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We present a new set of direct numerical simulation data of a turbulent plane Couette
flow with constant wall-normal transpiration velocity V0, i.e. permeable boundary
conditions, such that there is blowing on the lower side and suction on the upper
side. Hence, there is no net change in flux to preserve periodic boundary conditions
in the streamwise direction. Simulations were performed at Reτ = 250, 500, 1000 with
varying transpiration rates in the range V+0 ≈ 0.03 to 0.085. Additionally, a classical
Couette flow case at Reτ = 1000 is presented for comparison. As a first key result
we found a considerably extended logarithmic region of the mean velocity profile,
with constant indicator function κ = 0.77 as transpiration increases. Further, turbulent
intensities are observed to decrease with increasing transpiration rate. Mean velocities
and intensities collapse only in the cases where the transpiration rate is kept constant,
while they are largely insensitive to friction Reynolds number variations. The long
and wide characteristic stationary rolls of classical turbulent Couette flow are still
present for all present DNS runs. The rolls are affected by wall transpiration, but they
are not destroyed even for the largest transpiration velocity case. Spectral information
indicates the prevalence of the rolls and the existence of wide structures near the
blowing wall. The statistics of all simulations can be downloaded from the webpage
of the Chair of Fluid Dynamics.

Key words: turbulent flows, turbulence theory, turbulence simulation

1. Introduction

Direct numerical simulation (DNS) is a fundamental tool for the study of wall
turbulence, and it is the only available one when experiments are difficult, or
simply impossible, to perform. Focusing on turbulent channel flow, there has been
a continuous increase in Reynolds number of simulation of Poiseuille flows since
the seminal work of Kim, Moin & Moser (1987), followed by the works of Moser,
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Kim & Mansour (1999), Del Alamo et al. (2004), Hoyas & Jiménez (2006), and
the very recent works by Bernardini, Pirozzoli & Orlandi (2014) and Lee & Moser
(2015). Turbulent Couette flows have been studied less, most probably due to the
long and wide streamwise rolls existing in this flow, as has been stated experimentally
(Tillmark 1995; Kitoh, Nakabyashi & Nishimura 2005; Kitoh & Umeki 2008) and
numerically (Bech et al. 1995; Komminaho, Lundbladh & Johansson 1996; Tsukahara,
Kawamura & Shingai 2006; Pirozzoli, Bernardini & Orlandi 2011, 2014; Avsarkisov
et al. 2014a). The necessity of large boxes to capture these structures makes the
study of this flow much more computationally expensive than a turbulent Poiseuille
flow. Furthermore, these rolls seem to grow with Reynolds number, while at the same
time the Kolmogorov scale decreases. As is explained later on, these rolls do not
disappear due to the presence of the transverse flow.

In the case of non-canonical boundary conditions such as wall-normal transpiration,
the bibliography for both types of channel flow is considerably reduced.

To the knowledge of the authors, the only experimental work about Poiseuille flow
with wall transpiration (PTF) was conducted by Zhapbasbaev & Isakhanova (1998)
for small transpiration velocities. For DNS of related flows, the interested reader is
referred to Avsarkisov, Oberlack & Hoyas (2014b) and references therein. In the case
of a turbulent Couette with wall transpiration flow (CTF), the present study is the first
work addressing this phenomenon.

However, this problem is of great interest both from the point of view of
applications and fundamental science. Porous wall flows and the respective blowing
and suction flows are known to greatly affect the friction coefficient (Jiménez et al.
2001). In this case, using a single numerical experiment, we can study the influence
of the transpiration velocity in the flow at both sides simultaneously, which is very
interesting. Furthermore, for this particular flow, there is a drag reduction at the
blowing side and drag increase at the suction side. At the blowing side, some new
spectral structures have been found, related to an inflection point of the mean velocity
in the streamwise direction. These new structures have not been described earlier and
could be one of the explanations of this drag reduction. The lack of experimental work
for non-canonical boundary conditions can be linked to the extraordinary difficulties
of performing such an experiment. For Couette flows the moving walls are simulated
by moving belts (Kitoh et al. 2005). To create a transpiration flow through this belt
is almost impossible.

Moreover, the kinematics of CTF are more similar to turbulent asymptotic suction
boundary layers (TASBL, see for instance Bobke, Örlü & Schlatter (2015) and
references therein) than to PTF. This was somehow expected as in TASBL, the
thickness of the boundary layer is kept constant using suction. An interesting
conclusion of Bobke et al. (2015) is that realistic experiments of this kind of flow
are nearly impossible.

The organization of the paper is as follows. The numerical method and the
validation strategy are explained in § 2. The statistics of the flow, including the
turbulent budgets, are discussed in § 3. The various new turbulent structures found
for the present flow are discussed in § 4. Section 5 contains the conclusions.

2. Numerical method

In this work, a new set of DNS of a plane CTF has been conducted within a
computational box of Lx= 8πh, Ly= 2h and Lz= 3πh, with spanwise and streamwise
periodicity (figure 1). In the past, this box has been used for very large turbulent
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Couette flow with transpiration 423

FIGURE 1. Schematic view of Couette flow with moving wall velocity Uw and
wall-normal transpiration velocity V0. Fluid is blown through the lower wall and removed
from the upper wall at a constant rate. The computational box is not scaled.

Poiseuille flow simulations (Hoyas & Jiménez 2006; Lee & Moser 2015). However,
it is known from the work by Avsarkisov et al. (2014a) that this computational box
might be too narrow and short to adequately reproduce a turbulent Couette flow. It
was confirmed in Pirozzoli et al. (2014) that for pure Couette flow the correlation
length in the spanwise direction is nominally infinity. In the case of the streamwise
correlation length, we are interested in investigating if the transpiration velocity is
capable of breaking down the large streamwise rolls appearing in classical Couette
flows. Thus, the size of the box is a compromise between the capacity of running
enough parametric cases and a large enough box to capture some of the largest scales
of the flow.

The streamwise, wall-normal, and spanwise coordinates are x, y and z and the
corresponding velocity components are U, V and W or, using index notation, Ui.
Statistically averaged quantities are denoted by an overbar, whereas fluctuating
quantities are denoted by lowercase letters, i.e. U = U + u. The flow is driven by
a constant velocity of the upper wall such that we have the boundary condition
U(x, 0, z) = 0 and U(x, 2h, z) = Uw. The blowing–suction process is implemented
through the following boundary condition at the wall,

V(x, 0, z)= V(x, 2h, z)= V0, (2.1)

where V0 is the constant transpiration velocity. The nominal Reynolds numbers studied
are Reτ = 250, 500 and 1000, based on the mean friction velocity uτ , the viscosity ν
and on the channel half-width h. In all cases the mass flow, and simultaneously the
bulk velocity, Ub, is kept constant, similar to Hoyas & Jiménez (2006), Avsarkisov
et al. (2014a). The mean friction velocity is defined as

uτ =

√
(ub
τ )

2 + (us
τ )

2

2
, (2.2)

where the local friction velocities are

ub
τ =

√
ν|∂yU|b, us

τ =

√
ν|∂yU|s. (2.3a,b)

Here and subsequently, superscripts b and s correspond to variables taken on the
blowing and the suction side, respectively.

The Navier–Stokes equations, employed to investigate the present flow, are
transformed into an equation for wall-normal vorticity ωy and for the Laplacian of the
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Case Line Reτ ReV0 Uw/V0 Uw/UC00
w V+0 Nx Ny Nz TUb/Lx Tuτ/h

C00 —E— 1000 0 ∞ 1 0 6144 383 4608 9.0 20.5
C02 · · · · · · 1000 32 1243 1.382 0.032 3072 383 2304 18.7 32.2
C05 – – – – 1000 50 685 1.907 0.051 3072 383 2304 22.0 60.1
C10 — · — 1000 60 492 2.741 0.063 3072 383 2304 22.0 97.5
C20 —— 1000 75 395 4.402 0.071 3072 383 2304 24.7 194
A12 —C— 250 19 400 2.673 0.070 768 251 576 60.6 281
A15 —A— 500 37.5 400 3.342 0.070 1536 251 1152 25.4 151
A20 —6— 500 42 323 3.60 0.085 1536 251 1152 52.3 344

TABLE 1. Parameters of the simulations. Three different Reynolds numbers are presented:
Reτ is based on the mean friction velocity and the channel half-width h and ReV0 is based
on the transpiration velocity V0 and h. The third column, Uw/V0, is the ratio between
the velocity of the wall Uw and V0, which defines a Reynolds number usually employed
for TASBL, see Bobke et al. (2015). Next, the velocities Uw and V0 are given in terms
of the wall velocity of the pure Couette case, UC00

w , and the mean friction velocity uτ ,
respectively. Nx,Ny,Nz are the numbers of collocation points. The last two columns denote
the computational time span while statistics were taken in washouts (Ub/Lx) and eddy
turnovers (uτ/h). T is the computational time spanned by those fields. Line shapes given
in the second column are used to identify the cases through all the figures of the present
paper.

wall-normal velocity φ =∇2v as in (Kim et al. 1987). The spatial discretization uses
dealiased Fourier expansions in the x- and z-directions, and seven-point compact finite
differences in the y-direction with fourth-order consistency and extended spectral-like
resolution (Lele 1992). The temporal discretization is a third-order semi-implicit
Runge–Kutta scheme (Spalart 1991). Initial fields were either taken from previously
calculated classical Couette flows imposing the new boundary conditions, or by
further increasing the transpiration velocities in previously computed CTF cases.

Due to the lack of experimental data or numerical simulations, it has been
impossible to do a formal validation of the code. However, in the past the code has
been employed to successfully run simulations of turbulent Poiseuille flows (Hoyas
& Jiménez 2006; Hoyas & Jiménez 2008), turbulent Couette flows (Avsarkisov et al.
2014a) and turbulent PTF (Avsarkisov et al. 2014b), while the modifications in
the code to impose the new boundary conditions have been minimal. In addition,
simulations conducted at very low transpiration velocity were similar to pure Couette
flows. A comparison with the laminar solution, which can be derived analytically
in form of an exponential function, and a comparison with the first Reτ = 1000
simulation reported (Pirozzoli et al. 2014) has been performed. Tests show a perfect
agreement between DNS data and the analytic solution, though these results are
omitted for brevity. The comparison of the present case C00 (explained below) with
Pirozzoli et al.’s simulation is shown in figure 2. The agreement is excellent, both
for the average velocity and the turbulent intensities.

Table 1 summarizes the parameters of the present simulations. The wall-normal grid
spacing is adjusted to keep the resolution at 1y= 1.5η, i.e., approximately constant
in terms of the local isotropic Kolmogorov scale η= (ν3/ε)1/4 for every Reτ case. In
wall units, 1y+ varies from 0.42 at the wall up to 1y+ ' 7.2 at the centreline. The
wall-parallel resolution in Fourier space for x and z is 1x+'12.2 and 1z+'6.13. The
case C00 is a pure turbulent Couette flow in a 16πh× 2h× 6πh computational box
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FIGURE 2. (Colour online) Mean velocity profile (a) and Reynolds stresses (b) scaled in
inner scales (uτ ,+). Black line, case C00 in table 1. Blue squares from Pirozzoli et al.
(2014). Only half of the channel is shown.

used as a reference case. The transpiration velocity grows for the cases C02 to C20.
Cases A15 and A12 were ran to study the effect of increasing Reτ while keeping
the dimensionless parameters Uw/V0 and V+0 approximately constant. Case A20 was
employed to see the effects of a higher transpiration rate at a lower Reynolds number.

In every simulation, the flow had to evolve from an initial file, which has been
taken from previous different simulations. The code was run until a transition phase
was passed and the flow had adjusted to the new set of parameters. The transition
phase until the simulations reached a statistically steady state, which can be very time
consuming, is not contemplated in the two right-hand columns of table 1. One of
the measures used to assess that the code has run enough time to compile accurate
statistics is to compute the total shear stress, which for the CTF reads

τb + V0Ū = ν
dŪ
dy
− uv, (2.4)

and, non-dimensionalized by ub
τ , yields

1+ V+b
0 Ū+b

−
dŪ+b

dy+b
+ uv+b

= 0. (2.5)

For the most unfavourable cases, i.e. Reτ = 1000, the verification of (2.4) can be
seen in figure 3(a), where the deviation from 0 of the left hand side of (2.5) has
been plotted versus y. As some of the terms of this equation can be large, the error
has been normalized by the absolute maximum value of the terms presented in (2.5).
The deviation in all cases is less than 0.15 % of the maximum value. It is worth noting
that the transpiration velocity strongly modifies the shear stress at the wall, reducing it
at the blowing wall and increasing it at the suction wall, as seen in figure 3(b). This
modification of the value of τb can be up to two orders of magnitude in the cases
simulated.

Another important consequence of (2.4) is that, evaluating it at the upper wall and
employing equation (2.3), we obtain

(us
τ )

2
− (ub

τ )
2
= V0Uw, (2.6)
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FIGURE 3. (Colour online) Lines as in table 1. The suction wall is on the right of the
figure. (a) Deviation of (2.5) from zero given in error percentage of the computation of
the transpiration CXX cases. (b) Total shear stress τb at the blowing (open symbols) and
suction (closed symbols) walls for the different CXX cases.

linking friction velocities with the value of the transpiration and the moving wall
velocity.

Equation (2.6) has a strong effect in the developing processes of the flow once a
new simulation is started. To run a simulation at a larger ReV0 , a field at smaller
ReV0 is chosen. Thus the relationship between the local friction velocities changes, and
consequently the global Reτ . In turn, it is necessary to change both the ReUb and the
wall velocity after a few hundred steps to obtain the desired value of the parameters.
A second option would have been to increase ReUb , but this option was discarded
because the appropriate mesh size changed considerably.

In the present study we restrict ourselves to describing the new data coming from
these simulations and comparing them with the results obtained for the pure Couette
flow and other flows with wall transpiration, pointing out the key differences.

3. Statistics
3.1. Mean velocity profile

Figure 4 shows U at the suction and blowing sides scaled by the local uτ . At
the suction wall the flow appears to follow the linear law in the viscous sublayer.
However, at the blowing wall the interval where the linear law holds is shorter than
the one near the suction side, and it gets further reduced as the transpiration number
is increased. In the same figure, the red solid line shows the logarithmic profile,

U =
1
κ

ln y+ + B (3.1)

at the classical coefficient values of κ = 0.41 and B= 5.1 (Pope 2000). Qualitatively,
the deviation from this logarithmic profile is in accordance with Sumitani & Kasagi
(1995) and Kametani et al. (2015). This change in the slope seems to stop when V+0
is larger than 0.07 approximately, corresponding to U∞/V0 6 400. Figure 5(b) shows
U for the C20 and all A cases compared to a modified log law with κ = 0.77 and
B= 8.7, with an excellent agreement.

However, using large eddy simulation (LES), Schlatter & Örlü (2011) gave a value
of κ = 0.82 and B= 9.2 for a TASBL, independent of both U∞/V0 and Reτ numbers.
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FIGURE 4. (Colour online) Lines as in table 1. Mean velocity profile scaled in inner local
scales at the suction (a) and blowing (b) sides. Blue thin solid line corresponds to viscous
sublayer linear scaling law; red thin solid line represents near-wall classical logarithmic
scaling law at κ = 0.41 and B= 5.1.
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FIGURE 5. (Colour online) Lines as in table 1. (a) Mean velocity profile scaled in outer
scales (Uw, h). (b) Mean velocity profile at the suction side scaled in us

τ . Cases plotted:
C20, A12, A15 and A20. Red thin solid line represents a modified logarithmic scaling
law for κ = 0.77 and B= 8.7.

Further, Bobke et al. (2015) observed κ = 0.89 and B= 9.6 for a TASBL at U∞/V0=

333. It is clear from figure 4(a) that the slope of U changes with U∞/V0.
From a global point of view, the effect of the transpiration velocity in the mean

velocity profiles may be taken from figure 5(a). This figure shows how transpiration
leads to the loss of symmetry even for small V+0 , leading to higher mean velocity
gradients at the suction wall and lower gradients at the blowing wall.

Figure 6 shows the mean velocity profile in terms of the inverse of the Kármán
constant 1/κ= y+s∂U+s/∂y+s

=Ξ , which is the definition of the log indicator function.
Apparently, with increasing transpiration rate, the region where this term is almost
constant increases drastically. In fact, for the highest transpiration rate presented here,
an approximately constant region between y+s

= 80 and y+s
= 1000 can be observed.

This flattening effect is related to the vanishing of the secondary maximum that
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FIGURE 6. (Colour online) Lines as in table 1. Indicator function for the logarithmic layer,
i.e. the inverse of the von Kármán constant scaled with us

τ , (a) with dashed lines at κ =
0.41 and κ = 0.77, (b) in semilogarithmic plot. Suction wall is at the left side of the plots.

exists at approximately y+ = 300 for the C00 case. The value of the log indicator
function Ξ for the second set of simulations (C20, A20, A15 and A12) can be seen
in the semilogarithmic representation in figure 6(b). There is a perfect collapse of
the data below the logarithmic layer, i.e. in the viscous sublayer and the buffer layer,
as the lower-Reynolds-number cases AXX collapse onto the Reτ = 1000 curve (cases
CXX). All cases present a similarly extended region, and in the range of transpiration
numbers studied, this seems to be an intermediate limit. The existence of a displaced
secondary maximum or minimum can be discarded in the range of the presently
studied parameters.

One of the possible reasons for the greatly extended range of validity of the log-
region might be the value of us

τ which is ten times larger than the one for the classical
Couette flow. As will be shown later, this effect can also be tentatively linked to the
size and structure of the eddies present in the flow.

3.2. Turbulent intensities

In figure 7, the root-mean-square velocity fluctuations u′i
+
= (u[i]u[i] +)1/2, where index

in brackets denote no summation, and uv′+ = uv+ are presented for the different
transpiration cases to be also compared to the pure Couette case. As for the mean
velocity U, the scaling with a local uτ does not collapse the data.

It should be mentioned that normalization is not trivial here, since there are several
velocity scales acting on the flow. Through the boundary conditions we have the
external scales Uw and V0, while internally we have the two friction velocities defined
in (2.3), which are all related through the global momentum balance in (2.6). As
was observed in previous works investigating the TASBL (Sumitani & Kasagi 1995;
Schlatter & Örlü 2011; Bobke et al. 2015; Kametani et al. 2015), we analogously
find that by scaling with the local friction velocity, the turbulent intensities get
reduced at the suction wall and increased near the blowing wall. Further, the known
peaks of u′i

+ and w′i
+ (Hoyas & Jiménez 2006; Avsarkisov et al. 2014b) disappear at

the blowing wall.
The situation when keeping the transpiration rate constant, while at the same time

varying the Reynolds number, i.e. comparing the C20 case and all AXX cases, is
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FIGURE 7. (Colour online) Lines as in table 1. Velocity fluctuation intensities of the CXX
cases. (a,c,e) u′ and v′; (b,d, f ) w′ and uv. (a,b) Adimensionalized by us

τ , plotted versus
dimensionless distance from the suction wall in local inner units, y+s

= (2 − y/h)us
τ/ν.

(c,d) Adimensionalized by ub
τ , plotted versus distance from blowing wall in outer units.

(e, f ) Adimensionalized by uτ , plotted versus distance from blowing wall in outer units.

depicted in figure 8. In this context, at the suction wall the local friction velocity us
τ

seems to be the most appropriate scaling, as it nicely collapses the data. However,
this scaling, using ub

τ , fails completely at the suction wall (not shown). This failure is
apparently a consequence of the term V0Uw in the momentum conservation equation
(2.4), as the product U+w V+0 is constant for the C20 and AXX cases. This obvious
scaling problem near the suction side will be studied in a companion paper. To
facilitate the visualization and the comparison between both walls, in most of the
figures and discussion that follows, global wall units will be used.
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FIGURE 8. Lines as in table 1. Velocity fluctuation intensities of the AXX and C20 cases
are plotted versus the dimensionless distance from the suction wall in local inner units.

3.3. Turbulent budgets
The budget equation for the Reynolds-stress-tensor components uiuj, is given by

Bij ≡
Duiuj

Dt
= Pij + εij + Tij +Π

s
ij +Π

d
ij + Vij, (3.2)

where D/Dt is the mean substantial derivative and (u1,u2,u3)= (u, v,w). The different
terms on the right-hand side are referred to as production, dissipation, turbulent
diffusion, pressure strain, pressure diffusion, and viscous diffusion, respectively. They
are defined according to

Pij =−uiuk∂xk Uj − ujuk∂xk Ui, (3.3a)

εij =−2ν∂xk ui∂xk uj, (3.3b)
Tij =−∂xk uiujuk, (3.3c)

Π s
ij = p(∂xjui + ∂xiuj), (3.3d)

Π d
ij =−∂xk(δkipuj + δkjpui), (3.3e)

Vij = ν∂xk∂xk uiuj. (3.3f )

In the previous definitions, δij is Kronecker’s delta and repeated indices imply
summation over k = 1, 2, 3. In canonical wall flows without wall transpiration
(Hoyas & Jiménez 2008; Avsarkisov et al. 2014b), Duiuj/Dt is zero. However, as
soon as V0 is different from zero, the convective derivative in the y-direction does
not vanish. Hence, from the four terms, the only remaining one is

Bij = V0∂x2uiuj. (3.4)

The four non-trivial budgets are shown in figures 9 and 10 non-dimensionalized by
ν/u4

τ . For the sake of clarity, only the cases C02 and C20 are plotted. The data from
all the cases can be downloaded from our webpage given at the end of the abstract
above. A general observation is that transpiration leads to a reduction of essentially all
terms in the balance equation for uiuj in (3.2). Near the blowing wall, the values are
several orders of magnitude smaller than at the suction wall. The peaks of the different
quantities are in the same location as for the canonical flows (Hoyas & Jiménez 2008).
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FIGURE 9. (Colour online) Budgets for Reynolds stresses uu and vv. Only Cases C02
and C20 are shown. (a) Buu, blowing side; (b) Buu, suction side; (c) Bvv , blowing side;
(d) Bvv , suction side. Productionp, dissipationf, viscous diffusionu, pressure strains,
pressure diffusionq, turbulent diffusion ∗. Lines as in table 1.

In accordance to our observations for the turbulent intensities, uτ alone seems not to
be sufficient to properly scale, i.e. collapse, the turbulent budget. However, studying
a constant suction at varying Reynolds number, i.e. considering V+0 = 0.07, the curves
of the budgets Buu and Bww for the cases A12, A15 and C20 collapse onto one curve,
as can be seen in figure 11. This clearly indicates that the value of V+0 is the key
parameter for most of the turbulence properties.

The data presented in this section are in agreement with several other works of
Sumitani & Kasagi (1995), Kametani et al. (2015), Bobke et al. (2015), if the local
friction velocity is used for scaling the flow. The values of the intensities increase
near the blowing wall and decrease close to the suction side as expected. However,
this effect is larger than in the flows studied previously. At the blowing wall, as the
transpiration velocity increases, the value of Reb

τ gets reduced. For V+0 > 0.06, the
known peaks of the intensities of u′+b

i and w′+b
i disappear (see figure 7c,d). In contrast

to the previous works, the existence of the global uτ linking both walls can be used
to analyse and compare the behaviour of the flow at both walls (see figure 7e, f ).
This is not possible in TASBL flows as these experiments have only one type of
permeable boundary condition. The damping of turbulence induced by the reduction
of the local friction velocity at the blowing wall does not coincide with an increase
of the turbulent budgets near the blowing wall when V+0 > 0.06, as can be seen in
figures 9 and 10. Turbulence is dampened in both walls if scaled in global wall units.
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FIGURE 10. (Colour online) Budgets for Reynolds stresses uv and ww. Only Cases C02
and C20 are shown. (a) Buv , blowing side; (b) Buv , suction side; (c) Bww, blowing side;
(d) Bww, suction side. Productionp, dissipationf, viscous diffusionu, pressure strains,
pressure diffusionq, turbulent diffusion ∗. Lines as in table 1.

In the following section, the turbulent structures created by the joint action of both
walls will be analysed.

4. Turbulent structures

The one-point statistical study conducted in the previous section is complemented
here with the analysis of the geometrical structures of the flow. Figure 12 shows the
vortical structures for the case A12, computed using Hunt’s vortex criterion (Hunt,
Wray & Moin 1988). This criterion is based on the second invariant of the velocity
gradient tensor, Q, defined as

Q= 1
2((Ω

2
ii)

1/2
− (S2

ii)
1/2), (4.1)

where S and Ω are the symmetric and antisymmetric parts of the gradient tensor,

Sij =
1
2(∂iUj + ∂jUi), Ωij =

1
2(∂iUj − ∂jUi) (4.2a,b)

and S2
ii=SijSji, Ω2

ii =ΩijΩji. At each point a single value of Q is calculated based on
the velocity field. If this value of Q is larger than a certain threshold, (Chakraborty,
Balachandar & Adrian 2005; del Álamo et al. 2006) a vortical structure is detected.
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FIGURE 11. Budgets for Reynolds stresses. Cases for V+0 = 0.07 at the suction side are
shown. (a) Buu, (b) Buv , (c) Bww, (d) Bww. Productionp, dissipationf, viscous diffusion
u, pressure strains, pressure diffusionq, turbulent diffusion ∗. Lines differ from table 1:
Case C20, solid. Case A15, dashed. Case A12, dash-dotted.

Using this method it is possible to define a map, H(x, y, z), such that

H(x, y, z)=
{

1 if Hunt’s criterion is true,
0 elsewhere. (4.3)

The methods by Jeong & Hussain (1995) and Chong, Perry & Cantwell (1990) were
also implemented, but as the results of all three methods were similar, we only used
Hunt’s criterion.

It is clear from this figure that the structures at the blowing side are wider,
larger and less frequent than those at the suction side. A statistical measure for the
distribution of vortices is presented in figure 13(a). This figure shows the function Φ,
defined as

Φ(y)=
∑

x

∑
z

H(x, y, z)/(Nx ×Nz)× 100, (4.4)

i.e. for every plane Φ(y) is the number of points where Hunt’s criterion is true over
the total number of points. This quantifies the average area covered by eddies in the
box. When the transpiration velocity is larger than a certain threshold, Φ seems to
converge to a linear function in the centre region of the channel. This is most clearly
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z

FIGURE 12. (Colour online) Vortical structures for the A12 case, coloured by height. Only
a fourth of the length in x and an eighth in z is shown.
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FIGURE 13. (Colour online) Lines as in table 1. (a) Percentage of points where Hunt’s
criterion is positive. (b) Production to dissipation ratio.

visible for the case C20. For the cases A12 and A15, Φ still presents some curvature
at the centre of the channel. The integral of Φ,

VΦ =
∫ h

−h
Φ dy, (4.5)

gives an estimation of the part of volume of the channel where a vortical structure
exists. This volume grows from VΦ = 34.25 for the pure Couette flow to VΦ = 53.12
for the case C20. Hence, it indicates a greater percentage of vortices as the
transpiration velocity is increased. Although the value of Φ at the blowing wall
is reduced as the transpiration is increased, the growth of Φ at the centre of the
channel compensates this decrease. Moreover, the values of Φ for the case C20
in the outer region of the channel, i.e. from h = −0.8 to h = 0.8, lie in the range
from Φ = 22 to Φ = 34, which is approximately the range of values for Φ in the
logarithmic layer of the case C00. This corresponds to more ‘streaky’ flow structures
which can be confirmed in figure 14. Here contours of the streamwise velocity in
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FIGURE 14. (Colour online) U velocity coherent structures in x–z planes. (a,c,e) y/h= 0
(centreline), (b,d, f ) y+ = 10 for the following cases: (a,b) C00, instantaneous field, (c,d)
C20, instantaneous field, (e, f ) C20, averaged.

parallel planes to the wall are shown for the pure Couette flow, and instantaneous and
ensemble-averaged values for the C20 case are presented at the centreline y/h = 0
and at y+= 10, where the latter is the position of the maximum of the production in
figure 9(b).

As was expected from figure 13(a), it is clear that the density of vortices is larger
in case C20 compared to case C00. A clear organization into high-speed (red) and
low-speed (blue) streaks is observed. These streaks maintain some coherence along
the whole channel. Case C20 shows a stronger organization of the flow than case
C00 close to the suction wall. To investigate this further, the ratio of production to
dissipation P/ε is shown in figure 13(b). Following the classical result from Lam &
Banerjee (1992), streaks can only be sustained if P/ε is at least of order unity. This
ratio is almost exactly unity for the case C20 case, and the cases A12 and A15 are
more flat than any other case. The mechanisms triggering these two effects, linear
decreasing of the area of eddies and P/ε = 1 could be the same which provoke the
extremely long region where the indicator function is constant (see § 3.1). One of the
arguments in favour of this can be seen in figure 16. Herein, the local excess of P
over ε is plotted, though premultiplied by y+, so that equal areas below the curve
correspond to equal contributions. Pirozzoli et al. (2011) argue that the excess of
production over dissipation around the secondary peak of y+(P− ε) at y+≈ 400 has to
be transferred towards the underlying layers. This secondary peak is dampened as the
transpiration velocity is increased. For the case C20 there is no excess of production
(or dissipation) for almost the entire core of the channel (see figure 13b).

A second point of view refers to the very long and wide structures in classical
Couette flows (Tsukahara et al. 2006; Kitoh & Umeki 2008; Avsarkisov et al. 2014a;
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FIGURE 15. (Colour online) Coherent structures obtained from the ensemble average of
the flow field spanning through all the channel length for the C20 case. Only a half of
the length in x is shown.
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FIGURE 16. (Colour online) Distribution of premultiplied turbulence kinetic energy
production excess at the blowing (a) and suction wall (b). Lines as in table 1.

Pirozzoli et al. 2014), which can be as long as 310h for Reτ = 500, Lee & Moser
(2017). As Pirozzoli et al. (2014) indicates, the streaks with a spanwise length of 2h
basically have an infinite correlation length. This kind of structure has been linked
to a quasiperiodic process (Hamilton, Kim & Waleffe 1995). In the core region
of a turbulent plane Couette flow, low-velocity streaks generate large-scale vortices.
The existence of such a regeneration mechanism in the core region was confirmed
experimentally by Kitoh & Umeki (2008) and numerically by Pirozzoli et al. (2011)
and Pirozzoli et al. (2014). This process does not occur in turbulent Poiseuille flows.
Our observations may indicate that the presence of transpiration is not, in all the
cases we have studied, able to completely break this mechanism. After averaging the
streamwise velocity for 24.7 washouts, the rolls are still present, as can be seen in
figure 14(e, f ). This phenomenon can be appreciated in figure 15, where we show the
different pairs of counter-rotating rolls whose footprints are shown in figure 14(e, f ).
The contour level of these rolls can be observed in the upper right corner of figure 15.
This subplot shows different contour levels for the mean in x of the ensemble average
of U. It is clear that some pairs of rolls are stronger than others, differently from
Avsarkisov et al. (2014a), but they are undoubtedly present.
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FIGURE 17. (Colour online) Two-point autocorrelation coefficient Ruu for Reτ = 1000 of
velocity fluctuations at the centreline, y/h= 0. (a) Streamwise, (b) spanwise. Lines as in
table 1.
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FIGURE 18. (Colour online) Spectral energy densities in terms of the wavelengths λ =
2π/k for the C20 case. Spectra are normalized in wall units. (a) Suction wall, y+s

≈ 15.
(b) Blowing wall, y+b

≈ 3.

This fact is further confirmed by two-point autocorrelations, to be taken from
figure 17. According to figure 17(a), the first zero in x of Ruu for the case C00
coincides with the simulation of Pirozzoli et al. (2011). This first zero is obtained at
smaller x-values, if the transpiration number is increased, indicating towards shorter
structures, and, furthermore, results appear to be independent of Reτ . In the spanwise
direction, figure 17(b) indicates that the situation for the two-point autocorrelation
changes for large values of the transpiration velocity, and it can be seen that the
second extremum, indicating towards a secondary roll, is almost zero. We may
interpret that even at the largest transpiration rate, the Couette-type rolls still exist,
but their strength is increasingly diminished by transpiration.

In order to attain further structural information on the flow, we consider two-
dimensional spectral energy densities φ = kxkzE(kx, kz), as shown in figure 18. Two
very different behaviours for the spectrum of u, i.e., φuu, have been observed. The
spectrum at the suction wall is presented in figure 18(a). This spectrum is similar
to the one of pure Poiseuille or Couette flows (Hoyas & Jiménez 2006; Hoyas &
Jiménez 2008; Bernardini et al. 2014).
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FIGURE 19. (Colour online) Derivative of the mean streamwise velocity with respect to
y scaled in blowing wall units. Lines as in table 1.

0.5

0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

10010–110–2 101

FIGURE 20. (Colour online) Evolution of the premultiplied spectra of streamwise velocity
fluctuations for case C20 in the streamwise direction. The black curve is defined as in
figure 19. The points on the curve indicate the height where the different spectra were
taken. After the maximum, the spectra evolve to the one expected for a classical Couette
flow.

The situation is totally different close to the blowing wall. Figure 18(b) shows
the spectrum, which we have called butterfly spectrum, at y+b

≈ 3. Two kinds of
structure, centred at two different values of λ, can be observed. They are far wider
than the structures expected in this area compared to flows without transpiration. They
seem to be related to an inflection point in U caused by the transpiration velocity.
This inflection point appears approximately between 2< y+b < 3 as soon as there is
transpiration velocity, as can be seen in figure 19. The butterfly spectra disappear
after the maximum of U, showing a smooth transition from wider and shorter scales
than expected from the classical ones.
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FIGURE 21. (Colour online) Premultiplied spectra of streamwise velocity fluctuations in
the (a,c) stream- (kxEuu) and (b,d) spanwise direction (kzEuu). In every figure, wavelengths
are given adimensionalized in both global wall units (a,c) and h (b,d). The distance from
the nearest wall (y/h) is reported on the horizontal axis in logarithmic scale to emphasize
the near-wall behaviour. (a,b) case C00, (c,d) case C02.

Concerning the situation away from the wall, the differences among the spectra
of the different cases can be highlighted by representing the spectra in terms of the
spanwise or streamwise wavelengths and the distance to the nearest wall. This type
of representation was introduced by Hutchins & Marusic (2007) to understand the
energetic relevance of the various scales of motions at different distances from the
wall. In figures 21 and 22, we see this representation for all CXX cases with the
blowing side in the left columns, and the suction side in the right columns. The
left columns show the premultiplied spectra in the streamwise direction, kxEuu, and
the right columns in the spanwise direction, kzEuu. The breaking of the reflectional
symmetry due to the transpiration and the flow of energy from the blowing to the
suction wall can be easily seen from the latter figures. Energy in the lower half of
the channel near the blowing side gradually disappears until even the peaks are lost
(figure 22e). The known maximum of the spanwise spectra in Couette flows (Pirozzoli
et al. 2014) is kept at the same position near the suction wall, approximately at
y/h ≈ 0.01, y+ ≈ 12. Energy is concentrated for all cases near λ+z ≈ 110 for the
spanwise spectra in the suction half of the channel, to be taken from the right
columns of figures 21 and 22. The structures appearing at the top of the spanwise
spectra, at the centre of the channel at λz/h≈ 5, are the footprints of the long rolls
of turbulent Couette flows without wall transpiration. Notice that as we are using
logarithmic scales, there are just a few points above λz/h≈ 1, causing an anomalous
shape at the top of the figures representing the spanwise spectra. From these spectra,
we may conclude that although the rolls lose energy as the transpiration velocity
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FIGURE 22. (Colour online) Premultiplied spectra of streamwise velocity fluctuations
in the (a,c,e) stream- (kxEuu) and (b,d, f ) spanwise direction (kzEuu). In every figure,
wavelengths are given adimensionalized in both global wall units (a,c,e) and h (b,d, f ).
The distance from the nearest wall (y/h) is reported on the horizontal axis in logarithmic
scale to emphasize the near-wall behaviour. (a,b) case C05, (c,d) case C10, (e, f ) case
C20.

is increased, they never fully disappear in the range of parameters that have been
studied presently.

5. Conclusion
We have presented, for the first time, a set of turbulent plane Couette flow

simulations extended by a wall-normal transpiration velocity. The main importance
of the present paper lies in the investigation of the effects due to the transpiration
velocity and the analysis of the turbulent structures detected in the flow, which are
rather distinct on the blowing side and the suction side. A second important point is
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the search for the proper velocity scales to appropriately scale the flow and collapse
the statistical data. The main difficulty about the latter issue is due to the four
velocities acting on the flow. In particular, we have the external velocities Uw and
V0 extended by the two local friction velocities us

τ and ub
τ , although they are all

interconnected by the mean momentum equation (2.4).
From the computations at the highest transpiration number, i.e., V+0 = 0.07, we

observe a collapse of the mean velocity and the second moments in wall units for
different Reynolds numbers, essentially showing that V+0 is the key parameter to
control the flow acting as an invariant. This number has been previously used as
Reynolds number in TASBL with injection and suction. Further, it is observed that
at the highest Reynolds number and the highest transpiration rate, the slope constant
of the logarithmic law increases to κ = 0.77, representing an extremely extended
logarithmic region, much longer than the one that can be observed in turbulent
Poiseuille or Couette flows at similar Reynolds numbers. Further, one of the main
effects of transpiration is the reduction of the value of turbulent intensities and uv+,
and thus a general reduction of turbulence in the flow.

It is noteworthy to mention that the long and wide structures, characteristic of
turbulent Couette flows at zero transpiration, are still present. Their footprints are still
present in the two-dimensional spectra of the flow. It has been possible to find these
rolls in the ensemble-averaged U field. The only difference is that this structures are
moved towards the suction wall. On the other hand, spectra near the blowing wall
present two peaks, created by the transmission of energy due to the transpiration
velocity. These butterfly spectra are related to an inflection point in U and evolve to
the classical spectra of Couette flows for y+b % 3.
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