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We consider an overlapping-generations economy with two consumption goods. There are
two sectors that produce a pure consumption good and a mixed good that can be either
consumed or used as capital. We prove that the existence of Pareto-optimal
expectations-driven fluctuations is compatible with standard sectoral technologies if the
share of the pure consumption good is low enough. Following Reichlin’s [Journal of
Economic Theory 40 (1986), 89–102] influential conclusion, this result suggests that some
fiscal policy rules can prevent business-cycle fluctuations in the economy by driving it to
the optimal steady state as soon as they are announced.
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1. INTRODUCTION

A widespread perception among economists is that macroeconomic busi-ness-
cycle fluctuations are driven not only by shocks on technologies or preferences,
but also by changes in expectations about the fundamentals. A major strand of
the literature focusing on fluctuations derived from agents’ beliefs is based on the
concept of sunspot equilibria, which dates back to the early work of Shell (1977),
Azariadis (1981), and Cass and Shell (1983). As shown by Woodford (1986), the
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existence of sunspot equilibria is closely related to the equilibrium indeterminacy
under perfect foresight, i.e., the existence of a continuum of equilibrium paths
converging toward one steady state from the same initial value of the state variable.

Since the contribution of Reichlin (1986), the possible coexistence of dy-
namic efficiency, i.e., Pareto-optimal equilibrium paths, and local indeterminacy
in overlapping-generations (OLG) models has been widely discussed in the lit-
erature. This is an important question in terms of stabilization policies. Indeed,
when local indeterminacy occurs under dynamic efficiency, the introduction of a
public policy based on taxes and transfers could at the same time stabilize the
economy and reach the Pareto-optimal steady state along which all generations
get an equal level of welfare. In contrast, when local indeterminacy occurs under
dynamic inefficiency, stabilization policies targeting the steady state leave room
for welfare losses. Although Reichlin (1986) has shown that locally indeterminate
dynamically efficient equilibria can occur in an aggregate model with a Leontief
technology, Cazzavillan and Pintus (2007) have recently proved that this result is
not robust to the introduction of any positive capital–labor substitution.

In Galor (1992) type two-sector OLG models, with one pure consumption good
and one pure investment good, the conclusion is not so clear-cut. Indeed, Drugeon
et al. (2010) and Nourry and Venditti (2011) have proved that local indeterminacy is
ruled out when the steady state is dynamically efficient, provided the sectoral tech-
nologies are not too close to Leontief functions. The intuition for this result is quite
simple. Starting from an arbitrary equilibrium, consider another one in which the
agents expect a higher rate of investment at time t , leading to some higher capital
stock at time t + 1. This expectation will be self-fulfilling, provided the amount of
saving at date t is large enough to support the increase of the investment good out-
put that directly provides the capital stock of the next period. When the equilibrium
is dynamically efficient, the share of first period consumption is large enough to
generate a stationary capital stock lower than the Golden Rule and thus prevents the
agent from saving enough. At the same time, when the sectoral technologies have
elasticities of capital–labor substitution far enough from zero, any transfer of capi-
tal in the investment good sector is followed by a decrease of labor, so that the final
output cannot generate a large enough increase of capital.1 As a result, the initial
expectation cannot be realized as an equilibrium, and, under dynamic efficiency,
local indeterminacy, together with fluctuations based on local sunspots, is ruled out.

However, in a multisector framework, the assumption of a unique consump-
tion good is highly peculiar and is likely to generate singular properties. When
heterogeneous sectors are introduced, it is quite common to assume instead that
multiple consumption goods coexist.2 In such a case, the existence of additional
substitution mechanisms between the different consumption goods suggests that
new conclusions could be obtained. Unfortunately, the literature on OLG models
has almost exclusively focused on Galor-type formulations. Among the few con-
tributions dealing with a different framework, the most noteworthy is a paper of
Kalra (1996), which studies the existence of cyclical equilibria in a generalization
of the standard two-sector model by assuming that both goods are consumed.3
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Besides the pure consumption good, the second sector produces a mixed good that
can either be consumed or be used as capital. Such a formulation, which is more in
line with standard national accounting data than the usual Galor-type formulation,4

allows for the existence of intratemporal substitution in consumption. Kalra then
shows that local indeterminacy through the occurrence of a Hopf bifurcation is
more likely to occur than in the standard Galor-type model.5 However, as he does
not discuss the dynamic efficiency property of the equilibrium, nothing is said
about the question initially raised by Reichlin (1986).

The purpose of this paper is then to complement the analysis of Kalra and to
explore the existence of dynamically efficient endogenous fluctuations. A simple
intuition suggests that new conclusions can be obtained. With two consumption
goods, everything else equal, the stock of capital in the next period that is supported
by the amount of saving at date t is lower than in the standard case because it is
based on a mixed good output decreased by the part that is used for consumption.
In such a case, a given amount of saving may be compatible with the expectation
of a higher capital stock at time t + 1 if a larger part of the mixed good output is
consumed. Based on this new channel, local indeterminacy and the existence of
expectations-driven fluctuations can become compatible with dynamic efficiency
under standard sectoral technologies with higher elasticities of capital–labor sub-
stitution.

We consider a simplified version of Kalra’s model assuming a unitary elasticity
of intratemporal substitution between the two consumption goods. We provide
a simple condition for dynamic efficiency. Then we show that, according to the
previous intuition, when the pure consumption good is capital-intensive, local
indeterminacy and expectations-driven fluctuations occur for dynamically efficient
competitive equilibria with higher sectoral elasticities of capital–labor substitution
than in the standard model, provided the share of the pure consumption good in
utility is low enough. We thus show that Reichlin’s (1986) result is more robust in
a two-sector OLG economy with multiple consumption goods than in the standard
Galor-type formulation.

The paper is organized as follows: Section 2 presents the model. Section 3 proves
the existence of a steady state and provides a condition for dynamic efficiency.
Section 4 contains our main results on the coexistence of local indeterminacy and
dynamic efficiency. Some results under dynamic inefficiency are also provided
in order to establish a better understanding of the relationship between Pareto
optimality and the dynamic properties of competitive equilibria. Concluding com-
ments are in Section 5 and the proofs are gathered in a final Appendix.

2. THE MODEL

2.1. The Production Side

We consider an economy with two produced goods, one pure consumption good y0

that cannot be used as capital, and one mixed good y that can be either consumed

https://doi.org/10.1017/S1365100511000484 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000484


ENDOGENOUS BUSINESS CYCLES IN OLG ECONOMIES 89

or invested, i.e., used as capital. There are two inputs, capital and labor. We assume
complete depreciation of capital within one period and inelastic supply of labor.
We then get

yt − zt = kt+1, (1)

with zt the consumption part of the mixed good in period t and kt+1 the total
amount of capital in period t + 1.

Each good is produced with a constant–returns to scale technology such that
y0 = f 0(k0, l0) and y = f 1(k1, l1), with k0 + k1 ≤ k, k being the total stock of
capital, and l0 + l1 ≤ �, � being the total amount of labor.

Assumption 1. Each production function f i : R2
+ → R+, i = 0, 1, is C2,

increasing in each argument, concave, homogeneous of degree one, and such that
for any x > 0, f i

1 (0, x) = f i
2 (x, 0) = +∞, f i

1 (+∞, x) = f i
2 (x,+∞) = 0.

For any given (k, y, �), profit maximization in the representative firm in each
sector is equivalent to solving the following problem of optimal allocation of
productive factors between the two sectors:

τ(k, y, �) = max
k0,k1,l0,l1≥0

f 0(k0, l0),

s.t. y ≤ f 1(k1, l1), k0 + k1 ≤ k, and l0 + l1 ≤ �.
(2)

The social production function τ(k, y, �) gives the maximal output of the con-
sumption good. Under Assumption 1, τ(k, y, �) is homogeneous of degree one,
concave, and twice continuously differentiable.6 Denoting as w the wage rate, r

the gross rental rate of capital, and p the price of the mixed good, all in terms of
the price of the pure consumption good, we derive

r = τ1(k, y, �), p = −τ2(k, y, �), w = τ3(k, y, �). (3)

2.2. The Consumption Side

In each period t , Nt agents are born, and they live for two periods. In their first
period of life (when young), the agents are endowed with one unit of labor, which
they supply inelastically to firms. Their income is equal to the real wage. They
allocate this income between current consumption and savings, which are invested
in the firms. In their second period of life (when old), they are retired and their
income resulting from the return on the savings is entirely consumed. Each agent
is assumed to have one child, so that population is constant, i.e., Nt = N .

The preferences of a representative agent born at time t are defined over
his consumption bundle for each of the two produced goods, c0

t , c1
t , when

young, and d0
t+1, d1

t+1, when old. They are summarized by the utility function
U(c0

t , c
1
t , d

0
t+1, d

1
t+1) = u(Ct ,Dt+1/B) with

Ct = (
c0
t

)θ (
c1
t

)1−θ
, Dt+1 = (

d0
t+1

)θ (
d1

t+1

)1−θ
(4)
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and7

u(Ct ,Dt+1/B) = [
C

1−1/γ
t + δ(Dt+1/B)1−1/γ

]γ /(γ−1)
, (5)

where 0 < θ ≤ 1, δ > 0 is the discount factor, γ > 0 is the elasticity of
intertemporal substitution in consumption, and B > 0 is a scaling parameter. Ct

and Dt+1 can be interpreted as composite goods derived from the two consumption
goods y0

t and zt with

y0
t = T (kt , yt , �t ) = N

(
c0
t + d0

t

)
and zt = N

(
c1
t + d1

t

)
. (6)

It follows that θ is the share of the pure consumption good and 1 − θ the share of
the mixed good in the composite goods C and D.

A young agent born in period t has first to solve two static problems of optimal
composition of his two composite goods. Denoting by πt the consumer price index
in terms of the pure consumption good, we get the following optimization program
for Ct :

max
c0
t ,c

1
t ≥0

(
c0
t

)θ (
c1
t

)1−θ
s.t. c0

t + ptc
1
t = πtCt . (7)

The corresponding program for Dt+1 is similar, with d0
t+1 +pt+1d

1
t+1 = πt+1Dt+1.

Solving the associated first-order conditions gives

c0
t = θπtCt , c1

t = (1 − θ) πtCt

pt

, πt =
(

pt

1 − θ

)1−θ

θ−θ , (8)

with similar expressions for d0
t+1 and d1

t+1, namely

d0
t+1 = θπt+1Dt+1, d1

t+1 = (1 − θ) πt+1Dt+1

pt+1
. (9)

Under perfect foresight, and considering wt and Rt+1 as given, a young agent
also has to solve an intertemporal allocation problem in order to maximize his
utility function over his life cycle:

max
Ct ,Dt+1,φt≥0

u(Ct ,Dt+1/B) s.t. wt = πtCt + φt and Rt+1φt = πt+1Dt+1.

Solving the first-order conditions gives

Ct = wt/πt

1 + δγ [Rt+1πt/(Bπt+1)]
γ−1 ≡ α(vt )wt/πt (10)

with vt = Rt+1πt/(Bπt+1) and α(vt ) ∈ (0, 1) the propensity to consume of the
young, or equivalently the share of first-period consumption spending over the
wage income. We also get the saving function

φt = φ (wt , vt ) ≡ (1 − α (vt )) wt . (11)

In the rest of the paper we introduce the following standard assumption:
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Assumption 2. γ > 1.

Such a restriction implies that the saving function (11) is increasing with respect
to the gross rate of return R.

3. DYNAMIC EFFICIENCY OF COMPETITIVE EQUILIBRIUM

3.1. Perfect-Foresight Competitive Equilibrium

Total labor is given by the number of young households and is normalized to one;
i.e., � = N = 1. From now on, let τ(k, y, 1) = T (k, y) and τi(k, y, 1) = Ti(k, y),
i = 1, 2, 3. Using (1), (3), and (11), a perfect-foresight competitive equilibrium is
defined as a sequence {kt , yt }t≥0 that satisfies {1 − α[Rt+1πt/(Bπt+1)]}wt = kt+1

and yt − zt = kt+1 with Rt+1 = rt+1/pt . Using (6), (8), and (9), we conclude that
a perfect-foresight competitive equilibrium satisfies the following system of two
difference equations:

kt+1 +
T3(kt , yt )

(
1 − α

{
−T1(kt+1, yt+1)

T2(kt , yt )B

[
T2(kt , yt )

T2(kt+1, yt+1)

]1−θ
})

T2(kt , yt )
= 0 (12)

kt+1 − yt

θ
− (1 − θ) [T3(kt , yt ) + T1(kt , yt )kt ]

θT2(kt , yt )
= 0

with k0 given.
It is worth noting at this point that if θ = 1 the second difference equations

reduces to kt+1 = yt and we get the standard two-sector OLG model with one
pure consumption good and one pure investment good studied in Drugeon et al.
(2010) and Nourry and Venditti (2011).8

3.2. A Normalized Steady State

A steady state (kt , yt ) = (k∗, y∗) for all t satisfies

k∗ +
T3(k

∗, y∗)
[

1 − α

(
− T1(k

∗, y∗)
T2(k∗, y∗)B

)]
T2(k∗, y∗)

= 0 (13)

k∗ − y∗

θ
− (1 − θ) [T3(k

∗, y∗) + T1(k
∗, y∗)k∗]

θT2(k∗, y∗)
= 0.

We consider a family of economies parameterized by the elasticity of intertemporal
substitution in consumption γ . We follow the same procedure as in Drugeon et al.
(2010): we use the scaling parameter B and the share θ to ensure the existence of
a normalized steady state (NSS) (k∗, y∗), which remains invariant as γ is varied.
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Let us define the maximum admissible value of capital k̄ solution of

k̄ − f 1(k̄, 1) = 0.

Under Assumption 1 we have indeed f 1(k, 1) > k if k < k̄, whereas f 1(k, 1) < k

if k > k̄. Obviously, the NSS must be such that (k∗, y∗) ∈ (0, k̄)× (0, k̄). We then
get

PROPOSITION 1. Under Assumptions 1 and 2, let (k∗, y∗) ∈ (0, k̄) × (0, k̄).
Then there exist unique values θ(k∗, y∗) ∈ (0, 1) and B(k∗, y∗, γ ) > 0 such that
(k∗, y∗) is a steady state if and only if θ = θ(k∗, y∗) and B = B(k∗, y∗, γ ).

Proof. See Appendix A.1.

In the rest of the paper we assume θ = θ(k∗, y∗) and B = B(k∗, y∗, γ ), so that
the share of capital in total income, as given by

s = s(k∗, y∗) = r∗k∗

T (k∗, y∗) + p∗y∗ , (14)

and α = α(R∗/B(k∗, y∗, γ )) remain constant as γ is made to vary.

3.3. Dynamic Efficiency

From the homogeneity of τ , assuming that k∗T2/T3 = (T2/T1)(k
∗T1/T3) =

−s/[R(1 − s)], we derive the stationary gross rate of return along the NSS:

R∗ = s

(1 − α)(1 − s)
. (15)

It is well known that in OLG models, if the capital–labor ratio exceeds the
Golden-Rule level, the economy is dynamically inefficient. In our two-sector
model, the Golden-Rule level, denoted k̂, is characterized from the total stationary
consumption, which is given by the sum of the social production function and
the consumption part of the mixed good, namely C + D = T (k, y) + p[y − k].
Denoting R(k, y) = −T1(k, y)/T2(k, y), k̂ satisfies R(k̂, ŷ) ≡ R̂ = 1 as usual.
Underaccumulation of capital is obtained if and only if R∗ > 1. As in Drugeon
et al. (2010), we get

PROPOSITION 2. Under Assumption 1, let α = 1 − s/(1 − s). Then an in-
tertemporal competitive equilibrium converging toward the NSS is dynamically
efficient if α ∈ (α, 1) and dynamically inefficient if α ∈ (0, α).

Dynamic inefficiency can be avoided if the amount of savings is not too large.

4. ENDOGENOUS BUSINESS CYCLES

Our aim is to show that a two-sector OLG model with two consumption goods
provides new results on the existence of endogenous business cycles derived from
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agents’ beliefs. This type of fluctuations are based on the concept of sunspot
equilibria. As shown by Woodford (1986), the existence of sunspot equilibria
is closely related to the equilibrium local indeterminacy, i.e., the existence of a
continuum of equilibrium paths converging toward the NSS from the same initial
capital stock. In our framework, local indeterminacy occurs when the characteristic
roots associated with the linearization of equations (12) around the NSS are less
than 1 in absolute value.

We focus on two particular aspects of the model: the share θ of the pure
consumption good in the composite goods C and D, and the share α of first-
period consumption spending in total income. Let us also introduce the relative
capital intensity difference across sectors and the elasticity of the rental rate of
capital, respectively

b ≡ l1

y

(
k1

l1
− k0

l0

)
and εrk = −T11(k

∗, y∗)k∗/T1(k
∗, y∗). (16)

Note that εrk is negatively linked to the sectoral elasticities of capital–labor sub-
stitution [see Drugeon (2004)].

4.1. A Labor-Intensive Pure Consumption Good

Let us consider first the case b > 0. We derive from the homogeneity of τ and
equations (3) that at the NSS b < bMax, with

bMax = s

R∗ {1 − θ [(1 − s)α + s]} > 0. (17)

We get the following results:

PROPOSITION 3. Under Assumptions 1 and 2, any equilibrium path is unique
and monotone when the pure consumption good is labor-intensive (b ∈ (0, bMax)).

Proof. See Appendix A.2.

This proposition implies that endogenous fluctuations and local indeterminacy
are ruled out when b ∈ (0, bMax). It complements the analysis of Kalra (1996)
in the case of a labor-intensive pure consumption good. First, it confirms that
endogenous period-2 cycles through the existence of negative characteristic roots
and a flip bifurcation are ruled out. Second, it proves that endogenous quasi-
periodic cycles through the existence of a Hopf bifurcation are also ruled out
in the case of a unitary elasticity of intratemporal substitution between the two
consumption goods. Therefore, Proposition 2 in Kalra (1996) requires an elasticity
sufficiently lower than one.
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4.2. A Capital-Intensive Pure Consumption Good

Let us consider from now on the case b < 0 and focus in a first step on dynamically
efficient equilibria with α > α. We assume θ < 1/2, to provide conditions for the
existence of local indeterminacy through the occurrence of a Hopf bifurcation. The
motivation for considering such a configuration comes from the fact that when θ is
close to 1, a Hopf bifurcation cannot occur under dynamic efficiency [see Nourry
and Venditti (2011)]. We also restrict the share of capital to get a positive value
for the bound α = 1 − s/(1 − s) and to be compatible with standard empirical
values:

Assumption 3. s ∈ [1/3, 1/2).

PROPOSITION 4. Under Assumptions 1–3, let α > s/(1 − s)(> α) and b ∈
(−(1 − α)s/ [α(1 − θ + θs)] , 0). Then there exist θ̄ ∈ (s/[(1 − s)α + s], 1/2],
ε̃rk < εrk < ε̄rk , and γH , γF > γT > 1 such that when θ ∈ (s/[(1 − s)α + s], θ̄ ),
the following results hold:

(1) If εrk ∈ (εrk, ε̄rk), then γF > γH and the NSS is locally indeterminate when γ ∈
(γT , γH ) and undergoes a Hopf bifurcation when γ = γH . Moreover, there generically
exist locally indeterminate (resp. locally unstable) quasi-periodic cycles when γ ∈
(γH , γH + ε) (resp. γ ∈ (γH − ε, γH )) with ε > 0, i.e., when the bifurcation is super-
(resp. sub-) critical.

(2) If εrk ∈ (ε̃rk, εrk), then γH > γF and the NSS is locally indeterminate when γ ∈
(γ ′

T , γF ) and undergoes a flip bifurcation when γ = γF . Moreover, there generically
exist locally indeterminate (resp. saddlepoint stable) period-2 cycles when γ ∈
(γF , γF + ε) (resp. γ ∈ (γF − ε, γF )) with ε > 0, i.e., when the bifurcation is super-
(resp. sub-) critical.

Proof. See Appendix A.3.

Remark 1. Whether the bifurcation is super- or subcritical is driven by the sign
of some coefficient computed from the second- and third-order approximations to
the dynamical system (12). This property determines whether the bifurcation leads
to the occurrence of locally indeterminate or unstable (resp. saddlepoint stable)
quasi-periodic (resp. period-2) cycles near the bifurcation value.

Proposition 4 shows that when the share θ of the pure consumption good in
the composite goods is low enough, local indeterminacy and expectations-driven
fluctuations arise when εrk ∈ (ε̃rk, ε̄rk), i.e., for strictly positive but intermediary
values of the sectoral elasticities of capital–labor substitution. We then get more
general conclusions for a wider range of elasticities of capital–labor substitu-
tion than in the case θ = 1, in which the occurrence of local indeterminacy is
only obtained through a flip bifurcation and requires consideration of sectoral
technologies very close to Leontief functions [see Nourry and Venditti (2011)].
The intuition for the existence of dynamically efficient expectations-driven fluc-
tuations with multiple consumption goods given in the Introduction is thus
confirmed.
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We thus show that Reichlin’s (1986) result is more robust in a two-sector OLG
economy with multiple consumption goods than in the Galor-type formulation.
The introduction of a public policy based on taxes and transfers can at the same
time stabilize the economy and reach the Pareto-optimal steady state along which
all generations get an equal level of welfare.9

To establish a better understanding of the relationship between Pareto opti-
mality and the dynamic properties of competitive equilibria, let us finally focus
on dynamically inefficient equilibria with α < α. We successively consider the
existence of local indeterminacy through flip and Hopf bifurcations. As men-
tioned in Remark 1, the two following Propositions will encompass the super- and
subcritical bifurcations. Let us denote

b̄ = min

{
1

R∗(1 − θ) − θ
,− (1 − α)s

α [1 − θ + θs]

}
.

PROPOSITION 5. Under Assumptions 1–3, let α < α. If one of the following
conditions is satisfied,

(i) θ ∈ (s/[1 − α(1 − s)], 1/2) and b < b̄,
(ii) θ ∈ (1/2, [s2 + α(1 − s)]/[2s2 + α(1 − s)2]) and b ∈ (1/[R∗(1 − 2θ)], b̄), then

there exists γF > 1 such that the NSS is locally indeterminate when γ > γF and
undergoes a flip bifurcation when γ = γF . Moreover, there generically exist locally
indeterminate (resp. saddlepoint stable) period-2 cycles when γ ∈ (γF −ε, γF ) (resp.
γ ∈ (γF , γF +ε)) with ε > 0, i.e., when the bifurcation is super- (resp. sub-) critical.

Proof. See Appendix A.4.

When compared with Proposition 4, Proposition 5 shows that considering dynam-
ically efficient equilibria implies restrictions for the existence of local indeter-
minacy that are not necessary under dynamic inefficiency. Indeed, expectations-
driven fluctuations now occur without any condition on the elasticity of the rental
rate of capital εrk and are thus compatible with any values of the sectoral elasticities
of capital–labor substitution.

This conclusion is also confirmed when local indeterminacy is appraised through
the existence of a Hopf bifurcation. Let us indeed denote

θ̃ = s + (1 − α)(1 − s) + (1 − s)
√

(α − α)(1 − α)

s + 3(1 − α)(1 − s)

and

b̃ = min

{
− s

R∗ [θ [(1 − s)α + s] − s]
,

(1 − θ)R∗ − θ + θ
√

1 − R∗

R∗ [(1 − θ)2R∗ − θ(2 − 3θ)
]
}

.

To simplify the formulation, we focus on the standard value s = 1/3 for the share
of capital in total income. We then get:
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PROPOSITION 6. Under Assumptions 1 and 2, let s = 1/3. There exist α̃ ∈
(0, α) and γF > γH > 1 such that if α ∈ (α̃, α), θ ∈ (s/[(1 − s)α + s], θ̃ )

and b < b̃, the NSS is locally indeterminate when γ ∈ (γH , γF ), undergoes a
flip bifurcation when γ = γF , and undergoes a Hopf bifurcation when γ = γH .
Moreover, there generically exist locally indeterminate (resp. saddlepoint stable)
period-2 cycles when γ ∈ (γF , γF + ε) (resp. γ ∈ (γF − ε, γF )) with ε > 0,
i.e., when the bifurcation is super- (resp. sub-) critical, and locally indeterminate
(resp. locally unstable) quasi-periodic cycles when γ ∈ (γH − ε, γH ) [resp.
γ ∈ (γH , γH + ε)] with ε > 0, i.e., when the bifurcation is super- (resp. sub-)
critical.

Proof. See Appendix A.5.

Propositions 5 and 6 prove that expectations-driven fluctuations are more likely
to occur under dynamic inefficiency and thus confirm the crucial role of saving
behavior. Moreover, in this case, any stabilization policy targeting the steady state
leaves room for welfare losses associated with productive inefficiency.

5. CONCLUDING COMMENTS

We have considered a two-sector OLG economy with two consumption goods
that enter the utility function in both periods of life through a composite good.
To simplify, we have assumed that the share of each consumption good in the
composite one is constant. We have proved that although dynamically efficient
competitive equilibria are less likely to be locally indeterminate than dynamically
inefficient ones, the existence of Pareto-optimal expectations-driven fluctuations
becomes compatible with standard sectoral technologies if the share of the pure
consumption good is low enough.

NOTES

1. In contrast, when the technologies are close to Leontief, capital and labor are complementary
and both can be transfered into the investment good sector, so that the increase of the final output may
compensate for the lack of savings and lead to an increase of capital compatible with the expectations.
As shown in Nourry and Venditti (2011), local indeterminacy then becomes compatible with dynamic
efficiency.

2. See, for instance, Benhabib and Nishimura (1981) for an optimal-growth infinite-horizon model
with many consumption goods.

3. See also Drugeon (2010) for the analysis of saddlepoint stability in a similar model with
endogenous labor.

4. National accounting data are based on subdivisions of the productive sectors in which many
goods are both final and intermediary.

5. For instance, Reichlin (1992) proves the existence of a Hopf bifurcation in a standard OLG model
with Leontief technologies, and Kalra (1996) extends this conclusion to the case of technologies with
substitutable factors.

6. See Benhabib and Nishimura (1981).
7. All the results in this paper can be obtained with a general concave and homothetic utility

function u(Ct , Dt+1/B).
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8. See also Galor (1992) and Venditti (2005).
9. See Nourry and Venditti (2011) for an illustration of such a policy in the Galor-type OLG model.
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APPENDIX

A.1. PROOF OF PROPOSITION 1

Let (k∗, y∗) ∈ (0, k̄) × (0, k̄). Solving the second equation in (13) with respect to θ and
using the homogeneity of τ gives

θ (k∗, y∗) = T (k∗, y∗)
T (k∗, y∗) − T2(k∗, y∗)(y∗ − k∗)

∈ (0, 1).
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Using (10) and solving the first equation in (13) with respect to B gives

B(k∗, y∗, γ ) = −T1(k
∗, y∗)

T2(k∗, y∗)

( −k∗T2(k
∗, y∗)

δγ [T3(k∗, y∗) + k∗T2(k∗, y∗)]

) 1
1−γ

.

Thus (k∗, y∗) is a NSS if and only if θ = θ(k∗, y∗) and B = B(k∗, y∗, γ ). �

A.2. PROOF OF PROPOSITION 3

From (10), we derive

α′(v) = (1 − γ )α(v)[1 − α(v)]/v. (A.1)

Under Assumption 1, we get from the first-order conditions of program (2) T12 = −T11b <

0, T22 = T11b
2 < 0, T31 = −T11a > 0, and T32 = T11ab, with a ≡ k0/l0 > 0, b as defined

by (16), and T11 < 0. Consider εrk as given by (16) together with T1k
∗/T3 = s/(1 − s),

−T1/T2 = R∗ = s/(1 − α)(1 − s), and the fact that the homogeneity of τ(k, y, �) implies
a = [(1 − α)(1 − s)(1 − θb) − (1 − θ)b] k∗/[(1−α)(1− s)]. Total differentiation of (12)
using (3), (10), (14), and (A.1) evaluated at the NSS gives the characteristic polynomial
Pγ (λ) = λ2 − λTθ (γ ) + Dθ (γ ) with

Dθ (γ ) =
s
{
b
[
(1 − s)α(γ − 1)θ + θ(1 − s)α − s(1 − θ)

]
+ (1 − α)(1 − s)

}
α(γ − 1)(1 − α)(1 − s)2θb

,

Tθ (γ ) =
1 + α (γ − 1) εrk

{
[1 − (1 − θ) R∗b]2 + θ2b2R∗

}
+ θR∗bεrk

[
(1 − θ) bα

s
+ θbα + 1 − α

]
α(γ − 1) [1 − (1 − θ) R∗b] θbεrk

.

When θ = θ(k∗, y∗) and B = B(k∗, y∗, γ ), the NSS and α remain constant as γ is made
to vary, and as in Grandmont et al. (1998), we can study the variations of Tθ (γ ) and Dθ (γ )

in the (T ,D) plane. Solving T and D with respect to α(γ −1) yields the linear relationship

D = �(T ) = SθT + M, (A.2)

where M is a constant term and the slope Sθ of �(T ) is

Sθ = εrksR
∗ [1 − (1 − θ) R∗b] [(1 − s)α + s] (θ − θ1)(b − b1)

(1 − s)
{
s + θR∗bεrkα [1 − θ + θs] (b − b2)

} (A.3)

with

θ1 = s

(1 − s)α + s
, b1 = − s

R∗ [(1 − s)α + s] (θ − θ1)
, and b2 = − (1 − α)s

α (1 − θ + θs)
.

(A.4)

For a given θ = θ(k∗, y∗), as γ spans the interval (1,+∞), Tθ (γ ) and Dθ (γ ) vary linearly
along the line �(T ).

As γ ∈ (1, +∞), the fundamental properties of �(T ) are characterized from the
consideration of its extremities. The starting point of the pair (Tθ (γ ),Dθ (γ )) is indeed
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obtained when γ = +∞:

lim
γ→+∞

Dθ (γ ) = D∞ = s

(1 − α)(1 − s)
, (A.5)

lim
γ→+∞

Tθ (γ ) = T ∞
θ = [1 − R∗b(1 − θ)]2 + θ2b2R∗

θb[1 − R∗b(1 − θ)]
,

whereas the end point is obtained when γ converges to 1 from above:

lim
γ→1+

Dθ (γ ) = D1
θ = ±∞ ⇔ b(θ − θ1)(b − b1) ≷ 0, (A.6)

lim
γ→1+

Tθ (γ ) = T 1
θ = ±∞ ⇔ bSθ ≶ 0.

D∞ ≷ 1 for any θ ∈ (0, 1) if and only if α ≷ α, with α > 0 if and only if s < 1/2,
whereas T ∞

θ depends on the value of θ . Depending on θ , the pairs (T ∞
θ ,D∞) are located

on a horizontal line above (below) the line D = 1 when α > (<)α. Therefore �(T ) is
a half-line starting on the horizontal line (T ∞

θ ,D∞) and pointing upward or downward,
depending on D1

θ = ±∞.
Let us now prove Proposition 3. We conclude from (A.6) that if b ∈ (0, bMax) then

D1
θ = +∞, T ∞

θ > 0, and Sθ > 0. The characteristic roots are always positive. Let us
finally compute

P∞(1) = 1 − T ∞
θ + D∞ = − [1 − R∗b] {1 − b [R∗(1 − θ) + θ]}

bθ [1 − R∗b(1 − θ)]
.

Straightforward computations show that P∞(1) > 0 if and only if α > α, θ > (1−s)/[(1−
s)α + s], and b ∈ (1/R∗, bMax). Moreover, when s < 1/2 and α < α, if Dθ (γ ) = 1 we
get Tθ (γ ) > 2. All this implies that for any α ∈ (0, 1), any equilibrium path is unique and
monotone when b ∈ (0, bMax). �

A.3. PROOF OF PROPOSITION 4

Let b < 0, so that P∞(1) > 0. Because T ∞
θ < 0, we need to compute

P∞(−1) = 1 + T ∞
θ + D∞ = [1 − R∗b(1 − 2θ)] {1 − b [R∗(1 − θ) − θ]}

bθ [1 − R∗b(1 − θ)]
.

Consider the bounds defined in (A.4) and let

θ2 = s

1 − α(1 − s)
, b3 = 1

R∗(1 − 2θ)
, and b4 = 1

R∗(1 − θ) − θ
. (A.7)

When α > α, P∞(−1) > 0 if and only if (i) θ ∈ (1/2, θ2) and b < b3 or (ii) θ > θ2 and
b ∈ (b4, b3). Moreover, we derive from (A.6) that D1

θ = −∞ if and only if (a) θ < θ2 or
(b) θ > θ2 and b ∈ (b1, 0). Finally, we get from (A.3) that under the conditions (a) or (b),
Sθ < 0 if and only if b > b2(> b1) and εrk > ε̂rk = −s/ [θR∗αb(1 − θ + θs)(b − b2)].
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Using the expressions for Dθ (γ ) and Tθ (γ ) allows to show that when Dθ (γ ) = 1,
Tθ (γ ) > −2 if and only if

1 + εrk

{
s [(1 − s)α + s] (θ − θ1)(b − b1)

b(1 − s)2θ(α − α)
P(b) + θR∗bα[1 − θ + θs]

s
(b − b2)

}
< 0

(A.8)

with

P(b) = b2R∗ [(1 − θ)2R∗ − θ(2 − 3θ)
]− 2b

[
(1 − θ)R∗ − θ

]+ 1 > 0 (A.9)

for all θ ∈ (0, 1]. Under b < b3 and conditions (a) or (b), Tθ (γ ) < −2 and Sθ > 0 as long
as b ≤ b2 or b ∈ (b2, 0) and εrk ∈ (0, ε̂rk).

Based on all this, we now prove Proposition 4. Let α > s/(1 − s)(> α), so that
θ2 > 1/2 > θ1.

(1) Assume that θ = θ1 + ε ≤ 1/2 with ε > 0 small and b > b2(> b1). It follows
that P∞(−1) < 0 and the term between brackets in (A.8) is negative. Moreover,
Tθ (γ ) ≥ −2 if and only if

εrk ≥ − 1
s [(1 − s)α + s] (b − b1)

b(1 − s)2θ(α − α)
P(b)ε + θR∗bα(1 − θ + θs)

s
(b − b2)

≡ εrk(> ε̂rk). (A.10)

Moreover, there exists ε̄rk > εrk such that Tθ (γ ) = 2 when εrk = ε̄rk and the half-line
is given by �̄. Therefore Tθ (γ ) ∈ (−2, 2) as long as εrk ∈ (εrk, ε̄rk). Let us denote
as ε̂ the value of ε such that the denominator of the ratio in (A.10) is equal to zero.
The maximal admissible value of ε is such that ε̄ = min{ε̂, 1/2 − θ1}. It follows that
when θ ∈ (θ1, θ̄ ) with θ̄ = θ1 + ε̄ and εrk ∈ (εrk, ε̄rk), we get a half-line above �1,
as shown in Figure 1. This proves the first part of Proposition 4.

(2) Note from (A.3) that limεrk→ε̂rk
Sθ = ∞. When εrk = ε̂rk , the half-line is given by �̂

and there exists ε̃rk ∈ (ε̂rk, εrk) such that when θ ∈ (θ1, θ̄ ) and εrk = ε̃rk , we get a
half-line such that �̃. As a result, if εrk ∈ (ε̃rk, εrk), the half-line is given by �2, as
shown on Figure 1. This proves the second part of Proposition 4.

The bifurcation values γH , γF , and γT are, respectively, defined as the solutions of

Dθ (γ ) = 1, Pγ (−1) = 1 + Tθ (γ ) + Dθ (γ ) = 0, Pγ (1) = 1 − Tθ (γ ) + Dθ (γ ) = 0

with the corresponding values of θ and εrk . �

A.4. PROOF OF PROPOSITION 5

Consider the bounds defined in (A.4) and (A.7). α < α implies D∞ < 1. We get θ2 <

1/2 < θ1 and P∞(−1) > 0 if and only if (i) θ ∈ (θ2, 1/2) and b < b4 or (ii) θ > 1/2 and
b ∈ (b3, b4). Moreover, D1

θ = +∞ if and only if θ > θ1 and b < b1 with b1 < b3 < b4.
This implies that when P∞(−1) > 0, D1

θ = −∞, and any Hopf bifurcation is ruled out.
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FIGURE 1. Hopf and flip bifurcations with α > s/(1 − s)(> α).

Also, when Dθ (γ ) = −1, Tθ (γ ) < 0 if b < b2 with b2 > b3 if

θ < θ3 = s2 + α(1 − s)

2s2 + α(1 − s)2
∈ (1/2, 1).

Based on all this, we now prove Proposition 5. We focus here on the case in which
P∞(1) > 0 and P∞(−1) > 0. As b < 0, we already know that P∞(1) > 0.

(i) Assume first that θ ∈ (θ2, 1/2) and b < b4. This implies that P∞(−1) > 0 and
thus D1

θ = −∞. A flip bifurcation occurs if Tθ (γ ) < 0 when Dθ (γ ) = −1. This
is obtained provided b < b2. Part (i) is then proved by assuming b < b̄ with
b̄ = min{b2, b4}. We indeed get the half-line � as shown in Figure 2.

(ii) Assume now that θ ∈ (1/2, θ3) and b ∈ (b3, b̄). We get as previously P∞(−1) > 0,
D1

θ = −∞ and Tθ (γ ) < 0 when Dθ (γ ) = −1, which proves part (ii).

In both cases the flip bifurcation value γF is defined as the solution of Pγ (−1) =
1 + Tθ (γ ) + Dθ (γ ) = 0. �
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FIGURE 2. Flip bifurcation with α < α.
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FIGURE 3. Flip and Hopf bifurcations with α ∈ (α̃, α).

A.5. PROOF OF PROPOSITION 6

Consider the bounds defined in (A.4) and (A.7). Let θ > θ1 and b < b1(< b3 < b4), so
that D1

θ = +∞ and P∞(−1) < 0. Moreover, Sθ < 0 as b1 < b2. Local indeterminacy may
arise as shown by � in Figure 3 only if T ∞

θ ∈ (−2, 0), i.e., only if P(b) < 0 with P(b) as
given by (A.9).

Let us then assume

θ± = s + (1 − α)(1 − s) ± (1 − s)
√

(α − α)(1 − α)

s + 3(1 − α)(1 − s)

and b+ = (1 − θ)R∗ − θ + θ
√

1 − R∗

R∗ [(1 − θ)2R∗ − θ(2 − 3θ)
] .

It is easy to show that (1 − θ)2R∗ − θ(2 − 3θ) < 0 if and only if θ ∈ (θ−, θ+) with
θ1 > θ−. Moreover, θ1 < θ+ if and only if g(α) = [(1 − s)α) + s]

√
(α − α)(1 − α) −

α2(1 − s) + α(1 + 2s) − 2s > 0, with g(0) < 0 and g(α) ≤ 0 under Assumption 3. When
s = 1/3, we get limα→α g′(α) < 0. It follows that there exists α1 ∈ (0, α) such that when
α ∈ (α1, α), g(α) > 0. As a result, we conclude that when α ∈ (α1, α), θ ∈ (θ1, θ+)

and b < b+, we get P(b) < 0. Therefore, assuming θ ∈ (θ1, θ+) and b < min{b1, b+},
we derive from (A.8) that there exists α̃ ∈ [α1, α) such that if α ∈ (α̃, α), Tθ (γ ) > −2
when Dθ (γ ) = 1. Proposition 6 is then proved under the following conditions: α ∈ (α̃, α),
θ ∈ (s/[(1 − s)α + s], θ̃ ), and b < b̃ with θ̃ = θ+ and b̃ = min{b1, b+}. We indeed get the
half-line � as shown in Figure 3. The bifurcation values γH and γF are finally defined as
the solutions of

Dθ (γ ) = 1 and Pγ (−1) = 1 + Tθ (γ ) + Dθ (γ ) = 0. �
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