
TLP 15 (4–5): 574–587, 2015. C© Cambridge University Press 2015

doi:10.1017/S147106841500023X

574

Complexity and compilation of GZ-aggregates
in answer set programming

MARIO ALVIANO and NICOLA LEONE

Department of Mathematics and Computer Science, University of Calabria, Italy

submitted 29 April 2015; revised 3 July 2015; accepted 15 July 2015

Abstract

Gelfond and Zhang recently proposed a new stable model semantics based on Vicious Circle

Principle in order to improve the interpretation of logic programs with aggregates. The

paper focuses on this proposal, and analyzes the complexity of both coherence testing and

cautious reasoning under the new semantics. Some surprising results highlight similarities and

differences versus mainstream stable model semantics for aggregates. Moreover, the paper

reports on the design of compilation techniques for implementing the new semantics on top

of existing ASP solvers, which eventually lead to realize a prototype system that allows for

experimenting with Gelfond-Zhang’s aggregates.

KEYWORDS: answer set programming; aggregates; complexity; compilation.

1 Introduction

Answer set programming (ASP) is a declarative language for knowledge repre-

sentation and reasoning (Brewka et al. 2011). ASP specifications are sets of logic

rules, possibly using disjunction and default negation, interpreted according to the

stable model semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991).

The basic language is extended by several constructs to ease the representation of

practical knowledge. Aggregate functions are among these extensions (Simons et al.

2002; Liu et al. 2010; Faber et al. 2011; Bartholomew et al. 2011), and allow to

express properties on sets of atoms declaratively. For example, aggregate functions

are often used to enforce functional dependencies; a rule of the following form:

⊥ ← R′(X), count[Y : R(X,Y , Z)] � 1

constrains relation R to satisfy the functional dependency X → Y , where X ∪Y ∪Z
is the set of attributes of R, and R′ is the projection of R on X. Aggregate functions

are also commonly used in ASP to constrain a nondeterministic guess. For example,

in the knapsack problem the total weight of the selected items must not exceed a

given limit, which can be modeled by the following rule aggregating over a multiset:

⊥ ← sum[W,O : object (O,W,C), in(O)] � limit .

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 575

Aggregate functions may also ease the representation of logic circuits made of

gates of unbounded fan-in (Gelfond and Zhang 2014); the following rule models

that the output of an XOR gate is 1 if an odd number of its inputs have value 1:

value(O, 1)← xor(G), output(G,O), odd[I : input(G, I), value(I, 1)].

Several semantics were proposed for ASP programs with aggregates. Two of them

(Ferraris 2011; Faber et al. 2011) are implemented in popular ASP solvers (Gebser

et al. 2012; Faber et al. 2008). These two semantics agree for programs without

negated aggregates, and are referred in this paper as F-stable model semantics.

An alternative semantics, presented at the 30th International Conference on Logic

Programming (ICLP’14) by (Gelfond and Zhang 2014) and here referred to as GZ-

or G-stable model semantics, is based on the notion of vicious circle principle, which

essentially asserts that the truth of an atom must be inferred by means of a definition

not referring, directly or indirectly, to the truth of the atom itself.

The present paper explores this new semantics, reporting a detailed complexity

analysis of coherence testing and cautious reasoning (Eiter and Gottlob 1995), two

of the main computational tasks in ASP. In a nutshell, coherence testing amounts to

check the existence of a stable model of an input program, while cautious reasoning

consists in checking whether a given atom is true in all stable models of a program.

Concerning coherence testing, membership in ΣP
2 was proved in (Gelfond and

Zhang 2014), and ΣP
2 -hardness is proved here already for negation-free programs

with a very limited form of aggregate functions, referred to as monotone aggregates

in the literature. This result is in contrast with F-stable model semantics, for

which coherence of negation-free programs with monotone aggregates is guaranteed.

Whether this must be considered a strength or a weakness of G-stable models is not

the focus of this paper, but we remark here that the increase in complexity also comes

with a higher expressive power in this case: aggregates referred to as monotone in the

literature allow to simulate integrity constraints and possibly default negation when

interpreted according to the semantics by (Gelfond and Zhang 2014). Moreover,

there are also many cases in which G-stable models actually decrease the complexity

of the reasoning tasks. In fact, while for F-stable model semantics coherence testing

is ΣP
2 -hard already for disjunction-free programs, this computational task is proved

to be NP-complete for these programs under G-stable model semantics. Finally,

P-completeness is proved for programs with monotone aggregates if disjunction and

negation are not used, a result compatible with F-stable model semantics. However,

also in this case G-stable models allow to simulate integrity constraints, which is

not possible with F-stable models.

As for the complexity of cautious reasoning, membership and hardness in the

complementary complexity classes are proved for all the analyzed fragments of the

language. These complexity results also implicitly characterize the computational

complexity of brave reasoning, another common reasoning task in ASP which consists

in checking whether a given propositional atom is true in some stable model of an

input program. In fact, brave reasoning has the same complexity of coherence testing

under G-stable model semantics, while this is not necessarily the case for F-stable

models. Again, the reason for this discrepancy is the power of G-stable models to

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

576 M. Alviano and N. Leone

simulate integrity constraints, as this is the additional construct that is commonly

used for reducing brave reasoning to coherence testing.

Further results in the paper are two rewriting techniques for compiling programs

interpreted according to G-stable semantics into programs interpreted according

to F-stable semantics. The first rewriting is simpler and introduces fewer auxiliary

symbols, while the second has the advantage of producing programs with non

recursive aggregates only. Both rewritings are polynomial, faithful and modular

translation functions (Janhunen 2006), and are implemented in a system prototype.

It is publicly available (http://alviano.net/software/g-stable-models/) and

allows for experimenting with this newly proposed semantics.

2 Background

After defining the syntax of logic programs with aggregates, two semantics are

introduced, referred to as F- (Ferraris 2011; Faber et al. 2011) and G-stable models

(Gelfond and Zhang 2014). It is remarked here, and clarified in Section 5, that the

original definitions are properly adapted to better fit the results in this paper.

Syntax. Let T,F denote the Boolean truth values true and false, respectively. Let U
be a finite set of propositional atoms. An aggregate atom A is a Boolean function

whose domain, denoted dom(A), is a subset of U. A literal is a propositional atom,

or a propositional atom preceded by (one or more occurrences of) the negation as

failure symbol ∼, or an aggregate atom. A rule r is of the following form:

p1 ∨ · · · ∨ pm ← l1, . . . , ln (1)

where p1, . . . , pm are propositional atoms, l1, . . . , ln are literals, m � 1 and n � 0.

Set {p1, . . . , pm} is the head of r, denoted H(r), and set {l1, . . . , ln} is the body of

r, denoted B(r). A program Π is a finite set of rules of the form (1). The set of

propositional atoms occurring in Π is denoted At(Π).

Semantic notions. An interpretation I is a subset of U. Let S, S ′ be sets of interpre-

tations, and C be a set of propositional atoms. Sets S and S ′ are equivalent in the

context C , denoted S ≡C S ′, if |S | = |S ′| and {I ∩ C | I ∈ S} = {I ∩ C | I ∈ S ′}.
Aggregates are usually classified in three groups (Liu and Truszczynski 2006): an

aggregate A is monotone if A(I) = T implies A(J) = T, for all I ⊆ J ⊆ U; an

aggregate A is convex if A(I) = A(K) = T implies A(J) = T, for all I ⊆ J ⊆ K ⊆ U;

the remaining aggregates are called non-convex. Note that monotone aggregates are

convex, and the inclusion is strict. Relation |= is inductively defined as follows: for

a propositional atom p ∈ U, I |= p if p ∈ I; for a negated literal ∼l, I |= ∼l if I �|= l;

for an aggregate atom A, I |= A if A(I ∩ dom(A)) = T; for a set or conjunction C ,

I |= C if I |= p holds for each p ∈ C; for a rule r, I |= r if H(r) ∩ I �= ∅ whenever

I |= B(r). I is a model of a program Π if I |= Π, i.e., if I |= r for all r ∈ Π.

Example 1

Let I be an interpretation, and k � 1. An aggregate A such that A(I) equals

|dom(A)∩I | � k is monotone. An aggregate A such that A(I) equals |dom(A)∩I | = k

is convex. An aggregate A such that A(I) equals |dom(A) ∩ I | �= k is non-convex.

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 577

Let A1 be an aggregate such that dom(A1) = {a, b} and A1(I) equals |{a, b}∩I | � 1,

for all interpretations I . A program using A1 is Π1 = {a ← ∼∼a; b ∨ c ← A1}. The

models of Π1, restricted to the atoms occurring in the program, are the following:

∅, {a, b}, {a, c}, {a, b, c}, {b}, {b, c}, and {c}.

F-stable models. Let Π be a program and I an interpretation. The F-reduct of Π

with respect to I is defined as follows: F(Π, I) = {F(r, I) | r ∈ Π, I |= B(r)}, where

F(r, I) = p1 ∨ · · · ∨ pm ← F(l1, I), . . . , F(ln, I) for r being of the form (1), F(l, I) = l if

l is a propositional atom or an aggregate atom A, and F(l, I) = ∅ if l is a negative

literal. I is an F-stable model of Π if I |= Π and there is no J ⊂ I such that

J |= F(Π, I). The set of F-stable models of Π is denoted FSM (Π).

G-stable models. Let Π be a program and I an interpretation. The G-reduct of Π

with respect to I is defined as follows: G(Π, I) = {G(r, I) | r ∈ Π, I |= B(r)}, where

G(r, I) = p1 ∨ · · · ∨ pm ← G(l1, I), . . . , G(ln, I) for r being of the form (1), G(l, I) = p

if l is a propositional atom p, G(l, I) = I ∩ dom(A) if l is an aggregate atom A, and

G(l, I) = ∅ if l is a negative literal. I is a G-stable model of Π if I |= Π and there

is no J ⊂ I such that J |= G(Π, I). The set of G-stable models of Π is denoted

GSM (Π).

Example 2

The F-stable models of Π1 in Example 1 are the following: ∅, {a, b}, and {a, c}.
Indeed, note that F(Π1, ∅) = ∅, F(Π1, {a, b}) = F(Π1, {a, c}) = {a ←; b ∨ c ← A1},
and each model is minimal for its reduct. On the other hand, {b} is not an

F-stable model because ∅ is a model of F(Π1, {b}) = {b ∨ c ← A1}. The G-

stable models of Π1 are the following: ∅ and {a, c}. Indeed, G(Π1, ∅) = ∅ and

G(Π1, {a, c}) = {a ←; b ∨ c ← a}. Note that A1 is replaced by a in the last rule

of G(Π1, {a, c}) because {a, c} ∩ dom(A1) = {a}. Also observe that {a, b} is not a

G-stable model because G(Π1, {a, b}) = {a ←; b ∨ c ← a, b}, and {a} is a model of

this reduct.

Computational problems. Let X ∈ {F,G}. A program Π is X-coherent if Π has

at least one X-stable model; otherwise, Π is X-incoherent. X-coherence testing

is the computational problem of checking whether an input program Π is X-

coherent. A propositional atom p is an X-cautious consequence of Π if p belongs

to all X-stable models of Π. X-cautious reasoning is the computational problem

of checking whether a given atom p is an X-cautious consequence of an input

program Π.

3 Complexity

Complexity of F-cautious reasoning, and implicitly also of F-coherence testing, was

analyzed in (Faber et al. 2011). A similar analysis is reported here for G-stable

semantics, and in particular the combination of monotone (M), convex (C) and

non-convex (N) aggregates with negation (∼) and disjunction (∨) is analyzed. A

summary of results is shown in Table 1, where all complexity bounds are tight.

Note that in some cases the existence of a stable model is guaranteed, and hence

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

578 M. Alviano and N. Leone

Table 1. Complexity of G-coherence testing and G-cautious reasoning. An ↑ denotes an increase

in complexity with respect to F-stable model semantics, where the considered complexity classes

are K ⊆ P ⊆ NP ⊆ ΣP
2 , and K ⊆ P ⊆ co-NP ⊆ ΠP

2 . Similarly, ↓ denotes a decrease in

complexity

coherence testing cautious reasoning

{} {∼} {∨} {∼,∨} {} {∼} {∨} {∼,∨}

— K NP K ΣP
2 P co-NP co-NP ΠP

2

M P ↑ NP ΣP
2 ↑↑↑ ΣP

2 P co-NP ΠP
2 ↑ ΠP

2

C NP NP ΣP
2 ΣP

2 co-NP co-NP ΠP
2 ΠP

2

N NP ↓ NP ↓ ΣP
2 ΣP

2 co-NP ↓ co-NP ↓ ΠP
2 ΠP

2

constant complexity K is reported. Throughout this section, aggregates are assumed

to be polynomial-time computable functions, and ASP(X) will denote the class of

programs using constructs in the list X. For example, ASP(¬, C) is the class of

programs possibly using negation and convex aggregates, while ASP(−) is the class

of programs not using negation, disjunction or aggregates.

3.1 Complexity of coherence testing

Complexity of coherence testing for programs without aggregates, reported in the

first row of Table 1, is well-known (see for example (Eiter and Gottlob 1995)).

Membership in ΣP
2 is implicit in (Gelfond and Zhang 2014) for the general case. For

the other membership results, the immediate consequence operator is used.

Definition 1

Let Π be a program and I an interpretation. The immediate consequence operator

TΠ is defined as follows: TΠ(I) = {p ∈ H(r) | r ∈ Π, I |= B(r)}.

For an ASP(M) program Π, TΠ is monotone and therefore has a least fixpoint,

and this fixpoint is computable in polynomial-time because a single application

requires linear-time, and at most |At(Π)| applications are required to reach the

fixpoint. Moreover, G-stable models of ASP(M) programs can be characterized in

terms of TΠ, from which P-membership follows.

Lemma 1

Let Π be in ASP(M). The least fixpoint of TΠ(I) exists and is polytime computable.

Let I be the least fixpoint of TΠ, and J be the least fixpoint of TG(Π,I). If I �= J then

Π is G-incoherent, otherwise GSM (Π) = {I}.

Theorem 1

G-coherence testing is in P for ASP(M).

To obtain NP-membership in the disjunction-free case, the following algorithm

is used: Guess a model I of Π and check that I is a minimal model of G(Π, I).

Checking that I is a model of Π and that I is minimal for G(Π, I) is polynomial-time

doable (note that G(Π, I) is in ASP(−) and hence Lemma 1 can be used).

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 579

Theorem 2

G-coherence testing is in NP for programs in ASP(¬, M, C, N).

As for the hardness, it is known that coherence testing is NP-hard if negation is

present (Dantsin et al. 2001), while adding also disjunction increases the hardness

to ΣP
2 (Eiter and Gottlob 1995). These results propagate top-down in Table 1. The

missing results for programs with only convex or only non-convex aggregates can

be obtained by the following transformations from aggregate-free programs with

negation to negation-free programs with aggregates.

Definition 2

Let Π be in ASP(¬, ∨). Let C(Π) be the program obtained from Π by replacing

every occurrence of a negative literal ∼p with an aggregate A such that dom(A) = {p}
and A(I) = |{p} ∩ I | � 0, for all I ⊆ U. Let N(Π) be the program obtained from Π

by replacing every occurrence of a negative literal ∼p with an aggregate A such that

dom(A) = {p,⊥} and A(I) = |{p,⊥} ∩ I | �= 1, for all I ⊆ U, where ⊥ is a fixed atom

not occurring in Π.

Lemma 2

Let Π be in ASP(¬, ∨). Then, GSM (Π) ≡At(Π) GSM (C(Π)) ≡At(Π) GSM (N(Π)).

Since C(Π) and N(Π) can be obtained in polynomial-time and only comprise

convex and non-convex aggregates, respectively, the hardness results are obtained.

Theorem 3

G-coherence testing is ΣP
2 -hard for both ASP(∨, C) and ASP(∨, N). It is NP-hard

for both ASP(C) and ASP(N).

The only missing cases are now for programs with monotone aggregates. If

disjunction and negation are not allowed, G-coherence testing is P-hard because

of the following reduction: Let Π be in ASP(−), and p be a propositional atom.

Checking whether p is a cautious consequence of Π is equivalent to test coherence

of Π ∪ {p ← A}, where dom(A) = {p} and A(I) = |{p} ∩ I | � 0, for all I ⊆ U.

Since cautious reasoning is P-hard for ASP(−) (i.e., checking if a propositional atom

belongs to the unique model of a Datalog program), and program Π∪ {p← A} can

be built using constant space, the complexity result is obtained.

Theorem 4

G-coherence testing is P-hard for ASP(M).

For the disjunctive case, instead, the following transformation is used.

Definition 3

Let Π be in ASP(¬, ∨). Let M(Π) be the program obtained from Π by replacing

every occurrence of a negative literal ∼p with pF , where pF is a fresh propositional

atom associated with p, and by adding rule p ∨ pF ← A, where dom(A) = {p} and

A(I) = |{p} ∩ I | � 0, for all I ⊆ U.

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

580 M. Alviano and N. Leone

Lemma 3

Let Π be in ASP(¬, ∨). The following relation holds: GSM (Π) ≡At(Π) GSM (M(Π)).

Since M(Π) is polynomial-time constructible and only comprises monotone

aggregates, ΣP
2 -hardness follows.

Theorem 5

G-coherence testing is ΣP
2 -hard for ASP(∨, M).

3.2 Complexity of cautious reasoning

As in the previous section, the first row of Table 1 reports well-known results

concerning complexity of cautious reasoning for programs without aggregates.

Moreover, membership in ΠP
2 is proved in (Gelfond and Zhang 2014) for the

general case. For a program Π in ASP(M), membership in P is obtained by noting

that the unique G-stable model candidate of Π can be computed in polynomial-time,

as shown in the previous section.

Theorem 6

G-cautious reasoning is in P for ASP(M).

For a disjunction-free program Π and a propositional atom p, the complementary

problem can be solved by guessing an interpretation I such that p /∈ I , and checking

that I is a G-stable model of Π. It is a polytime check because G(Π, I) is ASP(−).

Theorem 7

G-cautious reasoning is in co-NP for programs in ASP(¬, M, C, N).

As for the hardness, first of all observe that P-hardness for the simplest case

provides P-hardness for any case. Moreover, coherence testing can be reduced to

(the complement of) cautious reasoning in general. In more detail, a program

Π is G-coherent if and only if ⊥ is not a G-cautious consequence of Π, where

⊥ ∈ U \ At(Π) is an atom not occurring in Π. In fact, if Π is G-coherent then its

G-stable models cannot contain ⊥, and therefore ⊥ is not a G-cautious consequence

of Π. Otherwise, ⊥ is a G-cautious consequence because Π has no stable models.

Since G-coherence of Π can be equivalently checked on M(Π), C(Π), or N(Π), all

other hardness results are obtained from Theorems 3–5.

Theorem 8

G-cautious consequence is ΠP
2 -hard for ASP(∨, M), ASP(∨, C) and ASP(∨, N). It

is co-NP-hard for ASP(C) and ASP(N).

4 Compilation

G-stable models of a logic program can be computed by compiling into F-stable

model semantics, for which efficient implementation are available. (Translations into

other frameworks, for example Ferraris’s propositional theories (Ferraris 2005), are

also possible, but not the focus of this paper.) Two different rewritings are presented

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 581

in this section. The first rewriting is more compact, in the sense that it introduces

fewer auxiliary atoms. The second rewriting instead requires more auxiliary atoms,

but has the advantage that the output program only comprises stratified aggregates

(essentially, in these programs no recursive definition involves an aggregate; see

(Faber et al. 2011) for a formal definition).

Definition 4 (Rewriting 1)

Let Π be a program. Let rew (Π) be the program obtained from Π by performing

the following operations:

1. For each p ∈ At(Π), a fresh propositional atom p′ and the following rules are

introduced: p′ ← ∼p, and p′ ← p.

2. For each aggregate A occurring in a rule r of Π and such that dom(A) =

{p1, . . . , pn} (for some n � 0), literals p′1, . . . , p
′
n are added to the body of r.

Example 3

Consider again program Π1 from Example 1, whose G-stable models are ∅ and

{a, c}. Program rew (Π1) is the following: {a ← ∼∼a; b ∨ c ← A1, a
′, b′} ∪ {a′ ← ∼a;

a′ ← a; b′ ← ∼b; b′ ← b; c′ ← ∼c; c′ ← c}. Its F-stable models are the following:

∅∪X and {a, c}∪X, where X = {a′, b′, c′}. In fact, a′, b′, c′ are necessarily true because

of the rules introduced in item 1 of Definition 4. Moreover, note that if a is false

in some model I then a′ is necessarily true in any model of the reduct F(Π1, I). On

the other hand, if a is true in I then a′ can be possibly assumed false in a model of

F(Π1, I). Similarly for b and b′, and for c and c′.

Intuitively, as also observed in the above example, all auxiliary propositional

atoms are true in any model I of rew (Π) because of the rules introduced in item 1 of

Definition 4. Moreover, if J is a minimal model of F(rew (Π), I) then the following

properties are satisfied: (i) if p /∈ I , then p′ ∈ J; (ii) if p ∈ I , then p′ ∈ J if and only

if p ∈ J . Correctness of the first compilation is thus established.

Theorem 9

Let Π be a program. The following relation holds: GSM (Π) ≡At(Π) FSM (rew (Π)).

A drawback of this first compilation is that the evaluation of the resulting program

may be on a higher complexity class than the evaluation of the original program.

For example, G-coherence testing of disjunction-free programs is NP-complete in

general, while a ΣP
2 procedure will be used to test F-coherence of the rewritten

program. Such a drawback motivates the introduction of a second compilation.

To ease the presentation, and to provide a better analysis later, the syntax of the

language is extended by allowing the use of integrity constraints, that is, rules of

the form (1) with empty heads. Note that the semantics provided in Section 2 can

already cope with such an extension.

Definition 5 (Rewriting 2)

Let Π be a program. Let str(Π) be the (stratified) program obtained from Π by

performing the following operations:

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

582 M. Alviano and N. Leone

1. For each p ∈ At(Π), two fresh propositional atoms p′, p′′ and the following three

groups of rules are introduced: (i) p′ ← ∼p, and p′ ← p; (ii) p′′ ← ∼∼p′′; (iii)

← ∼p′′, p, and ← p′′, ∼p.

2. For each aggregate A occurring in a rule r of Π and such that dom(A) =

{p1, . . . , pn} (n � 0), literals p′1, . . . , p
′
n are added to B(r), and A is replaced by a new

aggregate A′′ such that dom(A′′) = {p′′1 , . . . , p′′n} and A′′(I) = A({p ∈ U | p′′ ∈ I}),
for all I ⊆ U.

Example 4

Resorting again to Π1 from Example 1, str(Π1) is the following program: {a← ∼∼a;

b∨c← A′′1 , a
′, b′}∪{a′ ← ∼a; b′ ← ∼b; c′ ← ∼c; a′ ← a; b′ ← b; c′ ← c}∪{a′′ ← ∼∼a′′;

b′′ ← ∼∼b′′; c′′ ← ∼∼c′′} ∪ {← ∼a′′, a; ← ∼b′′, b; ← ∼c′′, c; ← a′′, ∼a; ← b′′, ∼b;

← c′′, ∼c}. where dom(A′′1) = {a′′, b′′} and A′′1(I) = |{a′′, b′′} ∩ I | � 1, for all I ⊆ U.

The F-stable models of str(Π1) are the following: ∅ ∪ X and {a, c} ∪ X ∪ {a′′, c′′},
where X = {a′, b′, c′}. In fact, for atoms a′, b′, c′, comments in Example 3 apply.

Atom a′′ instead is forced to have the same truth value of a because of rules of the

group (iii). Similarly for b′′ and b, and for c′′ and c. Moreover, atoms a′′, b′′, c′′ fix

the interpretation of A′′1 in the reduct thanks to rules of the group (ii).

Rules of the group (i) are as in the first compilation, and therefore the already

discussed properties on atoms of the form p′ hold for str(Π). Rules of the group (ii),

instead, are used to guess an interpretation for atoms of the form p′′. Actually, they

also force the interpretation of atoms of the form p because of rules of the group

(iii). However, while the interpretation of an atom p′′ is fixed also in the reduct, the

interpretation of an atom p can be changed. Also the interpretation of aggregates

is fixed in the reduct because their domains only contain atoms of the form p′′.

Correctness of the second compilation is finally established.

Theorem 10

Let Π be a program. The following relation holds: GSM (Π) ≡At(Π) FSM (str(Π)).

4.1 Properties

The rewritings introduced in the previous section are polynomial, faithful and modular

translation functions (Janhunen 2006), i.e., they are polynomial-time computable,

preserve stable models (if auxiliary atoms are ignored), and can be computed

independently on parts of the input program. In fact, faithfulness is preserved

because of Theorems 9–10, and modularity can be easily proved by assuming that

different auxiliary atoms are used for different parts of the program.

Theorem 11

Let Π,Π′ be programs such that Π ∩ Π′ = ∅. For tr ∈ {rew , str}, the following

conditions are satisfied: tr(Π ∪Π′) = tr(Π) ∪ tr(Π′), and tr(Π) ∩ tr(Π′) = ∅.

It is also possible to show that the rewritings are polynomial-time computable

and have linear size with respect to the original program. For this purpose, the size

of a program Π, denoted ‖Π‖, is defined as the number of symbols occurring in

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 583

Π. In more detail, every occurrence of a propositional atom or of a negated literal

is considered one symbol, while every occurrence of an aggregate A is counted as

|dom(A)| symbols. (No other symbol is considered in the size of Π.) The rewriting in

Definition 4 introduces |At(Π)| new propositional atoms, and 2 · |At(Π)| new rules

of size 2. Moreover, for each rule r in Π, program rew (Π) contains a rule of size at

most 2 · ‖r‖ (because for each aggregate A in r, |dom(A)| propositional atoms are

added to the body of r). The rewriting in Definition 5, instead, introduces 2 · |At(Π)|
new propositional atoms, and 5 · |At(Π)| new rules of size 2. The other rules in str(Π)

are obtained from rules in Π and have the same size of the corresponding rules in

rew (Π).

Theorem 12

Let Π be a program. The programs rew (Π) and str(Π) are polynomial-time

constructible, and the following relations holds: (i) ‖rew (Π)‖ � 4 · |At(Π)|+ 2 · ‖Π‖;
(ii) ‖str(Π)‖ � 10 · |At(Π)|+ 2 · ‖Π‖.

There are a few additional observations concerning the rewritings presented in the

previous section, which also positively affect their sizes. The first observation is that

fresh atoms could be added just for propositional atoms belonging to the domain of

some aggregate occurring in Π. In fact, note that atoms c′, c′′ are not required in the

rewritings reported in Examples 3–4. Such atoms are included in Definitions 4–5 to

simplify the presentation of the rewritings. The second observation is more technical

and concerns the implementations of current ASP solvers, which are essentially

based on F-stable model semantics. ASP solvers use two modules, called model

generator and model checker. The first module produces a model I of the input

program Π, while the second module tests the stability of I , i.e., it checks whether

no strict subset of I is a model of F(Π, I). In both rewritings, atoms of the form p′

are irrelevant for the model generator, in the sense that they are immediately derived

true. Hence, the search space of the model generator is not increased at all when

rew (Π) is processed. A similar observation also applies to str(Π). Indeed, atoms of

the form p′′ are constrained to have the same truth values of the corresponding

atoms of the form p because of rules of the group (3). In addition, atoms of the

form p′′ are irrelevant for the model checker because their interpretation is fixed in

this module by rules of the group (2). As a consequence, also the interpretation of

all aggregates in str(Π) is fixed in the model checker because their domains only

comprise atoms of the form p′′.

Theorem 13

Let Π be a program, and I be an interpretation. If I |= rew (Π) or I |= str(Π) then

{p′ | p ∈ At(Π)} ⊆ I . Moreover, for each J ⊆ I such that J |= F(str(Π), I), it holds

that {p′′ | p ∈ I} ⊆ J .

A final observation, which is eventually linked to the previous, is that current

ASP solvers only rely on the model generator to process disjunction-free programs.

More specifically, this is the case if additionally non-convex aggregates are stratified.

As already observed, the rewriting in Definition 5 is such that all aggregates in

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

584 M. Alviano and N. Leone

the rewritten program are stratified. Moreover, note that str(Π) does not introduce

disjunction in Π (this is also true for rew (Π)).

Theorem 14

Let Π be a program. All aggregates in str(Π) are stratified, and if Π has no

disjunction then both rew (Π) and str(Π) have no disjunction.

Therefore, checking G-coherence of Π by means of checking F-coherence of

str(Π) is an appropriate technique from the complexity point of view, with the

only corner case of ASP(M), i.e., programs without negation and disjunction, and

whose aggregates are all monotone. A similar comment applies to performing G-

cautious reasoning on Π by means of F-cautious reasoning on str(Π). In fact, in

the disjunction-free case, the rewriting in Definition 5 provides alternative proofs

for NP-membership of G-coherence testing and co-NP-membership of G-cautious

reasoning.

5 Related work

The challenge of extending stable model semantics with aggregate constructs

has been investigated quite intensively in the previous decade. Among the many

proposals, F-stable model semantics (Ferraris 2011; Faber et al. 2011) is of particular

interest as many ASP solvers are currently based on this semantics (Gebser et al.

2012; Faber et al. 2008). Actually, the definition provided in Section 2 is slightly

different than those in (Ferraris 2011; Faber et al. 2011). In particular, the language

considered in (Ferraris 2011) has a broader syntax allowing for arbitrary nesting of

propositional formulas. The language considered in (Faber et al. 2011), instead, does

not allow explicitly the use of double negation, which however can be simulated by

means of auxiliary atoms. For example, in (Faber et al. 2011) a rule p← ∼∼p must

be modeled by using a fresh atom pF and the following subprogram: {p ← ∼pF ;

pF ← ∼p}. On the other hand, negated aggregates are permitted in (Faber et al.

2011), while they are forbidden in this paper. Actually, programs with negated

aggregates are those for which (Ferraris 2011) and (Faber et al. 2011) disagree. As a

final remark, the reduct of (Faber et al. 2011) does not remove negated literals from

bodies, which however are necessarily true in all counter-models because double

negation is not allowed in the syntax considered by (Faber et al. 2011).

Other relevant stable model semantics for logic programs with aggregates are

reported in (Pelov et al. 2007; Son and Pontelli 2007) for disjunction-free programs,

recently extended to the disjunctive case in (Shen et al. 2014). In these semantics the

stability check is not given in terms of minimality of the model for the program reduct

but obtained by means of a fixpoint operator similar to immediate consequence,

and the following relation holds in general: stable models of (Shen et al. 2014)

are a selection of F-stable models, and they coincide up to ASP(¬,M,C), which is

also the complexity boundary between the first and second level of the polynomial

hierarchy for F-stable model semantics (Alviano and Faber 2013). Finally, a more

recent proposal is G-stable model semantics (Gelfond and Zhang 2014), whose

relation with other semantics has been highlighted by (Alviano and Faber 2015) in

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 585

the disjunction-free case: G-stable models are F-stable models, but the converse is

not always true.

A detailed complexity analysis for F-stable models is reported in (Faber et al.

2011) and summarized in Table 1. Complexity of reasoning under stable models

by (Pelov et al. 2007; Son and Pontelli 2007), instead, is analyzed in (Pelov 2004),

where in particular ΣP
2 -completeness of coherence testing is proved for disjunction-

free programs with aggregates. Concerning G-stable models, the general case was

studied in (Gelfond and Zhang 2014), and a more detailed analysis is provided by

this paper. In particular, for disjunction-free programs, the main reasoning tasks

are in the first level of the polynomial hierarchy in general when G-stable models

are used. On the other hand, coherence testing jumps from K to ΣP
2 when F-stable

models are replaced by G-stable models in programs with monotone aggregates

only. Indeed, in constrast to previous semantics, monotone aggregates are enough

to simulate integrity constraints and negation when G-stable models are used.

Techniques to rewrite logic programs with aggregates into equivalent aggregate-

free programs were also investigated in the literature. For example, a rewriting

into aggregate-free programs is presented by (Ferraris 2011) for F-stable model

semantics. However, it must be noted that the rewriting of (Ferraris 2011) produces

nested expressions in general, and current mainstream ASP systems cannot process

directly such constructs, but instead require additional translations such as those

by (Lee and Palla 2009). Other relevant rewriting techniques were proposed in

(Bomanson and Janhunen 2013; Bomanson et al. 2014), also proved to be quite

efficient in practice. However, these rewritings preserve F-stable models only in the

stratified case, or if recursion is limited to convex aggregates.

Aggregate functions are also semantically similar to DL (Eiter et al. 2008) and

HEX atoms (Eiter et al. 2014), extensions of ASP for interacting with external

knowledge bases, possibly expressed in different languages.

6 Conclusion

G-stable models are a recent proposal for interpreting logic programs with ag-

gregates. A detailed complexity analysis of the main reasoning tasks for this new

semantics was reported in Section 3, highlighting similarities and differences versus

mainstream ASP semantics, here referred to as F-stable models. In more detail,

G-coherence testing is NP-complete for disjunction-free programs, in contrast to ΣP
2 -

completeness of F-coherence testing. An even more surprising result was shown for

negation-free programs with monotone aggregates: Such programs are guaranteed

to be F-coherent, while G-coherence testing was shown to be ΣP
2 -hard because

negation can be simulated by means of disjunction and monotone aggregates in the

new semantics. Similar results were shown for G-cautious reasoning.

A further link between G- and F-stable models is provided by the rewritings in

Section 4: G-stable models of an input program can be obtained by computing

F-stable models of a rewritten program, where the size of the rewritten program is

linear with respect to the size of the original program. In particular, two different

rewritings are presented and analyzed. Moreover, one of these rewritings outputs

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

586 M. Alviano and N. Leone

programs with stratified aggregates only, which are handled efficiently by modern

ASP solvers. A prototype system supporting common aggregation functions such as

count, sum, avg, min, max, odd, and even is thus implemented by means of this

rewriting, and using the ASP solver wasp (Alviano et al. 2013; Alviano et al. 2014)

to obtain G-stable models of the original program.

Acknowledgement

This work was partially supported by MIUR within project “SI-LAB BA2KNOW

– Business Analitycs to Know”, and by Regione Calabria, POR Calabria FESR

2007-2013, within project “ITravel PLUS” and project “KnowRex”. Mario Alviano

was partly supported by the National Group for Scientific Computation (GNCS-

INDAM), and by Finanziamento Giovani Ricercatori UNICAL.

References

Alviano, M., Dodaro, C., Faber, W., Leone, N. and Ricca, F. 2013. WASP: A native

ASP solver based on constraint learning. In Logic Programming and Nonmonotonic

Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September 15-

19, 2013. Proceedings, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer Science,

vol. 8148. Springer, 54–66.

Alviano, M., Dodaro, C. and Ricca, F. 2014. Anytime computation of cautious consequences

in answer set programming. Theory and Practice of Logic Programming 14, 4-5, 755–770.

Alviano, M. and Faber, W. 2013. The complexity boundary of answer set programming

with generalized atoms under the FLP semantics. In Logic Programming and Nonmonotonic

Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19,

2013. Proceedings, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer Science, vol.

8148. Springer, 67–72.

Alviano, M. and Faber, W. 2015. Stable model semantics of abstract dialectical frameworks

revisited: A logic programming perspective. In Proceedings of the 21st International Joint

Conference on Artificial Intelligence. IJCAI Organization, Buenos Aires, Argentina, To

appear.

Bartholomew, M., Lee, J. and Meng, Y. 2011. First-order semantics of aggregates in answer

set programming via modified circumscription. In Logical Formalizations of Commonsense

Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06,

Stanford, California, USA, March 21-23, 2011. AAAI.

Bomanson, J., Gebser, M. and Janhunen, T. 2014. Improving the normalization of weight

rules in answer set programs. In Logics in Artificial Intelligence - 14th European Conference,

JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, E. Fermé and

J. Leite, Eds. Lecture Notes in Computer Science, vol. 8761. Springer, 166–180.

Bomanson, J. and Janhunen, T. 2013. Normalizing cardinality rules using merging and sorting

constructions. In Logic Programming and Nonmonotonic Reasoning, 12th International

Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, P. Cabalar

and T. C. Son, Eds. Lecture Notes in Computer Science, vol. 8148. Springer, 187–199.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.

Commun. ACM 54, 12, 92–103.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive

power of logic programming. ACM Comput. Surv. 33, 3, 374–425.

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

Complexity and compilation of GZ-aggregates in ASP 587

Eiter, T., Fink, M., Krennwallner, T., Redl, C. and Schüller, P. 2014. Efficient hex-

program evaluation based on unfounded sets. J. Artif. Intell. Res. (JAIR) 49, 269–321.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:

Propositional case. Ann. Math. Artif. Intell. 15, 3-4, 289–323.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2008. Combining

answer set programming with description logics for the semantic web. Artif. Intell. 172, 12-

13, 1495–1539.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates

in answer set programming. Artif. Intell. 175, 1, 278–298.

Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T. and Ielpa, G. 2008. Design and

implementation of aggregate functions in the DLV system. Theory and Practice of Logic

Programming 8, 5-6, 545–580.

Ferraris, P. 2005. Answer sets for propositional theories. In Logic Programming and

Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante, Italy,

September 5-8, 2005, Proceedings, C. Baral, G. Greco, N. Leone, and G. Terracina, Eds.

Lecture Notes in Computer Science, vol. 3662. Springer, 119–131.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans.

Comput. Log. 12, 4, 25.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From

theory to practice. Artif. Intell. 187, 52–89.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Logic Programming, Proceedings of the Fifth International Conference and Symposium,

Seattle, Washington, August 15-19, 1988 (2 Volumes), R. A. Kowalski and K. A. Bowen,

Eds. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Comput. 9, 3/4, 365–386.

Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates.

Theory and Practice of Logic Programming 14, 4-5, 587–601.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and

propositional theories. Journal of Applied Non-Classical Logics 16, 1-2, 35–86.

Lee, J. and Palla, R. 2009. System f2lp - computing answer sets of first-order formulas. In

Logic Programming and Nonmonotonic Reasoning, 10th International Conference, LPNMR

2009, Potsdam, Germany, September 14-18, 2009. Proceedings, E. Erdem, F. Lin, and

T. Schaub, Eds. Lecture Notes in Computer Science, vol. 5753. Springer, 515–521.

Liu, L., Pontelli, E., Son, T. C. and Truszczynski, M. 2010. Logic programs with abstract

constraint atoms: The role of computations. Artif. Intell. 174, 3-4, 295–315.

Liu, L. and Truszczynski, M. 2006. Properties and applications of programs with monotone

and convex constraints. J. Artif. Intell. Res. (JAIR) 27, 299–334.

Pelov, N. 2004. Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke

Universiteit Leuven, Leuven, Belgium.

Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of

logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Shen, Y., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T. and Deng, J. 2014.

FLP answer set semantics without circular justifications for general logic programs. Artif.

Intell. 213, 1–41.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model

semantics. Artif. Intell. 138, 1-2, 181–234.

Son, T. C. and Pontelli, E. 2007. A constructive semantic characterization of aggregates in

answer set programming. Theory and Practice of Logic Programming 7, 3, 355–375.

https://doi.org/10.1017/S147106841500023X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841500023X

