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We consider a random permutation drawn from the set of 132-avoiding permutations

of length n and show that the number of occurrences of another pattern σ has a limit

distribution, after scaling by nλ(σ)/2, where λ(σ) is the length of σ plus the number of

descents. The limit is not normal, and can be expressed as a functional of a Brownian

excursion. Moments can be found by recursion.
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1. Introduction

We say that two sequences (of the same length) x1 · · · xk and y1 · · · yk of real numbers

have the same order if xi < xj ⇐⇒ yi < yj for all i, j ∈ [k].

Let Sn be the set of permutations of [n] := {1, . . . , n}. If

σ = σ1 · · · σk ∈ Sk and π = π1 · · · πn ∈ Sn,

then an occurrence of σ in π is a subsequence πi1 · · · πik , with 1 � i1 < · · · < ik � n, that

has the same order as σ. We let nσ(π) be the number of occurrences of σ in π, and note

that ∑
σ∈Sk

nσ(π) =

(
n

k

)
, (1.1)

for every π ∈ Sn.

We say that π avoids σ if nσ(π) = 0; otherwise, π contains σ. Let

Sn(σ) := {π ∈ Sn : nσ(π) = 0}, (1.2)
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the set of permutations of length n that avoid σ. We also let S∗(σ) :=
⋃∞

n=1 Sn(σ) be the

set of σ-avoiding permutations of arbitrary length.

Remark 1.1. For later use, note that nσ−1 (π−1) = nσ(π). Similarly, for the reverse

σ† := σk . . . σ1, nσ† (π†) = nσ(π),

and for the complement

σ = (k + 1 − σ1) · · · (k + 1 − σk), nσ(π) = nσ(π).

In particular, the maps π �→ π−1, π �→ π† and π �→ π are bijections,

Sn(σ) → Sn(σ
−1), Sn(σ) → Sn(σ

†) and Sn(σ) → Sn(σ).

The general problem that we are interested in here is to take a fixed permutation τ,

and let πτ,n be a uniformly random τ-avoiding permutation, that is, a uniformly random

element of Sn(τ), and then study the distribution of the random variable nσ(πτ,n) for some

other fixed permutation σ. More precisely, we are mainly interested in asymptotics of the

distribution as n → ∞ (though our methods also yield exact formulas for finite n). The

present paper is only a partial contribution to this general problem, and we will soon

concentrate on the single case τ = 132.

Remark 1.2. It is well known that if π is a uniformly random permutation in Sn,

without any restriction, and σ is a fixed permutation, then nσ(π) has an asymptotic

normal distribution as n → ∞; moreover, this holds jointly for several σ. See Bóna [9, 11]

and Janson, Nakamura and Zeilberger [26]. We shall see that the restricted case is

different.

Remark 1.3. The simplest non-trivial cases are the cases |τ| = 3. There are 6 permutations

τ ∈ S3, but by the symmetries in Remark 1.1, it suffices to consider the two cases τ = 123

and 132.

As background, note first that it is a classical problem to enumerate the sets Sn(τ), either

exactly or asymptotically, and to study various properties of the generating function; see

Bóna [8, Chapters 4–5]. In particular, two permutations σ and τ are said to be Wilf-

equivalent if |Sn(σ)| = |Sn(τ)| for all n. It is known that all permutations of length 3 are

Wilf-equivalent, with |Sn(τ)| =
(
2n
n

)
/(n + 1), the nth Catalan number Cn, when |τ| = 3; see

e.g. [28, Exercises 2.2.1–4], [41], [42, Exercise 6.19ee,ff], [8, Corollary 4.7]. In contrast, not

all permutations of length 4 are Wilf-equivalent. (The classification of Wilf-equivalent

permutations of length 4 was quite difficult: see [8] and the references given there.)

A simpler version of the general problem above is to find (at least asymptotically) the

expectation E nσ(πτ,n). (If the number |Sn(τ)| is known, this is equivalent to finding the

total number of occurrences of σ in all τ-avoiding permutations of length n.) This version

of the problem was posed by Cooper [16], and has been studied by Bóna [10] (τ = 132,

σ = 1 · · · k and σ = k · · · 1), [12] (τ = 132, |σ| = 3 and certain longer σ), and Homberger
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[22] (τ = 123, |σ| � 3). Furthermore, Cheng, Eu and Fu [14] studied the case τ = 321,

σ = 21 (or equivalently τ = 123, σ = 12). These papers concentrate on exact formulas

and generating functions; asymptotics are derived as corollaries. Rudolph [40] studied the

problem when E nσ1
(πτ,n) = E nσ2

(πτ,n) (in the case τ = 132).

In particular, for τ = 132, by [10], [12] and straightforward singularity analysis (see [20,

Chapter VI]), or by Examples 5.8 and 5.11 below, as n → ∞,

E n12(π132,n) ∼
√
π

2
n3/2, (1.3)

E n123(π132,n) ∼ 1

2
n2, (1.4)

E n213(π132,n) = E n231(π132,n) = E n312(π132,n) ∼
√
π

8
n5/2, (1.5)

E n321(π132,n) ∼
(
n

3

)
∼ 1

6
n3, (1.6)

and, for any fixed k � 1, generalizing (1.3)–(1.4),

E n1···k(π132,n) ∼ 21−k
√
π

Γ(k/2)
n(k+1)/2. (1.7)

Note that in (1.5), the three expectations are equal for any n; the equality of the latter two

is trivial because n231(π132,n) and n312(π132,n) have the same distribution, as a consequence

of the first symmetry in Remark 1.1. The first equality is non-trivial and more surprising;

in fact n213(π132,n) and n231(π132,n) do not have the same distribution, in general. (They

already have different variances for n = 5, as is shown by an enumeration, by hand or by

computer.)

The more general problem of studying the distribution, not just the expectation, of

nσ(πτ,n) was raised in [26], where higher moments (and mixed moments) are calculated

(using computer algebra) for small n for several cases (τ = 132, 123 and 1234; several σ

with |σ| = 3).

The main result of the present paper (Section 2) is that the formulas above for the

expectation generalize to arbitrary σ ∈ S∗(132), always with growth as a half-integer

power of n, and that, moreover, the random variables after normalization by this power

of n converge to some positive limit random variables, with convergence of all moments.

Remark 1.4. The case of forbidding τ = 123, as mentioned above, has been studied by

Cheng, Eu and Fu [14] (σ = 12) and Homberger [22] (|σ| � 3); their results yield (after

simple calculations and correction of several typos in [22]), as n → ∞,

E n12(π123,n) ∼
√
π

4
n3/2, (1.8)

E n132(π123,n) = E n213(π123,n) ∼ 1

4
n2, (1.9)

E n231(π123,n) = E n312(π123,n) ∼
√
π

8
n5/2, (1.10)
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and, which also follows from these and (1.1),

E n321(π123,n) ∼
(
n

3

)
∼ 1

6
n3. (1.11)

See (1.3)–(1.6). Moreover, Homberger [22] shows that also E n231(π123,n) = E n231(π132,n)

for any n; however, the distribution of n231(π123,n) differs (in general) from the distribution

of any of the variables in (1.5). (They already have different variances for n = 4.)

The equivalence given by [14] between n12(π123,n) and the number of certain squares

under a Catalan path (or equivalently a Dyck path) implies by standard results that

n−1/2n12(π123,n) ∼ 2−1/2

∫ 1

0

e(x) dx, (1.12)

where e is a Brownian excursion; this is, except for a factor 1/2, the same limit as for

n12(π132,n) (see Example 7.6). For the other cases above (excluding the trivial n321), we do

not know any asymptotic distribution, not even asymptotic second moments. It seems

likely that methods similar to the present paper could be useful in this case too, using a

suitable bijection between Sn(123) and binary trees (see Remark 4.3), but we have not

yet attempted it.

It seems much more difficult to show results for longer τ.

Remark 1.5. A special case of the distribution of nσ(πτ,n) is the probability P(nσ(πτ,n) = 0)

that a τ-avoiding permutation also avoids σ; this is equivalent to enumerating the set

Sn(σ, τ) of permutations that avoid both σ and τ (given that we know |Sn(τ)|). This

problem has been studied by various authors (with exact results, generating functions

and asymptotics): see e.g. [1], [2], [6], [15], [29], [31], [32], [33], [39], [41], [43]. Some

of these also consider the number of τ-avoiding permutations with exactly r occurrences

of σ, which is equivalent to P(nσ(πτ,n) = r). Formally, this is the same as our problem

of the distribution of nσ(πτ,n), but the emphasis in these papers is on exact formulas for

constant r, whereas we are interested in asymptotic results, with r increasing. It would be

interesting to derive asymptotic distributions from these algebraic results, but this seems

difficult.

Remark 1.6. We have considered avoiding a single pattern τ. Of course, the same

questions can be asked for a set τ1, . . . , τM of two or more forbidden patterns; see

the references in Remark 1.5 where such sets Sn(τ1, . . . , τM) are studied. For a simple

example, there are exactly 2n−1 permutations in Sn(123, 132), and they have a simple

structure [41] which makes it easy to see that the number n12 of non-inversions has a

binomial distribution Bi(n − 1, 1/2); in this case, n12 thus has an asymptotically normal

distribution.

2. Main results

From now on we consider only τ = 132. Note that nσ(π132,n) = 0 if σ contains a copy of

τ; hence we only consider σ that themselves avoid τ.
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Recall that a descent in a permutation σ1 · · · σk is an index i ∈ [k − 1] such that

σi > σi+1; we also define the last index k to be a descent. (Tradition varies about the latter

case; we find this version convenient for our purposes.) We let D(σ) be the number of

descents in σ. (Note that with our definition 1 � D(σ) � |σ|.) We define

λ(σ) := |σ| + D(σ) (2.1)

and note that

|σ| + 1 � λ(σ) � 2|σ|, (2.2)

with the extreme values λ(σ) = |σ| + 1 if and only if σ = 1 · · · k, and λ(σ) = 2|σ| if and

only if σ = k · · · 1, where k = |σ|.

Theorem 2.1. There exist strictly positive random variables Λσ such that

nσ(π132,n)/n
λ(σ)/2 d−→ Λσ, (2.3)

as n → ∞, jointly for all σ ∈ S∗(132). Moreover, this holds with convergence of all moments,

with all moments of Λσ finite, that is, for any sequence σ(1), . . . , σ(M) ∈ S∗(132), possibly with

repetitions,

E(nσ(1) · · · nσ(M) (π132,n)) ∼ n
∑

ν λ(σ
(ν))/2

E(Λσ(1) · · · Λσ(M) ). (2.4)

In particular, for every σ ∈ S∗(132), there exists a positive constant Aσ = E Λσ such that

E nσ(π132,n) ∼ Aσn
λ(σ)/2. (2.5)

For a monotone decreasing permutation k · · · 1, Λk···1 = 1/k! is deterministic, but not for

any other σ.

Remark 2.2. Since Λσ > 0, the limit distributions are not normal; thus nσ(π132,n) is not

asymptotically normal. (For σ = k · · · 1, use (2.12) below.) This was conjectured (for

σ = 312) in [26] based on calculation of the moments for small n; our theorem verifies

this, but it should be noted that the numerical values in [26, Table 3] for n � 20 are still

far from their limits. A calculation using Theorem 6.2 shows that the normalized third

moment

E(X − EX)3/Var(X)3/2 ≈ 0.76384

for the limit X = Λ312, while for n = 20, [26] yields 0.44906.

The proof of Theorem 2.1 will occupy the rest of the paper. We will use two completely

different methods that complement each other and prove different parts of the theorem;

both use a bijection with binary trees described in Section 4. One method (Section 7

and Theorem 7.5) uses this to show the convergence in distribution (2.3); this proof also

shows that the limit random variables Λσ can be expressed as functionals of a Brownian

excursion e(x). In particular (Example 7.6), Λ12 =
√

2
∫ 1

0 e(x) dx. This is (except for the

factor
√

2) the well-known Brownian excursion area, which appears as a limit in various

combinatorial problems (for instance for the total path length in a random conditioned
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Galton–Watson tree [3, 4]); for this distribution see also the survey [24] and the references

there (it is sometimes called the Airy distribution). More generally (Example 7.8), for the

monotone pattern 1 · · · k,

Λ1···k = ck

∫ 1

0

e(x)k−1 dx with ck = 2(k−1)/2/(k − 1)!.

However, in general, the description as a Brownian excursion functional is rather

complicated, and it is not easy to even compute its mean.

As a complement, in Section 5 we use another method to give formulas yielding (by

recursion) the constants Aσ = E Λσ (see (5.19) and (5.8)). Further, in Section 6 we describe

how one can similarly find limits for higher moments (possibly mixed). This method

uses a recursion for the numbers nσ(π) that is given in Section 3, and a probabilistic

argument using subcritical Galton–Watson trees. As examples, we give (Theorem 6.2)

explicit recursion relations for the moments of Λσ for |σ| � 3 (and joint moments of Λ12

and Λσ with |σ| = 3, needed for the recursions). In particular, Theorem 6.2 yields for the

second moments (where (2.6) is well known: see [30], [24])

E Λ2
12 =

5

6
, Var Λ12 =

10 − 3π

12
, (2.6)

E Λ2
123 =

19

60
, Var Λ123 =

1

15
, (2.7)

E Λ2
213 =

7

120
, Var Λ213 =

56 − 15π

960
, (2.8)

E Λ2
231 = E Λ2

312 =
43

840
, Var Λ231 = Var Λ312 =

344 − 105π

6720
. (2.9)

For mixed moments we find from Theorem 6.2, for example,

E(Λ12Λ213) =
13

60
, (2.10)

E(Λ12Λ231) = E(Λ12Λ312) =
1

5
. (2.11)

The matrix of second moments of (Λ213,Λ231,Λ312) is given in (6.7).

Remark 2.3. For a given |σ| = k, we see that the order of E nσ(π132,n) is smallest (n(k+1)/2)

for σ = 1 · · · k and largest (nk) for σ = k · · · 1. Compare the related result by Bóna [10]

that for every n,

E n1···k(π132,n) � E nσ(π132,n) � E nk···1(π132,n) for every σ ∈ Sk(132)

(see Section 9).

Remark 2.4. In particular, (2.5) implies that E nσ(π132,n)/n
k → 0 for every σ ∈ Sk except

k · · · 1, which by (1.1) implies E nk···1(π132,n) ∼
(
n
k

)
and nk···1(π132,n)

p
−→ 1/k!, which is the

case σ = k · · · 1 of Theorem 2.1 with Λk···1 = 1/k! deterministic as asserted in the theorem.
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For a non-degenerate limit law in this case (for k > 1), note that the same argument

yields

n−(k−1/2)

((
n

k

)
− nk···1(π132,n)

)
d−→

∑
Λσ, (2.12)

summing over all σ ∈ Sk(132) with λ(σ) = 2k − 1 (i.e., D(σ) = k − 1).

Remark 2.5. Although the exponent in (2.5) depends only on λ(σ), that is, on |σ| and the

number of descents in σ, the constant Aσ does not. For example, it follows by (5.19) and

(5.8) (see also [25, Example 5.11]) that

E n3214 ∼
√
π

32
n7/2 and E n3241 ∼

√
π

64
n7/2.

Remark 2.6. Apart from the relation (1.1), there are also simple relations between the

counts nσ(π) for σ of different lengths. For example,

(n − 2)n12(π) = 3n123(π) + 2n132(π) + 2n213(π) + n231(π) + n312(π), (2.13)

since the left-hand side counts the number of distinct i, j, k such that i < j and πi < πj ,

and if σ ∈ S3, then each occurrence of σ in π contributes n12(σ) such triples.

For π ∈ Sn(132), the term n132(π) vanishes, and if we divide by n5/2 and take the limit,

another term disappears asymptotically, and we find for the limit variables the relation

Λ12 = 2Λ213 + Λ231 + Λ312. (2.14)

Similar relations enable each Λσ to be expressed as a linear combination of Λσ′ for some

set of σ′ with |σ′| = |σ| + 1.

Remark 2.7. The limit Λ213 and the sum Λ231 + Λ312 appeared earlier as distribution

limits in [23]: see Remark 7.12.

3. A basic recursion

If x1 · · · xn is any sequence of distinct numbers, let Π(x1 · · · xn) be the permutation in Sn

that has the same order as x1 · · · xn. We extend the notation nσ(π) in the trivial way to

arbitrary sequences of distinct numbers x1 · · · xn and y1 · · · yk by

ny1···yk (x1 · · · xn) := nΠ(y1···yk)(Π(x1 · · · xn)).

(We may similarly extend other notation when convenient.) We also define n∅(x1 · · · xn) = 1

for an empty string ∅ (i.e., the case k = 0), and let S0 := {∅}.
If π ∈ Sn and � is the index of the maximal element n, that is, π� = n, let πL := π1 · · · π�−1

and πR := π�+1 · · · πn be the (possibly empty) parts of π before and after the maximal

element. Using the operator Π above, we can regard them as permutations πL ∈ S�−1 and

πR ∈ Sn−�.

We begin with a well-known characterization of the 132-avoiding permutations; see e.g.

Bóna [10].
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Lemma 3.1. With notation as above, a permutation π avoids 132 if and only if πL and πR
both avoid 132, and furthermore πi > πj whenever i < � and j > �.

Proof. Although this is well known and easy, we sketch the proof for completeness.

If π avoids 132 then so do πL and πR . Furthermore, if the final condition in the lemma

is violated, then πi < πj < π� for some i and j with i < � < j, and thus πiπ�πj is an

occurrence of 132.

The converse is just as easy, by considering the possible positions of an occurrence of

132 in relation to �; we omit the details.

This leads to a basic recursion for nσ(π).

Lemma 3.2. Let σ ∈ Sk(132) with k � 1. Define m by σm = k and let

Δ :=
{
q ∈ [k − 1] : min

1�i�q
σi > max

q<j�k
σj

}
.

Then, for any permutation π ∈ Sn(132) with n � 1,

nσ(π) = nσ(πL) + nσ(πR) +
∑
q∈Δ

nσ1···σq (πL)nσq+1···σk (πR) + nσ1···σm−1
(πL)nσm+1···σk (πR). (3.1)

Proof. Consider first an occurrence πν1
· · · πνk of σ that does not include π�. Then, for

some q ∈ {0, . . . , k}, ν1 < · · · < νq < � < νq+1 < · · · < νk .

The cases q = k and q = 0 give the nσ(πL) and nσ(πR) occurrences in πL and πR .

If 1 � q � k − 1, we note that by Lemma 3.1, if i � q and j > q, then πνi > πνj and thus

σi > σj; hence q ∈ Δ. Furthermore, for every q ∈ Δ, we have exactly one such occurrence

σ in π for every pair of occurrences of σ1 · · · σq in πL and σq+1 · · · σk in πR . The total

number of such occurrences is thus the sum in (3.1).

Finally, if an occurrence πν1
· · · πνk of σ contains π� = n, then π� must correspond to

the largest element σm in σ, that is, νm = �. It follows in the same way as above that the

number of such occurrences is nσ1···σm−1
(πL)nσm+1···σk (πR).

The set Δ is empty if m = k; otherwise m ∈ Δ by Lemma 3.1, so Δ �= ∅. The extreme

case is σ = k · · · 1 when Δ = [k − 1]. Note that every element of Δ is a descent in σ (but

not conversely, in general).

4. Binary trees

Out proofs are based on a well-known bijection between Sn(132) and the set Bn of binary

trees of order n; see e.g. [12]. It can be defined as follows.

Recall that a binary tree T consists of a root and two subtrees TL and TR (the left and

right subtree) which are either empty or themselves binary trees. Using the notation of

Section 3, we define recursively, for any permutation π ∈ Sn(132) with n � 1, a binary tree

T = T (π) ∈ Bn such that its left subtree TL = T (πL) and its right subtree TR = T (πR);
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furthermore, T (∅) is the empty tree. It is easy to see that this yields a bijection between

Sn(132) and Bn.

If T is a binary tree, and σ is a permutation, let Xσ(T ) := nσ(πT ), where πT ∈ S(132) is

the permutation corresponding to T by the bijection above. Moreover, let Xσ,L := Xσ(TL)

and Xσ,R := Xσ(TR), where L and R are the left and right subtrees of T .

We can translate the recursion Lemma 3.2 to recursive relations for the variables

Xσ = Xσ(T ) as follows. (We usually omit the argument T for notational convenience.)

Lemma 4.1. Let σ ∈ Sk(132) with k � 1 and define m and Δ as in Lemma 3.2. Then, for

any binary tree T ,

Xσ = Xσ,L + Xσ,R +
∑
q∈Δ

Xσ1···σq,LXσq+1···σk,R + Xσ1···σm−1 ,LXσm+1···σk,R. (4.1)

Note also that Xσ = 0 unless σ ∈ S∗(132) and, by (1.1),∑
σ∈Sk

Xσ =

(
n

k

)
. (4.2)

As an illustration and for later use, we write the recursion (4.1) explicitly for some small

σ. For (notational) convenience, we define N = N(T ) := X1(T ) = |T | and Y = Y (T ) :=

X12(T ), and define NL,NR, YL, YR correspondingly. Note that then, by (4.2),

X21 =

(
N

2

)
− X12 =

(
N

2

)
− Y . (4.3)

Example 4.2. Taking σ = 1, 12, 123, 213, 231, 312 in Lemma 4.1 we find the following

recursions, noting that in these cases Δ = Δσ is empty except Δ231 = {2} and Δ312 = {1}
(for (4.7) we also use (4.3)):

N = NL + NR + 1, (4.4)

Y = YL + YR + NL, (4.5)

X123 = X123,L + X123,R + YL, (4.6)

X213 = X213,L + X213,R +

(
NL

2

)
− YL, (4.7)

X231 = X231,L + X231,R + YLNR + NLNR, (4.8)

X312 = X312,L + X312,R + NLYR + YR. (4.9)

(These recursions can also easily be verified directly, and (4.4) is utterly trivial.)

Let Tn be a uniformly random binary tree in Bn. Note that by the bijection above,

Tn corresponds to a uniformly random permutation in Sn(132), that is, we can identify

Tn = T (π132,n). With this identification and the notation above, we have

Xσ(Tn) = nσ(π132,n). (4.10)
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From now on we will use this without comment, and study the random variables Xσ(Tn)

when proving Theorem 2.1.

Remark 4.3. The bijection with Bn is equivalent to a bijection with the set of Dyck

paths of length 2n, by the well-known standard bijection between the latter and Bn. This

is equivalent to the bijection by Knuth [28, Exercises 2.2.1–3,5] between 312-avoiding

permutations and Dyck paths. Another bijection with Dyck paths is given by [29]. For

similar bijections of Sn(123) and Dyck paths, see e.g. [6], [29], [14]. See also the many

bijections with various objects in Stanley [42, Exercise 6.19 (and its solution)].

5. Expectations

We next use an idea from [23] and consider the functionals Xσ above for another random

binary tree Tδ defined as follows, for 0 < δ < 1. Note that this random tree, unlike Tn,

has a random size.

We start with the root; we then add each of the two possible children of the root

with probability p := (1 − δ)/2 each, and we continue in the same way with the possible

children of any node that we add to the tree, with all random choices independent. Thus

Tδ is a random Galton–Watson tree with offspring distribution Bi(2, p). Since this offspring

distribution has expectation 2p = 1 − δ < 1, the Galton–Watson tree Tδ is subcritical and

thus a.s. finite.

The construction implies that if T = Tδ , then the subtrees TL and TR are independent

random trees; furthermore, each of them is empty with probability 1 − p = (1 + δ)/2 and

otherwise it has the same distribution as T . (This can be used as an alternative, recursive

definition of Tδ .)

Remark 5.1. The argument in [23] uses full binary trees, which makes the details a little

different although the main idea is the same. We thus present the argument in detail

below, and refer the interested reader to [23] for comparisons.

We let Eδ denote expectation of random variables defined for the random tree T = Tδ .

These expectations are generating functions in disguise. In fact, let Z = Z(T ) be an

arbitrary functional such that |Z(T )| � C|T |m for some constants C and m. (This

guarantees that all expectations and sums below converge, and is satisfied by the

functionals that we consider, i.e. Xσ and products of these.) We write zn := EZ(Tn).

Lemma 5.2. Let Z and zn := EZ(Tn) be as above. Then

Eδ Z =
1 + δ

1 − δ

∞∑
n=1

znCn

(
1 − δ2

4

)n

. (5.1)

Proof. There are Cn =
(
2n
n

)
/(n + 1) trees in Bn. If T ∈ Bn, then T has n nodes, with 2

potential children each. Of these 2n potential children, n − 1 exist and n + 1 do not exist.
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The probability that Tδ equals a given tree T ∈ Bn is thus

P(Tδ = T ) = pn−1(1 − p)n+1 = 2−2n(1 − δ)n−1(1 + δ)n+1. (5.2)

This probability is the same for all T ∈ Bn, and since |Bn| = Cn, it follows that the

probability that Tδ has order n is

P(|Tδ | = n) = P(Tδ ∈ Bn) = Cn2
−2n(1 − δ)n−1(1 + δ)n+1 = Cn

1 + δ

1 − δ

(
1 − δ2

4

)n

. (5.3)

Moreover, since (5.2) does not depend on the choice of T ∈ Bn, we see that conditioned

on |Tδ | = n, Tδ is uniformly distributed in Bn; in other words (Tδ | |Tδ | = n)
d
= Tn. Hence,

E(Z | |Tδ | = n) = EZ(Tn) = zn and, using (5.3),

Eδ Z =

∞∑
n=1

P(|Tδ | = n) E(Z | |Tδ | = n) =

∞∑
n=1

P(|Tδ | = n)zn

=

∞∑
n=1

znCn

1 + δ

1 − δ

(
1 − δ2

4

)n

.

By Lemma 5.2, Eδ Z is, except for the factor (1 + δ)/(1 − δ), the ordinary generating

function of the sequence Cnzn, evaluated at (1 − δ2)/4. Conversely, by taking δ =
√

1 − 4x

in (5.1), we obtain, for 0 < x < 1/4,

∞∑
n=1

Cnznx
n =

1 −
√

1 − 4x

1 +
√

1 − 4x
E√

1−4x Z =
1 − 2x −

√
1 − 4x

2x
E√

1−4x Z. (5.4)

Note that Z = 1 yields the well-known generating function for the Catalan numbers (see

e.g. [20, p. 35]).

Remark 5.3. For the variables Z that we study below (products of Xσ), Eδ Z turns out

to be a polynomial in δ−1; in this case (5.4) yields the generating function
∑∞

n=1 Cnznx
n as

a rational function of
√

1 − 4x. By analytic continuation, the resulting formula is valid for

all complex x with |x| < 1/4, and the generating function extends to an analytic function

in C \ [1/4,∞).

We can now apply singularity analysis and obtain asymptotics of zn from asymptotics

of Eδ Z as δ ↘ 0. (Note that although we can define the random tree Tδ for δ = 0, which

will be a critical Galton–Watson tree and thus a.s. finite, the expectations that we are

interested in will all be infinite and of no use to us; hence we consider δ > 0 and take

asymptotics.) We state a simple case that is enough for our purposes. In this section and

the next, we let Op(δ
−m) denote an arbitrary polynomial in δ−1 of degree at most m.

Lemma 5.4. If Eδ Z = aδ−m + Op(δ
−(m−1)), where m � 1 and a �= 0, then

EZ(Tn) ∼ a
Γ(1/2)

Γ(m/2)
n(m+1)/2 as n → ∞.
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Proof. By Remark 5.3, the generating function
∑∞

n=1 Cnznx
n extends to an analytic

function in C \ [1/4,∞), and as x → 1/4, by assumption and (5.4),

∞∑
n=1

cnznx
n ∼ a

1 −
√

1 − 4x

1 +
√

1 − 4x
(1 − 4x)−m/2 ∼ a(1 − 4x)−m/2.

By standard singularity analysis (see [20, Corollary VI.1]), this implies

cnzn ∼ a4n
nm/2−1

Γ(m/2)
.

The result follows by this and the standard asymptotic expression Cn ∼ 4n/
√
πn3 for the

Catalan numbers [20, p. 38].

For later use, we also show the following, recalling N(T ) := |T |.

Lemma 5.5.

(i) Let f(δ) = Eδ Z . Then

Eδ(NZ) = −1

2
(δ−1 − δ)f′(δ) + δ−1f(δ). (5.5)

(ii) In particular, if Eδ Z = aδ−m + Op(δ
−(m−1)), where m � 1 and a ∈ R, then

Eδ(NZ) =
1

2
maδ−(m+2) + Op(δ

−(m+1)).

Proof. (i) Differentiate (5.1). Using (5.1) for NZ , this gives

d

dδ
Eδ Z =

1

1 + δ
Eδ Z +

1

1 − δ
Eδ Z +

1 + δ

1 − δ

∞∑
n=1

znCn

−2δn

1 − δ2

(
1 − δ2

4

)n

=
2

1 − δ2
Eδ Z − 2δ

1 − δ2
Eδ(NZ).

The formula (5.5) follows.

(ii) An immediate consequence of (5.5).

As an example, taking Z = 1 yields f(δ) = 1, and thus (5.5) yields

Eδ N = δ−1. (5.6)

Taking Z = N in (5.5) now yields

Eδ N
2 =

1

2
δ−3 + δ−2 − 1

2
δ−1, (5.7)

and we can continue and find explicit expressions for Eδ N
m for any desired m. (One can

check that Lemma 5.4 is correct but trivial in these cases.)

After these preliminaries, we now consider the variables Xσ , and begin with their

expectations for Tδ . Recall that λ(σ) is defined by (2.1).
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Lemma 5.6. Let σ ∈ Sk(132) with k = |σ| � 1 and define m and Δ as in Lemma 3.2. Then

Eδ Xσ is a polynomial in δ−1 of degree λ(σ) − 1 given by the recursion Eδ X1 = δ−1 and,

for k > 1,

Eδ Xσ = δ−1 (1 − δ)2

4

∑
q∈Δ

Eδ Xσ1···σq Eδ Xσq+1···σk

+

⎧⎪⎪⎨⎪⎪⎩
1
2
(δ−1 − 1) Eδ Xσ2···σk , m = 1,

1
4
δ−1(1 − δ)2 Eδ Xσ1···σm−1

Eδ Xσm+1···σk , 1 < m < k,
1
2
(δ−1 − 1) Eδ Xσ1···σk−1

, m = k.

The polynomial Eδ Xσ has leading term Bσδ
−(λ(σ)−1) and vanishing constant term, where

Bσ > 0 satisfies the recursion B1 = 1 and, for k > 1,

Bσ =
1

4

∑
q∈Δ

Bσ1···σqBσq+1···σk +

{
1
2
Bσ1···σk−1

, m = k,

0, m < k.
(5.8)

Proof. We use induction on λ(σ). We use the recursion in Lemma 4.1 and take

expectations, considering the terms on the right-hand side of (4.1) separately.

Since TL is a copy of T = Tδ with probability p = (1 − δ)/2 and empty with probability

1 − p = (1 − δ)/2, and the same holds for TR , we have

Eδ Xσ,L = Eδ Xσ,R = pEδ Xσ =
1 − δ

2
Eδ Xσ. (5.9)

Furthermore, TL and TR are independent, and thus, for q ∈ Δ,

Eδ(Xσ1···σq,LXσq+1···σk,R) = Eδ(Xσ1···σq,L) Eδ(Xσq+1···σk,R)

=

(
1 − δ

2

)2

Eδ(Xσ1···σq ) Eδ(Xσq+1···σk ).
(5.10)

By the induction hypothesis, this is a polynomial in δ−1 of degree

λ(σ1 · · · σq) − 1 + λ(σq+1 · · · σk) − 1

= q + D(σ1 · · · σq) − 1 + k − q + D(σq+1 · · · σk) − 1

= k + D(σ1 · · · σk) − 2 = λ(σ) − 2,

(5.11)

recalling that q ∈ Δ implies that q is a descent in σ, which implies

D(σ1 · · · σq) + D(σq+1 · · · σk) = D(σ1 · · · σk)

by our definition of D. (Note that the induction assumption that the expectations are

polynomials with vanishing constant term is used to guarantee that the right-hand side

of (5.10) is a polynomial in δ−1, even though it contains the factor (1 − δ)2; the same

applies below.)

For the final term in (4.1), we consider four different cases. First, if 1 < m < k, then as

in (5.10)

Eδ(Xσ1···σm−1 ,LXσm+1···σk,R) =

(
1 − δ

2

)2

Eδ(Xσ1···σm−1
) Eδ(Xσm+1···σk ), (5.12)
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and this is a polynomial in δ−1 of degree

λ(σ1 · · · σm−1) − 1 + λ(σm+1 · · · σk) − 1

= m − 1 + D(σ1 · · · σm−1) − 1 + k − m + D(σm+1 · · · σk) − 1

= λ(σ) − 3.

(5.13)

If m = 1 < k, then the final term of (4.1) is simply Xσ2···σk,R , with an expectation that

by induction is a polynomial in δ−1 of degree

λ(σ2 · · · σk) − 1 = k − 1 + D(σ2 · · · σk) − 1 = λ(σ) − 3, (5.14)

since 1 is a descent.

If m = k > 1, then the final term of (4.1) is similarly Xσ1···σk−1 ,L, with an expectation that

by induction is a polynomial in δ−1 of degree

λ(σ1 · · · σk−1) − 1 = k − 1 + D(σ1 · · · σk−1) − 1 = λ(σ) − 2, (5.15)

since k − 1 is not a descent in σ.

Finally, if m = k = 1, that is, if σ = 1, the final term is simply 1, again a polynomial of

degree λ(σ) − 2.

Collecting the terms above, we thus obtain from (4.1)

Eδ Xσ = 2pEδ Xσ + f(δ) = (1 − δ) Eδ Xσ + f(δ), (5.16)

where f(δ) is shorthand for a polynomial in δ−1 of degree (at most) λ(σ) − 2, which yields

Eδ Xσ = δ−1f(δ), (5.17)

a polynomial in δ−1 of degree (at most) λ(σ) − 1 and without constant term. Writing f(δ)

explicitly, this yields the recursion stated in the lemma. For σ = 1 we have f(δ) = 1 and

(5.17) yields Eδ X1 = δ−1, as was found by another route in (5.6).

Moreover, an inspection of the leading terms above shows that the leading coefficient

of f(δ) is Bσ given by (5.8) when |σ| > 1, and B1 = 1. Thus, by induction, Bσ > 0. (Recall

that Δ �= ∅ if m < k, so the right-hand side of (5.8) contains at least one non-zero term.)

This completes the induction step.

It is now easy to show (2.5).

Corollary 5.7. For every σ ∈ S∗(132),

E nσ(π132,n) = EXσ(Tn) ∼ Aσn
λ(σ)/2, (5.18)

where

Aσ =

√
π

Γ((λ(σ) − 1)/2)
Bσ, (5.19)

with Bσ given by the recursion (5.8).

Proof. Immediate from Lemmas 5.6 and 5.4, together with (4.10).
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Example 5.8. For |σ| = 1, we have Eδ N = Eδ X1 = δ−1, as stated in (5.6).

For |σ| = 2, we have two cases. For X12 = Y we obtain (see (4.5))

Eδ X12 =
1

2
(δ−1 − 1) Eδ X1 =

1

2
δ−2 − 1

2
δ−1, (5.20)

Similarly, by Lemma 5.6 (with Δ = {1}) and a quick calculation, or by (4.3), (5.6)–(5.7)

and (5.20),

Eδ X21 =
1

4
δ−3 − 1

4
δ−1, (5.21)

For |σ| = 3, we obtain from Lemma 5.6, or similarly from the explicit recursions in

Example 4.2, by simple calculations,

Eδ X123 =
1

4
δ−3 − 1

2
δ−2 +

1

4
δ−1, (5.22)

Eδ X213 =
1

8
δ−4 − 1

8
δ−3 − 1

8
δ−2 +

1

8
δ−1, (5.23)

Eδ X231 =
1

8
δ−4 − 1

8
δ−3 − 1

8
δ−2 +

1

8
δ−1, (5.24)

Eδ X312 =
1

8
δ−4 − 1

8
δ−3 − 1

8
δ−2 +

1

8
δ−1, (5.25)

Eδ X321 =
1

8
δ−5 − 1

8
δ−4 − 1

8
δ−3 +

1

8
δ−2. (5.26)

Note that Eδ X213 = Eδ X231 = Eδ X312, which by Lemma 5.2 is equivalent to the result by

Bóna [12],

E n213(π132,n) = E n231(π132,n) = E n312(π132,n),

as mentioned earlier in (1.5).

The asymptotics (1.3)–(1.6) follow from Corollary 5.7 and (5.8). Alternatively, we can

obtain these from the explicit formulas (5.20)–(5.26) and Lemma 5.4.

Similar formulas for the C4 = 14 permutations σ ∈ S4 are given in [25, Example 5.11];

again there are several coincidences, some following by Bóna [12] and all by Rudolph

[40].

Remark 5.9. When Z = Xσ = nσ(π132,n), zn is the expected number of occurrences of σ

in a random permutation in Sn(132), and Cnzn is thus the total number of occurrences of

σ in all permutations in Sn(132). Generating functions for the latter numbers have been

given for the cases in Example 5.8 (although not explicitly for 321) by Bóna [10] and [12];

by Lemma 5.2 and Remark 5.3, the formulas (5.20)–(5.25) are equivalent to his results.

Remark 5.10. As mentioned in Section 1, n231(π132,n) and n312(π132,n) have the same

distribution by symmetry, and thus Eδ X231 = Eδ X312 is obvious. It is interesting that

the proof above obtains these coincident expectations by different routes, using the

different recursions (4.8) and (4.9). The same applies to the higher moments treated

below: Eδ X
k
231 = Eδ X

k
312 for any k, but that is difficult to see from our recursions.
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Example 5.11. For σ = 1 · · · k, k � 1, we have Δ = ∅, and by induction in k, Lemma 5.6

yields

Eδ X1···k = 21−k(δ−1 − 1)k−1δ−1. (5.27)

By Lemma 5.2 and Remark 5.3, this is equivalent to the generating function given for this

case by Bóna [10].

Lemma 5.4 and (5.27) yield (1.7).

Example 5.12. For σ = k · · · 1, k � 1, we have the opposite extreme Δ = [k − 1]. Writing

fk(δ) = Eδ Xk···1, Lemma 5.6 yields the recursion

fk(δ) = 1
4
δ−1(1 − δ)2

k−1∑
q=1

fq(δ)fk−q(δ) + 1
2
(δ−1 − 1)fk−1(δ), (5.28)

which by (5.4) is equivalent to the recursion given for the corresponding generating

functions in Bóna [10].

The leading term Bk···1δ
−(2k−1) is given by the recursion (5.8), but it is simpler to argue

backwards and note that Ak···1 = 1/k! by Theorem 2.1 (see also Remark 2.4), and thus

(5.19) yields

Bk···1 =
Γ(k − 1/2)

Γ(1/2)k!
=

(2k − 3)!!

2k−1k!
=

Ck−1

22k−2
. (5.29)

See the examples in (5.21) and (5.26).

6. Higher moments

We can compute higher moments in the same way.

Lemma 6.1. For any permutations σ(1), . . . , σ(ν) ∈ S∗(132), not necessarily distinct, the ex-

pectation Eδ(Xσ(1) · · ·Xσ(ν) ) is a polynomial in δ−1 of degree
∑ν

j=1 λ(σ
(j)) − 1, with positive

leading coefficient Bσ(1) ,...,σ(ν) and vanishing constant term.

Proof. We argue as in the proof of Lemma 5.6, using induction on
∑ν

j=1 λ(σ
(j)). Replace

each Xσ(j) with the corresponding expression in (4.1), expand the product of these, and

take the expectation. Among the many terms that this produces, the two special terms

Eδ(Xσ(1) ,L · · ·Xσ(ν) ,L) and Eδ(Xσ(1) ,R · · ·Xσ(ν) ,R) are both equal to pEδ(Xσ(1) · · ·Xσ(ν) ). All other

terms are by induction polynomials in δ−1, of degree at most
∑ν

j=1 λ(σ
(j)) − 2 (by arguing

similarly to the proof of Lemma 5.6 for each σ(j)). Moreover, there is at least one term

of exactly this degree and all polynomials have positive leading coefficients. The result

follows as in Lemma 5.6.

By the argument in this proof, we can recursively obtain any mixed moment of the

variables Xσ as an explicit polynomial in δ−1 (see [25, Example 6.2] for an example).

We are mainly interested in moment asymptotics for Tn, which by Lemma 5.4 can

be obtained from the leading terms of these polynomials. A recursion for the leading
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coefficients Bσ(1) ,...,σ(ν) is implicit in the proof above, but to write it explicitly in general

seems a bit messy. As examples illustrating the general behaviour, we consider the cases

of a single Xσ with |σ| � 3; for the recursion, we have to consider mixed moments of Xσ

and Y = X12. Explicit recursions for the leading coefficients of the polynomials Eδ(X
k
σY

l)

are given in [25, Lemma 6.3]. As a consequence, the following moment asymptotics for

Tn are obtained; for the proof we again refer to [25].

Theorem 6.2. The following hold as n → ∞, for any integers k � 0 and l � 0.

(i)

n−(4k+3l)/2
E(X123(Tn)

kY (Tn)
l) → k! l!

√
π

24k+3l−2 Γ((4k + 3l − 1)/2)
αkl (6.1)

for some numbers αkl satisfying α0,0 = −1/2, α10 = α01 = 1 and the recursion relation

αk,l = (l + 1)αk−1,l+1 + 2(4k + 3l − 4)αk,l−1 +
∑∑

0<i+j<k+l

αi,jαk−i,l−j . (6.2)

(ii)

n−(5k+3l)/2
E(X213(Tn)

kY (Tn)
l) → k! l!

√
π

25k+3l−2 Γ((5k + 3l − 1)/2)
βkl (6.3)

for some numbers βkl satisfying β0,0 = −1/2, β10 = β01 = 1 and the recursion relation

βk,l = 2(5k + 3l − 6)(5k + 3l − 4)βk−1,l + 2(5k + 3l − 4)βk,l−1

+
∑∑

0<i+j<k+l

βi,jβk−i,l−j . (6.4)

(iii)

n−(5k+3l)/2
E(X231(Tn)

kY (Tn)
l) = n−(5k+3l)/2

E(X312(Tn)
kY (Tn)

l)

→ k! l!
√
π

25k+3l−2 Γ((5k + 3l − 1)/2)
γkl (6.5)

for some numbers γkl satisfying γ0,0 = −1/2, γ10 = γ01 = 1 and the recursion relation

γk,l = 2(5k + 3l − 4)γk,l−1 (6.6)

+
∑ ∑ ∑

(i,j,m)�=(0,0,0),(k,l,0)

22mΓ((5i + 3j − 1)/2 + m))

Γ((5i + 3j − 1)/2))

(
l − j + m

m

)
γi,jγk−i−m,l−j+m.

Note that when we have proved Theorem 2.1, it follows that the limits in (6.1), (6.3),

(6.5) are equal to the moments E(Λk
123Λ

l
12), etc.

Remark 6.3. The numbers βk,l in Theorem 6.2(ii) satisfy the same recursion as ω∗
l,k in

[23], and thus βk,l = ω∗
l,k . Indeed they both appear in similar moment formulas, and the

equality is explained by the identities in Remark 7.12 below.
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In the same way it is possible to find mixed moments of these variables, first for Tδ

and then (asymptotically, or exact) for Tn. We give only one example.

Example 6.4. Let (V1, V2, V3) = (X213(Tn), X231(Tn), X312(Tn)) be the three random vari-

ables in (1.5); recall that these have equal mean. Using the recursions (4.7)–(4.9), the

method in the proof of Lemma 6.1 yields Eδ(ViVj) as polynomials in δ−1 of degree 9.

After calculating the leading coefficients (we omit the details), we obtain from Lemma 5.4,

in matrix notation,

(n−5
E(ViVj))

3
i,j=1 → 1

840

⎛⎝49 42 42

42 43 41

42 41 43

⎞⎠ . (6.7)

7. Brownian functionals

Given a binary tree T , let h(v) = h(v;T ) be the height (also called the depth) of a vertex

v ∈ T , defined as the distance to the root. Thus h(v) is the number of ancestors of v. We

also define the left height hL(v) as the number of ancestors w of v such that v belongs

to the left subtree of w, and similarly the right height hR(v). Equivalently, hL(v) is the

number of left steps in the path to v.

Recall that the inorder of the vertices of a binary tree T is defined recursively by taking

first the vertices of TL, then the root and then the vertices of TR [28, Section 2.3.1].

Define the profile of a binary tree T as the sequence h(v1), . . . , h(vn), where v1, . . . , vn are

the vertices of T in inorder. We write h(i) = h(vi) and regard h as a function both on the

vertex set of T and on [n]. We further define, for 1 � i � j � n,

h([i, j]) := min
l∈[i,j]

h(l). (7.1)

It is well known that for the random binary tree Tn, the height h(v) is typically of order

n1/2. For example, if H(Tn) := maxv∈Tn
h(v) is the height of Tn, then H(Tn)/n

1/2 converges

in distribution as n → ∞ (e.g., as a consequence of Lemma 7.1 below: see [3]). Moreover,

if we normalize the profile by defining

h̃(x) = h̃(x;Tn) := n−1/2h(�nx� + 1;Tn) (7.2)

(with h̃(1) = 0), which is a function [0, 1] → [0,∞), then the random function h̃(x;Tn)

converges in distribution to the standard normalized Brownian excursion e(x), up to

a constant factor, as stated in the following lemma, in principle due to Aldous [4].

(Informally, e can be seen as Brownian motion on [0, 1] conditioned on e(x) � 0 and

e(1) = e(0) = 0. For formal treatments, see e.g. [18] and [37].)

Lemma 7.1. As n → ∞, h̃(x;Tn)
d−→ 23/2e(x).

Remark 7.2. The convergence in Lemma 7.1 is in the space D[0, 1] of right-continuous

functions with left limits. (We could have defined h̃ as a continuous function instead, using

linear interpolation of h(i) between integers, with no other essential differences below, and
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then the convergence would have been in C[0, 1].) For a full technical discussion of

convergence in distribution in D[0, 1] or C[0, 1], see [7], for example. For our purposes,

we may avoid technicalities by the Skorokhod representation theorem [27, Theorem 4.30],

which shows that we may assume that the random trees Tn for different n, and e, are

coupled such that the conclusion h̃(x;Tn)
d−→ 23/2e(x) holds a.s., uniformly for x ∈ [0, 1],

that is,

sup
x∈[0,1]

|h̃(x;Tn) − 23/2e(x)| → 0 a.s.

Proof. As mentioned above, this is in principle due to Aldous [4]. More precisely, Aldous

considered the depth-first walk on Tn, which is the sequence of vertices w0, . . . , w2n−2

obtained by walking along the ‘outside of the tree’, with w0 = w2n−2 = o, the root, and

beginning with the left subtree (if any); see e.g. [17, Section 4.1.1]. Define f(i) := h(wi) and

the normalized version f̃(x) := n−1/2f(�2nx�) for x ∈ [0, 1] (with f(2n − 1) = f(2n) = 0 for

completeness). Aldous [4, Theorem 23] proved (in greater generality) that then f̃(x)
d−→

23/2e(x).

Some variations (and a new proof) were given by Marckert and Mokkadem [35],

including a version with the heights of the vertices taken in depth-first order (first the

root, then TL, then TR). In the present paper we instead use the inorder, but the argument

in [35] is easily adapted to this case too, as follows.

Consider a vertex v in a binary tree T . Let TL(v) and TR(v) denote the left and right

subtrees of v, and let Pv be the set of the ancestors of v (i.e., the path from the root to v,

except v itself). It is easily seen that the vertices that come before i in the inorder are

(i) the set Pv,R := {w ∈ Pv : v ∈ TR(w)} and

(ii) Lv :=
⋃

w∈Pv,R∪{v} TL(w).

Hence v = vi, where

i = 1 + hR(v) + |Lv|. (7.3)

Similarly, since it takes the depth-first walk 2m steps to visit a subtree of size m, it is easily

seen that if

j := h(v) + 2|Lv|, (7.4)

then wj = v = vi. Note that

|2i − j| = |2 + 2hR(v) − h(v)| = |2 + hR(v) − hL(v)| � 2 + H. (7.5)

Now consider again Tn. Let x ∈ [0, 1) and let i := �nx� + 1. Find the corresponding

vertex vi ∈ Tn and define j as above, and y := j/(2n). Then

h̃(x) = n−1/2h(vi) = n−1/2h(wj) = n−1/2h(w2ny) = f̃(y) (7.6)

and, by (7.5),

|x − y| �
∣∣∣∣x − i

n

∣∣∣∣ +
|2i − j|

2n
� 4 + H

2n
. (7.7)
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By the result by Aldous [4] and Remark 7.2, we may assume that sup |f̃(x) − 23/2e(x)| → 0

a.s. as n → ∞. By (7.6) and (7.7),

|h̃(x) − 23/2e(x)| = |f̃(y) − 23/2e(x)|
� |f̃(y) − 23/2e(y)| + 23/2|e(y) − e(x)|
� sup

y
|f̃(y) − 23/2e(y)| + 23/2 sup

|x−y|�(H+4)/2n

|e(y) − e(x)|.

The right-hand side does not depend on x and tends to 0 a.s., by the result of Aldous [4],

its immediate consequence H/n → 0, and the continuity of e.

In fact we need the corresponding result for the left height hL. In analogy with (7.2),

we define

h̃L(x) = h̃(l;Tn) := n−1/2hL(�nx� + 1;Tn). (7.8)

The following version of Lemma 7.1 is in principle due to Marckert [34].

Lemma 7.3. As n → ∞, h̃L(x;Tn)
d−→ 21/2e(x).

Proof. Marckert [34] proved this for the depth-first order, and moreover that

n−1/2 max
v∈Tn

|hL(v) − hR(v)| = n−1/2 max
v∈Tn

|2hL(v) − h(v)|
p

−→ 0. (7.9)

The result follows by Lemma 7.1 and (7.9).

Remark 7.4. It is known that the maxima in (7.9) are actually of the order n1/4; see e.g.

[34] and [13] for further results.

We return to permutations. Let π ∈ Sn(132) be a 132-avoiding permutation and let T be

the corresponding binary tree defined in Section 4. Label the vertices by the corresponding

elements of π. (Thus the root is labelled by the maximum element π� = n.) The inorder on

T corresponds to the standard order on the index set [n]; thus, the permutation π can be

recovered by taking the labels of T in inorder. (This is why we need the inorder above.)

Define a partial order on the vertices of T by v ≺ w if v is an ancestor of w, that is, it

lies on the path from the root to w. For two vertices v and w, we let v ∧ w be their last

common ancestor (which is their greatest lower bound in this order).

As above, let v1, . . . , vn be the vertices of T in inorder; thus vi is labelled by πi. Consider

a pair of distinct i, j ∈ [n]. It follows from the construction of T that if vi ≺ vj , then

πi > πj . Symmetrically, if vj ≺ vi, then πi < πj . If neither holds, and i < j, then there exists

a last common ancestor vl and then i < l < j and πl > πi > πj . Consequently, assuming

i < j, we have

πi < πj ⇐⇒ vj ≺ vi. (7.10)
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Theorem 7.5. Let σ ∈ Sk(132) with k � 1. Then there exists a continuous functional Ψσ

on C[0, 1] such that n−λ(σ)/2nσ(π132,n)
d−→ Ψσ(e) as n → ∞; furthermore, Ψσ(e) > 0 a.s.

Moreover, this holds jointly for all σ.

Proof. We say that an index i ∈ [k] is black if either i = 1 or σi−1 > σi (i.e., i − 1 is 0 or

a descent). Otherwise, i is white. Let B be the set of black indices, and W the set of white

indices. Thus |B| = D(σ) and |W | = |σ| − D(σ).

Observation. If i < j and j is a black index, so σj−1 > σj , then σi > σj , since otherwise

σiσj−1σj would be an occurrence of 132 in σ.

Let ν1 · · · νk be a sequence with 1 � ν1 < · · · < νk � n and let us investigate if πν1
· · · πνk

is an occurrence of σ in π. For convenience, write v̄i = vνi , the vertex in T with label πνi .

We say that νi, or v̄i, is black or white if i is.

We first consider νi, or equivalently v̄i, for the black indices i. By the observation above,

if i and j are black indices with i < j, then σi > σj and thus we require πνi > πνj , which

by (7.10) is equivalent to v̄j �≺ v̄i. The only condition for the black vertices v̄i is thus that

they are in increasing inorder and none is an ancestor of a previous one.

We then consider νi for the white indices, in order from left to right. For each white j the

conditions are as follows, by (7.10) and the observation above. Let Uj := {i < j : σi < σj}
and note that j − 1 ∈ Uj since j is white.

(i) νj > νi for i < j.

(ii) v̄j ≺ v̄i for i ∈ Uj .

(iii) v̄j �≺ v̄i for i ∈ [j − 1] \ Uj .

(iv) νj < νi and v̄i �≺ v̄j for every black i > j.

Furthermore, let b = b(j) be the largest black index in [j − 1].

The index b ∈ Uj so by (ii), v̄j ≺ v̄b, that is, v̄j is on the path from the root to v̄b.

Moreover, by (i), νj > νb, so v̄j comes after v̄b in the inorder; this means that the next

step from v̄j on the path to v̄b is to the left. The number of such v̄j (ignoring the other

conditions) is hL(v̄b). For such v̄j , the condition (ii) that v̄j ≺ v̄i for i ∈ Uj is equivalent to

v̄j ≺ v̄i ∧ v̄b, and thus, if i � b, equivalent to

hL(νj) = hL(v̄j) < hL(v̄i ∧ v̄b) = hL([νi, νb]). (7.11)

If i > b, so v̄i is also on the path to v̄b, the condition is simply

hL(νj) < hL(νi). (7.12)

For i ∈ [j − 1] \ Uj , which implies i < b, (iii) conversely requires

hL(νj) � hL([νi, νb]). (7.13)

In (iv), for black i > j, the condition v̄i �≺ v̄j is redundant, since we already know v̄j ≺ v̄b
and v̄i �≺ v̄b (both b and i are black). Since v̄j ≺ v̄b and νb < νj , we also see that νj < νi
implies v̄j � v̄b ∧ v̄i. (If v̄j ≺ v̄b ∧ v̄i, then v̄b and v̄i are on the same side of v̄j .) This means

hL(νj) � hL([νb, νi]). (7.14)
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Conversely, (7.11)–(7.14) are also sufficient for (i)–(iv). (Note that (7.14) implies that

v̄j ∈ TL(v̄b ∧ v̄i) ∪ {v̄b ∧ v̄i} and v̄i ∈ TR(v̄b ∧ v̄i), and thus νj < νi. Similarly, (i) follows from

(7.11)–(7.13).)

Consequently, having chosen the black vertices, we have to choose νj for the white

indices j such that v̄j is on the path from the root to v̄b(j), with a left step next, and

(7.11)–(7.14) hold.

Let us count. We first choose the black vertices, one by one. There are
(

n
D(σ)

)
choices of

{νi : i ∈ B}. Of these, the condition v̄j �≺ v̄i for i < j forbids only O(H) choices for each j

(where H = H(T ) is the height), and thus O(nD(σ)−1H) choices of the black vertices. We

will simply ignore this restriction, introducing an error that will be negligible.

For each choice of black vertices, we then choose the white vertices v̄i. By the conditions

above, there are at most H choices for each white v̄i, and thus at most H |W | = Hk−D(σ)

choices for {v̄i : i ∈ W }. More precisely, this number is a polynomial Φ = Φσ of degree

k − D(σ) in the numbers hL(νi) and hL([νi, νj]), i, j ∈ B. We will not attempt to give an

exact description of this polynomial in general, but after the proof we give a few examples

that will illustrate the construction, and it should be clear that similar constructions hold

in general.

Let B = {b1, . . . , bD}, where D = D(σ). We regard Φ as a functional of the left profile

hL and the black indices νb1
, . . . , νbD , and obtain

nσ(π) =
∑

νb1<···<νbD

Φ(hL; νb1
, . . . , νbD ) + O(nD−1H · Hk−D), (7.15)

where the error term comes from also including forbidden sets of black vertices.

We now use Lemma 7.3. By the Skorokhod representation theorem (see Remark 7.2),

we may assume that h̃L(x) → 21/2e(x) uniformly on [0, 1] as n → ∞. In particular, this

implies that

n−1/2 max
i

hL(i) = sup
x∈[0,1]

h̃L(x) = O(1).

(The implicit constant is random but does not depend on n.) Similarly, by Lemma 7.1, we

may assume n−1/2H = n−1/2 maxi h(i) = O(1), that is, H = O(n1/2).

Letting Φ′ be the leading terms in Φ, which are homogeneous of degree |W | = k − D,

and letting Φ̃ be the corresponding functional for functions on [0,1], we then obtain from

(7.15)

nσ(π132,n)

=
∑

νb1<···<νbD

Φ′(hL; νb1
, . . . , νbD ) + O(nDHk−D−1) + O(nD−1H1+k−D)

= n(k−D)/2
∑

0�i1<···<iD�n−1

Φ̃(h̃L; i1/n, . . . , iD/n) + O(n(D+k−1)/2)

= n(k+D)/2

∫
0�x1<···<xD�1

Φ̃(h̃L; x1, . . . , xD) dx1 · · · dxD + O(n(D+k−1)/2).
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For a function f on [0,1], we define

Ψσ(f) := 2(k−D)/2

∫
0�x1<···<xD�1

Φ̃(f; x1, . . . , xD) dx1 · · · dxD, (7.16)

and thus, by the uniform convergence h̃L → 21/2e, we have

n−(k+D)/2nσ(π132,n) = Ψσ(2
−1/2h̃L) + o(1) → Ψσ(e). (7.17)

It is obvious that Ψσ(e) > 0 a.s. This completes the proof.

Example 7.6. σ = 12, B = {1}. For every choice of the black ν1, there are hL(ν1) choices of

the white ν2. Hence (7.15) is simply nσ(π) =
∑n

ν=1 hL(ν) and Φ(hL; ν) = hL(ν). Consequently

Φ̃(f; x) = f(x) and (7.16) yields

Λ12 = X12(T ) = Ψ12(e) =
√

2

∫ 1

0

e(x) dx. (7.18)

As mentioned in Section 2, this is, except for the factor
√

2, the well-known Brownian

excursion area.

Example 7.7. σ = 123, B = {1}. Both v̄2 and v̄3 are on the path to v̄1, both with the next

step left, and with v̄3 ≺ v̄2. There are
(
hL(ν1)

2

)
choices of them for each ν1. Hence,

n123(π) = X123(T ) =

n∑
ν=1

(
hL(ν)

2

)
, (7.19)

which leads to Φ̃(f; x) = 1
2
f(x)2 and

Λ123 = Ψ123(e) =

∫ 1

0

e(x)2 dx. (7.20)

The joint distribution of the random variables
∫ 1

0 e (see Example 7.6) and
∫ 1

0 e2 has been

studied by Nguyen The [36], who found a recursion for mixed moments equivalent to

Theorem 6.2(i). He also found the Laplace transform

E e−tΛ123 =

( √
2t

sinh(
√

2t)

)3/2

,

which shows that Λ123 has the distribution denoted S3/2 in Biane, Pitman and Yor [5]; see

in particular [5, Section 4.4] (and recall that e can be seen as a three-dimensional Bessel

bridge). Equivalently, Λ123 has the moment generating function

E etΛ123 =

( √
2t

sin(
√

2t)

)3/2

, Re t <
π2

2
. (7.21)

Example 7.8. More generally, for σ = 1 · · · k, and any k � 1,

n1···k(π) = X1···k(T ) =

n∑
ν=1

(
hL(ν)

k − 1

)
(7.22)
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and

Λ1···k = Ψ1···k(e) =
2(k−1)/2

(k − 1)!

∫ 1

0

e(x)k−1 dx. (7.23)

Thus, if Zk :=
∫ 1

0
e(x)k , the average of the kth power of the Brownian excursion, then

Λ1···k = ckZk−1 with ck = 2(k−1)/2/(k − 1)!. The random variables Zk have been studied by

Richard [38]; in particular, [38] gives a recursion formula for the mixed moments, which

is equivalent to our recursion implicit in the proof of Lemma 6.1 for this case.

Note that, by Hölder’s inequality, Zk � Zk
1 for every k. Hence, by the known asymptotics

for moments of the Brownian excursion area Z1 (see e.g. [24]), as r → ∞,

EZr
k � EZkr

1 ∼ 3
√

2kr

(
kr

12e

)kr/2

. (7.24)

More precisely, it follows from [19, Theorem 2.1] (applied to Z
1/k
k ) that for every fixed

k � 1, as r → ∞,

(EZr
k )

1/r ∼ zkr
k/2, (7.25)

where zk > 0 is a constant given by

zk :=

(
k

e

)k/2

max

{∫ 1

0

f(x)k : f(0) = f(1) = 0 and

∫ 1

0

(f′(x))2 � 1

}
.

(We have z1 = 1/
√

12e and z2 = 2/(eπ2); we do not know zk for k > 2.)

It follows from (7.24)–(7.25) that the moment generating function E etZk of Zk is an

entire function for k = 1 (see further [24]), but has a finite radius of convergence for k = 2

and diverges for all t > 0 when k � 3. (The claim in [38, Theorem 1.2] that Z1, . . . , ZM

have an entire moment generating function is thus incorrect. For Z2 this is also seen by

the explicit formula (7.21).)

Moreover, the Carleman condition (in its weaker form for non-negative random

variables: see e.g. [21, Section 4.10])∑
m

(EZm
k )−1/2m = ∞

holds by (7.25) for k � 4 but not for k � 5. Although the Carleman condition is only

sufficient for a distribution to be determined by its moments, this strongly suggests that

the distribution of Zk , and thus Λ1...(k+1), is not determined by its moments if k is large

enough.

Example 7.9. σ = 213, B = {1, 2}. Given v̄1 and v̄2, the white vertex v̄3 has to be on the

path to v̄1 ∧ v̄2. There are hL(v̄1 ∧ v̄2) = hL([ν1, ν2]) choices, and thus

n213(π) = X213(T ) =
∑
ν1<ν2

hL([ν1, ν2]) + O(nH2), (7.26)

which leads to

Λ213 = Ψ213(e) =
√

2

∫∫
0�x<y�1

e([x, y]) dx dy. (7.27)
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Example 7.10. σ = 231, B = {1, 3}. Given v̄1 and v̄3, the white vertex v̄2 has to be on the

path to v̄1 but not to v̄3. There are hL(v̄1) − hL(v̄1 ∧ v̄3) − 1 choices, and thus

n231(π) = X231(T ) =
∑
ν1<ν3

(hL(v̄1) − hL([ν1, ν3]) − 1) + O(nH2), (7.28)

which leads to

Λ231 = Ψ231(e) =
√

2

∫∫
0�x<y�1

(e(x) − e([x, y])) dx dy. (7.29)

Example 7.11. σ = 312, B = {1, 2}. Given v̄1 and v̄2, the white vertex v̄3 has to be on the

path to v̄2 but not to v̄1. Thus

n312(π) = X312(T ) =
∑
ν1<ν2

(hL(v̄2) − hL([ν1, ν2]) − 1) + O(nH2), (7.30)

which leads to

Λ312 = Ψ312(e) =
√

2

∫∫
0�x<y�1

(e(y) − e([x, y])) dx dy. (7.31)

Note that the equality in distribution Λ231
d
= Λ312 here is immediate by (7.29), (7.31) and

the symmetry e(x)
d
= e(1 − x) of the Brownian excursion. However, we see also that Λ231

and Λ312 differ as random variables, which means that the joint distribution of n231 and

n312 does not have degenerate (one-dimensional) asymptotic distribution; cf. the second

moments in (6.7).

Furthermore, note that the identity (2.14) can also be seen from (7.18), (7.27), (7.29),

(7.31).

Remark 7.12. Janson [23] studied some functionals of random trees and found as limits

in distribution three functionals of Brownian excursion, there denoted ξ, η, ζ. Here ξ is

simply twice the Brownian excursion area, so by (7.18), ξ =
√

2Λ12. Furthermore, η is four

times the integral in (7.27), and thus η = 23/2Λ213. Finally, ζ = ξ − η = 21/2(Λ231 + Λ312),

by (2.14) or by comparing the formula in [23] to (7.29) and (7.31).

Example 7.13. σ = k · · · 1. This is the trivial case when all vertices are black, so Φ = 1 is

constant. Thus also Φ̃ = 1 and (7.16) yields Ψk···1 = 1/k!, in accordance with Theorem 2.1

and Remark 2.4.

Although the expressions become increasingly more complicated, it is clear that they

are of the same nature for every σ. In particular, except for the case σ = k · · · 1 (see

Example 7.13), Ψσ(e) is non-degenerate, that is, not a.s. constant.
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8. Proof of Theorem 2.1

Theorem 7.5 shows the existence of limits Λσ = Ψσ(e) such that (2.3) holds, jointly for

all σ ∈ S∗(132). Furthermore, Λσ > 0 a.s. and Λσ is non-degenerate except in the case

σ = k · · · 1.

On the other hand, Lemmas 6.1 and 5.4 show that for any σ(1), . . . , σ(M),

n−
∑

ν λ(σ
(ν))/2

E(nσ(1) · · · nσ(M) (π132,n)) → Aσ(1) ,...,σ(M) (8.1)

for some constant Aσ(1) ,...,σ(M) < ∞. As is well known, convergence of all moments implies

that all products nσ(1) · · · nσ(M) (π132,n) are uniformly integrable, and thus the limits of the

moments are the moments of the limits Λσ [21, Theorems 5.4.2 and 5.5.9].

Remark 8.1. Note that we cannot use (8.1) to show the existence of limits Λσ in (2.3),

since we cannot show that the limit distributions are determined by their moments; on

the contrary, we believe that in general they are not: see Example 7.8. This is one reason

for using two different methods in the proof above, one for the existence of limits in

distribution and another for the limits of moments.

9. Further comments

As mentioned in Remark 2.3, Bóna [10] has shown that for every n and any σ ∈ Sk(132),

E n1···k(π132,n) � E nσ(π132,n) � E nk···1(π132,n). (9.1)

Here we use the recursion Lemma 3.2 to show a more general result.

Define a partial order on each Sk(132) by

σ ≺ σ′ ⇐⇒ {(i, j) : i < j and σi > σj} ⊆ {(i, j) : i < j and σ′
i > σ′

j}.

Theorem 9.1. If |σ| = |σ′| and σ ≺ σ′, then E nσ(π132,n) � E nσ′(π132,n) for every n � 1.

Note that 1 · · · k is minimal and k · · · 1 is maximal in the partial order ≺, so (9.1) follows

immediately.

Proof. We use induction on n. The case n = 1 is trivial.

Condition on the value of the maximal index � in π = π132,n. Given �, πL and πR
are independent uniformly random elements of S�−1(132) and Sn−�(132) respectively.

Furthermore, σ ≺ σ′ implies that σ1 · · · σq ≺ σ′
1 · · · σ′

q and σq+1 · · · σk ≺ σ′
q+1 · · · σ′

k for every

q ∈ [k], and also Δσ ⊆ Δσ′ .

Using (3.1) for both σ and σ′ and taking the conditional expectations, it follows, by

this and the induction hypothesis, that

E(nσ(π132,n) | �) � E(nσ′ (π132,n) | �) (9.2)

for every value of � ∈ [n]. Taking the expectation, we obtain E nσ(π132,n) � E nσ′ (π132,n),

completing the induction step.
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Rudolph [40] has a general result, and a conjecture, for the related problem of when

there is equality E nσ(π132,n) = E nσ′ (π132,n) for all n. It seems possible that Lemma 3.2 can

be used to prove, and perhaps improve, her results too, but we have not attempted this.
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