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ABSENCE OF CHAOS AND 1/f
SPECTRA, BUT EVIDENCE OF TAR
NONLINEARITIES, IN THE
CANADIAN EXCHANGE RATE

APOSTOLOS SERLETIS AND ASGHAR SHAHMORADI
University of Calgary

This paper uses daily observations for the Canadian dollar–U.S. dollar exchange rate over
the recent flexible exchange-rate period (from January 2, 1974, to October 28, 2002), and
various tests from dynamical systems theory, such as a chaos test, a self-organized
criticality test, and a threshold effects test, to support a stochastic nonlinear origin for the
series.
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1. INTRODUCTION

Interest in nonlinear processes has, in the recent past, experienced a tremendous rate
of development, and the literature is still growing. One type of nonlinear process
is chaos. Chaos is interesting because of its ability to generate output that mimics
the output of stochastic systems, thereby offering an alternative explanation for the
behavior of economic variables. In addition, chaos offers the potential for man-
agement and control, although doing so might require considerable expansion in
regulatory policy instruments. Another type of nonlinear process is self-organized
criticality, recently discovered in physics. Self-organized criticality is a probabilis-
tic process. It incorporates a dominant long-run trend toward greater sensitivity
and a short-run catastrophic element, which is triggered by random shocks within
the system. Unlike a chaotic system, however, prediction and control in a self-
organized critical system is almost impossible, and the best way to control the
system is by manipulating its rules, rather than by managing its outcomes.

The subject of this paper is to contrast the apparent random-walk behavior of
the nominal exchange rate between Canada and the United States with nonlinear
dynamics, and to identify the nonlinear process that most affects the exchange
rate. The paper is organized as follows. In the next section, we investigate the
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univariate time-series properties of the Can$/US$ nominal exchange-rate series.
Section 3 tests for deterministic chaos using the Nychka et al. (1992) Lyapunov
exponent estimator and its limit distribution. In Section 4, we test for self-organized
criticality, and in Section 5, for threshold effects. The final section provides a brief
summary and conclusion.

2. UNIT ROOT AND STATIONARITY TESTS

We test for stochastic trends (unit roots) in the autoregressive representation of the
logged Canadian dollar per U.S. dollar nominal exchange rate, over the period from
January 2, 1974, to October 28, 2002, using four alternative testing procedures,
to deal with anomalies that arise when the data are not very informative about
whether or not there is a unit root. In particular, in the first three columns of
panel A of Table 1, we report p-values [based on the response surface estimates
given by MacKinnon (1994)] for the augmented weighted symmetric (WS) unit
root test [see Pantula et al. (1994)], the augmented Dickey–Fuller (ADF) test [see
Dickey and Fuller (1981)], and the nonparametric Z(tα̂) test of Phillips (1987) and
Phillips and Perron (1988). Moreover, given that unit root tests have low power
against relevant alternatives, in the last two columns of panel A of Table 1, we
present Kwiatkowski et al. (1992) tests, known as KPSS tests, for level and trend
stationarity.

As can be seen, the null hypothesis of a unit root can be rejected. Moreover, the
t-statistic η̂µ that tests the null hypothesis of level stationarity is large relative to the
5% critical value of 0.463 given by Kwiatkowski et al. (1992) and the t-statistic η̂τ

that tests whether the null hypothesis of trend stationarity exceeds the 5% critical
value of 0.146 (also given by Kwiatkowski et al.). Combining the results of our
tests of the stationarity hypothesis with the results of our tests of the unit root
hypothesis, we conclude that the (logged) nominal exchange-rate series has at
least one unit root.

The null hypothesis of a second unit root is also tested in panel B of Table 1, using
the same four testing procedures. Clearly, the nominal exchange-rate series appears
to be stationary in the logarithmic first differences, since the null hypothesis of a

TABLE 1. Unit root and stationarity testsa

WS ADF Z(tα̂) η̂µ η̂τ

(A) Log levels

0.626 0.652 0.560 55.756 6.750

(B) Logged first differences

<0.001 <0.001 <0.001 <0.071 <0.070

a Numbers in the WS, ADF, and Z(tα̂ ) columns are tail areas of unit root tests. The
5% critical value for the KPSS n̂µ and η̂τ test statistics [given by Kwaitkowski
et al. (1992)] are 0.463 and 0.146.
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unit root is rejected and the null hypotheses of level and trend stationarity cannot
be rejected. Hence, in what follows, we use the the logarithmic first difference of
the nominal exchange rate.

3. A STATISTICAL TEST FOR CHAOS

In this section, we contrast the apparent random-walk behavior of the nominal
exchange rate with nonlinear chaotic dynamics. In doing so, we follow the recent
contributions by Whang and Linton (1999) and Linton and Shintani (2003) and
construct the standard error for the Nychka et al. (1992) dominant Lyapunov
exponent for the logged first difference of the Canadian dollar exchange-rate series,
thereby providing a statistical test for chaos. We also follow Shintani and Linton
(2003) and Serletis and Shintani (2003) and report both global and local Lyapunov
exponents. As argued by Bailey (1996), local Lyapunov exponents provide a more
detailed description of the system’s dynamics, in the sense that they can identify
differences in short-term predictability among regions in the state space.

Let {Xt }T
t=1 be a random scalar sequence generated by the following nonlinear

autoregressive model:

Xt = θ(Xt−1, . . . , Xt−m) + ut , (1)

where θ : Rm → R is a nonlinear dynamic map and {ut }T
t=1 is a random sequence

of i.i.d. disturbances with E(ut ) = 0 and E(u2
t ) = σ 2 < ∞. We also assume θ to

satisfy a smoothness condition, and Zt = (Xt , . . . , Xt−m+1)
′ ∈ Rm to be strictly

stationary and to satisfy a class of mixing conditions; see Whang and Linton
(1999) and Shintani and Linton (2003) for details regarding these conditions.

Let us express the model (1) in terms of a map,

F(Zt ) = [θ(Xt−1, . . . , Xt−m), Xt−1, . . . , Xt−m+1]′ (2)

with Ut = (ut , 0, . . . , 0)′ such that

Zt = F(Zt−1) + Ut ,

and let Jt be the Jacobian of the map F in (2) evaluated at Zt . Then, the dominant
Lyapunov exponent of system (1) is defined by

λ ≡ lim
M→∞

1

2M
ln ν1(T′

M TM), (3)

where

TM =
M∏

t=1

JM−t = JM−1 · JM−2 · · · · · J0,

and νi (A) is the i th largest eigenvalue of a matrix A. Necessary conditions for
the existence of the Lyapunov exponent are available in the literature. Usually, if
max{ln ν1(J ′

t Jt ), 0} has a finite first moment with respect to the distribution of Zt ,
then the limit in (3) almost surely exists and will be a constant, irrespective of the
initial condition.
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To obtain the Lyapunov exponent from observational data, Eckmann and Ruelle
(1985) and Eckmann et al. (1986) proposed a method based on nonparametric
regression, which is known as the Jacobian method. The basic idea of the Jacobian
method is to substitute θ in the Jacobian formula by its nonparametric estimator
θ̂ . In other words, it is the sample analogue estimator of (3). Note that we distin-
guish between the “sample size” T used for estimating the Jacobian Ĵ t and the
“block length” M , which is the number of evaluation points used for estimating
the Lyapunov exponent. Formally, the Lyapunov exponent estimator of λ can be
obtained by

λ̂M = 1

2M
ln ν1(T̂′

M T̂M),

where

T̂M =
M∏

t=1

Ĵ M−t = Ĵ M−1 · Ĵ M−2 · · · · · Ĵ 0,

and

Ĵ t = ∂ F̂(Zt )

∂ Z ′ =




�θ̂1t �θ̂2t · · · �θ̂m−1,t �θ̂mt

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




,

for t = 0, 1, . . . , M − 1, and �θ̂ j t = De j θ̂ (Zt ) for j = 1, . . . , m in which e j =
(0, . . . , 1, . . . , 0)′ ∈ Rm denotes the j th elementary vector.

Using the argument of Whang and Linton (1999), Shintani and Linton (2003)
showed that under some reasonable condition, the neural network estimator λ̂M is
asymptotically normal and its standard error can be obtained using

�̂ =
M−1∑

j=−M+1

ω( j/SM)γ̂ ( j) and γ̂ ( j) = 1

M

M∑
t=| j |+1

η̂t η̂t−| j |,

where η̂t = ξ̂t − λ̂M , with

ξ̂t = 1

2
ln

[
ν1(T̂′

t T̂t )

ν1(T̂′
t−1T̂t−1)

]
for t ≥ 2 and ξ̂1 = 1

2
ln ν1(T̂′

1T̂1),

where ω(·) and SM denote a kernel function and a lag truncation parameter, re-
spectively. Note that the standard error is essentially the heteroskedasticity and
autocorrelation covariance estimator of Andrews (1991) applied to η̂t . We employ
the QS kernel for ω(·) with SM selected by the optimal bandwidth selection method
recommended by Andrews.

Lyapunov exponent point estimates along with their t-statistics (in parentheses)
are displayed in Table 2. The results are presented for dimensions 1 through 6,
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with the optimal value of the number of hidden units (k) in the neural net being
chosen by minimizing the BIC criterion. The p-values for the null hypothesis
H0 : λ ≥ 0 are reported in brackets. The Full column under each value of k shows
the estimated largest Lyapunov exponent using the full sample. The Block column
shows median values for the block estimation, with the number of blocks (B) being
set equal to 8.

In general, the reported Lyapunov exponent point estimates are negative and
in every case we reject the null hypothesis of chaotic behavior. Of course, the
estimates depend on the choice of the dimension parameter, m. As m increases,
the Lyapunov exponent point estimates increase in value. However, the presence
of dynamic noise makes it difficult and perhaps impossible to distinguish between
(noisy) high-dimensional chaos and pure randomness. For this reason, as in Serletis
and Shintani (2003), we do not pursue the investigation of high-dimensional chaos
in the present paper.

4. SELF-ORGANIZED CRITICALITY

As already noted in the introduction, another type of nonlinear process is self-
organized criticality, recently discovered in physics by Bak et al. (1987). As Bak
et al. (1988, p. 364) put it “[t]he temporal ‘fingerprint’ of the self-organized critical
state is the presence of flicker noise or 1/ f noise.”

Since noise can be classified according to its power spectrum (a decomposition
of the series into components with different frequencies by their contribution to the
variance), in this section we calculate the power spectrum of the logged nominal
exchange-rate series. We follow Li (1991) and calculate the power spectrum P( f ),
using the following discrete Fourier transform:

P( f ) = N ‖A( f )‖2,

where ‖A( f )‖ is the module of the complex number

A( f ) = 1

N

N∑
j=1

x j e
i2π f j

N .

The power spectrum P( f ) can be modeled as a power-law function, P( f ) =
1/ f α , where f is the frequency and α is a characteristic exponent. When plotted on
a log-log scale, power laws appear as straight lines, since log[P( f )] = −α log( f )

where −α is the slope. The power law indicates that there is “scale invariance,” in
the sense that no particular frequency is singled out and that the properties of any
given frequency stand for all frequencies. If α = 0, the series is white noise and the
power spectrum is flat. If α = 2, the time series is called 1/ f 2 noise. A random-
walk series (the best-known nonstationary series) is exactly 1/ f 2 noise—see Li
(1991). If α = 1, the series is called 1/ f noise or flicker noise.

We present the power spectrum of the logarithmic first difference of the nominal
exchange rate in Figure 1. A least-squares, best-fit line to all spectral components
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FIGURE 1. Power spectrum.

indicates behavior of the type 1/ f α , where α = 0.36. This behavior is consistent
with the evidence reported in the preceding two sections.

5. EVIDENCE OF SETAR NONLINEARITY

A synthesis of the linear econometric approach with the nonlinear disequilibrium
approach to economic fluctuations has recently been provided by a class of nonlin-
ear time-series models known as switching regression or threshold autoregressive
(TAR) models; see Tong (1990) for a review of such models. These models involve
interesting nonlinearities, with switches in parameter values according to the re-
gion in which the recent past of the series lies. Moreover, the fact that the switching
(transition) variable is a lag of the dependent variable makes these models capable
of characterizing different forms of asymmetric behavior.

In this section, we explore the presence of such nonlinearities in the exchange
rate using the most popular TAR model, the self-exciting threshold autoregressive
(SETAR) model. A two-regime version of this model for the logarithmic first
difference of the nominal exchange rate can be written as

xt = α0 + α1xt−1 + · · · + αpxt−p + (β0 + β1xt−1 + · · · + βpxt−p){xt−d ≤ κ} + ςt ,

(4)
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TABLE 3. Tests for threshold effects

SupLM ExpLM AveLM SupLMh ExpLMh AveLMh

52.4 20.4 17.2 29.4 9.7 10.3
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

where p ≥ 1 is the autoregressive order (or delay parameter) and κ is the threshold
parameter. According to (4), xt is generated by one of two distinct autoregressive
models, depending on the level of one lagged variable, xt−d ; the model could be
generalized to depend on the levels of more than one lagged variable and/or to
have more than two distinct regimes.

Following Potter (1995) and Hansen (1996), we estimated the model using
least squares, allowing the threshold parameter to vary from the 15th to the 85th
percentile of the empirical distribution of xt and the delay parameter from 1 to
5. Our estimates are κ̂ = −0.20474, p̂ = 4, and (with heteroskedastic-consistent
standard errors in parentheses):

Regime A. xt−4 ≤ −0.20474:

xt = 0.025
(0.020)

− 0.070
(0.042)

xt−1 − 0.064
(0.035)

xt−2 + 0.068
(0.034)

xt−3 + 0.092
(0.053)

xt−10 + ς̂t ,

σ̂ 2
1 = 0.090.

Regime B. xt−4 > −0.20474:

xt = 0.008
(0.003)

+ 0.091
(0.017)

xt−1 − 0.006
(0.016)

xt−2 − 0.036
(0.015)

xt−3 + 0.003
(0.018)

xt−10 + ς̂t ,

σ̂ 2
2 = 0.066.

We test the null hypothesis of no threshold effect (single regime), using the LM-
based test statistics used by Hansen (1996), and report the results in Table 3 (with
p-values in parentheses).

Clearly, the null hypothesis of no threshold effect (single regime) is rejected,
at conventional significance levels, providing evidence in favor of SETAR nonlin-
earity in the Can$/US$ nominal exchange rate.

6. CONCLUSION

We have used daily observations for the Canadian dollar–U.S. dollar nominal
exchange rate, over the recent flexible exchange-rate period, and applied tests
from dynamical systems theory to distinguish between deterministic and stochas-
tic origin for the series. We have found evidence consistent with a threshold
autoregressive-type nonlinearity in the exchange rate, suggesting that successful
stochastic nonlinear modeling of the exchange rate would produce a richer notion
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of exchange-rate fluctuations than linear time-series models allow. We leave this
for further research.
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