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Abstract
Maritime video surveillance has become an essential part of the vessel traffic services system, intended to guarantee
vessel traffic safety and security in maritime applications. To make maritime surveillance more feasible and
practicable, many intelligent vision-empowered technologies have been developed to automatically detect moving
vessels from maritime visual sensing data (i.e., maritime surveillance videos). However, when visual data is collected
in a low-visibility environment, the essential optical information is often hidden in the dark, potentially resulting in
decreased accuracy of vessel detection. To guarantee reliable vessel detection under low-visibility conditions, the
paper proposes a low-visibility enhancement network (termed LVENet) based on Retinex theory to enhance imaging
quality in maritime video surveillance. LVENet is a lightweight deep neural network incorporating a depthwise
separable convolution. The synthetically-degraded image generation and hybrid loss function are further presented
to enhance the robustness and generalisation capacities of LVENet. Both full-reference and no-reference evaluation
experiments demonstrate that LVENet could yield comparable or even better visual qualities than other state-of-
the-art methods. In addition, it takes LVENet just 0·0045 s to restore degraded images with size 1920× 1080 pixels
on an NVIDIA 2080Ti GPU, which can adequately meet real-time requirements. Using LVENet, vessel detection
performance can be greatly improved with enhanced visibility under low-light imaging conditions.

1. Introduction

Maritime video surveillance has become increasingly important for traffic situational awareness in a
range of maritime applications (Bloisi et al., 2017). In particular, the widely-used surveillance cameras
provide indispensable visual information for video surveillance to enhance transportation safety and
security. As an essential function of maritime surveillance, visual data-based vessel detection has
attracted considerable attention due to its practical importance. Accurate vessel detection offers excellent
potential for promoting navigational safety monitoring, collision avoidance, vessel traffic services, etc.
However, the quality of visual information obtained from surveillance cameras will directly affect the
efficiency of vessel detection. With the rapid rise of deep learning, it is feasible to build learning-
based methods that significantly enhance visual information quality in real time, potentially leading to
improved vessel detection in maritime supervision. Maritime safety and security can thus be guaranteed
in ports and other maritime infrastructures.

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

https://doi.org/10.1017/S0373463321000783 Published online by Cambridge University Press

https://orcid.org/0000-0002-1591-5583
mailto:wenliu@whut.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0373463321000783&domain=pdf
https://doi.org/10.1017/S0373463321000783


The Journal of Navigation 231

In the current literature, many vision-based technologies of vessel detection and tracking have been
developed (Zhang et al., 2017; Yang et al., 2018; Liu et al., 2021a, 2021b) for effective maritime
surveillance. These methods have been verified to generate satisfactory vessel detection results in normal
lighting environments. Under low-light imaging conditions, however, much valuable visual information
is buried in the dark, especially the moving objects of interest. To overcome the environmental effects,
Nie et al. (2019) designed a vessel detection method under different weather conditions. However, the
method did not enhance the essential information hidden in the dark and the study only expanded the
dataset by simulating various environments to improve the robustness of the vessel detection network.
Therefore, it is necessary to develop an efficient low-visibility enhancement network as the preprocessing
step. The advantage of this strategy is that it can directly serve any network to detect vessels under
low-light environment without retraining.

Low-visibility enhancement is a topic that has attracted sustained attention. Traditional model-based
methods often design special hand-crafted priors to obtain enhanced results. For instance, Fu et al.
(2013) introduced the bright channel prior (BCP), different from the popular dark channel prior orig-
inally proposed by He et al. (2010), to perform luminance estimation. Fu et al. (2016) introduced a
weighted variational model, which is significantly different from previous models. It is capable of sep-
arately estimating reflection and illumination components. Subsequently, Guo et al. (2017) constructed
a structure prior model to optimise the illumination component. These methods have been verified to
produce satisfactory results on traditional images. However, due to the significant differences in tex-
tural structures, these methods often fail to enhance maritime images accurately under poor imaging
conditions.

Furthermore, many studies on the enhancement of low-visibility maritime images have been carried
out to obtain satisfactory visual performance. Yang et al. (2019a, 2019b) proposed a coarse-to-fine
luminance estimation-based marine low-visibility enhancement method. Inspired by the convolu-
tional neural network (CNN), Guo et al. (2020) constructed a low-light maritime image enhancement
framework by combining traditional model estimation and deep learning. Although these methods
can obtain satisfactory visual effects, it is challenging to complete real-time processing tasks due
to the high computational complexity. To eliminate these potential limitations, a lightweight neu-
ral network for real-time low-visibility enhancement is proposed. Compared with previous studies,
the proposed low-visibility enhancement network (LVENet) differs from other competing methods as
follows.

• A CNN-enabled LVENet is designed to enhance the visual qualities of images captured under
low-light imaging conditions. In particular, the network is designed based on the Retinex theory.
Therefore, high-quality images can be obtained quickly with fewer calculations.

• To guarantee real-time maritime surveillance, it is proposed to replace ordinary convolutions with
depthwise separable convolutions to significantly reduce network parameters and increase
computational speed.

• A synthetically-degraded image generation method and a hybrid loss function are proposed to
further enhance the robustness and generalisation capacities of the lightweight neural
network.

• Image enhancement and vessel detection experiments under low-visibility conditions have
demonstrated that the method has superior image enhancement results and can improve detection
accuracy. In addition, the network obtains the best running time compared with other competing
image enhancement methods.

The rest of this paper is categorised into the following sections. Section 2 presents a review of
related works. In Section 3, the LVENet is introduced in detail. Network training details and numerical
experiments are presented in Section 4. Finally, Section 5 summarises the main contributions and future
works.
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Figure 1. The workflow of the proposed deep learning-based maritime video surveillance system. Note
that UAV and USV denote unmanned aerial vehicle and unmanned surface vehicle, respectively.

2. Related works

2.1. Maritime video surveillance system

Both the traditional remote sensing-based technology, for example, synthetic aperture radar (Yang et al.,
2018; Chaturvedi, 2019; Liu et al., 2021), and the automatic identification system (AIS) (Zhang et al.,
2016, 2017) have been salient achievements in maritime surveillance. However, these methods require
special equipment to be installed on both vessels and observation stations. Unfortunately, some vessels
are not equipped with these devices, which leads to the failure of maritime supervision. Meanwhile,
some illegal vessels attempt to escape detection and surveillance by shutting down related equipment
intentionally. Therefore, the maritime video surveillance system is crucial to improve maritime super-
vision and emergency rescue capabilities further. Though videos and images can provide more intuitive
information for managers, long-term observation will cause visual fatigue and eventually vital informa-
tion may be overlooked. With the emergence of deep learning technology and target detection, many
high-quality vessel detection methods have been proposed, making it possible to build an autonomous
maritime video surveillance system.

As shown in Figure 1, the workflow of the proposed deep learning-based maritime video surveillance
system consists of three components: visual sensing data acquisition (VSDA), visual data processing and
analysis (VDPA), and maritime applications. VSDA can obtain video and image information collected
by various devices in the ocean, on land, and in the sky. The VDPA receives and processes visual
information through special hardware, assisting supervisors to complete different maritime surveillance
and management tasks comprised in maritime applications. However, the visual data collected by
VSDA is easily affected by weather conditions which can directly affect the normal operation of
VDPA. In previous studies, the step of visual data preprocessing is usually ignored, which will cause
serious problems. For example, directly detecting the target on the video/image captured under low-light
conditions will significantly reduce the accuracy of vessel detection and even result in detection failure.
For the sake of better supervision, it is important to develop a low-visibility enhancement preprocessing
network to promote the robustness and accuracy of vessel detection.

2.2. Low-visibility enhancement methods

In the current literature, low-visibility enhancement methods can be divided into three broad categories:
plain methods, model-based methods, and deep learning-based methods.
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2.2.1. Plain methods
Histogram equalisation (Pisano et al., 1998) and its improved versions (Kim, 1997; Chen and Ramli,
2003; Tan et al., 2012) belong to the classic low-light enhancement methods that can force the greyscale
histogram to the full range by contrast stretching. In particular, histogram equalisation-based methods
have the capacity of guaranteeing contrast enhancement. However, the contrast stretching-based meth-
ods easily cause over- and under-enhancement. To further improve image quality, gamma correction
individually conducts a non-linear operation on each pixel to enhance illumination. Because the rela-
tionship between adjacent pixels is ignored, the restored images may be inconsistent with the latent
sharp versions.

2.2.2. Model-based methods
Unlike plain methods, model-based methods focus on decomposing the image and then processing the
components separately. Inspired by the popular Retinex theory (Land, 1977), the colour image I with
red, green, and blue (RGB) channels can be decomposed as follows:

𝐼 (𝑥) = 𝐼 (𝑥) ∗ 𝐿(𝑥), (1)

where x is the pixel index, ∗ denotes the element-wise multiplication operator, I, 𝐼, and L are the cap-
tured low-visibility image, reflection map, and illumination map, respectively. It is well known that the
reflection map contains textural details and rich colour. In contrast, the illumination map has only the
luminance information with single channel. Previous attempts estimated the smoothed illumination using
a Gaussian filter, for example, single-scale Retinex (Jobson et al., 1997a, 1997b), multi-scale Retinex
(MSR) (Jobson et al., 1997a, 1997b), and MSR with colour restoration (Jiang et al., 2015). Though
these methods can enhance the image illumination, direct reduction of illumination will cause problems
of unnatural effects and over-enhancement. Wang et al. (2013) thus developed the naturalness-preserved
enhancement method, which can significantly improve the image contrast and make the illumination
more natural. However, under certain circumstances (excessively dark regions), the enhancement results
appear an unnatural grey colour. Fu et al. (2013) presented the BCP-regularised method to generate
smooth illumination. However, the image details are over-smooth due to implementing a variational
approach to process the reflection. Fu et al. (2016) used a novel weighted variational model (SRIE)
for estimating the reflection and illumination and found that logarithmic transformation can signifi-
cantly highlight the details of dark regions. SRIE can enhance the target version by controlling the
illumination and suppressing unwanted noise. To further improve the enhancement results, the low-light
image enhancement framework (LIME) (Guo et al., 2017) was presented to refine the illumination by
introducing a structural prior.

2.2.3. Deep learning-based methods
Driven by deep learning, CNN has been widely used in image processing, for example, in denoising (Lu
et al., 2021), dehazing (Li et al., 2017), deraining (Yang et al., 2019a, 2019b), and super-resolution (Dong
et al., 2016). Due to the strong non-linear learning capability of CNN, deep learning-based methods have
been widely presented to perform low-visibility image enhancement. For instance, Lore et al. (2017)
constructed an encoder-decoder structure (LLNet) to optimise the illumination without over-amplifying
the lighter regions. Inspired by MSR (Jobson et al., 1997a, 1997b), Shen et al. (2017) proposed an
end-to-end MSR-based network (MSRNet) to directly learn the projection between low-light and latent
sharp images. However, the restored results generated by MSRNet often appear unnatural in practice.
In 2018, a Retinex-enabled network (RetinexNet) (Wei et al., 2018) was proposed, which introduced a
component separation method and employed a decomposition network. However, the images enhanced
by RetinexNet often suffer from serious distortion problems due to inaccurate component estimation. To
solve this problem, Zhang et al. (2019) proposed a strong low-light image enhancer, which can correctly
deal with the issue of image distortion.
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Though current studies on plain, model-, and learning-based methods have made breakthroughs,
these methods fail to directly serve maritime supervision due to the enormous difference between
maritime and traditional imaging scenarios. In addition, most strategies require expensive calculations
and fail to perform real-time video monitoring in maritime applications.

2.3. Automatic vessel detection methods

Vessel detection is important in maritime video surveillance, which aims automatically to detect the
moving vessels of interest in specific waters. It is able to identify abnormal vessel behaviours in a
timely manner, leading to improving maritime traffic safety. In the literature, several vessel detection
methods have been implemented to enable intelligent maritime surveillance. For instance, Zhu et al.
(2010) proposed an intact hierarchy method to detect vessels from spaceborne optical images. The
visual monitoring strategy of cage culture (Hu et al., 2011) was proposed to detect and track vessels
automatically. More recently, Chen et al. (2019) adopted a multi-view learning method which is capable
of extracting a highly coupled vessel appearance and shape. These methods have verified their detection
performance through massive experiments, but they generally require extensive calculations. Therefore,
it is still hard to detect dynamic vessels in real time.

The development of CNN has enabled many novel vessel detection methods to be designed. Wu
et al. (2018) proposed a novel inshore ship detection method, which is able to estimate the location of
possible ship heads and the rough ship directions through global search. Kim et al. (2018) introduced
a deep learning-enabled novel probabilistic ship detection and classification system. Shao et al. (2020)
designed a saliency-aware CNN framework for ship detection, which mainly includes comprehensive
ship discriminative features. In addition, the hybrid kernelised correlation and anomaly cleaning were
combined with tracking moving vessels from maritime visual sensing data. Meanwhile, Chen et al.
(2020) proposed a coarse-to-fine cascaded CNN (CFCCNN) to distinguish vessels with similar visual
appearance. These methods can satisfy the real-time process requirements on high-performance equip-
ment and further improve vessel detection accuracy. However, in low-light imaging environments, the
accuracy of vessel detection will be significantly reduced. The primary reason for worse performance
is that vital information is hidden in the dark and fails to be extracted by the vessel detection network.
Therefore, to improve vessel detection results in low-visibility conditions, it is necessary to improve
visual quality for installed imaging cameras in a maritime video surveillance system.

3. LVENet

This section is dedicated to developing the proposed LVENet. The flowchart of LVENet is summarised
in Figure 2. This study designs a lightweight CNN for learning the features of maritime low-visibility
scenes. In particular, depthwise separable convolution is used instead of traditional convolution to reduce
model parameters and improve calculation speed. Given that it is a recent advance, no research has been
conducted on the adoption of depthwise separable convolution for low-light image enhancement thus
far. Furthermore, a hybrid loss function is constructed to supervise the network training and enhance
the network generalisation.

3.1. Network architecture

Inspired by the Retinex theory, the proposed LVENet also assumes that a single low-visibility image I
can be decomposed into reflection 𝐼 and illumination L. Once a satisfactory illumination component is
obtained, the enhanced image (i.e., reflection component) can be easily obtained by

𝐼 (𝑥) = 𝐼 (𝑥)
𝐿(𝑥) . (2)
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Figure 2. The flowchart of the proposed LVENet. DS-Conv and DS-DConv represent depthwise sepa-
rable convolution and depthwise separable deconvolution, respectively.

Since the illumination component L only contains the single-channel brightness information, it is
possible to obtain a stable enhancement effect with fewer calculations. Therefore, LVENet is devoted to
learning the mapping between low-visibility image I and illumination component L.

The architecture of LVENet is visually shown in Figure 2. The input of the network is the three-
channel low-visibility image 𝐼, and the output is the estimated illumination map �̂� with single channel.
In particular, LVENet first adopts convolutional layers and then deconvolutional layers. The first three
convolutional layers, respectively, exploit 8, 16, and 32 filters to generate feature maps. Subsequently,
three residual blocks (He et al., 2016) are displayed to learn residual mapping, making it easier for the
network to detect subtle differences. Mathematically, the k-th feature map of the m-th residual block is
defined as follows

𝑔𝑚𝑘 = A(R𝑚
𝑘 + 𝑔𝑚−1

𝑘 ), (3)

where A(·) denotes the rectified linear units (ReLU) activation function, R𝑚
𝑘 is the k-th output feature

map generated by two convolutions of the m-th residual block, and 𝑔𝑚−1
𝑘 represents the k-th input map

obtained by the (m−1)-th residual block. Finally, three deconvolutional layers are employed to guarantee
that the output illumination component �̂� has the same spatial resolution as the input I. Note that the ReLU
activation function is displayed after each convolutional layer, and all convolutional/deconvolutional
layers are composed of depthwise separable convolution/deconvolution to simplify calculations and
reduce model parameters. In particular, the configuration details of the LVENet have been shown in
Table 1. Furthermore, the robust Adam technique (Kingma and Ba, 2014) is exploited for optimisation.
The l-th updated model parameters 𝜃𝑙 can be updated by

𝜃𝑙 = 𝜃𝑙−1 − 𝜕 · �̂�𝑙√
�̂�𝑙 + 𝑒

, (4)

where 𝜕 and e represent the learning rate and minimal constant for avoiding outliers, �̂�𝑙 and �̂�𝑙 ,
respectively, denote the exponential decay averages of the (l−1)-th gradient 𝑢𝑙−1 and the (l−1)-th
square gradient 𝑣𝑙−1, and 𝜃𝑙−1 is network parameters through the (l−1)-th updating. After obtaining the
illumination component �̂�, the enhanced image is finally generated, i.e.,

𝐼 (𝑥) = 𝐼 (𝑥)
max( �̂�(𝑥), 𝛾) , (5)

with 𝛾 being a particular parameter to avoid over-enhancement effect and suppress outliers. In the
experiments, 𝛾 = 0·15 was empirically selected to obtain satisfactory imaging performance.

https://doi.org/10.1017/S0373463321000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463321000783


236
Yu

G
uo

etal.

Table 1. Configurations of proposed LVENet.

DS-Conv1 DS-Conv2 DS-Conv3 RB DS-DConv1 DS-DConv2 DS-DConv3

Layer Type C C C C C C C C C C TC C TC C TC C

Size 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Channel 8 8 16 16 32 32 32 32 32 32 16 16 8 8 3 3
Stride 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pad 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
Groups 8 1 16 1 32 1 32 1 32 1 16 1 8 1 3 1

Note: C: convolution; DC: transposed convolution.
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(a) (b)

Figure 3. Usage case of traditional convolution and depthwise separable convolution.

Table 2. Comparison of the parameter quantities between traditional convolution (Conv) and depthwise
separable convolution (DS-Conv) in Figure 3.

Layer 1 Layer 2

Layer filters kernel size filters kernel size parameter quantity

Conv 4 3 3 —— —— —— 4 × 3 × 32 = 108
DS-Conv 3 1 3 4 3 1 3 × 1 × 32 + 4 × 3 × 12 = 39

3.2. Depthwise separable convolution and deconvolution

The powerful depthwise separable convolution was originally proposed by Howard et al. (2017). Unlike
traditional convolution, depthwise separable convolution is actually composed of two convolutions.
Figure 3 and Table 2 describe a classic case to distinguish the traditional convolution and depthwise
separable convolution. Specifically, this case takes the three-channel feature map as input and the four-
channel feature map as output. Four filters of the traditional convolutional layer simultaneously process
each channel input and obtain four maps. It is worth mentioning that each filter contains three kernels
of size 3× 3. Therefore, the parameter quantity of the traditional convolution is 108.

In contrast, the depthwise separable convolution splits this process into two steps: depthwise and
pointwise convolutions. Depthwise convolution is adopted to obtain the spatial characteristic informa-
tion (i.e., depthwise feature) of each channel. Inspired by grouped convolution, all filters in depthwise
convolution only process the feature map of the corresponding channel. It is obvious that the number of
depthwise feature maps obtained by depthwise convolution is equal to the input. Like traditional convo-
lution, pointwise convolution directly performs convolution with kernel size of 1× 1 on all depthwise
feature maps. To sum up, this depthwise separable convolution only contains 39 parameters. By com-
parison, the depthwise separable convolution can reduce the model parameters by nearly 64% in this
case.

To restore the image resolution faster, a depthwise separable deconvolution module is designed,
including the depthwise deconvolution and pointwise convolution. Unlike depthwise convolution, depth-
wise deconvolution replaces the traditional convolution with transposed convolution (Radford et al.,
2015) to construct a feature map with a larger pixel size. A 1× 1 convolution is then applied after the
depthwise deconvolution for pointwise feature extraction.

3.3. Hybrid loss function

To promote the network performance, a hybrid loss function is introduced to constrain the estimated
illumination component �̂� and enhanced image 𝐼. In this work, two loss functions (i.e., the gradient loss
function L𝐺 and the illumination-based mean square error loss function LIMSE) are proposed to make
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the illumination L and estimated illumination �̂� as similar as possible. The gradient loss function L𝐺 is
thus defined as follows

L𝐺 =
∑

𝑥∈Ω
(∇ℎ𝐿(𝑥) − ∇ℎ �̂�(𝑥))2 + (∇𝑣𝐿(𝑥) − ∇𝑣 �̂�(𝑥))2, (6)

where Ω is the entire image domain, ∇ℎ and ∇𝑣 represent the operators of the horizontal and vertical
gradients, respectively. In this work, L𝐺 can make the estimated illumination �̂� obtain an edge structure
that is similar to the ground truth L.

In the low-visibility enhancement task, the researchers considered that the dark region of the estimated
version should receive more attention to ensure the effectiveness of enhancement. Thus, a simple
method was proposed to divide the whole estimated illumination component �̂� into two parts: the
high illumination component �̂�ℎ and the low illumination component �̂�𝑙 . Since the single-channel
illumination only contains the luminance information of the scene, a specific value 𝜏 was thus chosen
to guarantee robust estimation. When the value of a certain pixel in �̂� (i.e., illumination of the pixel)
is higher than 𝜏, it is regarded as �̂�ℎ; while it is regarded as �̂�𝑙 otherwise. The final LIMSE can be thus
written as follows

LIMSE = 𝜆𝑙
∑

𝑥∈Ω
(𝐿𝑙 (𝑥) − �̂�𝑙 (𝑥))2 + 𝜆ℎ

∑

𝑥∈Ω
(𝐿ℎ (𝑥) − �̂�ℎ (𝑥))2, (7)

where 𝐿𝑙 and 𝐿ℎ, respectively, denote the ground truth corresponding to �̂�𝑙 and �̂�ℎ, 𝜆𝑙 and 𝜆ℎ represent
the trade-off parameters. According to the comparison experiments, the reliable coefficients, i.e., 𝜏 = 0·4,
𝜆𝑙 = 0·8 and 𝜆ℎ = 0·2, were chosen to generate the satisfactory low-visibility enhancement results. To
preserve the essential structure, illumination, and contrast in the final enhanced image 𝐼, the structural
similarity loss function LSSIM is exploited, i.e.,

LSSIM = 1 − SSIM(𝐼, 𝐼), (8)

where 𝐼 is the original clear image, SSIM(·) denotes the calculation operation of structural similarity
(SSIM). The terms of the SSIM metric will be explained in Section 4. To sum up, the hybrid loss
function L of the network can be defined as follows

L = 𝜆1L𝐺 + 𝜆2LIMSE + 𝜆3LSSIM, (9)

where 𝜆1, 𝜆2, and 𝜆3 denote the penalty coefficients. These were set as: 𝜆1 = 0·5, 𝜆2 = 1·3, and 𝜆1 = 2·0.

4. Experimental results and analysis

This section introduces the details of implementation of network training. All the qualitative and
quantitative experiments conducted are also discussed. Note that all experiments and training were
performed in Python 3·7 and Matlab 2019a environment running on a PC with Intel (R) Core (TM)
i5-10600KF CPU @ 4·10 GHz and a Nvidia GeForce RTX 2080 Ti GPU.

4.1. Evaluation metric

To fully evaluate the enhancement performance, five full-reference evaluation metrics and two no-
reference metrics were employed in the experiments. In particular, first five full-reference metrics were
adopted to measure the enhanced and latent sharp images: PSNR, SSIM, FSIM, FSIMc, and VSI. Two
no-reference metrics, NIQE and BTMQI, are then exploited to blindly evaluate the quality of enhanced
image. Finally, the mean average precision (mAP) is introduced to evaluate the accuracy of vessel
detection. The definitions of these evaluation metrics are given as follows:
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• PSNR: Peak signal-to-noise ratio (Wang and Bovik, 2009) is a widely-used evaluation metric to
measure image quality. The PSNR value between the restored image 𝑌 and the target version Y is
given by

PSNR(𝑌,𝑌 ) = 10 log
𝑀2

MSE(𝑌,𝑌 ) , (10)

where M is the maximum pixel value, and MSE(𝑌,𝑌 ) represents the operation of calculating the mean
square error (MSE) between 𝑌 and Y.

• SSIM: Structural similarity (Wang et al., 2004) is proposed based on the assumption that the human
visual system can judge image structure similarity objectively. SSIM consists of three main
components: luminance comparison 𝑙 (𝑌,𝑌 ), contrast comparison 𝑐(𝑌,𝑌 ), and structure comparison
𝑠(𝑌,𝑌 ). The mathematical expression of SSIM can be extracted as

SSIM(𝑌,𝑌 ) = (2𝜇�̂� 𝜇𝑌 + 𝑐1)(2𝜎�̂�𝑌 + 𝑐2)
(𝜇2

�̂�
+ 𝜇2

𝑌 + 𝑐1)(𝜎2
�̂�
+ 𝜎2

𝑌 + 𝑐2)
, (11)

where 𝜇�̂� and 𝜇𝑌 , respectively, represent the mean values of𝑌 and Y,𝜎�̂� and𝜎𝑌 denote the corresponding
standard deviations, 𝜎�̂�𝑌 is the covariance value. 𝑐1 and 𝑐2 are special constants to prevent outliers.

• FSIM and FSIMc: Feature similarity (Zhang et al., 2011) considers all pixels in an image to have
different importance. For instance, pixels at the edge of an object are more important than pixels in
other background regions. Therefore, the improvement direction of this evaluation index focuses on
distinguishing necessary pixels and giving them appropriate weights. FSIM is similar to SSIM,
coupled with the phase congruency term 𝑆𝑝𝑐 and gradient magnitude term 𝑆𝐺 . The definition of
FSIM is described as follows

FSIM(𝑌,𝑌 ) =
∑

𝑥∈Ω 𝑆𝑝𝑐 (𝑥)𝑆𝐺 (𝑥)max(PC�̂� (𝑥), PC𝑌 (𝑥))∑
𝑥∈Ω max(PC�̂� (𝑥), PC𝑌 (𝑥))

, (12)

with PC�̂� and PC𝑌 being the phase congruency of 𝑌 and Y. On the basis of FSIM, FSIMc further
considers chromaticity information 𝑆𝐶 (𝑥) and uses 𝜆 to further adjust the importance of chromatic
components, i.e.,

FSIMc(𝑌,𝑌 ) =
∑

𝑥∈Ω 𝑆𝑝𝑐 (𝑥)𝑆𝐺 (𝑥)𝑆𝜆𝐶 (𝑥)max(PC�̂� (𝑥), PC𝑌 (𝑥))∑
𝑥∈Ω max(PC�̂� (𝑥), PC𝑌 (𝑥))

. (13)

• VSI: Visual saliency-induced index (Zhang et al., 2014) considers that distortion will cause visual
saliency changes, which strongly correlates with distortion. Therefore, the GBAS model-based
visual saliency map (VS map) is used to evaluate the distortion. The mathematical definition of VSI
between 𝑌 and Y is given by

VSI(𝑌,𝑌 ) =
∑

𝑥∈Ω 𝑆(𝑥)max(𝑉𝑆�̂� (𝑥), 𝑉𝑆𝑌 (𝑥))∑
𝑥∈Ω max(𝑉𝑆�̂� (𝑥), 𝑉𝑆𝑌 (𝑥))

, (14)

where S denotes the local similarity of𝑌 and Y,𝑉𝑆�̂� and𝑉𝑆𝑌 are the VS maps corresponding to𝑌 and Y.

• NIQE: Natural image quality evaluator (Mittal et al., 2013) is proposed according to the statistical
law observed in natural images. NIQE is a quality perception collection of statistical features
constructed based on a simple and successful airspace natural scene statistics model.

• BTMQI: Blind tone-mapped quality index (Gu et al., 2016) is an efficient and effective no-reference
objective quality metric. In particular, BTMQI can automatically evaluate standard low dynamic
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range images created by different tone mapping operators without accessing the original high
dynamic range image.

• mAP: Mean average precision (Everingham et al., 2010) is an evaluation index widely used in target
detection. mAP is obtained by calculating the mean value of average precision for all classes. In this
work, average precision can be obtained by the area under the precision/recall curve of detections.

Note that more details of the implementation of PSNR, SSIM, FSIM/FSIMc, VSI, NIQE, BTMQI,
and mAP can be found in the literature (Wang et al., 2004; Wang and Bovik, 2009; Everingham et al.,
2010; Zhang et al., 2011, 2014; Mittal et al., 2013; Gu et al., 2016). To obtain better enhancement
performance, the values of full-reference metrics should become higher, whereas the values of no-
reference metrics should be lower. In addition, higher mAP indicates more accurate detection of moving
vessels in maritime applications.

4.2. Synthetically-degraded image generation

Though many datasets that pair low-light and clear images already exist, a network model trained by
these datasets cannot perform maritime surveillance effectively due to the distinctive nature of maritime
imagery. Meanwhile, it is challenging to collect paired low-light/clear maritime images. Therefore, it
is crucial to generate more realistic low-visibility images based on clear maritime surveillance images.
The traditional low-visibility image generation method simply multiplies all image pixels by a definite
coefficient, which causes all regions of the image to be darkened to the same degree. Unlike synthetic
images, natural low-light images usually have both bright and dark regions. Therefore, an assumption
was proposed that applying a stronger darkening factor (i.e., lower value) to the darker regions can make
the composite image more realistic. Inspired by this prior, a simple but effective illumination estimation-
based method was designed to obtain the darkening weight of each pixel. Specifically, the maximum
value of each pixel of the RGB image 𝐼 in the three channels (i.e., R, G, B) was found, which can be
written as

�̄�(𝑥) = max
𝐶∈{𝑅, 𝐺, 𝐵}

𝐼𝐶 (𝑥), (15)

with 𝐼𝐶 and �̄� being the single-channel image of 𝐼 and coarse illumination component. Subsequently, a
guided filter was adopted to smooth the details and preserve the significant edges as much as possible,
which can be given by

�̂�(𝑥) = 𝐺∗ (𝐼Gray(𝑥)) ⊗ �̄�(𝑥), (16)

where �̂� and 𝐼Gray represent the darkening weight (i.e., refined illumination component) and guided
image (i.e., greyscale image corresponding to 𝐼), ⊗ and 𝐺∗ are the convolutional operator and guided
filter associated with 𝐼Gray. In this paper, the local window radius and regularisation parameter are
respectively set as 7 and 10−3. More details on the description of guided filter can be found in He et al.
(2013). Finally, the specific darkening coefficient 𝜀, weight �̂�, and clear image 𝐼 were multiplied to
obtain the final synthetically-degraded image, i.e.,

𝐼 (𝑥) = 𝜀�̂�(𝑥) ∗ 𝐼 (𝑥). (17)

4.3. Implementation details

To test the implementation of the proposed model for maritime surveillance, 1,000 images were selected
and captured as a training dataset containing 800 SeaShips images (Shao et al., 2018), 100 outdoor
images chosen by the MIT-Adobe FiveK dataset (Bychkovsky et al., 2011), and 100 maritime images
captured by the authors’ SLR camera. Then 8,000 patches with the size of 256× 256 were generated using
cropping, rotating, and scaling. In the numerical experiments, the training epoch was set as 60. During
training, the learning rate was set to 10−3 in the first 30 epochs and 10−4 in the last 30 epochs. In the
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training, the inputs were obtained by Equation (17) mentioned in Section 4.1 with darkening coefficient
𝜀 ranging between (0·4, 0·8). It took about 3 h to train the low-visibility enhancement network LVENet
with the Pytorch 1.5.0. The Python source code is available at https://github.com/gy65896/LVENet.

4.4. Comparisons with other competing methods

In this work, the model-based methods of BCP (Fu et al., 2013), JIEP (Cai et al., 2017), and SRIE
(Fu et al., 2016) and the deep learning-based methods of RetinexNet (Wei et al., 2018), MBLLEN
(Lv et al., 2018), LightenNet (Li et al., 2018), and KinD (Zhang et al., 2019) are involved as the
competitors on image enhancement experiments. To ensure a fair comparison, the optimal parameters
of these state-of-the-art methods are directly adopted according to the authors’ codes. Furthermore,
YOLOv4 (Bochkovskiy et al., 2020), a well-designed target detection network, is used to analyse the
improvement of detection effect by low-visibility enhancement.

• BCP: Bright channel prior (Fu et al., 2013). This method proposes a BCP-regularised variational
framework for low-visibility enhancement. An alternating direction optimisation method is adopted
to effectively handle the resulting minimisation problem. In particular, BCP can effectively achieve
low-visibility enhancement through an alternate direction optimisation-based method.

• JIEP: Joint intrinsic-extrinsic prior (Cai et al., 2017). This method has the capacity of jointly
estimating both illumination and reflection components from an observed image. It is able to capture
the luminance by illumination prior, estimate the reflectance with rich details by texture prior, and
preserve the structural features by shape prior.

• SRIE: Simultaneous reflectance and illumination estimation (Fu et al., 2016). SRIE is proposed for
better prior representation based on the logarithmic transformation. This method can effectively
retain more details and suppress unwanted noise.

• RetinexNet: Deep Retinex decomposition-based network (Wei et al., 2018). Based on the assumption
that original images can be decomposed into illumination and reflection components, a deep
Retinex-based network is presented to enhance imaging quality. RetinexNet uses a decomposition
network and an illumination adjustment network to enhance the reflectance and illumination
components, respectively.

• MBLLEN: Multi-branch low-light enhancement network (Lv et al., 2018). MBLLEN is devoted to
simultaneously handling various factors, including artefact, contrast, brightness, and noise. It
employs different modules to extract abundant features and perform enhancement via multiple
subnets. Finally, the enhanced image can be generated through multi-branch fusion.

• LightenNet: LightenNet for weakly illuminated enhancement (Li et al., 2018). LightenNet is a
trainable CNN for enhancement of weakly illuminated images. In particular, LightenNet takes the
weakly illuminated image as an input and outputs its related illumination. The final enhanced image
can thus be obtained according to Retinex theory.

• KinD: Kindling the darkness (Zhang et al., 2019). KinD first exploits a simple and effective module
to decompose the original image into illumination and reflection components. Two sub-networks are
then designed to enhance the illumination and reflection components separately. These two enhanced
components are finally combined to generate the latent sharp image.

• YOLOv4: You only look once v4 (Bochkovskiy et al., 2020). YOLOv4 is composed of four parts:
CSPDarknet53 backbone, PANet path-aggregation neck, SPP additional module, and YOLOv3
anchor-based head. In this paper, this model is trained for 50 epochs and uses 7,000 SeaShips images
(Shao et al., 2018) as the dataset.

4.5. Full-reference image quality assessment

This subsection is devoted to verifying the superior performance of the proposed method. Specifically,
27 clear maritime images were randomly selected, as shown in Figure 4, for the experiments, and 81
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Figure 4. Twenty-seven selected sharp maritime images for synthetic experiments.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Comparisons of synthetic experiments on one image from Figure 4. From top-left to bottom-
right: (a) synthetic low-light image with 𝜀 = 0·5, enhanced versions obtained by (b) BCP, (c) JIEP, (d)
SRIE, (e) RetinexNet, (f) MBLLEN, (g) LightenNet, (h) KinD, (i) LVENet, and (j) ground truth (GT),
respectively.

low-visibility images were synthesised using Equation (17) with 𝜀 = {0·5, 0·6, 0·7}. Furthermore, three
model-based methods (i.e., BCP, JIEP, and SRIE) and four learning-based methods (i.e., RetinexNet,
MBLLEN, LightenNet, and SRIE) were also introduced to compete with the LVENet.

To make better visual comparisons, three typical synthetic low-visibility images generated from clear
images (Figure 4) and their corresponding enhanced versions obtained by various methods are shown in
Figures 5–7. It can be clearly found that BCP usually causes distortion and artefact problems. Especially
in Figure 6, the enhanced version obtained by BCP has serious colour abnormalities. Although JIEP,
SRIE, and MBLLEN can guarantee natural visual effects, these enhanced images have the problem of
insufficient enhancement. Meanwhile, it can be clearly observed from the magnified regions in Figure 7
that MBLLEN makes the enhanced image excessively smooth. Unlike JIEP, SRIE, and MBLLEN,
LightenNet has the problem of over-enhancement and a black halo exists on the edges of the object
of interest. RetinexNet and KinD cause different degrees of colour distortion and unnaturalness in the
image. The reason behind these phenomena may be that the competing methods fail to extract the
structural features in maritime images. In contrast, the proposed network is capable of learning more
meaningful features, resulting in effectively restoring visual colour and details in low-light regions.

To quantitatively evaluate the enhancement effect of restored images, five full-reference evaluation
metrics (PSNR, SSIM, FSIM, FSIMc, and VSI) are introduced. The calculation results of each metric
are shown in Table 3. Meanwhile, the data in Table 3 are visualised as a Kiviat diagram shown in
Figure 8 to compare the enhanced performance more intuitively. It can be found that the proposed
method is the optimal approach in the calculation results of all five full-reference metrics. The superior
performance benefits from imposing more significant penalties on dark pixels and adopting maritime
images as datasets during training.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Comparisons of synthetic experiments on one image from Figure 4. From top-left to bottom-
right: (a) synthetic low-light image with 𝜀 = 0·6, enhanced versions obtained by (b) BCP, (c) JIEP, (d)
SRIE, (e) RetinexNet, (f) MBLLEN, (g) LightenNet, (h) KinD, (i) LVENet, and (j) ground truth (GT),
respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Comparisons of synthetic experiments on one image from Figure 4. From top-left to bottom-
right: (a) synthetic low-light image with 𝜀 = 0·7, enhanced versions obtained by (b) BCP, (c) JIEP, (d)
SRIE, (e) RetinexNet, (f) MBLLEN, (g) LightenNet, (h) KinD, (i) LVENet, and (j) ground truth (GT),
respectively.

4.6. No-reference image quality assessment

This subsection is dedicated to verifying the effectiveness of the proposed method for realistic low-
light maritime images. In this work, the LVENet is compared with seven different image enhancement
methods: BCP, JIEP, SRIE, RetinexNet, MBLLEN, LightenNet, and KinD. Specifically, the LVENet
and other competitive methods are exploited to enhance three real low-visibility maritime examples.
The enhancement results and their associated magnified versions are shown in Figure 9. Meanwhile,
two evaluators (i.e., NIQE and BTMQI) are adopted to compare all the imaging methods.
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Table 3. Comparison of LVENet with PSNE, SSIM, FSIM, FSIMc, and VSI (mean±std) framework
and state-of-the-art methods on 81 synthetic images. The best, second best, and third best results are
highlighted in red, blue, and green, respectively.

Method PSNR SSIM FSIM FSIMc VSI

BCP 15·53±3·00 0·772±0·082 0·841±0·035 0·835±0·043 0·945±0·018
JIEP 20·40±2·81 0·939±0·027 0·972±0·012 0·971±0·012 0·993±0·003
SRIE 19·42±2·57 0·912±0·037 0·958±0·017 0·957±0·017 0·989±0·005
RetinexNet 16·58±1·23 0·779±0·075 0·866±0·038 0·865±0·038 0·959±0·017
MBLLEN 18·67±4·43 0·813±0·064 0·941±0·017 0·940±0·017 0·981±0·006
LightenNet 12·63±3·55 0·753±0·087 0·863±0·040 0·860±0·040 0·959±0·016
KinD 21·79±2·27 0·905±0·039 0·933±0·015 0·931±0·016 0·982±0·005
LVENet 27·19±3·73 0·977±0·011 0·984±0·007 0·984±0·007 0·996±0·002

Figure 8. Kiviat diagram that visualises the calculation results from Table 3. All calculated values of
each metric are normalised, i.e., the best value is 1 and the worst is 0.

Through visual comparison, it can be observed that BCP tends to produce an unnatural white halo on
the target of interest and is accompanied by a certain degree of colour distortion. The restored images of
JIEP and SRIE seem very natural, but their insufficient enhancement may make it hard to find essential
information. Although RetinexNet has successfully enhanced the illumination, it is evident that the
colour of the enhanced versions becomes extremely unnatural, which will directly lead to the failure
of vessel detection. MBLLEN can obtain satisfactory visual effects, however, the improved images of
MBLLEN have the problem of insufficient enhancement and the risk of over-smoothing. The combined
effect of these two issues may directly erase valuable information hidden in the dark. The enhanced
versions of LightenNet have the problem of overexposure and boundary artefacts in certain regions.
Although KinD can achieve almost the same visual effect as the proposed method through expensive
calculations, both no-reference metrics show that the proposed recovery effect has better performance.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9. Comparisons of realistic experiments on images 1–3 (from top to bottom: image 1, image 2,
and image 3). From left to right: (a) low-light image, and enhanced versions obtained by (b) BCP, (c)
JIEP, (d) SRIE, (e) RetinexNet, (f) MBLLEN, (g) LightenNet, (h) KinD, and (i) LVENet, respectively.

Table 4. NIQE and BTMQI comparisons of LVENet with other methods on all test images in Figure 9.
The best, second best, and third best results are highlighted in red, blue, and green, respectively.

Image 1 Image 2 Image 3 mean±std

Method NIQE BTMQI NIQE BTMQI NIQE BTMQI NIQE BTMQI

Low-Light 3·351 5·070 3·637 7·172 3·073 4·205 3·353±0·230 5·482±1·246
BCP 3·052 3·899 2·584 2·971 2·699 4·264 2·778±0·337 3·711±0·545
JIEP 2·854 3·461 2·871 4·394 2·621 2·486 2·782±0·114 3·447±0·779
SRIE 3·075 2·891 2·937 4·676 3·018 2·902 3·010±0·057 3·490±0·839
LightenNet 3·771 3·665 4·722 1·918 2·747 3·705 3·747±0·807 3·096±0·833
RetinexNet 3·768 2·844 3·249 2·556 4·251 3·245 3·756±0·409 2·881±0·283
MBLLEN 2·937 3·192 2·922 4·312 3·865 2·845 3·241±0·441 3·450±0·626
KinD 3·311 3·195 3·524 3·010 2·595 2·723 3·143±0·397 2·976±0·194
LVENet 2·843 2·775 2·830 2·999 2·581 2·649 2·751±0·121 2·808±0·145

As shown in Table 4, the LVENet has superior performance on both NIQE and BTMQI metrics in most
cases. Besides, Figure 10 shows more cases of low-visibility maritime images obtained by this method,
illustrating that the proposed LVENet can effectively obtain buried important information.

4.7. Vessel detection after low-visibility enhancement

In the maritime video surveillance system, the low-visibility environment seriously reduces the accuracy
of manual or autonomous vessel detection. The LVENet is designed to solve the problems of detection
failure and inaccurate identification. To verify that the LVENet can improve detection performance,
YOLOv4 (Bochkovskiy et al., 2020) is employed to detect vessels in both original low-visibility images
and their enhanced versions obtained by LVENet.

Figure 11 shows the detection effects of synthetic low-visibility images, enhanced images, and normal
visibility images (i.e., original image). By comparison, detection failures and errors often occur in low-
visibility environments. However, the enhanced images can achieve almost the same detection effect
as the normal visibility image. Meanwhile, Figure 12 shows the visual results of vessel detection on
the real low-visibility images and the enhanced images. It can be clearly seen that the preprocessing
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Figure 10. More low-visibility enhancement cases generated by the proposed LVENet.

(a)

(b)

(c)

Figure 11. Vessel detection experiments on synthetic low-visibility maritime images. From top to bottom:
the vessel detection results on (a) low-light images, (b) enhanced images obtained by LVENet, and (c)
ground truth (GT), respectively.

(a)

(b)

Figure 12. Vessel detection experiments on real low-visibility maritime images. From top to bottom:
the vessel detection results on (a) low-light images and (b) enhanced images obtained by LVENet,
respectively.

of images through the LVENet can significantly improve the detection performance in natural low-
visibility maritime environments. In low-light conditions, YOLOv4 tends to distinguish vessel types
incorrectly and even produces the problem of detection failure. However, using the proposed method as
preprocessing module can enable the vessel detection model to collect features better and to improve
accuracy. Furthermore, Table 5 qualitatively displays the detection performance of all images using mAP
indicators to further reveal the improvement of the LVENet for vessel detection effect in a low-visibility
environment.
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Table 5. Comparison of mAP results (unit: %).

Method Dataset (Syn) Dataset (Real) Dataset (All)

Low-Light 45·83% 7·74% 37·28%
LVENet 70·83% 64·29% 57·96%
GT 71·62% —— ——

Note: Dataset (Syn), Dataset (Real), and Dataset (All) contain 18 images in Figure 11, 12 images in
Figure 12, and 30 images in Figures 11 and 12, respectively.

Table 6. Comparison of running times (unit: second) and model parameters of several image
enhancement methods.

Image size

Method Platform Parameters 480× 640 720× 1080 1080× 1920

BCP Matlab —— 0·8881 2·2966 6·3425
JIEP Matlab —— 4·9418 13·2827 22·3051
SRIE Matlab —— 10·4099 21·6104 26·4617
LightenNet Matlab (Caffe) 28,929 4·0522 11·6948 32·9052
RetinexNet Python (Tensorflow) 8,536,655 0·0978 0·2460 0·9082
MBLLEN Python (Tensorflow) 450,171 0·1004 0·2516 0·5762
KinD Python (Tensorflow) 35,963,861 0·0577 1·3596 2·7646
LVENet Python (Pytorch) 6,351 0·0038 0·0041 0·0045

Note: RetinexNet, MBLLEN, KinD, and the proposed LVENet method are accelerated by 2080 Ti GPU.

4.8. Running time analysis

The lightweight structure of LVENet leads to fast low-visibility enhancement. In this section, LVENet is
sufficiently compared with seven image enhancement methods. It is noted that other competing imaging
methods are performed using Matlab, Matlab (Caffe), and Python (Tensorflow) platforms, according to
the original codes provided by the authors. To analyse the network complexity of deep learning-based
approaches, the model parameters of all methods are counted. Meanwhile, three types of low-visibility
datasets with sizes of 480× 640, 720× 1080, and 1080× 1920 are selected for all methods to run. In
particular, each dataset contains 20 images. The model parameters and average calculation times of
the three scale images are shown in Table 6. Despite other slower Matlab implementations, it is fair to
compare RetinexNet, MBLLEN, KinD, and the LVENet. The results illustrate that the proposed method
takes first place by a large margin in terms of calculation speed. LVENet takes just 1 s to process 222
(1920× 1080) images under the acceleration of 2080Ti GPU.

5. Conclusion and future work

This paper proposes a low-visibility enhancement network (termed LVENet) that directly reconstructs
enhanced images via a lightweight CNN. In particular, it is inspired by the Retinex theory to estimate
the illumination component using a depthwise separable convolutional network. Finally, the enhanced
image is generated by dividing the input low-visibility image with the estimated illumination. In addition,
a novel synthetically-degraded image strategy and a hybrid loss function were also designed to improve
network performance and provide maritime images as training datasets to support better maritime
surveillance. The benefit of the LVENet is that it requires relatively few calculations to obtain a
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(a) (b)

Figure 13. Failure enhancement cases. From left to right: (a) low-light image, and (b) enhanced
versions obtained by LVENet, respectively.

satisfactory visual enhancement effect. Its superior performance has been verified on both full and no-
reference assessments. Furthermore, experiments on detecting vessels after low-visibility enhancement
and computing running time were also conducted to prove the practicality and real-time capability of
the proposed LVENet.

Although the effectiveness of the method has been proven in many experiments, it is sometimes
difficult to obtain perfect visual effects under certain circumstances. Figure 13 visually illustrates two
failed cases related to low-visibility enhancement. The proposed method enhanced the brightness, but
the enhanced images are still disturbed by unwanted noise carried in the input low-visibility images.
However, it is still worthy of consideration since it enables better imaging results than other competitive
methods. In future work, the authors will focus on developing a noise-insensitive learning method to
further enhance image quality and vessel detection in maritime videos. The authors believe that there is
significant potential to exploit the proposed method to guarantee the safety of vessel navigation under
maritime video surveillance.
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