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A major obstacle in designing a perfect cloak for objects in shallow-water waves is
that the linear transformation media scheme (also known as transformation optics)
requires spatial variations of two independent medium properties. In the Maxwell’s
equation and for the well-studied problem of electromagnetic cloaking, these two
properties are permittivity and permeability. Designing an anisotropic material with
both variable permittivity and variable permeability, while challenging, is achievable.
On the other hand, for long gravity waves, whose governing equation maps one-to-one
to the single polarization Maxwell’s equations, the two required spatially variable
properties are the water depth and the gravitational acceleration; in this case changing
the gravitational acceleration is simply impossible. Here we present a nonlinear
transformation that only requires the change in one of the medium properties,
which, in the case of shallow-water waves, is the water depth, while keeping the
gravitational acceleration constant. This transformation keeps the governing equation
perfectly intact and, if the cloak is large enough, asymptotically satisfies the necessary
boundary conditions. We show that with this nonlinear transformation an object can be
cloaked from any wave that merely satisfies the long-wave assumption. The presented
transformation can be applied as well for the design of non-magnetic optical cloaks
for electromagnetic waves.

Key words: surface gravity waves, topographic effects, wave scattering

1. Introduction
The method of transformation media offers an unprecedented way of steering

a variety of waves through designing the propagation medium. The scheme was
first proposed by Leonhardt (2006) and Pendry, Schurig & Smith (2006) for
electromagnetic waves, but since then has been implemented also for other types
of waves, such as acoustic waves (Chen & Chan 2007; Cummer & Schurig 2007;
Zhang, Xia & Fang 2011; Huang, Zhong & Liu 2014), seismic waves (Brûlé
et al. 2014), elastodynamic waves (Farhat et al. 2009), matter waves (Zhang
et al. 2008) and water waves (Chen et al. 2009; Berraquero et al. 2013). The
method of transformation media establishes that, in any wave system described by a
form-invariant governing equation, the trajectory of wave rays can be produced along
any desirable path by changing the properties of the propagation medium. Depending
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on the complexity of the desired trajectory, the required change in the properties of
the propagation medium may be quite involved. In fact, material properties found
using the transformation media method are usually anisotropic and heterogeneous in
space (Pendry et al. 2006), and as a result may need to be artificially engineered
(such a medium is sometimes called ‘metamaterial’ (Schurig et al. 2006)).

The design procedure based on the method of transformation media first considers
a plain original space So, with constant medium properties, in which wave rays
propagate along straight lines. Then a spatial coordinate transformation is found that
transforms these trajectories (i.e. straight wave rays in So) to the desired (potentially
curved and complex) trajectories which are expected in the physical space Sp. Note
that, while the transformed governing equation guarantees that the wave rays travel
along those desired paths, the equation itself does not merit any physical wave system.
Nevertheless, since the governing equation of the wave system is form-invariant, the
transformed equation must have the same form as the one in the original space, but
with (potentially) different coefficients. Noting that the coefficients of the governing
equation in the original space So are medium properties, it can be shown that the
new coefficients in the transformed equation may be absorbed into these medium
properties. Therefore, the transformed governing equation can be viewed as the
governing equation in physical space describing wave propagation in a medium whose
properties are different from those in the original space. Basically, the transformation
is absorbed in the medium properties. Waves propagating in such a medium travel
along those specific desired trajectories.

The most salient application of the method of transformation media is the design
of invisibility cloaks. A cloak is a two- or three-dimensional patch that encloses
the object which is to be made invisible. A perfect cloak must not reflect nor
scatter any part of the incident wave, and must perfectly reconstruct the incident
wave downstream of the object in such a way that waves outside the cloak bear
no information of the presence of the cloaking patch nor the encased object. A
cloak is also required to be omnidirectional, that is, to cloak itself and the enclosed
object from incident waves independent of their direction of incidence (therefore, two
periscopes installed back to back are not considered to form a cloak).

Since Maxwell’s equations are form-invariant, a cloak of invisibility for objects
from electromagnetic waves can, in theory, be designed using the transformation
media method. Such a cloak requires spatial variability of those material properties
that appear in the Maxwell’s equations, i.e. permittivity and permeability (Leonhardt
2006; Pendry et al. 2006). The governing equations for linear shallow-water waves
have the same form as the single polarization Maxwell’s equation. In fact, there is
a one-to-one mapping between the two equations and boundary conditions at the
interface of two media. Therefore, in analogy to the electromagnetic waves, the idea
of transformation media can be implemented for shallow-water waves. The issue,
however, is that for shallow-water waves the two properties that need to be spatially
variable are the water depth and the gravitational acceleration. The latter clearly
cannot be altered.

Here, we introduce a nonlinear transformation via which the required spatial
variability of the gravitational acceleration is transformed to the water depth variations.
Through this nonlinear transformation, an (asymptotically) perfect and physically
realizable cloak of invisibility is designed. The proposed scheme rigorously satisfies
the required conditions on the governing equation, and we show that, if the cloak is
large enough, the desired boundary conditions are also obtained. We elaborate details
of the method of transformation media and design procedure in general, and the
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Cloaking in shallow-water waves 275

design of an invisibility cloak for shallow-water waves in particular. The designed
cloak works for all frequency waves that satisfy the shallow-water wave assumption.
We also present direct simulation of the cloak using the finite element method.

We would like to comment that cloaking of surface gravity waves has also been
investigated via alternative methodologies. Farhat et al. (2008) use concentric arrays
of surface-piercing cylinders to cloak an area from surface gravity–capillary waves.
Through homogenization theory, they show that the effect of the surrounding cylinders
appears as two different shear viscosities in two horizontal directions. These viscosities
make the waves faster in one direction than the other, via which bending around
the central area is made possible. In order to have a perfect cloak, however, besides
a variable apparent viscosity, a radially variable density is also required that cannot
be achieved physically but is approximated in Farhat et al. (2008) by modifying the
effective shear viscosity. This modification (also known as the reduced model) changes
both the governing equation and the boundary conditions in such a way that none of
them are fully satisfied. Such an approximate cloak nevertheless shows a relatively
good performance, as appears from the observed surface profile (Farhat et al. 2008).

In Newman (2014), cloaking is investigated in deep water by surrounding a central
cylinder (to be cloaked) by an array of surface-piercing (smaller) cylinders and also
by a continuous ring. The geometries of the surrounding bodies are then optimized
towards a cloak by minimizing the scattered energy. Calculation of the scattering
pattern and the optimizations were performed by commercial software. The cloak
presented by Newman (2014) is non-axisymmetric and hence is not omnidirectional.
In fact Newman (2014) states that a perfect cloaking can only be achieved with
non-axisymmetric structures. In a similar effort, Porter & Newman (2014) define
a topographic ring about a central cylinder, and by minimizing the scattered wave
energy converge towards a cloak. Likewise in this cloak the highest efficiency cloaking
is obtained for non-axisymmetric topographies, which makes the cloak directional.

Alam (2012) achieved cloaking of surface objects in two-layer density-stratified
fluids using seabed ripple invoking Bragg resonance between surface and interfacial
waves (cf. Alam, Liu & Yue 2009a,b). In this approach, waves are transported,
upstream of a floating object, from the surface to the interface where waves pass
underneath the surface object. On the downstream side of the object, interfacial waves
can then be moved back to the surface through a similar mechanism. Downstream
waves bypass the surface object and hence bear no trace of it.

2. Theory of the transformation media method
The governing equations for the propagation of long waves (i.e. kh� 1, where k

is the wavenumber and h = h(x) is the water depth) in an inviscid, irrotational and
incompressible fluid, i.e. potential flow, are

∂u/∂t+ g∇η= 0, (2.1a)
∂η/∂t+∇ · (hu)= 0, (2.1b)

where u represents the velocity vector, η(x, t) is the water surface elevation measured
from the mean water level, g is the gravitational acceleration, and ∇ is the horizontal
gradient operator. Equations (2.1a) and (2.1b) are, respectively, the momentum and
mass balance equations. Combining these two equations, assuming waves are time-
harmonic with frequency ω and gravitational acceleration g is constant, we obtain the
well-known shallow-water wave equation (e.g. Mei, Stiassnie & Yue 2005)

∇ · (h∇η)+ ω
2

g
η= 0. (2.2)
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276 A. Zareei and M.-R. Alam

Equation (2.2) is form-invariant, i.e. it keeps its form under any arbitrary coordinate
transformation. To show this property, we integrate (2.2) over a specific (yet arbitrary)
volume Ω whose surface is denoted by ∂Ω , and use the divergence theorem to get∫

∂Ω

h∇η · n dS+
∫
Ω

ω2

g
η dV = 0, (2.3)

where n = (n1, n2) is the normal vector to the surface ∂Ω , and dS and dV are,
respectively, infinitesimal surface and volume elements. We now consider a coordinate
transformation in the form x′ = x′(x) with the transformation Jacobian F = {∂x′i/∂xj},
where primed variables are in the new coordinate system. Under this transformation,
(2.3) turns into ∫

∂Ω ′
h

FF T

|F | ∇
′η · n′ dS′ +

∫
Ω ′

1
|F |

ω2

g
η dV ′ = 0, (2.4)

where we have used the relations dV ′ = |F | dV and n′ dS′ = |F |F−Tn dS in which |X |
stands for the determinant of the matrix X . With the help of the divergence theorem
on (2.4), and noting that this equation is valid for any arbitrary volume, we obtain

∇
′
·
(
h′∇′η

)+ ω2

g′
η= 0, (2.5)

where h′ = h FF T/|F | and g′ = |F |g. Clearly (2.5) in the primed coordinates has the
same form as (2.2) in the original coordinates, with the apparent values of h, g in
the original coordinates replaced by h′, g′ in the transformed coordinates. Therefore
the governing equation (2.2) for long waves is form-invariant under coordinate
transformation. This property can also be shown by a one-to-one mapping between
the long-wave equation and the two-dimensional Maxwell’s equation for a transverse
magnetic (TM) polarization wave in an isotropic medium with constant permittivity.

With the knowledge that (2.2) is form-invariant, we can invoke the transformation
media method to steer long gravity waves in any desired direction. At this stage it is
helpful to use some notation from differential geometry to express our form-invariant
governing equation (2.2). It can be shown that for any coordinate system (x1, x2) with
the metric tensor G, (2.2) can be rewritten as (see e.g. Young 1992)

1√|G| ∂ ·
(√|G| h G−1 ∂η

)
+ ω

2

g
η= 0, (2.6)

where ∂ = (∂/∂x1, ∂/∂x2) is the partial derivative operator. For instance, if the
coordinate system of interest is Cartesian, its metric tensor Gc = I is an identity
matrix and the traditional form of (2.2) is readily obtained.

We first consider an original space So in which wave rays are along specific
trajectories. For example, if the water depth is constant and we have long-crested
waves, then wave rays are along straight parallel lines. We define, in this space, a
coordinate system (x1

o, x2
o) with the metric tensor Go. According to (2.6), equation

(2.2) in this space is written as

1√|Go| ∂o ·

(√|Go| h G−1
o ∂oη

)
+ ω

2

g
η= 0, (2.7)

with ∂o = (∂/∂x1
o, ∂/∂x2

o).
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We then find a transformation T that maps the original space So to the physical
space Sp in such a way that the wave ray trajectories in So are transformed to the
desired trajectories in Sp. This transformation transforms the coordinate (x1

o, x2
o) to a

new coordinate (x1
p, x2

p) whose metric is Gp and as a result (2.7) becomes

1√|Q| ∂p ·

(√|Q| h Q−1 ∂pη
)
+ ω

2

g
η= 0, (2.8)

where ∂p= (∂/∂x1
p, ∂/∂x2

p) and Q−1= FG−1
o F T in which F ≡ {∂xi

p/∂xj
o} is the Jacobian

of the transformation T . Note that in (2.8) Q 6= Gp, i.e. Q is not the metric tensor
of the coordinate system (x1

p, x2
p) and therefore wave rays under (2.8) move along

different trajectories than those described by (2.7). Basically, (2.8) is not the governing
equation for water waves in a physical space.

Now consider the propagation of long waves in water of depth h̃ and under the
action of gravitational acceleration g̃ in the physical space, i.e.

1√|Gp|
∂p ·

(√|Gp| h̃ G−1
p ∂pη

)
+ ω

2

g̃
η= 0. (2.9)

Nevertheless, if we choose specific values for h̃ and g̃ as

h̃=
√|Go|√|Gp|

FG−1
o F TGp

|F | h, g̃=
√|Gp| |F |√|Go| g, (2.10a,b)

then (2.9) and (2.8) become identical. Physically speaking, this means that if in
the physical space the water depth and the gravitational acceleration are given by
(2.10), then the incident wave will be travelling along desired trajectories given by
the transformation T . Note that (2.10) in a Cartesian coordinate system simplifies to
h̃= h FF T/|F | and g̃= |F |g (see also appendix A).

3. Implementation for shallow-water waves
There are two major issues in realizing conditions given by (2.10) in the physical

world: (i) in (2.10) the water depth h̃ is a tensor while water depth in the real world
is a scalar, and (ii) the gravitational acceleration g̃ as is required by (2.10) is different
from the physical world’s gravitational acceleration g.

Generally speaking in (2.2) water depth h can be regarded as a tensor. In the
simplest case of a constant water depth h(x, y) = h0, the tensor elements are
h11 = h22 = h0 and h12 = h21 = 0. However, the challenge of issue (i) is that in
(2.10) the water depth tensor may have non-identical main diagonal elements. For
example, if the physical space Sp is described by a Cartesian coordinate system, then
the required water depth h̃ in (2.10) is given by

h̃c =
√|Go|FG−1

o F T

|F | h, (3.1)

which is a symmetric tensor whose elements depend on F and Go.
To address this issue, consider a spatially varying one-dimensional topography

h = h(x) with the characteristic wavelength Lx � λ, where λ is the wavelength of
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the incident wave. Homogenization theory implemented on this problem yields an
equivalent depth hx in the x direction and an equivalent hy in the y direction (e.g. Jikov,
Oleinik & Kozlov 1994), or equivalently the tensor elements are h11 = hx, h22 = hy
and h12 = h21 = 0.

Now note that in (3.1) the water depth tensor h̃c is symmetric and therefore it has
two orthogonal eigenvectors of v1 and v2 with eigenvalues of v1 and v2, respectively.
In the basis of v1 and v2, the water depth tensor h̃c is diagonal with elements v1 and
v2. If we define our x and y along v1 and v2, then by a proper choice of h = h(x),
we can achieve h11= v1 and h22= v2 and therefore the required water depth tensor h̃c
is obtained.

If the physical space Sp is described by any arbitrary (potentially curvilinear)
coordinate system, related to the Cartesian coordinate by the mapping Λ, then the
water depth in the new system h̃new is described by h̃new =Λ−1h̃cΛ. Clearly h̃new has
eigenvectors of Λ−1v1 and Λ−1v2 with eigenvalues of v1 and v2. In other words, the
eigenvectors of the water depth in the new coordinate system are transformation of
the eigenvectors of the Cartesian coordinate system, but the eigenvalues of the two
systems are the same. Therefore, if h̃new is given, then h(x) can be determined by
the eigenvalues of h̃new, with the direction of x and y being along the eigenvectors
of h̃new.

The second issue has to do with the fact that, in (2.10), the gravitational acceleration
g̃ is not the same as the physical world’s gravitational acceleration g. Clearly, if√|Gp| |F |/√|Go| = 1, then this issue is resolved. However, this cannot always be
achieved depending on the transformation required. Nevertheless, if the coefficient
of g is (2.10) is any arbitrary constant, i.e.

√|Gp| |F |/√|Go| = C, then both terms
of (2.9) can be multiplied by C, and then C can be absorbed into h̃. Therefore, by
defining a new water depth h̄ = Ch̃ and ḡ = g, we retrieve the required equation in
the physical space. The significance of the arbitrary constant C is that it provides an
additional degree of freedom which, as will be shown later, is critical in designing
a specific set of transformations. It is to be noted that multiplying the equation
by a constant, although it keeps the governing equation intact, affects the required
boundary conditions. This is elaborated in detail in § 5.

In cases where the coefficient of g in (2.9) is neither unity nor a constant, an
approximate approach is to use the following water depth ȟ and the gravitational
acceleration ǧ:

ȟ= FG−1
o F TGp h, ǧ= g, (3.2a,b)

via which the speed of long waves remains the same, i.e. h̃g̃= ȟǧ. The origin of this
simplification is that the refraction angle of the wave rays in oblique incidence at a
depth discontinuity with constant gravity is a function of the ratio of the long-wave
speed (i.e.

√
gh) in the two media (Mei et al. 2005). But note that if the gravitational

acceleration is spatially varying, which is the case here, the governing equation is
not fully satisfied. This is a typical approximation widely used in the electromagnetic
community to keep the permeability (or permittivity) constant (Cummer et al. 2006;
Schurig et al. 2006; Cai et al. 2007) and the approximate nature of that has been
noted (Cummer et al. 2006; Yan, Ruan & Qiu 2007).

4. Cloak of invisibility
An invisibility cloak for water waves is an area of (potentially) variable topography

that bends the wave rays about a specific target area that is to be cloaked. The cloaked
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area and objects therein do not scatter incident waves, and therefore are invisible to
far-field observers.

Here we aim at the cloaking of a circular area Ac with radius a. One way to achieve
this is to transform a circular region of radius b > a (centred at the centre of Ac)
to an annular ring of inner radius a and outer radius b centred again at the centre
of Ac. Basically, the transformation must satisfy the conditions rp(ro = 0) = a and
rp(ro = b) = b, where subscripts o and p refer to the original and physical spaces,
respectively.

One family of such transformations is{
rp = f (ro), 0 6 ro 6 b,
θp = θo,

(4.1)

where f (0)= a and f (b)= b. The region beyond the circle b (i.e. ro > b) is identically
mapped from So to Sp. The Jacobian of the transformation (4.1) is

F = ∂
(
rp, θp

)
∂ (ro, θo)

=
(

f ′ 0
0 1

)
, (4.2)

where f ′ = df (ro)/dro. For the problem at hand, it is more convenient to use a polar
coordinate system in both the original and physical spaces, with the following metric
tensors

Go =
(

1 0
0 r2

o

)
, Gp =

(
1 0
0 r2

p

)
. (4.3a,b)

Substituting (4.2) and (4.3) into (2.10), we obtain

h̃=


f ′ro

rp
0

0
rp

f ′ro

 h, g̃= f ′rp

ro
g. (4.4a,b)

Equation (4.4) gives the values of h̃ and g̃ in the physical space in such a way that the
wave rays follow the path determined by the transformation in (4.1). In order to find
a mathematically perfect as well as a physically realizable cloak, we have to fulfill an
additional condition that the ratio f ′rp/ro (i.e. coefficient of g in (4.4)) is constant. If
this condition is satisfied, then as discussed in § 3, a new water depth h̄ and physically
admissible ḡ= g are found that steer the wave rays along the trajectories defined by
the transformation (4.1). For the considered case of a circular cloak it is easy to show
that the following nonlinear transformationrp = f (ro)=

√(
1− a2

b2

)
r2

o + a2, 0 6 ro 6 b,

θp = θo,

(4.5)

satisfies the aforementioned condition and gives rise to

h̃=


r2

p − a2

r2
p

0

0
r2

p

r2
p − a2

 h, g̃=
(

1− a2

b2

)
g, (4.6a,b)
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b
a

FIGURE 1. Trajectories of the wave rays due to transformation in (4.1). These trajectories
show the flow path of the wave’s energy.

and hence the final form of the water depth and gravitational acceleration in the
physical space is obtained as

h̄=
(

1− a2

b2

)
r2

p − a2

r2
p

0

0
r2

p

r2
p − a2

 h, ḡ= g. (4.7a,b)

Water waves propagating over a topography given by (4.7) in the physical world
of gravitational acceleration g move along trajectories given by (4.1) which are also
shown in figure 1. Clearly wave rays go around the cylinder in the middle and hence
do not interact with that cylinder. The cylinder is now cloaked. Note that although
(4.7) fully satisfies the transformed equation, it changes the flux boundary condition
at the cloak’s boundary by a factor of (1 − a2/b2). Clearly, as a/b→ 0, i.e. as the
cloak size increases, the desired boundary condition is asymptotically satisfied. This
is discussed in more detail in § 5 where we derive the analytical solution of this cloak.

In the special case when both the original and physical spaces are described by
a Cartesian coordinate system, which is typically the case in the cloaking literature,
the water depth tensor and gravitational acceleration (4.6) can be obtained directly, as
elaborated in appendix A. We would also like to note that ‘rays’ and ‘trajectories’ are
used here merely to discuss the physical picture, and do not imply the use of the ‘ray
theory’.

5. Analytical solution
In this section, we present an analytical solution to the governing equation (2.2) for

the incoming wave and the scattered field as waves travel over the topography given
by (4.7). Equation (2.2) in polar coordinates reads

1
r
∂

∂r

(
rhr
∂η

∂r

)
+ 1

r2

∂

∂θ

(
hθ
∂η

∂θ

)
+ ω

2

g
η= 0, (5.1)

where we have assumed the water depth tensor to be diagonal, which is the case for
the cylindrical cloaks considered here. Assuming that the solution to (5.1) is separable,
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i.e. η=Re{Ψ (r)Θ(θ)}, we obtain

d2

dθ 2
Θ +m2Θ = 0, (5.2)

d
dr

(
rhr

dΨ
dr

)
+ ω

2r
g
Ψ − m2

r
hθΨ = 0. (5.3)

The solution to (5.2) is Θ(θ) = exp(imθ). Since hr and hθ are different in the two
regions a 6 r 6 b and r > b, we break (5.3) into two equations, each for one of the
domains,

d
dr

(
r2 − a2

r
h

dΨ
dr

)
+ ω2br

g(b2 − a2)
Ψ − m2r

r2 − a2
hΨ = 0, a 6 r 6 b, (5.4)

d
dr

(
rh

dΨ
dr

)
+ ω

2r
g
Ψ − m2

r
hΨ = 0, r > b, (5.5)

whose solution is

Ψ (r)=
{
β i

mJm(k̃
√

r2 − a2)+ βs
mH(1)

m (k̃
√

r2 − a2), a 6 r 6 b,

αi
mJm(kr)+ αs

mH(1)
m (kr), r > b,

(5.6)

where Jm and H(1)
m are respectively order-m Bessel function and Hankel function of the

first kind and k2 = ω2/(gh) and k̃= kb/(b2 − a2)1/2. The Hankel function of the first
kind asymptotically approaches an outgoing wave as r tends to infinity, and represents
the scattering field.

Noting that an incident plane wave of the form ηinc = Re{η0 exp(ikx)} can be
expressed as ηinc=Re{η0

∑∞
m=−∞ imJm(kr)eimθ }, the coefficients αi

m in (5.6) are readily
obtained. The boundary condition on the surface of the cylinder r = a is the no-flux
(Neumann) condition and implies βs

m = 0. The other three coefficients are in general
non-zero. The free surface elevation η(r, θ) is obtained as

η(r, θ)=Re



∞∑
m=−∞

β i
mJm(k̃

√
r2 − a2)eimθ , a 6 r 6 b,

∞∑
m=−∞

(αi
mJm(kr)+ αs

mH(1)
m (kr))eimθ , r > b.

(5.7)

At r = b, both surface elevation η and mass flux hrur = (ighr/ω)∂η/∂r must be
continuous. Using the parameters of the cloak given by (4.7) we obtain from (5.6)
the following two relations:

αi
mJm(kb)+ αs

mH(1)
m (kb)= β i

mJm(kb), (5.8)

αi
mJ′m(kb)+ αs

mH′(1)m (kb)=
(

1− a2

b2

)
β i

mJ′m(kb), (5.9)

where the prime on Jm and H(1)
m stands for the derivative with respect to their

arguments. Therefore

β i
m =

J′m(kb)H(1)
m (kb)− Jm(kb)H′(1)m (kb)(

1− a2

b2

)
J′m(kb)H(1)

m (kb)− Jm(kb)H′(1)m (kb)
αi

m, (5.10)
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FIGURE 2. (Colour online) Analytically obtained cloaking factor L calculated from
(5.7) and (5.14) as a function of b/a. The cloaking factor exponentially decays and
asymptotically approaches the ideal cloaking factor of L = 0. At b/a = 5, the cloaking
factor L < e−5 for both λ/a= 4 and 8. In calculating L , the series in (5.7) is truncated
at m=±40 for which the value of L is converged.

αs
m =

a2

b2
Jm(kb)J′m(kb)(

1− a2

b2

)
J′m(kb)H(1)

m (kb)− Jm(kb)H′(1)m (kb)
αi

m. (5.11)

The coefficient αs
m that appears in front of the Hankel function in (5.6) shows the

scattered field in the area r > b and therefore for a perfect cloak must be zero. It is
easy to see that this is asymptotically obtained when b/a→∞. In other words, if
b/a� 1 then we asymptotically obtain αs

m = 0, βs
m = 0 and β i

m = αi
m (cf. figures 2

and 4).
In order to quantitatively measure the efficiency of the implemented cloak, we

calculate the scattering cross-section (measure of the total energy scattered to infinity)
for the two cases studied here. The scattering cross-section σ(θ) can be defined as
(e.g. Porter & Newman 2014)

σ(θ)= lim
r→∞

2πr
Φ

2
sca(r, θ)

Φ
2
inc(r, θ)

, (5.12)

where Φsca(r, θ) and Φinc(r, θ) are respectively the scattered wave velocity potential
and the incident wave velocity potential. The velocity potential Φ is obtained from
the dynamic boundary condition on the free surface, i.e. Φ = (ig/ω)η. The scattering
field is calculated by subtracting the incident wave potential from the total velocity
potential, i.e. Φsca=Φtot −Φinc. The overbars stand for the r.m.s. values in time. The
total scattering cross-section Σ is therefore

Σ = 1
2π

∮
σ(θ) dθ. (5.13)

The ratio of the total energy scattered by the object in the presence of the cloak
Σclk to the total energy scattered when the seabed is flat Σflt is defined as the cloaking
factor (Porter & Newman 2014),

L = Σclk

Σflt
. (5.14)
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Perfect cloaking is achieved for L = 0 when no energy is scattered from the cylinder,
and the cloaking factor for a flat seabed is unity.

With this definition of the cloaking factor L , the effect of the ratio b/a on the
cloaking efficiency can be quantitatively addressed. For instance, in figure 2 we
present L (for an enhanced accuracy averaged over the area 8 6 r/a 6 10) as a
function of b/a and for two values of λ/a = 4 and 8. As can be seen, with the
increase in b/a, the cloaking factor L exponentially decays to the ideal value of
L = 0. For instance, for b/a= 5, L < e−5 for both λ/a= 4 and 8.

6. Numerical results

For the implementation of the water depth tensor given by (4.7), as discussed in
§ 3, we employ homogenization theory on a spatially rapidly varying topography. To
achieve this for the case of (4.7), consider a water depth h = h(r) that alternates in
the radial direction between (constant) depths h1 and h2 with respective widths b1 and
b2. If b1, b2� λ then homogenization theory gives

heq
r =

h1h2(b1 + b2)

b1h2 + b2h1
, heq

θ =
b1h1 + b2h2

b1 + b2
. (6.1a,b)

By equating (6.1) with those depths required by (4.7), h1(rp) and h2(rp) are obtained.
In our simulation, for simplicity, we consider b1 = b2, for which we have h1,2(rp)=
h̄22[1± (1− h̄11/h̄22)

1/2].
We use finite element method with C++ library deal.II (Bangerth, Hartmann &

Kanschat 2007) for the direct simulation of the cloaking (for details on validation
and convergence of the scheme, see e.g. Bangerth & Kanschat (1999), Bangerth et al.
(2007), Carraro et al. (2013) and Riedlbauer et al. (2014)). We choose a domain
of computation x, y ∈ [−4, 4]. The mesh is generated using deal.II library with
2048 nodes in each direction. We chose δt such that the Courant number in the
simulations is C = 0.5. We implement a numerical wavemaker on the left boundary.
Other vertical boundaries are chosen as reflecting walls. The boundary condition on
the inner cylinder is Neumann, which corresponds to no-flux condition.

The water surface profile is shown in figure 3(a–d) for two ratios of the wavelength
to the cylinder radius λ/a = 4 and 8 and for each case with and without the cloak.
We have chosen maximum kh= 0.2, which happens at the inner cylinder’s boundary,
where we replaced the infinite depth with a depth O(10) times larger than the mean
water depth outside the cloak. Specifically, in this paper, we have used 12 times larger
than the mean depth. We would like to emphasize again that (2.2) is only valid in the
limit of shallow water, i.e. kh� 1. For the investigated cases presented here, we have
made sure that this condition is always satisfied throughout the domain of simulation,
as described above.

Figure 3(a,c) show the incident and scattered waves for respectively λ/a= 4 and 8
and when the water depth is constant. Clearly a larger cylinder results in a higher
scattering. The water surface profile with the implementation of the cloak of (4.7)
with b/a = 4 is shown in figure 3(b,d). The black circle shows the outer radius of
the annular cloak. As is seen from figure 3(b,d), the cloaking is visually perfect in
both cases.
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FIGURE 3. (Colour online) Cloaking of a circular cylinder from surface gravity waves.
The top and bottom panels show two cases of λ/a= 4 and 8 respectively. (a,c) The water
surface pattern (i.e. incident and scattered waves) in the vicinity of the cylinder if the
seabed is flat. (b,d) The water surface with the implementation of the cloak (b/a = 4).
The outer perimeter of the cloak is marked by the black circle.

With the implementation of the cloak designed based on (4.7) with b/a = 4, we
obtained L = 0.013 for λ/a = 4 and L = 0.021 for λ/a = 8. This means that
∼99 % of the scattering energy is prevented by the proposed cloak. The exact theory
of § 5 predicts L = 0.0078 and L = 0.013 for respectively λ/a = 4 and 8. The
discrepancy comes from computational errors, homogenization error, errors due to
the finite time simulation, and the treatment of the singularity at r = a, which in
numerical implementation is replaced by a large but a finite water depth chosen
such that the shallow-water assumption is not violated. In the physical space, if the
incident wavelength is λ= 200 m, the mean water depth outside the cloak is 50 cm
and the maximum depth at r= a is taken as 6.3 m, the above two cases correspond
to cylinder radii of a = 50 and 25 m and outer cloak radii of b = 200 and 100 m,
respectively. If a cloaking factor of L = 0.1 (∼90 % cloaking) is acceptable, then the
same cloaking can be achieved over a mean water depth of 2 m.

In § 5, we derived analytically that the cloaking factor asymptotically approaches
zero as the ratio b/a increases. This can also be investigated numerically. Figure 4
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FIGURE 4. (Colour online) Effect of the cloak size b/a on the cloaking efficiency: (a) for
the cloak radius b/a = 2 for which L = 0.11 and (b) (same as figure 3b) for the
cloak radius b/a = 4 for which L = 0.013. Clearly the case of b/a = 4 (b) achieves a
much better cloaking efficiency than b/a= 2 (a). As discussed in § 5, cloaking efficiency,
parametrized by the cloaking factor L , exponentially improves as the ratio b/a increases.

compares the water surface about a cylinder with a cloak implemented on the seabed
for b/a = 2 (a) and b/a = 4 (b). While cloaking in figure 4(b) is almost perfect,
the case of figure 4(a) is clearly not as good. The discrepancy, as discussed in § 5,
comes from the discontinuity in the flux at the boundary r = b. This discontinuity
exponentially fades away, and the cloaking efficiency enhances, as the ratio b/a
increases.

Besides the specific form of the topography proposed and discussed here, many
other forms of seabed variations may result in the desired depth tensor of (4.7). For
instance, an anisotropic bed can be formed by overlaying two interlocking fine-meshed
combs aligned in the radial and azimuthal directions which independently protrude to
different height profiles. On this topography, waves travelling radially only see the
height profile of the circular comb as they pass uninterrupted through the teeth of the
radial comb whilst circular waves only see the height profile of the radial comb.

7. Conclusion
Here we present the design of a symmetric cloak for shallow-water waves via the

scheme of transformation media. The method of transformation media states that if
the governing equation of a wave system is form-invariant, then wave ray trajectories
can be forced along any desired path by appropriately designing the properties of
the medium of propagation. The challenge, for the case of water waves, is that
usual linear implementations of the scheme require water depth and gravitational
acceleration to be spatially variable along the path. The latter is simply impossible.
Here we present a rigorous nonlinear alternative that relaxes the condition on the
gravitational acceleration, and guarantees an asymptotically perfect cloak by mere
variation in the seabed topography. As an example, a cloak for a circular cylinder
is designed and its performance under incident waves is presented analytically and
via a time-domain direct simulation. The presented cloak is asymptotically perfect,
physically realizable, omnidirectional and works for all frequency waves that satisfy
the shallow-water wave assumption.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

35
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.350


286 A. Zareei and M.-R. Alam

Acknowledgements
This publication was made possible, in part, with the support from NSF (Grant No.

CBET-1414579-EAGER), the American Bureau of Shipping, and the U.C. Berkeley
Committee on Research. We would also like to thank the anonymous referees for
valuable comments.

Appendix A
In § 2 we presented a general derivation of the method of transformation media that

distinguishes between the Jacobian of a transformation F , and a metric tensor G. This
derivation has the advantage that one can adopt any coordinate system for the physical
space and/or the original space. For instance, in the problem of cylindrical cloaking,
it is more convenient to use polar coordinates in both physical and original coordinate
systems.

In the special case that we use Cartesian coordinates in both original and physical
spaces, which is typically the common practice in the literature, the metric G is
simply an identity tensor and (2.10) readily reduces to h̃ = h FF T/|F | and g̃ = |F |g.
For example, consider the transformation (4.1) that transforms the radial direction
in physical and original space but keeps the angles intact. In a Cartesian coordinate
system, this transformation can be written as

r= f (r′), r′ =
√

x′2 + y′2, r=
√

x2 + y2, (A 1a−c)

cos θ = x
r
= x′

r′
= cos θ ′, sin θ = y

r
= y′

r′
= sin θ ′, (A 2a,b)

whose Jacobian F is

F = ∂(xp, yp)

∂(xo, yo)
=

 f ′ cos2 θ + rp

ro
sin2 θ

(
f ′ − rp

ro

)
sin θ cos θ(

f ′ − rp

ro

)
sin θ cos θ f ′ sin2 θ + rp

ro
cos2 θ

 , (A 3)

in which |F | = rpf ′/ro. Therefore, the water depth tensor and gravitational acceleration
in Cartesian coordinates become

h̃= FF T

|F | h= ro

rpf ′


f ′2 cos2 θ + r2

p

r2
o

sin2 θ

(
f ′2 − r2

p

r2
o

)
sin θ cos θ(

f ′2 − r2
p

r2
o

)
sin θ cos θ f ′2 sin2 θ + r2

p

r2
o

cos2 θ

 h, (A 4a)

g̃= |F |g= f ′rp

ro
g, (A 4b)

where tensor h̃ has eigenvectors of f ′ro/rp and rp/(f ′ro) in the radial and azimuthal
directions. It is easy to see that (A 4a) and (A 4b) are the same as (4.4), which was
obtained using (2.10). The condition for a perfect physically realizable cloak (non-
magnetic in the context of electromagnetic cloaking) is therefore obtained as |F | =C.
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