properties of the previous paragraph trivially

hold in the case of the 2-neighbour model: for the first, we may always take Z = {0}, and

for the second, we may take Q = ∅. This again serves to highlight that many of the issues

that arise in connection with the general model do not appear at all in connection with

the 2-neighbour model.

In Section 5 we establish the key growth properties described above. We then apply

them in Section 6 to prove the upper bound of Theorem 1.4 for critical families. In

Section 7, we show that the framework we have set up for critical families may be

adapted to prove Theorem 1.5 for supercritical families, by observing that all of the sets Z

mentioned above may be taken to be empty if U is supercritical and the open semicircle

C ⊂ S1 is chosen so that S ∩ C = ∅.

2.3. Definitions and conventions

Let us collect a few of the most important definitions and conventions that we shall use

throughout the paper. We begin with three conventions.

• The set A is always a p-random subset of Z
2, unless explicitly stated otherwise.

• The update family U is fixed throughout. Constants will be allowed to depend on U
(and hence on S , etc.), but not on p.

• The norm ‖ · ‖ denotes the Euclidean norm ‖ · ‖2.

Moving on to definitions, we begin with certain subsets of the plane. Recall that we

have already defined the half-plane Hu = {x ∈ Z
2 : 〈x, u〉 < 0} and the line �u = {x ∈ Z

2 :

〈x, u〉 = 0}. We shall also need the shifted half-plane:

Hu(a) := {x ∈ Z
2 : 〈x− a, u〉 < 0},

where a ∈ R
2. If a ∈ Z

2 then we have Hu(a) = Hu + a, but this is not true in general. Next,

let u ∈ S1 be rational (recall that this means that u has either rational or infinite slope

with respect to the standard basis vectors of R
2) and consider the lines orthogonal to u

that intersect Z
2. These lines are parallel and discrete, and there is a natural integer-valued

indexing for them. Let �u(0) be the line intersecting the origin, and for each i ∈ Z, let �u(i)

be the ith line in the direction of u.
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Next, let T := R/2πZ. We shall often need to change between elements of S1 and

elements of T, so we define the following natural bijection. Let u : T → S1 be the function

u(θ) := (cos θ, sin θ),

and let θ : S1 → T be the inverse function, so that if u = u(θ) then θ(u) = θ. We extend

the domain of the function θ to the whole of R
2 \ {0} in the obvious way: if x ∈ R

2 \ {0}
then we define θ(x) to be equal to θ(x/‖x‖). We also use standard function notation,

so that for example u(T ) := {u(θ) : θ ∈ T } for a subset T ⊂ T, and we abuse notation

slightly by abbreviating u
(
(θ1, θ2)

)
to u(θ1, θ2).

Now let T ⊂ S1 and let u, v ∈ T . We shall say that u and v are consecutive in T if

T ∩ u
(
θ(u), θ(v)

)
= ∅. (Note that this is not a symmetric relation: the statements that u

and v are consecutive in T , and that v and u are consecutive in T , are not equivalent.)

For each update rule X, let

T (X) := {u ∈ S1 : X ⊂ Hu},

and let

Θ(X) := {θ ∈ T : u(θ) ∈ T (X)} = {θ ∈ T : X ⊂ Hu(θ)}.

We think of T (X) as the set of directions destabilized by the update rule X. If u ∈ Sc
then there must exist a rule X ∈ U such that X ⊂ Hu, which implies that

Sc =
⋃
X∈U

T (X). (2.1)

Finally, we shall need the following measure of the diameter of a finite set K ⊂ Z
2:

diam(K) := max{‖x− y‖ : x, y ∈ K}.

3. The structure of stable sets

In this section we derive a number of basic properties of the stable set and introduce

some important definitions relating to the geometry of the stable set. Our main aim is to

prove Theorem 1.10, the classification of stable sets.

We begin with a simple lemma that establishes the dichotomy [Hu] ∈ {Hu,Z
2} for every

u ∈ S1.

Lemma 3.1. Let u ∈ S1 be an unstable direction for U . Then [Hu] = Z
2.

Proof. Let u ∈ S1 be unstable and let a ∈ Z
2 \ Hu and X ∈ U be such that a+X ⊂ Hu.

Then y +X ⊂ Hu for all y ∈ �u, since if x ∈ X and y ∈ �u then

〈y + x, u〉 = 〈x, u〉 � 〈a+ x, u〉 < 0.

Thus �u ⊂ A1 \ A0.

If u is rational then we are done: �u(j) ⊂ Aj+1 for all integers j � 0, so [Hu] = Z
2. If

u is irrational, on the other hand, then all we know so far is that 0 ∈ A1 \ A0. We claim
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that there exists a site b ∈ Z
2 such that 〈b, u〉 > 0 and Hu(jb) ⊂ Aj for all j ∈ N. Let

δ := sup{λ ∈ R : X ⊂ Hu(−λu)} = min{−〈x, u〉 : x ∈ X}.

If y ∈ Hu(δu) then y +X ⊂ Hu, so we have Hu(δu) ⊂ A1. Also, the set X is finite and

contained in Hu, so δ > 0. Thus, since u is irrational, there exists a site b ∈ Hu(δu) \ Hu,

and we have Hu(b) ⊂ Hu(δu) ⊂ A1. Now Hu(b) has a site on its boundary, namely b, so it

is congruent to Hu, and therefore Hu(jb) ⊂ Aj for all j ∈ N, as claimed.

The next lemma, together with the observation in (2.1), is one of the two implications

in Theorem 1.10.

Lemma 3.2. Let X be an update rule. Then T (X) is either empty or an open interval in S1

with rational end-points.

Proof. For each site x ∈ Z
2 \ {0} define the set T (x) = {u : 〈x, u〉 < 0}. It is easy to see

that

T (x) = u
(
θ(x) − π/2, θ(x) + π/2

)
. (3.1)

Furthermore, since u
(
θ(x)

)
= x/‖x‖ is rational, so too are u

(
θ(x) − π/2

)
and u

(
θ(x) +

π/2
)
. Thus, T (x) is an open interval with rational end-points.

Now simply notice that

T (X) =
⋂
x∈X

T (x), (3.2)

so T (X) is a finite intersection of open intervals with rational end-points, each interval of

length exactly π. The assertion of the lemma follows.

Remark 3.3. Using identities for Sc in (2.1), for T (X) in (3.2), and for T (x) in (3.1), we

have

Sc =
⋃
X∈U

⋂
x∈X

u
(
θ(x) − π/2, θ(x) + π/2

)
. (3.3)

From this it follows immediately that there exists a polynomial time (in the sum of the

cardinalities of the update rules, say) algorithm for computing the stable set S of an

update family U .

We are now able to complete the proof of Theorem 1.10. Recall that the theorem is

a classification of stable sets: it says that a subset of the circle is the stable set of some

update family if and only if it can be expressed as a finite union of closed intervals with

rational end-points.

Proof of Theorem 1.10. One implication – that stable sets are finite unions of closed

intervals with rational end-points – is a consequence of Lemma 3.2 and (2.1). Therefore

our task is just to show the converse. To that end, let S ⊂ S1 be such that its complement
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u(θ−
i )

u(θ+
i )

0

x−
i

x+
i

Figure 2. The rule Xi consists of the two sites x−
i and x+

i . It destabilizes the interval (θ−
i , θ

+
i ).

may be written in the form

Sc =

m⋃
i=1

Ti,

where

Ti = u(θ−
i , θ

+
i )

for i = 1, . . . , m, and the Ti are disjoint and have rational end-points. Since u(θ−
i ) and

u(θ+
i ) are rational, for each i, it follows that there exists a non-zero site x−

i ∈ �u(θ−
i ) to the

right of the origin as one looks in the direction of u(θ−
i ), and a non-zero site x+

i ∈ �u(θ+
i )

to the left of the origin as one looks in the direction of u(θ+
i ). Let

Xi := {x−
i , x

+
i }

be update rules for each i = 1, . . . , m, and let U := {X1, . . . , Xm} be an update family and

S ′ = S ′(U ) its stable set. We claim that S ′ = S .

By (2.1),

(S ′)c =

m⋃
i=1

T (Xi),

so it is enough to show that T (Xi) = Ti for every i. But

T (Xi) = {u : 〈x−
i , u〉 < 0} ∩ {u : 〈x+

i , u〉 < 0}
= u(θ−

i , θ
−
i + π) ∩ u(θ+

i − π, θ+
i )

= u(θ−
i , θ

+
i ),

which is the definition of Ti.
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4. The lower bound for critical families

The next three sections are the primary focus of the paper. We study critical2 U -bootstrap

percolation with the aim of proving Theorem 1.4: the lower bound in this section and

the upper bound in Section 6. Recall that an update family is critical if the following two

properties of its stable set S hold. First, S ∩ C is non-empty for every open semicircle

C ⊂ S1, and second, there exists an open semicircle C ⊂ S1 not containing any strongly

stable directions, where a stable direction u is said to be strongly stable if it is contained

in an open interval of stable directions.

Recall that a breakthrough block for X ∈ U is any set of the form X ∩ (Hu)
c, where

u ∈ S . (It is worth observing that there are no empty breakthrough blocks, because the

direction u is assumed to be stable.) Let B be the collection of sets B ⊂ Z
2 such that B is

a breakthrough block for some X ∈ U , and let

α1 = α1(U ) := min{|B| : B ∈ B}. (4.1)

The lower bound of Theorem 1.4 follows from the next theorem. We remind the reader

that the stopping time τ is the minimal t � 0 such that 0 ∈ At.

Theorem 4.1. Let U be a critical update family and let

p �
(

λ

log t

)1/α1

,

where λ > 0 is sufficiently small. Then τ � t with high probability as t → ∞.

It follows from the definition of a critical update family that if U is critical then there

exists a set SL = SL(U ) of 3 or 4 stable directions such that 0 lies in the interior of the

convex hull of SL. (Equivalently, there exist (finite) SL-droplets.) Throughout this section

we fix the critical update family U and the set SL of 3 or 4 stable directions, and we shall

use the convention that all droplets are SL-droplets.

In Section 4.1 we define the ‘covering algorithm’, which will be our approximation to

the rectangles process of the 2-neighbour model, and we define what it means for a droplet

to be ‘covered’, which will be our notion of being ‘approximately internally filled’. We

use these definitions to derive an Aizenman–Lebowitz-type lemma (Lemma 4.8) and an

extremal lemma (Lemma 4.7) for ‘covered’ droplets. In Section 4.2 we assemble the tools

of the previous subsection to complete the proof of Theorem 4.1.

4.1. Covered droplets

We begin by defining the ‘covering algorithm’, which takes as its input a finite set K ⊂ Z
2

of sites and returns a collection D of SL-droplets that approximately cover [K], in a sense

made precise in Lemma 4.5.

Let D̂ be a fixed SL-droplet such that X ⊂ D̂ for all X ∈ U . Given a finite set K ⊂ Z
2,

let D(K) be the minimal SL-droplet containing K .

2 In Section 5 we only assume that U is critical or supercritical.
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Definition 4.2 (covering algorithm). Let U be critical and K ⊂ Z
2 be finite. Let B1, . . . , Bk0

be a maximal collection of disjoint breakthrough blocks in K , and let D0 := {D0
1 , . . . , D

0
k0

}
be a collection of copies of D̂ such that Bi ⊂ D0

i for each i = 1, . . . , k0. This is step 0. Now

repeat the following procedure for each t � 0 until STOP. At the start of step t+ 1 of the

algorithm, there is a collection Dt = {Dt1, . . . , Dtkt} of droplets, where kt = k0 − t. If there

do not exist indices i and j and a site x ∈ Z
2 such that

Dti ∩ (D̂ + x) �= ∅ and Dtj ∩ (D̂ + x) �= ∅, (4.2)

then STOP. If there do exist such i, j and x, then choose one such triple. Construct Dt+1

from Dt by deleting from it Dti and Dtj and adding to it D(Dti ∪ Dtj):

Dt+1 :=
(
Dt \ {Dti , Dtj}

)
∪ {D(Dti ∪ Dtj)}.

This is the end of step t+ 1. The output of the algorithm is the set DT := {DT1 , . . . , DTk },
where k = k0 − T , and T is the last t before STOP.

Remark 4.3. We could instead have defined the covering algorithm by taking our initial

collection of droplets D0 to consist of a copy of D̂ around every site of K , rather than

around every element of a maximal collection of disjoint breakthrough blocks. The effect

of this would have been that we would have obtained α1 = 1 as the bound in Theorem 4.1

for every critical update family. We use the present method because in some cases it gives

better bounds, and because it may be useful in potential future refinements of our results.

We note that the covering algorithm is commutative in the sense that the order in

which droplets are combined does not affect the output of the algorithm. We omit the

proof of this property, since we shall not actually need to use it. On the other hand,

the output of the covering algorithm does depend on the particular choice of disjoint

breakthrough blocks B1, . . . , Bk0 , and on the particular translates of D̂ we choose to cover

those breakthrough blocks.

Definition 4.4. We say that D is a cover of a finite set K ⊂ Z
2 if it is a possible output

of the covering algorithm with inputs U and K . An SL-droplet D is covered if D = {D}
for some cover D of D ∩ A.

The following lemma allows us to bound the closure of a finite set in terms of an

arbitrary output of the covering algorithm applied to that set; it is the sense in which the

covering algorithm approximately dominates the bootstrap process.

Lemma 4.5. Let D = {DT1 , . . . , DTk } be an output of the covering algorithm applied to a

finite set K ⊂ Z
2. Then

[K] \K ⊂ DT1 ∪ · · · ∪ DTk .
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Proof. Let L := DT1 ∪ · · · ∪ DTk . We claim that [L ∪K] = L ∪K . In order to prove this,

we must show that there do not exist X ∈ U and x ∈ Z
2 such that x+X ⊂ L ∪K and

x /∈ L ∪K .

First, it is clear that we cannot have x+X ⊂ K \ L. This is simply because x+X

contains a breakthrough block, so x+X ⊂ K \ L would contradict the maximality of the

initial collection B1, . . . , Bk0 of breakthrough blocks in the covering algorithm.

Second, we cannot have x+X ⊂ L ∪K and (x+X) ∩ L �= ∅. To see this, first note

that x+X cannot intersect more than one of the DTi , because if t = T then (4.2) does

not hold for any 1 � i < j � k and D̂ contains every update rule. Also, x+X cannot be

contained in DTi for any i, because each DTi is closed. Therefore, if (x+X) ∩ L �= ∅, then

there exists a unique i such that (x+X) ∩ DTi �= ∅ and (x+X) \ DTi ⊂ K \ L. Hence also,

there exist u ∈ SL and y ∈ Z
2 such that

∅ �= (x+X) ∩ Hu(y)
c ⊂ K \ L,

again contradicting the maximality of the initial collection of breakthrough blocks.

Thus we have [L ∪K] = L ∪K as claimed, and therefore

[K] ⊂ [L ∪K] = L ∪K,

which proves the lemma.

We require one further ingredient for the extremal lemma, which is a subadditivity

lemma for the diameters of intersecting droplets. We omit the proof of the lemma because

our droplets are always either triangles or parallelograms, and in these cases the lemma

is a triviality. However, we note for reference that the lemma holds in much greater

generality than is stated here: it holds for droplets with respect to an arbitrary (fixed)

finite subset of S1. The interested reader may refer to Lemma 23 of version 2 of the

present paper on the arXiv for a full proof.3

Lemma 4.6. Let D1 and D2 be SL-droplets such that D1 ∩ D2 �= ∅. Then

diam
(
D(D1 ∪ D2)

)
� diam(D1) + diam(D2).

We are now ready to prove the extremal lemma for covered droplets.

Lemma 4.7 (extremal lemma). Let U be critical and let D be a covered droplet. Then

D ∩ A contains at least Ω
(
diam(D)

)
disjoint breakthrough blocks.

Proof. Apply the covering algorithm with input D ∩ A. The algorithm starts with k0

droplets containing disjoint breakthrough blocks from D ∩ A, and it terminates after k0

steps with a single droplet. At the (t+ 1)th step of the algorithm, we replace droplets Dti

3 Version 2 of the present paper, which has the alternative name ‘Neighbourhood family percolation’, may be

found at http://arxiv.org/abs/1204.3980v2.
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and Dtj by D(Dti ∪ Dtj), for some i and j, where Dti and Dtj are such that (4.2) holds. It

follows by Lemma 4.6 that

diam
(
D(Dti ∪ Dtj)

)
� diam(Dti ) + diam(Dtj) + diam(D̂). (4.3)

Thus, since diam(D̂) = O(1), the quantity∑
Dti∈D

diam(Dti )

increases by at most O(1) at each step of the algorithm, and hence

diam(D) � k0diam(D̂) + O(k0).

It follows that k0 = Ω
(
diam(D)

)
, as required.

Finally in this subsection, we prove the Aizenman–Lebowitz-type lemma for covered

droplets.

Lemma 4.8 (Aizenman–Lebowitz-type lemma). Let D be a covered droplet. Then, for every

1 � k � diam(D) there exists a covered droplet D′ ⊂ D such that k � diam(D′) � 3k.

Proof. The proof is similar to (but even simpler than) that of Lemma 4.7. Apply the

covering algorithm with input D ∩ A. By (4.3), the quantity

max{diam(Dti ) : Dti ∈ Dt}

at most triples at each step of the algorithm, and moreover, it is easy to see that every

droplet Dti ∈ Dt is covered, which proves the lemma.

4.2. Proof of Theorem 4.1

We require two calculations for the proof of Theorem 4.1. The first says that the probability

of there existing a droplet of diameter roughly log t within distance O(t) of the origin is

small. The second says that the probability of there existing a strongly covered droplet

containing the origin with diameter at most log t is also small. These calculations are

Lemmas 4.9 and 4.10 respectively. The proof of Theorem 4.1 will split naturally into these

two cases.

If k ∈ N then let D(k) be the minimal droplet containing the origin all of whose sides

have �2 distance at least λk from the origin, where λ is a large constant. Note that we

have previously defined D(K) for K a subset of Z
2; we hope this slight abuse of notation

does not cause any confusion.

We begin with the first calculation, which says that it is unlikely that there is a covered

droplet of diameter roughly log t contained in D(t).

Lemma 4.9. Let U be critical, let ε > 0 be sufficiently small, and let

p �
(

ε

log t

)1/α1

.
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Then the probability that there exists a covered droplet D ⊂ D(t) such that log t � diam(D) �
3 log t is o(1) as t → ∞.

Proof. By Lemma 4.7, there exists a constant δ > 0 such that if D is a covered droplet

with log t � diam(D) � 3 log t then D ∩ A contains at least δ log t breakthrough blocks.

Since there are O(1) distinct breakthrough blocks and each breakthrough block has size

at least α1, the probability that a particular such droplet is covered is at most(
O(log t)2

δ log t

)
pα1δ log t �

(
O(pα1 log t)

)δ log t � 1

t3
,

because we chose ε sufficiently small. Now, the number of droplets D ⊂ D(t) with log t �
diam(D) � 3 log t is t2(log t)O(1). Therefore, the probability that there exists a covered

droplet D ⊂ D(t) with log t � diam(D) � 3 log t is at most

t2(log t)O(1) · 1

t3
= o(1),

as required.

The next calculation says that it is unlikely that there is a covered droplet contained in

D(log t) that itself contains the origin.

Lemma 4.10. Let U be critical, let ε > 0 be sufficiently small, and let

p �
(

ε

log t

)1/α1

.

Then the probability that the origin is contained in a covered droplet D ⊂ D(log t) is o(1)

as t → ∞.

Proof. We begin as in the previous lemma: by Lemma 4.7 there exists δ > 0 such that

if D is a covered droplet with diameter at least k then D ∩ A contains at least δk disjoint

breakthrough blocks. Thus the probability that a droplet with diameter between k and

k + 1 is covered is at most(
O(k2)

δk

)
pα1δk �

(
O(pα1k)

)δk
=

(
O(εk)

log t

)δk

.

The number of droplets of diameter between k and k + 1 that contain the origin is at

most kO(1). Hence, the probability that there exists a covered droplet D ⊂ D(log t) such

that 0 ∈ D is at most

O(log t)∑
k=1

kO(1)

(
O(εk)

log t

)δk

.

By breaking up the sum at k = (log log t)2, this in turn is at most

(log log t)O(1)

(
(log log t)2

log t

)δ

+ O(log t)O(1)O(ε)δ(log log t)2 = o(1),

https://doi.org/10.1017/S0963548315000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000012


Monotone Cellular Automata in a Random Environment 707

which completes the proof of the lemma.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let p be such that

p �
(

ε

log t

)1/α1

,

where ε > 0 is sufficiently small. We shall show that τ � t with high probability as t → ∞.

First we observe that if 0 ∈ At then we must have 0 ∈ [D(t) ∩ A], provided the constant

λ in the definition of D(t) is sufficiently large. Therefore, by Lemma 4.5, either 0 ∈ A or

0 ∈ D, where D ⊂ D(t) is a covered droplet. Since the probability of the former event is

p = o(1), we need only bound the probability of the latter.

We split into two cases according to the size and position of D. Suppose first that

D ⊂ D(log t). Then the probability that D is covered is o(1) by Lemma 4.10. On the other

hand, if D ⊂ D(t) but D �⊂ D(log t), then by Lemma 4.8 there exists a covered droplet

D′ ⊂ D such that log t � diam(D′) � 3 log t. But the probability of this event is also o(1),

by Lemma 4.9, and this completes the proof of the theorem.

5. Upper bounds: the growth of droplets

The aim of this section is to develop a deterministic framework for growth in U -bootstrap

percolation. In the subsequent two sections, we shall use this framework to bound from

below the growth that occurs under the action of a critical (in Section 6) or supercritical

(in Section 7) update family. Our aim in constructing this framework can be divided into

three sub-aims. The first is to establish a means by which an entire half-plane Hu can

grow by a single row; this we do by introducing the notion of ‘u-blocks’ in Section 5.1.

The second is to transfer from growth of half-planes by a single row to growth of droplets

by a single row; this we do by introducing the notion of ‘quasi-stability’ in Section 5.2.

The third and final sub-aim is to define sequences of nested droplets and give sufficient

conditions for growth to occur between successive droplets; this we do in Section 5.3.

5.1. The infection of new lines

Our first task, then, is to show that there exists a finite set Z ⊂ Z
2 such that �u ⊂ [Hu ∪ Z],

provided u ∈ S1 satisfies certain natural conditions. We shall in fact show that one can

take Z ⊂ �u.

Given a stable direction u, we define �lu to be the set of sites in �u that lie to the left of

the origin as one looks in the direction of u, and �ru to be the set of sites in �u that lie to

the right of the origin as one looks in the direction of u.

Definition 5.1. Let u ∈ S1. A finite set Z ⊂ Z
2 is a u-left-block (respectively, a u-right-

block ) if there exists x ∈ Z
2 such that x+ Z is a subset of �u and consists of consecutive

sites in �u, and if �lu ⊂
[
Hu ∪ (x+ Z)

]
(respectively, �ru ⊂

[
Hu ∪ (x+ Z)

]
). It is a u-block

if it is both a u-left-block and a u-right-block.
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These special breakthrough blocks are so-called because we think of them as being the

means of growing left or right along the edge of a half-plane or along a side of a droplet.

Note that the empty set is a u-block (and also a u-left-block and a u-right-block) if and

only if u is unstable.

A stable direction u(θ) is said to be left-isolated if there exists δ > 0 such that for all

φ ∈ (θ, θ + δ), the direction u(φ) is unstable. Similarly, u(θ) is said to be right-isolated if

there exists δ > 0 such that for all φ ∈ (θ − δ, θ), the direction u(φ) is unstable. We say

that u is isolated if it is both left-isolated and right-isolated.

The following lemma should be thought of as saying that there exist u-blocks for every

u ∈ S that will be relevant to us.

Lemma 5.2. There exists a u-left-block for every left-isolated stable direction u, a u-right-

block for every right-isolated stable direction u, and a u-block for every isolated stable

direction u.

Proof. Let u = u(θ) be a left-isolated stable direction. Then there exists an update rule X

and δ > 0 such that u(φ) is destabilized by X for every φ in the open interval I = (θ, θ + δ).

Thus

X ⊂
⋂
φ∈I

Hu(φ) ⊂ Hu ∪ �lu,

so X ∩ (Hu)
c is a u-left-block. If u is right-isolated then a u-right-block exists by symmetry.

If u is isolated, then it is left- and right-isolated, so the result follows.

5.2. Quasi-stability

Our second task of this section is to transfer the results of the previous subsection from

half-planes to droplets: that is, to establish conditions under which a u-block can be used

to extend a droplet by a single row along its u-side. The important property that we need

is that the infection grows all the way to the corners, not just to within a constant distance.

In order to illustrate why this is not straightforward, let us give an example. Suppose X1

and X2 are two update rules such that Θ(Xi) = (φi, ψi) for i = 1, 2, and φ2 < φ1 < ψ2 < ψ1

(see Figure 3). Thus, there are no stable directions between u(φ2) and u(ψ1). Suppose

(although it is not necessary) that in fact u(φ2) and u(ψ1) are stable directions, so S-

droplets have consecutive sides with outward normals in the directions of u(φ2) and u(ψ1).

Now suppose we are growing leftwards along the u(φ2)-side, and we are nearly at the

corner of the droplet. How are we going to reach the corner? X1 does not fit inside the

droplet near the corner because φ1 > φ2, so it partly lies outside the u(φ2)-side. X2 does

not fit inside the droplet near the corner either, because ψ2 < ψ1, so it partly lies outside

the u(ψ1)-side (again, see Figure 3). So there is no rule that enables us to reach the corner,

and we are stuck. Our solution is to ‘pretend’ that u(φ1) and u(ψ2) are stable directions

(we call them ‘quasi-stable directions’). More precisely, we ensure that the set T ⊂ S1 with

respect to which our droplets are defined includes the directions u(φ1) and u(ψ2). If we do

this, and ‘grow’ the u(φ1)- and u(ψ2)-sides of our T -droplets just as the sides with respect

to stable directions, then we find that we are indeed able to grow to the corners.
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u(ψ1)

u(φ1) u(ψ2)

u(φ2)

0 0

X1 X2

u(ψ1)
u(φ2)

u(ψ2) u(φ1)

D

x

y

z

Figure 3. An illustration of the need for quasi-stable directions. The top part of the figure shows two rules, X1

and X2, that destabilize overlapping intervals in S1. Each of the rules consists of just two sites. In the bottom

part of the figure, the two long solid lines show one corner of an S-droplet D. Neither X1 nor X2 can be used

to grow to the corner. The two dashed lines show how the droplet might look if u(φ1) and u(ψ2) were added to

the stable set. Now X1 can be used to grow towards x and y from both directions, and X2 can be used to grow

towards z (and y) from both directions.

Lemma 5.3. Let U be an arbitrary update family. Then there exists a finite set Q ⊂ S1

such that if u and v are consecutive elements of S ∪ Q then there exists a rule X ∈ U such

that

X ⊂
(
Hu ∪ �u

)
∩

(
Hv ∪ �v

)
. (5.1)

Proof. As suggested above, our construction is to add to S every unit vector u

perpendicular to x, for every site x ∈ X and every update rule X ∈ U . Thus, we define

Q :=
⋃
X∈U

⋃
x∈X

{u ∈ S1 : 〈x, u〉 = 0}. (5.2)

Now let u and v be consecutive elements of S ∪ Q, and suppose that (5.1) does not hold.

This means that for every X ∈ U we have

X �⊂
(
Hu ∪ �u

)
∩

(
Hv ∪ �v

)
. (5.3)

Choose an arbitrary unit vector w ∈ S1 such that θ(u) < θ(w) < θ(v). Since w is unstable,

there exists an update rule X such that X ⊂ Hw . Now, X satisfies (5.3), so without loss

of generality there exists x ∈ X such that x ∈ Hu and x /∈ (Hv ∪ �v). But this implies that

there is a unit vector w′ such that 〈x, w′〉 = 0 and θ(u) < θ(w′) < θ(v), contradicting the

construction of Q.
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w

u

v

�u

�v

(Hu ∪ �u) ∩ (Hv ∪ �v)

x

w′

0

Figure 4. Lemma 5.3.

Henceforth we fix a set Q satisfying the conclusion of Lemma 5.3 (for example, the

set defined in (5.2)), and we call this set the quasi-stable set and its elements quasi-stable

directions. The next lemma is a little technical to state, but it should be thought of as

saying that, provided we use the quasi-stable directions, for certain directions v, a T -

droplet can grow by a single row in the direction of v (all the way to the corners) with

the help of a v-block.

Lemma 5.4. Let T ⊂ S1 be finite and let

D :=
⋂
u∈T

(
Hu + au

)

be a T -droplet for some set {au ∈ Z
2 : u ∈ T } such that every side of D is sufficiently long.

Suppose w1, v and w2 are elements of T and are consecutive in T ∪ S ∪ Q. Let

D′ := {x ∈ Z
2 : 〈x− av, v〉 � 0} ∩

⋂
u∈T \{v}

(
Hu + au

)

be the T -droplet formed from D by the addition of a single new row along its v-side. Finally,

suppose Z is a u-block such that Z is contained in the line segment D′ \ D and is at least a

sufficiently large constant distance from either end of the line segment. Then

D′ ⊂ [D ∪ Z].

Proof. By the definition of a u-block, the set [D ∪ Z] contains all of D′ except for possibly

at most a constant number of sites at either end of the line segment D′ \ D. Suppose the

conclusion of the lemma is false, so D′ �⊂ [D ∪ Z]. Without loss of generality, there is a

site z ∈ (D′ \ D) \ [D ∪ Z] to the left of Z (as one looks in the direction of v), and we may

assume that z is in fact the first such site to the left of Z . Since z ∈ D′ \ D, we have

〈z − av, v〉 = 0 and 〈z − aw2
, w2〉 < 0.
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The directions v and w2 are consecutive in T ∪ S ∪ Q, so by Lemma 5.3 there exists X ∈ U
such that

X ⊂
(
Hv ∪ �v

)
∩

(
Hw2

∪ �w2

)
.

Hence,

〈x, v〉 � 0 and 〈x, w2〉 � 0 (5.4)

for all x ∈ X. From these it follows that if y ∈ z +X, then

〈y − av, v〉 � 0 and 〈y − aw2
, w2〉 < 0,

and so y ∈ D′ \ D. Moreover, y does not lie to the left of z on the line D′ \ D, since if it

did then we would have

〈z + x, w2〉 > 〈z, w2〉,

where x = y − z ∈ X, which would imply that 〈x, w2〉 > 0, contradicting (5.4). But we have

proved that z +X ⊂ [D ∪ Z]. Therefore, z ∈ [D ∪ Z], which contradicts our assumption

that z /∈ [D ∪ Z].

5.3. Growth of quasi-droplets

Our final task of this section is to construct a sequence of T -droplets (for some T ⊂ S1)

that we can use as a framework for growth in the proof of the upper bound of Theorem 1.4

and in the proof of Theorem 1.5.

In this subsection we shall assume that U is either supercritical or critical. We fix an

open semicircle C as follows:

• if U is supercritical then we choose C such that S ∩ C = ∅;

• if U is critical then instead we choose C such that S ∩ C does not contain any strongly

stable directions.

In either case, the existence of such a semicircle follows from the definition of supercritical

or critical. Let the left and right endpoints of C be ul and ur respectively, let the midpoint

of C be u+, and define

SU :=
(
(S ∪ Q) ∩ C

)
∪ {ul , ur,−u+} and S ′

U :=
(
(S ∪ Q) ∩ C

)
, (5.5)

where Q is a set of quasi-stable directions given by Lemma 5.3. In this subsection, as well

as in Sections 6 and 7, all droplets will be SU-droplets.

In our construction, the growth of SU-droplets will take place predominantly in the u+

direction, so it will be convenient to rotate the coordinate axes so that (x, y) := xu+ + yul

for x, y ∈ R.

Let R
(
(a, b), (c, d)

)
be the discrete rectangle with opposite corners at (a, b) and (c, d), so

that

R
(
(a, b), (c, d)

)
:= {(x, y) ∈ Z

2 : x, y ∈ R, a � x � c, b � y � d}.

Choose λ > 0 sufficiently large and choose μ > 0 sufficiently large with respect to λ. (In

the applications, λ will always be a constant, but in certain cases μ will be a function of
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R S

ur

ul

u+

Dm \ Dm−1

Dm−1 \ Dm−2

Figure 5. The rectangle R, the set S , and the SU -droplets (Dm)m�0.

p, tending to infinity as p → 0.) Let

R := R
(
(0, 0), (λ, μ)

)
and S :=

⋃
x�0

R
(
(0, 0), (x, μ)

)
. (5.6)

Next we define the sequence of SU-droplets. For each integer m � 0, let

Dm := S ∩
⋂
u∈S ′

U

Hu(au + mduu), (5.7)

where the sets {au ∈ Z
2 : u ∈ S ′

U} and {du > 0 : u ∈ S ′
U} are chosen subject to the following

constraints:

(i) D0 ⊂ R;

(ii) for every consecutive pair of directions u, v ∈ S ′
U there exists a line Llu = Lrv that is

parallel to u+ and intersects S , and is such that, for every m ∈ Z, the intersection4 of

�u + au + mduu and �v + av + mdvv lies on Llu = Lrv;

(iii) for every u ∈ S ′
U and m � 0, the u-side of Dm has cardinality Ω(μ).

Note that these constraints do not uniquely specify the Dm, but that they are satisfied

by at least one choice of the parameters {au : u ∈ S ′
U} and {du : u ∈ S ′

U}. Any choice of

parameters satisfying the constraints will be sufficient for what follows. The droplets are

illustrated in Figure 5.

Now that we have constructed the sequence of droplets, we require one final set of

definitions. We shall use these to give sufficient conditions for growth to occur from Dm−1

4 These lines are discrete and therefore may have empty intersection (despite not being parallel). In this case

we mean the intersection of the corresponding continuous lines.
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to Dm, for each m. For each u ∈ S ′
U and m ∈ N, define

I(u, m) := {i ∈ Z : �u(i) ∩ Dm−1 = ∅ and �u(i) ∩ Dm �= ∅}.

Given u ∈ S ′
U and i ∈ Z, a u-block Z is said to be a (u, i)-block if Z ⊂ �u(i). A u-block Z

is a suitable (u, i)-block if it is a (u, i)-block that lies entirely between Lru and Llu, and at

least distance λ from both, where λ > 0 is sufficiently large.

The following is the main result of this subsection, and it is our main deterministic

result about the growth of quasi-droplets. We shall use it in the next section to prove the

upper bound of Theorem 1.4 for critical families, and in Section 7 to prove Theorem 1.5

for supercritical families.

Lemma 5.5. Let m ∈ N be such that Dm \ R �= ∅, and for each u ∈ S ′
U and each i ∈ I(u, m),

let Z(u, i) be a suitable (u, i)-block. Then

Dm ⊂
[
R ∪ Dm−1 ∪

⋃
u∈S ′

U

⋃
i∈I(u,m)

Z(u, i)

]
.

Proof. For each u ∈ S ′
U and v, w ∈ SU such that v, u, w are consecutive in SU , define

ρ(u, i) := �u(i) ∩ Hv

(
av + (m− 1)dvv

)
∩ Hw

(
aw + (m− 1)dww

)
,

where we set dul = dur = 0. Also, for each u ∈ S ′
U , let i(u) := min I(u, m). Thus ρ(u, i(u)) is

the set of elements of the first line parallel to �u that lies outside of Dm−1, restricted to

the line segment between the v- and w-sides of Dm−1 when those sides are extended. The

situation is illustrated in Figure 6.

We claim that the inclusion

ρ
(
u, i(u)

)
⊂

[
R ∪ Dm−1 ∪ Z

(
u, i(u)

)]
(5.8)

follows from Lemma 5.4. Indeed, setting the set of directions T , the T -droplet D, the

direction v, and the set Z in the statement of Lemma 5.4 equal to SU , Dm−1, u, and

Z
(
u, i(u)

)
, respectively, it follows that the set ρ

(
u, i(u)

)
we have just defined is equal to the

set D′ \ D in Lemma 5.4, and that (5.8) holds.

By induction, after iterating the previous step |I(u, m)| times, we have

⋃
i∈I(u,m)

ρ(u, i) ⊂
[
R ∪ Dm−1 ∪

⋃
i∈I(u,m)

Z(u, i)

]
.

Since u ∈ S ′
U was arbitrary, it follows that

⋃
u∈S ′

U

⋃
i∈I(u,m)

ρ(u, i) ⊂
[
R ∪ Dm−1 ∪

⋃
u∈S ′

U

⋃
i∈I(u,m)

Z(u, i)

]
.

This only leaves the remaining parallelograms of sites at the corners of droplet, as shown in

Figure 6. Suppose u and v are consecutive directions in S ′
U , and let P be the parallelogram

at the corner between the u- and v-sides of Dm−1 and Dm, also as in Figure 6. Let X ∈ U
be a rule such that the assertion of Lemma 5.3 holds with directions u and v. Choose an
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u

Lr
u

Ll
u

Dm−1

Dm \ Dm−1

ρ u, i(u)
M̂

ρ u, i(u) + 1
M̂

P

v

Figure 6. An illustration of the growth mechanism in Lemma 5.5.

arbitrary unit vector w ∈ S1 such that θ(u) < θ(w) < θ(v), and order the elements x of P

in increasing order of 〈x, w〉 (with ties resolved arbitrarily). Then X can be used to infect

the elements of P one-by-one in this order, as required.

6. The upper bound for critical families

In this section we shall use Lemma 5.5 to prove the upper bound of Theorem 1.4 for

critical update families. Throughout we assume that U is critical, that C is the open

semicircle specified at the start of Section 5.3, and that SU and S ′
U are as defined in (5.5).

Thus, S ∩ C consists only of isolated stable directions, and therefore there exists a u-block

for every u ∈ S ′
U . For each u ∈ S ′

U , let α2(u) be the minimum cardinality of a u-block. Let

α2 := max{α2(u) : u ∈ S ′
U}. (6.1)

We shall prove the upper bound of Theorem 1.4 in the following form. Recall once

again that τ = min{t : 0 ∈ At}.

Theorem 6.1. Let U be a critical update family, let ε > 0, and let

p �
(

1

log t

)1/(α2+ε)

.

Then τ � t with high probability as t → ∞.
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Remark 6.2. The bound on p in Theorem 6.1 could be replaced by

p � λ(log log t)2

(log t)1/α2
,

for a sufficiently large constant λ. However, since the bounds are likely to be far from

optimal anyway, we prefer to prove the theorem with the weaker bound for reasons of

simplicity.

Remark 6.3. For many natural update families, such as the family for the 2-neighbour

model, there exists an arc C ⊂ S1 of length strictly greater than π (that is, an interval

strictly larger than a semicircle) in which there are no strongly stable directions. For such

families, provided the definitions of S ′
U and α2 are changed appropriately to take account

of the new set C , it is possible to modify our arguments to show that Theorem 6.1 holds

with the bound on p replaced by

p �
(

λ

log t

)1/α2

,

for a sufficiently large constant λ. In certain cases this would result in matching (up to

a constant factor) bounds in Theorems 4.1 and 6.1 (recovering, for example, the result

of [1]). The necessary modifications to the arguments would be akin to the difference

between the (asymptotically one-dimensional) growth in the upper bound of van Enter

and Hulshof [21] and the (two-dimensional) growth in the upper bound of Aizenman and

Lebowitz [1]. We remark that in an earlier version of this paper (version 2 on the arXiv),

these stronger bounds for Theorem 6.1 were proved explicitly.

We now begin the build-up to the proof of Theorem 6.1. First we shall set out the

definitions of the various quantities and shapes that we need in order to apply the

framework of the previous section to the setting of critical update families. After we have

done that, we shall explain how the growth mechanism will work.

Recall that ul is the left endpoint of C . Observe that ul is right-isolated, and therefore

there exists a ul-right-block, by Lemma 5.2. Define β to be the minimum cardinality of a

ul-right-block, and define also the following quantities:

μ1(p) = p−α2−ε, ν1(p) = p−λ,

and μ2(p) = p−λ+2β, ν2(p) = exp(p−λ/3),

where ε > 0 is arbitrary, and λ > 0 is sufficiently large. Observe that we have the

inequalities

μ1(p) � μ2(p) � ν1(p) � ν2(p).

Recall that we have rotated the coordinate axes so that (x, y) = xu+ + yul . Let R(1) and

R(2) be the following rectangles:

R(1) := R((0, 0), (λ, μ1(p))) and R(2) := R((ν1(p), 0), (ν1(p) + λ, μ1(p) + μ2(p))).
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D(1)D(1)

D(2)

T

R(1) R(2)

D(1)
m

D
(1)
m−1

Figure 7. The various subsets of Z2 involved in the growth mechanism, including

the rectangles R(1) and R(2), the SU -droplets D(1) and D(2), and the triangle T .

We shall use the construction for the droplets (Dm)m∈Z from the previous section twice:

once with R = R(1) and once with R = R(2). Thus, for each i ∈ {1, 2} and each integer

m � 0, let D(i)
m := Dm, where (Dm)m�0 is the sequence of droplets defined in (5.7) obtained

if we set μ = μi(p), and, in the case i = 2, if we translate appropriately so that R = R(2)

(see Figure 7). Furthermore, let

D(1) := D
(1)
λ·ν1(p) and D(2) := D

(2)
ν2(p)

.

The final subset of Z
2 that we need to give a name to is the triangle

T := {(x, y) ∈ Z
2 : x, y ∈ R, 0 � x � ν1(p) and 0 � y − μ1(p) � �p2βx�}.

We shall use this triangle to grow in the direction of ul .

The growth mechanism that we shall use to prove Theorem 6.1 is the following.

(i) First, we show that there is an internally filled copy of R(1) such that the corresponding

copy of D(2) contains the origin.

(ii) Second, given an internally filled copy of R(1), we use Lemma 5.5 to show that the

infection spreads in the direction of u+ to fill D(1).

(iii) Next, we show that the infection spreads upwards through T (that is, in the direction

of ul) to fill T and R(2). Since ul may be at the end-point of an interval in S , we

cannot assume that there exist ul-blocks, merely that there exist ul-right-blocks. Thus,

it could be that, as the infection spreads through T row-by-row in the direction of ul ,

one always has to look for a ul-right-block to the right of the ul-right-block found in

the previous row.

(iv) Finally, as in step (ii), we use Lemma 5.5 to show that the infection spreads rightwards

from R(2) to fill D(2), and hence infect the origin.

In Lemma 6.4 we show that the events described in (ii) and (iv) each occur with high

probability, and in Lemma 6.5 we show that the event described in (iii) occurs with high

probability. Thus, the only unlikely event is that we find the internally filled copy of R(1)

suitably close to the origin. It is therefore reasonable to think of R(1) as being a ‘critical

droplet’.
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Lemma 6.4. For each i ∈ {1, 2}, the event

{D(i) ⊂
[
R(i) ∪

(
D(i) ∩ A

)]
} (6.2)

occurs with high probability as p → 0.

Proof. Fix i ∈ {1, 2}. Then for every m � 0 such that D(i)
m �= ∅, we have

Pp

(
D(i)
m ⊂

[
R(i) ∪ D(i)

m−1 ∪
(
D(i)
m ∩ A

)])
�

(
1 − (1 − pα2 )Ω(μi(p))

)O(1)
,

by Lemma 5.5. (The quantity Ω(μi(p)) in the exponent comes from partitioning the u-side

of D(i)
m into segments of length α2, for each u ∈ S ′

U , and then using condition (iii) of the

definition of Dm immediately after (5.7).) Hence,

Pp

(
D(i) ⊂

[
R(i) ∪

(
D(i) ∩ A

)])
�

(
1 − (1 − pα2 )Ω(μi(p))

)O(νi(p))

� exp
(
−O

(
νi(p)

)
exp

(
−Ω(pα2μi(p))

))
. (6.3)

Now, if i = 1 then (6.3) is equal to

exp
(
−O

(
p−λ) exp

(
−Ω(p−ε)

))
= 1 − o(1),

since μ1(p) = p−α2−ε and ν1(p) = p−λ. On the other hand, if i = 2 then (6.3) is equal to

exp
(
−O

(
exp(p−λ/3)

)
exp

(
−Ω(p−λ/2)

))
= 1 − o(1),

since μ2(p) = p−λ+2β and ν2(p) = exp
(
p−λ/3). In either case, (6.2) holds with high probab-

ility as p → 0.

Lemma 6.5. The event

{R(2) ⊂
[
D(1) ∪ (T ∩ A)

]
}

occurs with high probability as p → 0.

Proof. For each i ∈ Z, let Ui be the leftmost p−2β sites of �ul (i) ∩ T , and let I be the set

of i ∈ Z for which Ui is non-empty. For each i ∈ I , let Zi ⊂ Ui be a set of β consecutive

sites contained in the middle p−2β/2 sites of Ui.

We claim that

R(2) ⊂
[
D(1) ∪

⋃
i∈I
Z(i)

]
. (6.4)

To see this, first let i0 := min I , and observe that [D(1) ∪ Z(i0)] contains all sites of �ul (i0)

to the right of Z(i0), at least until within O(1) distance from the right-hand end of the

ul-side of D(1), since Z(i0) is a ul-right-block. Losing O(1) sites along each line in this way,

we observe that (6.4) easily holds, because the number of horizontal rows (that is, lines

parallel to �ul ) intersecting T is at most O(p−λ+2β), and this is much less than Ω(p−λ),

which is a lower bound for the number of vertical columns of sites (that is, lines parallel to

�u+) intersecting D(1) to the right of R(2). (For an illustration of the situation, see Figure 7,

and in particular the dashed line emerging from the right-hand end of the ul-side of D(1),

which need not be parallel to any of the sides of D(1).)
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Hence, to prove the lemma, it is sufficient to show that, with high probability, the middle

p−2β/2 sites of Ui contain a set of β consecutive sites, all contained in A, for every i ∈ I .

The probability that this fails is at most

p−λ+2β · (1 − pβ)Ω(p−2β ) � p−λ+2β · exp
(
−Ω(p−β)

)
= o(1)

as p → 0, as required.

We are now ready to complete the proof of Theorem 6.1.

Proof of Theorem 6.1. Let

p =

(
1

log t

)1/(α2+ε)

.

We shall show that τ � t with high probability as t → ∞.

It will be convenient to ‘sprinkle’ the probability in two rounds, in order to maintain

independence. Formally, let A′ and A′′ be two independent p-random subsets of Z
2, and

let A := A′ ∪ A′′. Thus, sites in A are infected with probability 2p− p2, rather than p; this

is valid (if an abuse of notation) because ε was chosen arbitrarily. We shall use the first

round to find a suitably positioned internally filled copy of R(1), and the second round to

show that this copy of R(1) grows to infect the origin by time t.

There are at least Ω
(
ν2(p)

)
sites x ∈ Z

2 such that the sets x+ R(1) are disjoint and

0 ∈ x+ D(2). The probability that for no such x do we have x+ R(1) ⊂ A′ is at most(
1 − pO(μ1(p))

)Ω(ν2(p)) � exp
(
−Ω

(
exp(−p−α2−ε) exp(p−λ/3)

))
= o(1),

since μ1(p) = p−α2−ε and ν2(p) = exp(p−λ/3).

So with high probability there exists an x such that 0 ∈ x+ D(2) and x+ R(1) ⊂ A′. Fix

one such x, and for notational simplicity let us translate our notation by −x so that

0 ∈ D(2) and R(1) ⊂ A′. By Lemmas 6.4 and 6.5, the event

{D(2) ⊂
[
R(1) ∪

(
(D(1) ∪ T ∪ D(2)) ∩ A′′)]}

occurs with high probability.

It only remains to show that 0 is infected by time t. But

|D(1) ∪ T ∪ D(2)| � p−O(1) exp
(
p−λ/3) < √

t,

so even if the sites are infected one-by-one, we still have 0 ∈ At, which completes the

proof of the theorem.

7. Supercritical families

Recall that supercritical families are those for which there exists an open semicircle in S1

with which the stable set has empty intersection. Our aim in this short section of the paper

is to prove Theorem 1.5. Combined with Theorem 1.4, this provides a justification for the

distinction made between supercritical and critical update families in Definition 1.3. Using

the same methods as those in the proof of Theorem 1.5, we also establish a deterministic
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result, Theorem 7.1, which says that an update family is supercritical if and only if there

exist finite subsets of Z
2 with infinite closure.

Almost all of the work that goes into the proof of Theorem 1.5 has already been

completed in Section 5. The only further observation required is that if C is an open

semicircle such that S ∩ C = ∅, then the empty-set is a u-block for every u ∈ C . Thus,

a sufficient condition for 0 ∈ At is that a sufficiently large constant-sized rectangle of

initially infected sites is ‘suitably located’ within distance t of the origin. (The only

important detail about rectangles being ‘suitably located’ is that there are at least tΩ(1)

disjoint such rectangles – in fact, there are at least Ω(t).)

Proof of Theorem 1.5. Let U be supercritical and let p satisfy p � t−ε, for some

sufficiently small ε > 0. We shall show that τ � t with high probability as t → ∞.

Let Q be a set of quasi-stable directions given by Lemma 5.3, let C ⊂ S1 be the

semicircle specified at the start of Section 5.3, and let SU and S ′
U be as specified in

(5.5). If u ∈ S ′
U , then we have u ∈ Q \ S , because S ∩ C = ∅. Therefore u is a quasi-stable

direction, but not a stable direction, and so the empty set is a u-block.

Now let R and S be the sets defined in (5.6), with μ > λ > 0 being sufficiently large

constants, and let the SU-droplets D1, D2, . . . be as defined subsequently in (5.7). Then

Dm ⊂ [R] (7.1)

for every m ∈ N, by Lemma 5.5 and the observation we have just made that the empty

set is a u-block for every u ∈ S ′
U .

Let δ > 0 be a sufficiently small constant. There are at least Ω(t) sites x ∈ Z
2 such that

‖x‖ � δt, the rectangles x+ R are disjoint, and 0 ∈ x+ S . The probability that we do not

have x+ R ⊂ A for any such x is at most

(1 − pO(1))Ω(t) � exp
(
−pO(1)Ω(p−1/ε)

)
→ 0

as t → ∞, since ε is sufficiently small. So with high probability there exists x ∈ Z
2 such

that ‖x‖ � δt, 0 ∈ x+ S and x+ R ⊂ A. Suppose x has this property. Then x+ Dm ⊂[
(x+ Dm) ∩ A

]
for every m ∈ N, by (7.1). Now take m minimal such that 0 ∈ x+ Dm. Then

τ � |Dm|, even if sites in Dm are infected one-by-one, and also |Dm| < t, because δ was

chosen sufficiently small. Thus τ � t, and this completes the proof.

The next result, which is another easy consequence of Lemma 5.5 (or more specifically,

of (7.1)), is an equivalence between supercriticality and the existence of finite sets with

infinite closures.

Theorem 7.1. A two-dimensional bootstrap percolation update family U is supercritical if

and only if there exists a finite set K ⊂ Z
2 such that [K] is infinite.

Proof. One implication follows from (7.1). The other is a triviality: if U is not super-

critical, then every open semicircle intersects the stable set. Therefore there exist stable

directions u1, u2 and u3 such that the interior of their convex hull contains the origin,
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and hence {u1, u2, u3}-droplets are finite. Thus, if K ⊂ Z
2 is an arbitrary finite set, then

[K] ⊂ D, where D is the minimal {u1, u2, u3}-droplet containing K .

Stronger statements than Theorem 7.1 are available for update families with zero or

one stable direction(s). The proofs of these statements, which are omitted (but which may

be found in version 2 of this paper on the arXiv), are further easy applications of the

quasi-stability method.

Theorem 7.2. Let U be a two-dimensional bootstrap percolation update family.

(i) There exists a finite set K ⊂ Z
2 such that [K] = Z

2 if and only if S = ∅.

(ii) Let u ∈ S1 be a unit vector. Then there exists a finite set K ⊂ Z
2 such that Hu ⊂ [K]

if and only if S \ {u} = ∅.

8. Open problems and conjectures

In this paper we have introduced a new, unified model of bootstrap percolation on the

square lattice. Owing to the novelty of this general model, we quite naturally end the

paper with a number of open problems, of which there are three broad types.

Subcritical families in two dimensions. At present we are not able to prove any results

about subcritical families. In particular, we cannot prove that the distinction we have

made between critical and subcritical families is the right one, although we conjecture

that it is in the following strong sense.5

Conjecture 8.1. Let U be a two-dimensional subcritical bootstrap percolation update family.

Then there exists p > 0 such that

Pp

(
[A] = Z

2
)

= 0.

This conjecture lies in sharp contrast to Corollary 1.6, which says that if U is not

subcritical then for every p > 0 we have Pp

(
[A] = Z

2
)

= 1. (Note that we always have

Pp

(
[A] = Z

2
)

∈ {0, 1} owing to a standard 0–1 law.)

Sharper results for critical families in two dimensions. As discussed in Remark 6.3, for

certain update families our methods could be used with very minor modifications to

obtain matching (up to a constant factor) bounds in Theorems 4.1 and 6.1, and thus to

determine pc(Z
2
n,U ) up to a constant factor. However, for many other update families our

methods (as they stand) do not give matching upper and lower bounds, and so for those

families the order of magnitude of pc(Z
2
n,U ) remains an open question. Moreover, it is

known [16, 21] that the order of magnitude of pc(Z
2
n,U ) is not always a negative power

of log n. It is likely to be a challenging problem to determine pc(Z
2
n,U ) up to a constant

factor in general.

5 As noted earlier, since the submission of this paper, Balister, Bollobás, Przykucki and Smith [2] have proved

this conjecture.
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Higher dimensions. It is natural to ask what can be said about the large-scale behaviour

of U -bootstrap percolation in dimensions d � 3. The first step towards answering this

question is likely to be to give a classification of the models along the lines of Definition 1.3.

This will not be a straightforward generalization of the two-dimensional definition, for

the following reason. When d = 3, the critical probability of the 2-neighbour model is

Θ(log n)−2 [1, 5], while the critical probability of the 3-neighbour model is Θ(log log n)−1

[9, 5]. By contrast, in two dimensions we have seen that the critical probabilities of all

critical models are of the form (log n)−Θ(1), while the critical probabilities of non-critical

models have either been proved (in the case of supercritical) or conjectured (in the case of

subcritical) to be non-logarithmic. Thus, in three dimensions, the classification of critical

U -bootstrap models ought to divide further: at least into those for which the critical

probability is (log n)−Θ(1) and those for which it is (log log n)−Θ(1). However, this is of

course only the start of the story: once that has been done, the question becomes to

determine the critical probability up to a constant factor for all ‘critical’ models in all

dimensions. We anticipate that this will be a significant area of future research.
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