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The objective of this work is a numerical study of the stability properties and the
evolution of the eastward-travelling baroclinic modons – coherent vortex structures
specific to stratified geophysical fluids where differential rotation (the β-effect) is
of the essence. In the vortices under study, the initial dependence of the potential
vorticity (PV) upon the streamfunction is piecewise-linear, the barotropic component
is dipolar, the baroclinic component is circularly symmetric about the vertical axis,
and the boundary of the trapped-fluid region (in which the vorticity contours are
closed) is a circular cylinder. These modons are shown to be stable for a wide range
of parameters. In two- and three-layer fluids, modons of this type are shown to be
able to transit to even more durable states, in which the trapped-fluid area is oval
in shape and the PV versus streamfunction dependence in this domain is nonlinear.
Possible transition mechanisms and linkage between the circular and oval modons
are discussed.

1. Introduction
Today, the crucial role of mesoscale vortices in the dynamics of oceans and

atmosphere is widely recognized. Mesoscale vortices are present everywhere in the
World Ocean (e.g. Wirtki, Magaard & Hager 1976; Richardson 1983a; Ikeda, Mysak
& Emery 1984; Ikeda & Emery 1984; Kamenkovich, Koshlyakov & Monin 1986,
chap. 1; Hecht, Pinardi & Robinson 1988; Hooker et al. 1995). Observations show
that oceanic mesoscale eddies can survive for a long time with small dispersion
and slow decay. This has been shown, for instance, for eddies in the Gulf Stream
(Richardson 1983b) and the Mediterranean (Feliks & Itzikowitch 1987; Hecht et
al. 1988). The long lifespan of these eddies motivated researchers to look for the
stationary solutions that are considered below.

Exact and asymptotic solutions representing steadily travelling shape-preserving
localized vortices on the β-plane were derived for both barotropic and stratified
fluids (e.g. Stern 1975; Larichev & Reznik 1976a, b; Berestov 1979; Flierl et al.
1980; Mied & Lindemann 1982; Tribbia 1984; Verkley 1984; Reznik 1985; Kizner
1984a, b, 1986a, b, 1988, 1997; Pakyari & Nycander 1996). These solutions are referred
to as modons. A modon carries the fluid trapped in its core and travels along
a parallel. Conventional modons are strongly localized; their characteristics decay
exponentially in space, the exponent being dependent on the translation speed. The
simplest modon is a barotropic dipole current system, while some dipole (or, more
generally, antisymmetric) component is always present in any modon, forcing it to
propagate.
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In a truly stationary localized vortex, outside its core, the dependence between the
potential vorticity (PV) and the streamfunction (considered in the frame travelling
along with the vortex) is a simple proportionality (Larichev & Reznik 1976a; see
also Flierl et al. 1980), while inside the region of trapped fluid it can be, generally
speaking, nonlinear. However, for the exact modon solutions on the β-plane known
to date, this interior dependence is linear, the trapped-fluid region being circular.
Boyd & Ma (1990) considered free elliptical dipoles on the f-plane, where the β-effect
is absent (see also Hesthaven et al. 1995). They showed numerically that although
in order to provide elliptical modons the interior PV vs. streamfunction relationship
must be nonlinear, it is linear for circular modons. This appears to be true for
the β-plane as well, but to date there has been only partial evidence in favour of
this analogy. Haupt, McWilliams & Tribbia (1993) considered approximately circular
barotropic numerical modon solutions in weak symmetric shear flow on the β-plane
and found the interior PV vs. streamfunction relationship to be linear. This was also a
characteristic property of the barotropic diploes that emerged from collapsing vortical
structures in the numerical experiments of Kizner & Berson (2000). In numerical
experiments of McWilliams & Zabusky (1982), two merging Larichev–Reznik dipoles
created a quasi-stationary vortex with a nonlinear interior relationship, but the form
of the trapped-fluid area was not determined. The issue of the existence of baroclinic
non-circular modons and modons with nonlinear interior PV vs. streamfunction
relationships has not been considered until now.

Observations of dipole vortices are available in both the ocean and atmosphere
(e.g. Ikeda et al. 1984; Ikeda & Emery 1984; Hooker et al. 1995; McWilliams 1980;
Butchart, Haines & Marshall, 1989). Nevertheless, the major part of the observed
mesoscale vortices can be characterized as nearly axisymmetric monopoles rather
than dipoles (Kamenkovich et al. 1986, chaps. 4, 5; Olson 1980, 1991). This was
the motivating factor in seeking the so-called ‘dipole-plus-rider’ modon solutions, in
which the circularly symmetric ‘rider’ component can mask the dipole pattern.

The rider PV in barotropic dipole-plus-rider solutions (Flierl et al. 1980; Berestov
1981) is discontinuous. Swenson (1987) showed the instability of such solutions. In
two-layer numerical experiments, McWilliams & Flierl (1979) and Mied & Linde-
mann (1982) showed that baroclinic dipole-plus-rider modon-like structures (with a
continuous PV field) could result from evolving baroclinic monopoles and hetons
(this term was first used by Hogg & Stommel (1985) to designate a baroclinic vortex
pair formed by vortices located in different layers of a two-layer fluid and separated
by a certain distance). Similar results were obtained by Feliks (1990) in two- and
four-mode quasi-geostrophic numerical experiments on the evolution of an initially
Gaussian baroclinic monopole. The simulations in these works were carried out for
relatively short times (a few tens of synoptic periods). Feliks & Ghil (1993, 1996), using
a quasi-geostrophic model, showed that eddies detached from boundary currents do
exhibit the structure of a barotropic dipole with a baroclinic rider. Pakyari & Nycan-
der (1996) suggested a two-layer asymptotic dipole-plus-rider solution and provided
some qualitative argumentation in favour of the stability of the eastward-travelling
baroclinic dipole-plus-rider modons.

For continuously stratified fluid, Kizner suggested different types of exact (1984a,
1988, 1997) and asymptotic (1986a, b) solutions of the dipole-plus-rider type with
a piecewise PV vs. streamfunction relationship and a continuous PV field (below
identified as smooth modons); some of them (1984a, 1986a, 1997) can be fitted to
any stratification and are therefore of special interest. The barotropic mode, in these
solutions, coincides with the barotropic modon of Larichev & Reznik (1976a) and
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the amplitude of the axisymmetric baroclinic rider is arbitrary, the trapped-fluid area
being a circular cylinder.

Long lifespans of the dipole barotropic modons (especially those travelling east)
have been demonstrated numerically (McWilliams et al. 1981; Makino, Kamimura
& Taniuti 1981; Larichev & Reznik 1982, 1983; McWilliams & Zabusky 1982;
Hesthaven, Lynov & Nycander 1993) and in laboratory experiments (Flierl, Stern &
Whitehead 1983; Velasco Fuentes & van Heijst 1994, 1995). In the present work, the
stability properties and long-term evolution of smooth circular baroclinic modons
are studied numerically, the specific questions addressed being the following: Can
modons of this type be stable? What are the ranges of the parameters that admit
durable modons? What are the mechanisms of the modon unstable evolution? Are
there some stationary coherent regimes that differ from circular modons? If so, what
are they? Are they somehow linked to the circular modons? A multi-layer quasi-
geostrophic model is initialized using the above-described exact baroclinic circular
modon solutions at different translation speeds and rider amplitudes, and forward
integration is conducted for super long times (up to 2000 synoptic periods). We
consider in detail the case where the unperturbed layer depths are the same, and the
density jumps between the layers are equal (‘linear’ stratification).

In the next section, the main concepts are introduced. In § 3, we describe the
numerical approach applied. The experiments on the evolution of baroclinic modons
conducted with the use of the two- and three-layer versions of the numerical model
are presented and discussed in § 4.

2. Background
We base our considerations on the principle of conservation of PV in the quasi-

geostrophic approximation.
In a Cartesian coordinate system attached to a point at some reference latitude

so that the x-axis is directed eastward, y – northward, z – upward (z = 0 at the
non-perturbed free surface), the conservation of the quasi-geostrophic PV is given by
the equations:

∂q

∂t
+ J(ψ, q) = 0, (1)

q = ∆ψ +
∂

∂z

[
f2

0

N2

∂ψ

∂z

]
+ βy. (2)

Here, J is the Jacobian; ∆ is the Laplacian in x and y; ψ is the streamfunction
for the horizontal velocity components (u = −∂ψ/∂y, v = ∂ψ/∂x); q is the PV;
f = f0 + βy is the Coriolis parameter, where f0 is the reference-latitude inertial
frequency, β is the meridional gradient of f; N =

√
(g/ρs)(dρs/dz) is the Brunt–

Väisälä frequency characterizing the non-perturbed stratification, ρs = ρs(z) is the
ambient density profile, and g is the acceleration due to gravity.

The typical horizontal scale of oceanic synoptic eddies, which are the main subject
of our study, is equal to the internal Rossby radius, LRo = (N/f0)H ∼ 50 km (where
N is the average Brunt–Väisälä frequency). For the currents of such a scale the
‘rigid-lid’ condition at the free surface, i.e. the equality to zero of the vertical velocity
component at z = 0, is valid to a high level of approximation (Kamenkovich et al.
1986, chap. 2). We will accept the same condition at z = H = const regarding the
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bottom as flat (and non-sloping). These conditions are obeyed if we assume that

∂ψ

∂z
= 0 at z = 0,−H. (3)

The so-called vertical normal modes, F (j)(z), are further introduced as the eigen-
functions of the ‘vertical operator’ appearing in equation (2) that obey the conditions
(3). These are the solutions of the Sturm–Liouville problem

d

dz

(
f2

0

N2

d

dz
F

)
+ m2F = 0, F ′(0) = F ′(−H) = 0. (4)

If the stratification is stable (N2 > 0) andN2 is a differentiable function, then (4) has an
infinite set of eigenvalues, 0 = m2

0 < m2
1 < m2

2 < . . . , the eigenfunctions being mutually
orthogonal (e.g. Kamke 1959). In the n-layer model, i.e. when ρ(z) is a piecewise-
constant function, there are only n vertical modes, which are piecewise-constant
functions of z (Kamenkovich et al. 1986, chap. 2). In this case, it is appropriate to
replace the notations ψ = ψ(x, y, z, t), q = q(x, y, z, t), and F (j)(z) by ψi = ψi(x, y, t),
qi = qi(x, y, t), and F

(j)
i , respectively, where i is the layer index. The vertical normal

modes for the n-layer model can be obtained in the framework of the general approach
(equations (2)–(4)) if the Brunt–Väisälä frequency is understood as a superposition
of n − 1 Dirac functions. This fact allows us to refer to equation (2) regardless of
whether a continuous or multi-layer stratification is considered. Note that F (0) = const,
whereas each function F (j) at j > 0 changes its sign j times and its integral over
the depth is zero. The zero mode is conventionally called barotropic, whereas the
remaining modes are called baroclinic.

Clearly, any solution to (1)–(3) can be represented in the form

ψ =

n−1∑
j=0

ψ(j)(x, y, t)F (j), q =

n−1∑
j=0

q(j)(x, y, t)F (j), (5)

where n is either finite (n-layer model) or infinite (continuous stratification). Substi-
tution of (5) into (2) implies the following equations:

q(0) = ∆ψ(0) + βy, q(j) = ∆ψ(j) − m2
jψ

(j) (j = 1, 2, . . . , n− 1). (6)

Here, we are interested in vortices that, in addition to the barotropic mode, contain
only one, say j 0th, baroclinic mode. In this case, (5) and (6) are reduced to

ψ = ψBT (x, y, t) + ψBC(x, y, t)FBC, q = qBT (x, y, t) + qBC(x, y, t)FBC, (7)

qBT = ∆ψBT + βy, qBC = ∆ψBC − m2
j 0
ψBC, (8)

where the following notations are used: ψ(0) = ψBT , ψ
(j 0) = ψBC, F

(j 0) = FBC .
If the vortex propagates steadily in the x-direction at a translation speed U then,

in the travelling coordinate frame (x→ x̃ = x−Ut), equation (1) will be reduced to

J(Ψ, q) = 0, Ψ = ψ +Uy. (9)

In these coordinates, streamlines – isolines of Ψ – are the pathways of the fluid
particles, i.e. lines of constant PV. Accordingly, equations (9) mean that, in such
a vortex, PV is a certain (as yet arbitrary) function of Ψ and z. (In the case of a
multi-layer fluid, qi is a function of Ψi, and this function can vary for different i.) Note
that, in general, equations (9) do not automatically secure a relationship between qBT
and ΨBT = ψBT +Uy or between qBC and ΨBC = ψBC .
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Localization means that the function ψ abates quite rapidly at the periphery and
thus Ψ → Uy and q → βy at x̃ → ∞. This immediately implies that far enough

from the vortical core, at sufficiently large values of r =
√
x̃2 + y2, the isolines of

the functions Ψ and q are open and, in the region of open isolines, PV is simply
proportional to Ψ . First, following Flierl et al. (1980), we will consider a solution in
which, at any z, the contour demarcating the regions of closed and open isolines is a
circle of the same radius a, so that

q = l2Ψ, r > a, (10)

where

l2 = β/U. (11)

In the exterior region, the proportion holds separately for qBT and ΨBT , on the one
hand, and qBC and ΨBC , on the other. Analysis shows that localized solutions to (2),
(10) and (11) that contain the barotropic mode exist only if l2 > 0. This means that,
under the rigid-lid conditions (equation (3)), such localized vortices propagate only
eastwards (e.g. Larichev & Reznik 1976a, b; Flierl et al. 1980; Kizner 1997). Regarding
the interior, trapped-fluid region r < a, we will assume that the dependence of q upon
Ψ is linear:

q = −k2Ψ + DFBC, (12)

where k2 and D are constants (non-circular vortices with nonlinear relationships
between q and Ψ will be discussed in § 4).

The conditions for matching the exterior and the interior solutions are those of
continuity of the pressure (ψ), velocity and PV fields at the contour r = a. Using (7),
an exact circular modon solution that satisfies equations (5), (10) and (12) and fits
any stratification can be represented in the polar coordinates r, θ in the form (Kizner
1997):

ψBT = ΦBT (r) sin θ, ψBC = ΦBC(r), (13)

ΦBT =


U

[
a
l2

k2

J1(kr)

J1(ka)
−
(
l2 + k2

k2

)
r

]
(r < a)

−aU K1(lr)

K1(la)
(r > a),

(14)

ΦBC =


A

[
J0(kj 0

r)− l2 + k2

l2j 0

J0(kj 0
a)

]
r < a)

−Ak
2
j 0

l2j 0

J0(kj 0
a)

K0(lj 0
a)
K0(lj 0

r), (r > a).

(15)

Here, Jv and Kv are v-order Bessel and Macdonald functions, A is a free coefficient,

lj 0
=
√
l2 + m2

j 0
, kj 0

=
√
k2 − m2

j 0
, (16)

and parameters a, k, l, kj 0
and lj 0

are related by the equations

−k J1(ka)

J2(ka)
= l

K1(la)

K2(la)
, −kj 0

J0(kj 0
a)

J1(kj 0
a)

= li
K0(lj 0

a)

K1(lj 0
a)
. (17)

In this solution, the barotropic mode is antisymmetric about the x -axis and the
baroclinic mode is circularly symmetric about the vertical axis. In view of (11),
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Figure 1. Dispersion relationship (radius vs. translation speed) for the smooth solution given by
equations (7) and (13)–(17). The lower branch corresponds to the modons composed of a barotropic
dipole and a baroclinic monopole.

equations (16) and (17) determine the dispersion relationship for the smooth solution
given by equations (7) and (13)–(17) – the dependence of the vortex radius a upon
its translation speed U. Since functions J1 and J2 alternate, whereas K1 and K2 do
not, this relationship is many-valued (figure 1).

Here, we will consider only the modon solutions based on the lower branch of
the dispersion relationship; this is exactly the case when the barotropic mode is a
dipolar modon of Larichev & Reznik (1976a) and the baroclinic mode, at each z,
is a smooth monopolar rider. (Higher branches correspond to the so-called shielded
modons. In this case the barotropic mode is multipolar, which yields instability of
the modon, Kizner & Berson 2000.) Most of the following considerations will be
limited to the modons that carry riders in the first baroclinic mode (j 0 = 1). As the
first mode, F (1), changes sign once over the interval 0 < z < −H , such a solution,
in fact, is heton-like: the PV peak values are assumed at z = 0,−H and are moved
apart in the y-directions. The nonlinear interaction between the upper and bottom
vortices causes the propagation of the entire vortex system eastwards and its possible
coherence. However, the fact that the solution (7) and (13)–(17) allows arbitrary (even
zero) amplitude A of the baroclinic mode, means that the overall transport of the
vortex structure is conditioned by the barotropic dipole – by its size and intensity.
At the same time, the presence of a smooth rider imposes an additional constraint
on the parameters of the barotropic dipole – the dependence between its size and
translation speed (and thus, the dependence between size and intensity).

The general objective of our investigation is to examine the stability properties of
the modons given by equations (7) and (13)–(17), the specific questions addressed
in the present paper being formulated in § 1. The task being faced can hardly be
managed using analytical methods only. On the other hand, a numerical study is
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facilitated by the fact that the solution (7) and (13)–(17) is valid for a multi-layer
fluid.

3. Numerical multi-layer model
Our computer model is based on the non-dimensional versions of equations (1)

and (2) for the n-layer fluid. The scales used are: LRo ≈ 50 km and T = 1/βLRo ≈ 10
days, for the space and time variables x, y, t (synoptic scales); βL3

Ro and βLRo, for the
streamfunction and potential vorticity, respectively. Equations (1) and (2) are inte-
grated in a rectangular domain [−X < x < X;−Y < y < Y ]. Periodicity conditions
are applied at x = ±X, while the boundary conditions at y = ±Y are ∂ψ(j)/∂x = 0

and
∫ X
−X(∂2ψ(j)/∂t∂y) dx = 0 (Buchwald 1973; Larichev 1974; see also Kamenkovich

et al. 1986, chap. 2). In the experiments presented below, X = Y = 15LRo and the
mesh size is δ = 0.1LRo; the time step τ is controlled by the gradients of ψ and q
and does not exceed 2.5× 10−3T . Most of the experiments are run with the solution
(7) and (13)–(17) specified as an initial condition (at different translation speeds and
amplitudes of the baroclinic mode).

Briefly, the computational algorithm is as follows. At any moment t > 0, in each
layer, PV is computed from a finite-difference analogue of equation (1) with the use of
a combination of the direct and Matsuno schemes and Arakawa approximation for the
Jacobian operator (Mezinger & Arakawa 1976), the streamfunction being taken from
the previous moment, t−τ. Subsequently, the layer streamfunctions ψi are determined
(i = 1, . . . , n). At this stage, PV is expanded into a linear combination of vertical normal
modes according to (5), and n finite-difference analogues of independent equations
(6) in ψ(j) are solved (j = 0, . . . , n− 1) using decomposition into eigenfunctions in the
x-direction and marching in the y-direction (Samarsky 1989). Such a scheme affords
conservation of the integral vorticity while, according to our tests, the conservation
of the total energy and enstrophy is held within 0.5% each until 2000T .

While travelling eastwards, the vortex can encounter its own vortical filaments and
Rossby waves radiated by itself that enter the basin through the eastern boundary
owing to the periodicity in the x-direction. To avoid such head-on interactions, we
adopt the so-called cutting procedure (Hesthaven et al. 1993), according to which,
periodically in time, a mask is put on the computed streamfunction field, the pe-
riod being equal to T . This procedure does not change the ψ field within the area
r < 5LRo, but reduces it smoothly to zero in the periphery. Clearly, when this pro-
cedure is applied, the integral vorticity, enstrophy and energy can be conserved only
within the period T , between the subsequent cuttings. Our experiments showed that
the computational algorithm described above allows the study of super long-term
evolution of vortical structures.

Barotropic Larichev–Reznik modons travelling east at the translation speeds 0.3 to
1.2LRo/T were used to test the numerical model. The changes in their parameters and
structure were insignificant until ∼ 500T . In dipoles whose initial translation speeds
were small, weak slowing down of the eastward drift caused by the numerical effects
(for discussion see § 4.1.1) led to the loss of coherence at long times (t > 1500T ).

For the purposes of our investigation, plural high-resolution long-term computa-
tions are required. Note also that in a multi-layer model, the volume of the calculations
required exceeds greatly that needed in a barotropic model. Therefore, at the present
stage, we confine ourselves to two- and three-layer dipole-plus-rider modons (two-
layer structures of this type were first considered by Mied & Lindemann, 1982),
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the space resolution being δ = 0.1LRo. Two re-run experiments that lasted for 400T
were conducted with a tilted circular modon at δ = 0.1LRo and δ = 0.075LRo (and
appropriately reduced time step), but no significant difference in results was observed
(the experiment at δ = 0.1LRo is presented in § 4.1.2).

4. Results and discussion
4.1. Two-layer modons

4.1.1. Overview

In a two-layer fluid, which will be considered first, FBC = F (1). For definiteness we
will regard the vertical modes normalized in such a way that F (0) = 1 and F

(1)
1 = 1;

this implies that F (1)
2 = −ε, where ε = h1/h2 is the ratio between the depths of the

layers. Without loss of generality, we may assume that ε 6 1 (if otherwise, the layer
indices can be interchanged). Using (1) and (7), we arrive at the following equations
describing the evolution of the barotropic and baroclinic components of PV:

∂

∂t
qBT + J(ψBT , qBT ) + εJ(ψBC, qBC) = 0, (18)

∂

∂t
qBC + J(ψBT , qBC) + J(ψBC, qBT ) + (1− ε)J(ψBC, qBC) = 0. (19)

The case ε = 1, when the layers are of the same thickness, is of particular interest. As
seen from equations (8), (18) and (19), in this case, the antisymmetry of the barotropic
mode and the symmetry of the baroclinic mode, which are inherent characteristics
of the solution (7) and (13)–(17), are retained during the evolution of the vortex. A
consequence of this symmetry/antisymmetry is that if, in a steady state reached in
the course of the vortex evolution, the trapped-fluid regions in the upper and the
lower layer are the same, their common boundary coincides with the zero contour
of qBT (and, therefore, with the contour ΨBT = 0), thus being symmetric about the
x -axis. These facts make the vortex evolution especially accessible for analysis, and
we will focus our consideration primarily on this case. Such a two-layer stratification
represents an analogy to a linear stratification in a continuously stratified fluid, and
will be referred to below as ‘linear’ stratification. Note that, in a continuously stratified
fluid, equations (18)–(19) at ε = 1 describe the evolution of the barotropic and first
baroclinic modes in the two-mode approximation if the stratification is linear and the
modes are normalized so that F (0) = 1 and F (1)(0) =

√
2. Thus, the results presented

in §§ 4.1.1–4.1.3 remain valid in this approximation.
Some results of a simulation, in which the initial state is characterized by a unit

translation speed and the baroclinic mode is 3 times stronger than the barotropic
mode (ABC/ABT = max|ψBC |/max|ψBT | = 3), are shown in figures 2–8. The simulation
lasted until 1800T , and the total energy changed within a 3% interval during this
period, the change being due mainly to the cutting procedure applied. Accordingly,
no essential loss of total enstrophy E was observed (figure 2a), except for two short
intervals of relatively small enstrophy lowering (2.7% and 2%, respectively). The latter
indicate some significant restructuring of the vortex system attended by emission of
vortical filaments and patches (which escape from the domain under consideration).
It is seen that, almost immediately, the total potential energy P sinks noticeably, and
then nearly stabilizes for more than 200T (which is more than 5 years for the chosen
scales); thereafter, it again drops drastically, levels off and scarcely changes until
the end of the experiment (figure 2b). As opposed to the small changes in the total
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Figure 2. Evolution of a modon in the two-layer ‘linearly’ stratified fluid; the initial state is given
by equations (7) and (13)–(17) at U = 1 and ABC/ABT = 3. (a) Total enstrophy normalized with the
initial value. (b) Total potential energy normalized with the initial value. (c) Baroclinic-to-barotropic
amplitude ratios. (d ) Translation speed. Time t is given in synoptic periods T and speed in LRo/T .

energy, the steep descents in the potential energy are significant and are indicative of
an energy transfer from the baroclinic mode to the barotropic mode. This conclusion
gains substance from the analysis of the dynamics of the baroclinic-to-barotropic
amplitude ratio, ABC/ABT , these being quite similar to those of the potential energy
(figure 2c). At the same time, the translation speed U rises sharply, stabilizes, then
again increases and stabilizes, although some slowing down can be observed in the
stages of quasi-stationary eastward translation (figure 2d ). This evidence allows us to
speak of two transitions undergone by the vortex and two quasi-stable states attained.
Although we cannot rule our some possible physical factors in the observed vortex
hindering, our tests suggest that it is mainly due to the numerical effects.

The formation of a low-value ‘extra’ vorticity train behind a travelling vortex
common to finite-difference numerical models (van Geffen & van Heijst 1998) is one
of the hindering factors. Another contributor to this hindering is the periodically
applied cutting (as noted by Hesthaven et al. 1993). It damps out to some extent the
external streamfunction and PV fields. In terms of the stationary exterior fields (see
the lower lines in equations (14) and (15)) this is equivalent to some increase in l
and, owing to relationship (12), to a decrease in the translation speed. Thus, we might
conclude that, while at the non-stationary stages of the modon evolution (such as the
above transitions) the cutting minimizes the effects caused by the x-periodicity of the
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Figure 3. PV vs. streamfunction scatters for the layers at t = 0, 200, 400 (parameters of the
experiment and time units, as in figure 2). The positively sloping straight line, external points;
negatively sloping group, internal points.

computed fields, at quasi-steady states it plays the role of a small perturbation acting
periodically in time.

4.1.2. Quasi-stable regimes

The two plateau phases in figure 2 represent two different quasi-stable regimes. This
is evidenced by the well-organized scatter-plots of qi vs. Ψi(i = 1, 2) shown in figure 3.
In the first regime, the scatter-plots for the barotropic and the baroclinic modes are
also clear-cut and linear (figure 4), i.e. the linear dependencies (11) and (12) hold to a
high level of accuracy. This indicates that, in the first quasi-equilibrium state, we are
again dealing with a vortex that can be described as a composition of a barotropic
Larichev–Reznik dipole and a smooth circularly symmetric rider – a structure given
by the solution (7) and (13)–(17). In the second regime, the scatter-plots of qi vs.
Ψi are also well grouped; however, they are nonlinear in the trapped-fluid domain
(figure 3) and, therefore, the points (qBT ,ΨBT ) and (qBC,ΨBC) are scattered (figure 4).
So here we have a vortical structure of a new type.

The streamfunctions and PV in the layers and modes corresponding to the initial
state (t = 0) and the two quasi-equilibrium states are shown in figures 5–8 (the two
moments, t = 200T and t = 400T , are chosen as an example). The layer and the
barotropic streamfunction fields look qualitatively similar in the two states (figures 5
and 6), the only visible difference being the stronger barotropic dipole component
of the second (t = 400T ). The difference between the two regimes is displayed in
the baroclinic mode; it is circularly symmetric in the first state, whereas in the
second state it has a saddle-like shape (figures 6 and 8), i.e. when decomposed into a
Fourier series in θ, the baroclinic mode contains higher even harmonics (cos 2θ, etc).
Correspondingly, in the first case, the contour demarcating the regions of closed and
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Figure 4. PV vs. streamfunction scatters for the barotropic and baroclinic modes at t = 0, 200 and
400 (parameters of the experiment, designations and units as in figure 2).
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Figure 5. Streamfunction fields in the layers at t = 0, 200 and 400 (parameters as in figure 2;
x and y are given in Rossby radii LRo time in synoptic periods T ). The interval between the contours
is 10% of the initial maximum; regions of positive values are shadowed.
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Figure 6. Barotropic and baroclinic streamfunction fields at t = 0, 200 and 400 (parameters as in
figure 2, units as in figure 5). The interval between the contours is 10% of the initial maximum in
the layers; regions of positive values are shadowed.
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Figure 7. PV fields in the layers at t = 0, 200 and 400 (parameters as in figure 2; units, contours
and shadows as in figure 5). Dashed lines indicate the boundary of the trapped-fluid region.
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Figure 8. Barotropic and baroclinic PV fields at t = 0, 200T and 400T (parameters as in figure 2;
units, contours and shadows as in figure 6). Dashed lines indicate the boundary of the trapped-fluid
region.

open lines of constant PV is circular, whereas in the second case it is oval in shape
(figure 7). We note that in both cases, there is no visible jump in the PV fields when
crossing this contour.

As distinct from the circular state, in the oval regime, the distributions of the
barotropic and baroclinic PV are quite close in the absolute values (figure 8, t = 400T ).
This means that, within the interior domain, PV in the upper and bottom layers is
basically concentrated in different half-planes (with respect to the x-axis). In this
sense, the oval modon exhibits a high degree of similarity with a point heton. This
regime is even more durable than the circular one: no steep changes in the vortex
parameters are observed for at least 1400T (until the end of the simulation). We may
surmise that this remarkable stability is related to the heton nature of the modon;
in hetons, there is a distance at which interaction between the upper and the lower
vortices is most intensive and the translation speed is maximal (Hogg & Stommel
1985). Presumably, this distance allows the strongest coupling between the upper and
the bottom vortices.

An important question is: do the two quasi-steady configurations described above
represent two completely different states or can they be regarded as belonging to the
same family? To answer this question, we ran 20 evolutionary experiments at different
combinations of the parameters U and A. In most of these experiments a transition
of the second type (i.e. from the circular form to an oval state) was observed. The
intermediate circular stable regimes differed insignificantly from the initial states if
the initial amplitude ratio ABC/ABT ranked approximately from 1 to 1.5, whereas
for stronger baroclinic riders, transitions of the first type were also observed. On the
other hand, in the cases when the amplitude ratio was small, no sharp transitions
were observed; the vortices essentially preserved their initial forms for hundreds of
T . The subsequent evolution of these structures was similar to that of the barotropic
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Figure 9. Evolution of a tilted modon in the two-layer ‘linearly’ stratified fluid. Initial state –
solution (7), (13) and (17) at U = 1 and ABC/ABT = 1 turned by 30◦ with respect to the x-axis:
(a) y-coordinate of the vortex centre; (b) x-component of the vortex centre speed (distance in
Rossby radii LRo, speed in LRo/T ).

Larichev–Reznik dipoles: the hindering effect led to slowing down of the eastward
drift and, in a long-term perspective, to loss of coherence between the upper and
the bottom vortices (which, however, took quite a long time if the initial translation
speed was not too small).

Qualitatively, the same main results were obtained in a few experiments in which
asymmetric perturbations were imposed on the initial states by tilting the barotropic
mode relative to the x-axis. As an example, the initial stage of the evolution of
a modon with a moderate rider (ABC/ABT = 1) tilted by 30◦ with respect to the
x-axis is presented in figure 9, where the y-coordinate of the vortex centre, yC , and
the x-component of its speed, U, are plotted as functions of time, the centre being
defined as the point equidistant from the upper and the bottom streamfunction
peaks. This evolution is similar to that of a tilted eastward-propagating barotropic
dipole (Nycander 1992; Hesthaven et al. 1993): after a few decaying oscillations,
approximately at t = 20T , the vortex nearly stabilizes in a state close to an exact
circular-modon solution. Qualitatively, the further behaviour of the vortex is little
different from that of non-tilted circular modons bearing moderate riders; at about
t = 150T a transition to an oval state starts.

In the solution (13)–(17), the amplitude coefficient of the baroclinic rider, A, does
not affect either the barotropic mode or the structure of the baroclinic mode, so that
the smooth circular modons constitute a two-parameter family. A specific solution
from amongst this family is determined by the pair (U,A) or, alternatively, (a, A);
recall that a and U are related via the dispersion relationship (figure 1). In contrast,
the non-smooth circular solutions, in which continuity of qBC at the contour r = a
is not required, make up a three-parameter family, the parameters being a,U, and
the baroclinic mode amplitude. Similarly, in the general case of non-circular modons,
once the form of the trapped-fluid region is fixed up to a homothetic transformation,
the corresponding family of non-smooth modon solutions must depend on three
parameters: the modon mean size, r0 (defined as the square root of the trapped-water
area); the translation speed, U; and the baroclinic mode amplitude, ABC . Imposing the
continuity condition upon the baroclinic PV field will reduce one degree of freedom,
resulting in a ‘dispersion relationship’ between these parameters.
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Figure 10. Oval quasi-steady states as points in the three-dimensional space (U, ry/rx, r0): (a)
three-dimensional image of the experimental points and the fitted cylindrical surface (bold line,
directrix L); open circles A, B and C designate the initial state and the two quasi-steady regimes
resulted from the transitions; (b) two-dimensional projection in the generatrix direction of the
three-dimensional box (shown in (a)) with the experimental points and fitted surface (ordinate,
projection of (r0, ry/rx)-plane); for details see § 4.1.2.

Obviously, when a quasi-stationary modon is obtained in a numerical evolutionary
experiment, its form is determined only approximately. Nevertheless, in our data, the
boundary of the trapped-fluid domain is a convex figure resembling a circle stretched
out slightly in the y-direction and, to a first approximation, the ratio ry/rx between the
large and the small radii can represent this form. Hence, we are dealing here with four
parameters r0, U, ABC and ry/rx that, owing to the continuity of the baroclinic PV field,
must be related by a ‘dispersion relationship’ r0 = r0(U, ry/rx, ABC). The latter can be
visualized as a family of two-dimensional surfaces or a three-dimensional manifold
M in the three-dimensional space, where the coordinates are r0, U and ry/rx.

One might expect that, in the limit ry/rx → 1, smooth oval modons turn into
smooth circular modons and, at ry/rx → 1, the manifold M turns into the curve L
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Figure 11. Emission of the westward-propagating vortical structure in terms of the streamfunction
in the layers (parameters as in figure 2; units, contours and shadows as in figure 5).

representing the lower branch of the dependence r0 = r0(U) shown in figure 1. To
verify this hypothesis, the oval quasi-steady states obtained in the simulations are
plotted as points in a three-dimensional space (U, ry/rx, r0) and a cylindrical surface is
fitted to the experimental points so that the curveL serves the directrix (at ry/rx = 1),
while the generatrix is parallel to the (r0, ry/rx)-plane (figure 10a). These points form
an aggregation in the vicinity of the curveL. (Because, in the quasi-steady stages, the
modon parameters varied slowly with time, each experiment is represented by a chain
of points.) Inspecting the projection of the aggregation in the generatrix direction
proves that it is indeed quite compact (figure 10b). In figure 10(a), points A, B and
C , respectively, indicate the initial state (t = 0) and the two modon configurations
(at t = 200T and t = 400T ) achieved in the first and second transitions (base
experiment).

4.1.3. Transitions

The following analysis of the transition processes is based mainly on the simulation
presented in figures 2–8.

The first transition that takes place around t = 5T to 8T (figures 11–13), is
marked by shedding a considerable amount of PV (figure 12). Transitions of this
type were observed only in modons with relatively strong riders (ABC/ABT > 1.5),
and the stronger the rider, the more sizable was the detached PV patch. In order
to understand this phenomenon, we ran two additional experiments in which the
initial state was given by the baroclinic mode of the exact solution considered above
and, alternatively, by a Gaussian purely baroclinic monopole of a similar shape and
strength. The sequence of processes in these experiments was essentially the same as
in the basic experiment with the solution (7) and (13)–(17). This suggests that for
relatively strong riders, the presence of the barotropic mode and the exact structure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

16
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002001611


Baroclinic modon equilibria on the beta-plane 255

3

–3

0

3 6

y

t =5
3

–3

0

6 9

y

6

6 9

3

–3

0

7

L
ay

er
 1

y

3

–3

0

3 6

y

3

–3

0

6 9

y

6 9

3

–3

0

L
ay

er
 2

y

x x x

Figure 12. Same as in figure 11, but in terms of PV in the layers (contours and shadows as in
figure 5.
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Figure 13. Same as in figure 11, but in terms of barotropic PV (contours and shadows as in
figure 6).

of the baroclinic mode are immaterial, so that the mechanism of the first transition
can be explained in terms of the baroclinic β-gyres.

The notion of baroclinic β-gyres was suggested by Reznik, Grimshaw & Sriskan-
darajah (1997), who used an asymptotic approach to analyse the evolution of a purely
baroclinic two-layer ‘linearly’ stratified monopole. These are high-order dipolar and
antisymmetric about the y-axis corrections to the circular current in each layer that
develop at an early stage of the evolution of a baroclinic monopole and pull apart the
upper and the bottom monopoles thus forming a zonally propagating heton. In both
layers, the main (circular) currents and the eastern halves of the β-gyre corrections
are opposite in sign. Therefore the eastern periphery of the vortical system becomes
somewhat depressed; for a similar reason, the western periphery is strengthened. Thus,
the vortices in the upper and the bottom layers elongate in the westward direction
(figures 11 and 12). Since the main (zero-order) currents in each of the layers advect
the baroclinic β-gyres, one of them turns clockwise and the other counterclockwise.
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Figure 14. (a, c) The first, and (b, d ) the second transitions (parameters as in figure 2): (a, b) average
radius of the trapped-fluid area; (c, d ) distance between the streamfunction poles in the upper and
bottom layers. Time is given in synoptic periods T ; mean radius and distance in Rossby radii LRo.

Consequently, the rear (elongated) parts of the upper and the lower vortices overlap
and start working as a westward-travelling heton. In the barotropic PV field, it is
embodied in the creation of a relatively weak dipole, negative in its northern half
and positive in its southern half (figure 13). This process leads to the separation of
the stronger forward (right-hand), and the weaker rear (left-hand) vortical structures
at about 7.3T , the westward vortex being surrounded with a nonlinear Rossby-wave
field (cf. Kizner & Berson 2000). (Note that formally, because of the PV conservation
that forbids the breaking and closing of PV contours (e.g. Larichev 1983a, b), the
separated vortices must be connected by some filaments. However, these filaments
may thin down so that no grid numerical model will be able to resolve them.)

This transition was monitored by calculating the average radius r0 of the trapped-
fluid domain estimated as the square root of the area of closed PV contours in one of
the layers, and of the distance d between the streamfunction poles in the upper and
bottom layers (figure 14). After the separation, within the period t = 7.3T to 10T ,
the remaining eastward vortex structure reorganizes into a circular modon composed
of a dipolar barotropic mode symmetric about the y-axis, and a baroclinic circularly
symmetric rider. The small oscillations in r0 and d (figures 14a and 14c) attending
the first transition have a period approximately 1T and die out gradually by about
t = 20T , when all the modon parameters stabilize. The shedding of the westward
vortex results in the radius of the modon under consideration being smaller than that
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of the vortical structure before the separation. The estimated U and r0 satisfy the
dispersion relationship for circular modons (equations (16) and (17); figure 1) to a
high degree of accuracy. Accordingly, in spite of the contraction of the trapped-fluid
domain (as compared to its initial size), the barotropic dipole becomes stronger and
the vortex gains a higher translation speed. The weakening of the baroclinic mode
and strengthening of the barotropic mode (figure 2c) show up also in the increase of
the distance d between the poles of ψ1 and ψ2 (figure 14c).

Naturally, the analogy between the evolution of a circular modon and that of a
baroclinic monopole (used to explain the mechanism of shedding vorticity patches
by the modon) is legitimate if the baroclinic rider is sufficiently strong. The case for
the use of this analogy in the analysis of our runs is that transitions of the first type
occurred only when the baroclinic-to-barotropic amplitude ratio exceeded 1.5.

The second transition lasts approximately from t = 280T to 370T . During this
period, the translation speed increases again (figure 2d ), and thereafter the vortical
structure stabilizers in a new, non-circular state, in which the trapped-fluid area is
oval in form (figures 7, 8). In figures 14(b) and 14(d ) we can see an upward trend
superimposed by two oscillatory processes (those characterized by the periods of about
1T and 10T ). While oscillating, the vortex deforms the surrounding vorticity field
and draws into rotation the neighbouring fluid. Therefore, along with the detachment
of filaments, an entrainment of external fluid particles by the vortex can be observed
(figure 15). According to our data, the entrainment has a stronger net effect resulting
in growth of the trapped-fluid area (figure 12b).

In all likelihood, the perturbing factor that triggers the transition of the vortex
structure from a circular to an oval state is the accumulated numerical hindering
effect – the delay in the eastward translation (figure 2d ). It gradually destroys the
relationship (16)–(17) between the modon radius and the translation speed (i.e. the
balance between the barotropic and the baroclinic components of the movement)
causing oscillations of the upper and the bottom vortices (figures 14b and 14d ).
Because the high-frequency oscillations start first, we may speculate that they induce
the stronger lower-frequency oscillations. When the perturbations reach a certain
critical level, the vortex undergoes a relatively sharp transition (figures 14b and 14d ;
time period from 350T to 370T ). In the transition stage, the vortex structure increases
its mean radius, and the potential energy (that, coupled with the baroclinic mode) is
used to strengthen the barotropic mode. The whole structure accelerates, while the
upper and the lower vortices tend to drift apart (figures 2d and 14d ).

We note that, in the context of PV conservation, we can speak only of neutral
stability. In other words, being subjected to small but uninterrupted perturbations,
a vortex that would otherwise be steady may change its parameters, while ‘creeping’
along the manifold of stationary (quasi-stationary) states. If so, what causes the
circular modon to leap rapidly to a relatively remote oval state instead of passing
through a sequence of quasi-stable states, thus evolving slowly? We believe that the
answer is related to the invariants of the experiment. It is true that, owing to the
finite-difference approximation and the cutting applied, some of the characteristics
that, theoretically, should be conserved, may vary during a simulation. However,
because the main events of the second transition move in the neighbourhood of the
vortical core (see, for example, figure 15), the total energy in the box [−X < x <
X; −Y < y < Y ] barely changes, while the total enstrophy drops by 2%; the peak
PV values also remain nearly constant. Thus, in the state to which the modon changes,
the values of the above characteristics must be close to those before the transition
started. Such an oval state may be distant from the circular state in terms of r0, U
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Figure 15. The upper-layer PV field in the second transition (parameters as in figure 2; units and
shadows as in figure 6; the contour intervals are: 1, 3 and 10% of the initial maximum).

and ry/rx. This reasoning is supported by a check simulation, in which the cutting
is turned off at t = 280T ; its results are quite close to those obtained in the basic
experiment.

4.1.4. Sharp stratification

Along with the experiments described above, in which the unperturbed depths of
the fluid layers were equal, experiments with the solution (7) and (13)–(17) at the ratio
h1: h2 = 1: 4 (the case of ‘sharp’ stratification) were run. These experiments are beyond
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the scope of the present publication. One of them, however, is worth mentioning here
(see also § 4.2.1); we found that, at a moderate translation speed, U = 0.25, and quite
a large rider-to-dipole amplitude ratio (ABC/ABT = 3), the initial configuration can
be preserved for about 200T . This suggests that stable configurations of the circular
type with relatively strong baroclinic riders can exist in a sharply stratified fluid.

4.2. Three-layer modons

We will confine ourselves to the case where the density jumps between the layers are
equal and the upper and the lower layers are of the same thickness, i.e. h1 = h3 = h;
the mid-layer depth remains unspecified for the present. By denoting

ε =
h1 + h3

h2

=
2h

h2

, (20)

the vertical normal modes in such a model are given by the vectors

F (0) =

1
1
1

 , F (1) =

 1
0
−1

 , F (2) =

 1
−ε
1

 . (21)

Putting n = 3 in (5), and substituting (5) and (21) into (1) we obtain the following
equations describing the evolution of the barotropic and the baroclinic modes:

∂

∂t
q(0) + J(ψ(0), q(0)) +

ε

1 + ε
J(ψ(1), q(1)) + εJ(ψ(2), q(2)) = 0, (22)

∂

∂t
q(1) + J(ψ(0), q(1)) + J(ψ(1), q(0)) + J(ψ(1), q(2)) + J(ψ(2), q(1)) = 0, (23)

∂

∂t
q(2) + J(ψ(0), q(2)) + J(ψ(2), q(0)) +

1

1 + ε
J(ψ(1), q(1)) + (1− ε)J(ψ(2), q(2)) = 0. (24)

There are two ways to fit a solution of the type (7) and (13)–(17) to a three-layer
stratification; the rider can be associated with either the first or the second baroclinic
mode. We will consider both of these cases, starting with the second.

4.2.1. Modon with a rider in the second baroclinic mode

As seen from equation (23), if at t = 0 the first baroclinic mode is zero, it remains
zero for any t. Equation (23) then becomes trivial (q(1) ≡ 0, ψ(1) ≡ 0), whereas by
introducing the notations

ψ(0) = ψBT , ψ(2) = ψBC, (25)

equations (22) and (24) are immediately reduced to (18) and (19). Equations (8) in
the two-layer model (j0 = 1) and the three-layer model (j0 = 2) are also identical as
in the two cases m2

j0
= (f2

0/g
′h1)(1 + ε), where g′ = g(δρ/ρ0) is reduced gravity, while

ρ0 and δρ are the mean density and density jump, respectively. Thus, the evolution of
a three-layer vortex given by the solution (7), (13)–(17) and (25) can be considered in
terms of the two-layer dynamics. (In a manner similar to the two-layer case, equations
(22) and (24) at ε = 1 also describe the evolution of the zero and the second modes
in a continuously and linearly stratified fluid in the three-mode approximation on
condition that, at t = 0, the first baroclinic mode is zero and the vertical normal
modes are normalized so that F (0) = 1, F (2)(0) =

√
2.)

The analogy between the two-layer and three-layer models in the absence of the
first baroclinic mode is quite natural. Indeed, in this case, the vortices in the upper
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and bottom layers of the three-layer fluid are identical. Consequently, the upper and
lower layers perturb the middle layer identically, and their combined effect upon the
middle layer can be interpreted in terms of a two-layer model as the influence of one
layer of a non-perturbed depth 2h upon the other layer, whose depth is ε. There is,
however, some specificity in this analogy. For example, the case of the three-layer
‘linear’ stratification (h1 = h2 = h3), in which ε = 2, corresponds to a two-layer model,
in which the stratification is taken as h1: h2 = 2: 1. If we interchange the indices of the
layers in the two-layer model, it will be seen that this case is also equivalent to the
case h1: h2 = 1: 2. Hence, both high and low values of ε determine, in essence, the same
dynamics typical of ‘sharp’ stratification (see § 4.1.4). On the other hand, the two-layer
‘linearly’ stratified model (h1: h2 = 1: 1) corresponds to a three-layer model, in which
the middle layer is twice as thick as each of the other layers (h1: h2: h3 = 1: 2: 1). In
such a three-layer model, ε = 1. This relationship between h1 = h3 and h2 is the only
one that guarantees the conservation of the symmetry and antisymmetry about the
x-axis of the baroclinic and the barotropic mode, respectively.

All the conclusions regarding the evolution of the circular two-layer modons can
now be applied to the three-layer vortices (taking into account the relationships
between the layer depths that allow the analogy). In particular, if ε = 1, transitions
from the circular to oval states are possible. On the other hand, robust circular
modons can also exist when the three-layer stratification is sharp (§ 4.1.4).

According to (20) and (21), the thinner the middle layer in the three-layer model, the
larger the value of ε, and the larger the contribution of the second baroclinic mode to
the mid-layer motion; it exceeds that of the second baroclinic mode to the upper and
the lower layers if ε > 1 (i.e. h2 < 2h). Consider now, for example, a three-layer fluid,
in which h1: h2: h3 = 2: 1: 2, i.e. ε = 4. Let us next assume that the rider amplitude in
the first layer is three times larger than the amplitude of the barotropic mode, and
the translation speed is equal to 0.25. Such a modon will be situated in the middle
layer, where its baroclinic rider will be 12 times stronger than the baroclinic dipole.
A modon of this type can be interpreted as an eastward-travelling intrathermocline
oceanic vortex (cf. Kizner 1984b). Taking into account the equivalence of the two
types of stratification in the two-layer model – those at ε = 0.25 and ε = 4, we arrive
at the conclusion that this three-layer construction will behave in exactly the same
persistent manner as the two-layer vortex (at h1: h2 = 1: 4) considered above (§ 4.1.4).

Although most of the intrathermocline lenses observed in the ocean have a westward
component in their drift (e.g. Kamenkovich et al. 1986, chap. 5), the eastward-going
lenses can exist. In the numerical experiments on the evolution of the intrathermocline
Mediterranean Water eddies (meddies), performed by Morel & McWilliams (1997) in
the quasi-geostrophic model with high vertical resolution, intrathermocline vortices,
translating steadily eastward, emerged. The emerged vortex had a strong axisymmetric
baroclinic component and a dipolar barotropic component.

4.2.2. Modon with a rider in the first baroclinic mode

Let us now consider the evolution of a three-layer vortex given by the solution (7)
and (13)–(17), in which the rider is associated with the first baroclinic mode:

ψ(0) = ψBT , ψ(1) = ψBC. (26)

The presence of the term J(ψ(1), q(1)) in (24) allows the development of the second
baroclinic mode even though it is absent in the initial state. Therefore, in contrast
with the previous case (§ 4.2.1), numerical simulations are required to study the
properties of such dipole-plus-rider structures. The symmetry/antisymmetry of the
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Figure 16. Evolution of a modon in the three-layer ‘linearly’ stratified fluid; the initial state is
given by equations (7) and (13)–(17) at U = 1 with the rider in the first baroclinic mode: —— ,
ABC/ABT = 3; - - -, ABC/ABT = 1. (a) Total potential energy normalized with the initial value; (b)
baroclinic-to-barotropic amplitude ratio; (c) distance between streamfunction poles in the middle
layer; (d ) translation speed (units as in figures 2 and 9).

modes, however, can be judged directly from equations (22)–(24). According to (24),
if the second baroclinic mode started developing, it would be antisymmetric about the
x-axis. Correspondingly, as seen from (22) and (23), the barotropic mode will remain
antisymmetric and the first baroclinic mode will remain symmetric about the x-axis.

We performed numerical experiments for the particular case of a three-layer ‘linear’
stratification, h1 = h2 = h3, initializing the model by the solution (7), (13)–(17) and
(26) at the translation speed U = 1 and the radius a ≈ 1.03 (which corresponds to
the unit translation speed at such a stratification). The experiments lasted up to
t = 1000T .

The first experiment was carried out for the case ABC/ABT = 1 (figures 16–18). In
this run, the total potential energy remains practically constant by t ≈ 550T , when a
mild transition starts (figure 16a). This transition separates two quasi-steady phases,
which are apparent also in the graphs of the baroclinic-to-barotropic amplitude ratio
(figure 16b), distance d between the poles of ψ2 (figure 16c), and the translation
speed U (figure 16d ). The differences between these phases are hardly visible in the
upper and bottom layers (figure 17), but the analysis of the modal components of
the streamfunction reveals that in the first phase the vortex remains essentially the
same as at the onset of the simulation, whereas in the second, it is an oval structure
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Figure 17. Streamfunction fields in the layers at t = 0, 500 and 1000. The initial amplitude ratio is
1: 1; other parameters as in figure 16 (designations as in figure 5).

(figure 18). The main result of this experiment is that the second baroclinic mode
does not actually develop; at t = 1000T it is within the limit of 3% of the maximum
in the layers in terms of both the streamfunction and PV. Correspondingly, the vortex
in the middle layer is represented by the barotropic mode only (figures 17 and 18).

During the transition, the barotropic dipole becomes stronger at the expense of
the weakening baroclinic rider (figures 16b and 18). In other words, the potential
energy, which is associated here with the first baroclinic mode (the second-mode
contribution is negligible), is transferred to the kinetic energy of the barotropic mode.
The distance between the halves of the dipolar vortex in the middle layer increases
(figure 16c), as does the distance between the vortices in the upper and the lower
layers. This is manifested in some ‘stretching’ of the first baroclinic mode in the
y-direction (figure 18, t = 1000T ). As a result, the mutual advection of the vortices
in all the layers weakens, and the entire structure slows down (figure 16d ).

Although some strengthening of the dipole and stretching of the rider takes place
before the transition (figure 18, t = 500T ), those two processes are very weak. By
t = 500T , the PV vs. streamfunction scatter-plots for the layers, the barotropic and
the first baroclinic modes are very well organized and close to those for the initial
state. After the transition, the trapped-fluid area becomes slightly oval in shape and,
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Figure 18. Barotropic and baroclinic streamfunction fields at t = 0, 500 and 1000. The initial
amplitude ratio is 1: 1; other parameters as in figure 16 (designations as in figure 6).

correspondingly, the relationship between the PV and the streamfunction in the layers
becomes nonlinear.

The results we obtained in the two-layer model (§ 4.1) suggest that the initial
strength of the rider in the above-mentioned experiment was insufficient for the
transition of the first type to take place. Therefore, in order to be able to perform a
complete comparison of the two- and three-layer simulations, we carried out another
evolutionary experiment, in which the initial amplitude ratio was ABC/ABT = 3. Here,
by t = 10T , the vortex makes a short-range transition to a state characterized by a
somewhat smaller amplitude ratio and a higher translation speed (figures 16b and
16d ). According to our diagnostics, this state is very well described by the solution
(7), (13)–(17) and (26).

The main result of this run is that the vortex barely changed during the compu-
tations (figures 19–22). In the course of the quasi-steady eastward drift of the newly
formed circular modon, no significant second baroclinic mode is developed (figure 20),
so that the extremely slow decrease of the potential energy (figure 16a) is reflected
only in a slow increase in the kinetic energy of the barotropic mode. This increase, in
turn, manifests itself in some strengthening of the barotropic dipole (figure 20) and in
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Figure 19. Streamfunction fields in the layers at t = 0, 500 and 1000. The initial amplitude ratio is
3: 1; other parameters as in figure 16 (designations as in figure 5).

a very slow speeding up of the modon (figure 16d ). Correspondingly, the mid-layer
streamfunction and PV fields undergo a very smooth evolution, whereas the changes
in the upper and the bottom layers are hardly detectable (figures 19 and 21); the
scatter-plots also remain practically the same during the experiment. Thus, evolving
slightly, the vortex essentially remains a circular modon (figures 20 and 22, mode 1).

A comparison of these results with those obtained in the two-layer model leads us to
believe that the larger the number of layers, the more durable are the modons bearing
sufficiently strong riders (ABC/ABT ∼ 3) in the first baroclinic mode. Consequently,
these results can be treated as indirect evidence that, in a continuously (and linearly)
stratified fluid, the solution (7) and (13)–(17) represents quite stable vortical structures.

5. Conclusion
We studied numerically the stability properties and the evolution of smooth circular

dipole-plus-rider structures in which the boundary of the trapped-fluid area is a
circular cylinder and, within this area, the PV depends linearly on the streamfunction.
Modons of this type represent exact solutions for both continuously stratified and
multi-layer quasi-geostrophic models. Two- and three-layer evolutionary experiments
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Figure 20. Barotropic and baroclinic streamfunction fields at t = 0, 500 and 1000. The initial
amplitude ratio is 3: 1; other parameters as in figure 16 (designations as in figure 6).

were run at different combinations of the free parameters (ratio between the layer
depths, translation speed of the modon, and the rider amplitude), the case of equal
layer depths (‘linear’ stratification) being considered in detail.

In a two-layer fluid, when the amplitudes of the baroclinic and the barotropic modes
are close to each other and the layers are of the same depth, the vortex displays a
stable behaviour for hundreds of synoptic periods. Strengthening of the baroclinic
rider leads to the shedding of an amount of PV and a fast transition of the vortex to
a new quasi-steady state identified as a circular dipole-plus-rider modon of a smaller
radius and a higher translation speed. This newly formed modon travels eastwards
quasi-steadily for hundreds of synoptic periods. Even when the forward integration
is started from a sufficiently strong purely baroclinic axially symmetric vortex, the
latter rapidly transforms into a durable circular modon. This conclusion endorses the
results of Flierl & McWilliams (1979) and Mied & Lindemann (1982), who considered
relatively short times (tens of T ), and those of Pakyari & Nycander (1996), who
conjectured that the eastward-travelling baroclinic dipole-plus-rider structures could
be stable.

In many runs, the circular steady-state phase is followed by another transition
resulting from the numerical hindering of the modon. This transition is somewhat
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Figure 21. PV fields in the layers at t = 0, 500 and 1000. The initial amplitude ratio is 3: 1; other
parameters as in figure 16 (designations as in figure 5).

smoother than the first one and brings the vortex to an oval quasi-steady regime
that is even more durable than the circular one; in this state, a modon persists
for more than 1000 synoptic periods. In such a state, the PV vs. streamfunction
dependence in the trapped-fluid region is nonlinear. For a ‘linear’ stratification, the
circular configurations are shown to be a particular case of the family of oval modons
based on a barotropic dipole and bearing a baroclinic rider, symmetric about the
x-axis. These results hold also for a continuously stratified fluid (N = const) in the
two-mode approximation.

The evolution of initially circular modons in a ‘nonlinearly’ (sharply) stratified
two-layer fluid is generally more complicated. However, circular modons travelling
relatively slowly and bearing quite strong baroclinic riders can survive for hundreds
of synoptic periods while barely changing in their parameters.

In a three-layer fluid, there is a special case that can be considered without
numerical simulations, but just by analogy with the two-layer dynamics. This is the
case of a modon bearing a rider in the second baroclinic mode. In the absence of the
first baroclinic mode, all the conclusions regarding modons in a two-layer ‘linearly’
stratified fluid remain valid in the three-layer model if the upper and the bottom
layers are assumed to be equal in depth and twice as thin as the middle layer (the
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Figure 22. Barotropic and baroclinic PV fields at t = 0, 500 and 1000. The initial amplitude ratio
is 3: 1; other parameters as in figure 16 (designations as in figure 6).

density jumps between the layers should be equal). Accordingly, these results can be
interpreted in terms of the three-mode approximations in a continuously stratified
fluid. There is also an analogy between the modon dynamics in two- and three-layer
sharply stratified fluids that allows us to extend the above conclusion regarding
the durability of slowly translating modons to eastward-travelling quasi-monopolar
intrathermocline eddies.

If the rider in a three-layer modon is coupled with the first baroclinic mode,
then formally, the second baroclinic mode, antisymmetric about the x-axis, may
develop. Our simulations demonstrate that, in a ‘linearly’ stratified three-layer fluid
(i.e. when the layers are of the same depth), during the evolution of the modon,
the second baroclinic mode remains negligible for a very long time (a thousand
of synoptic periods at least). The circular modons bearing relatively strong riders
(ABC/ABT ≈ 2.5) are shown to be even more robust than those with moderate
riders (ABC/ABT ≈ 1). A comparison of the results obtained in the two- and three-
layer models indicates that, in a continuously stratified fluid with a linear density
profile, the circular dipole-plus-rider modons must be quite durable. However, to
prove this statement rigorously, future numerical experiments at n = 4, 5, etc. are
required.
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While the mechanism of the first transition is clear, in principle, the processes that
operate in the second transition require further explanation. Likewise, the properties
of the oval modons (including their PV versus streamfunction dependence, dispersion
relationships, resistance to different kinds of perturbations, etc.) require more detailed
study. In this connection, the problem of constructing analytical or high-accuracy
numerical stationary elliptical modon solutions is of considerable importance.
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