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The theory to predict the performance and loads on rotors (propellers, screws,
windmills) has a history of more than a century. Apart from modern computational
fluid dynamics and vortex panel models taking the true blade geometry into account,
most other models proceed from an infinitely thin actuator disc or line. These models
assume an externally defined force field distributed at the disc or line, representing
the loads on the real rotor. Given this force field, the flow is solved by momentum
balances or by the equations of motion. The use of external force fields was discussed
in textbooks of the first decades of the 20th century, but has received little attention
since then. This paper investigates the higher-order effect of adding thickness to the
actuator disc or changing the actuator line to a blade with cross-sectional dimensions.
For the generation of a Rankine vortex by a force field acting on an actuator disc with
thickness, an exact solution has been found in which not only the thrust and torque
determine the flow, but also a radial force. This force is conservative, in contrast to
the other force components. For rotor blades, a conservative normal and radial force
acting on the chordwise bound vorticity is present. This explains the experimentally
observed inboard motion of the tip vortex of model wind turbine rotors before the
wake induction field drives it outboard. Simulations by computational fluid mechanics
and a vortex panel code reproduce the inboard motion, but an actuator line analysis,
in which the chordwise vorticity is absent, does not. The conservative load is only
1–2 % of the thrust on the entire blade but ≈10 % of the thrust at the tip (r/R> 0.9).
Conservative forces at the disc and rotor blade vanish for vanishing disc thickness or
blade cross-section, so play no role in any of the infinitely thin actuator disc or line
methods. However, if higher-order effects of non-zero dimensions are to be modelled,
the conservative force field has to be included.
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1. Introduction
1.1. Brief history of rotor aerodynamics

The actuator disc is the earliest model for any rotor in fluid dynamic calculations:
a permeable disc with a uniform pressure jump represents a rotor with an infinite
number of blades. The classical momentum theory started with the work of Rankine
(1865), who defined the concept of a stream tube and the actuator disc, and Froude
(1889), who formulated that the velocity through the disc is the average of the velocity
far upstream and far downstream in the wake. Lanchester (1915) was close to finding
the optimal performance of a static propeller and a wind turbine with a uniform axial
load distribution, but he did not continue on Froude’s result. A firm assessment of
the ideal performance of the static propeller was first obtained by Joukowsky (1918).
Two years later Betz (1919) and Joukowsky (1920) derived the ideal performance
of a wind turbine at the same time (see van Kuik 2007; Okulov & van Kuik 2012).
Since then, the actuator disc concept has been adapted so as to make it useful for
rotors with a finite number of blades. Glauert (1935, chapter III) coupled disc loads to
blade loads and introduced the torque in the momentum theory, resulting in the blade
element momentum (BEM) method, which is still the basis for most rotor design
codes. Furthermore Glauert (1926) added the first correction for discs representing
heavily loaded wind turbines. The main problems that were left after Glauert’s work
were the refinement of the blade model and the adaptation of the BEM method
to off-design conditions. Much effort has been spent in making the BEM method
suitable for the real rotors of helicopters and wind turbines, by introducing models for
three-dimensional flow along the blade surface, blade deformations, tip effects, yawed
flow, dynamic inflow, unsteady aerofoil behaviour and dynamic stall, wind shear,
atmospheric turbulence, etc. Helicopter and wind energy textbooks such as Leishman
(2000), Burton et al. (2001) and Manwell, McGowan & Rogers (2007) present
surveys of these BEM adaptations, although improved corrections are continuously
being published, up to Shen et al. (2005) and Madsen et al. (2010).

Besides momentum theory, also vortex theory is used to model the action of an
N-bladed rotor. Joukowsky (1912–1918) and Betz (1920) formulated conditions for
the optimal rotor. Both assumed a linearized solution (a wake with constant radius),
but used a different model for the vorticity shed by the blades. Goldstein (1929)
solved Betz’s model for two, three and four blades. With the current knowledge on
vorticity dynamics, Okulov & Sørensen (2010) compared both conceptual models
quantitatively, and obtained results for increasing N. Some years earlier Breslin &
Andersen (1994) presented, besides the actuator disc theory, a thorough treatment
of the lifting line theory and propeller design optimization. Modern computer power
has enabled vortex lattice methods like that described by Micallef et al. (2013),
where boundary conditions are applied at the true blade surface. The potential flow
solution provides details of the wake as well as the blade loads. Full solutions
including viscous effects using computational fluid dynamics (CFD) are presented by
many authors (e.g. Madsen et al. 2010; Sibuet Watters & Masson 2010; Troldborg,
Sørensen & Mikkelsen 2010). Since the calculation time required for a complete
solution of blade and wake flow is still too long, the blade is often represented by an
actuator line as first proposed by Sørensen & Shen (2002). The blade is represented
by a prescribed load distributed along a line replacing the blade (see e.g. Shives &
Crawford 2013; Réthoré et al. 2014). A review of propeller aerodynamics is presented
by Wald (2006) and similarly of CFD methods applied to wind turbine wakes by
Sanderse, van der Pijl & Koren (2011).
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Despite the progress in blade aerodynamics, the actuator disc has received and is
still receiving continual attention. Wu (1962) derived a differential equation describing
the flow in terms of the stream function, the circulation around the axis and the
component of the disc load perpendicular to the stream tube. When the disc has
a uniform normal load, the wake is bounded by a vortex sheet and the wake flow
itself is free of vorticity. This enables one to rewrite Wu’s equation as a potential
flow, after which calculations determine the position and strength of the vortex
sheet. Greenberg (1972) published results for the uniformly loaded disc. Øye (1990)
and Mikkelsen et al. (2009) represented the vortex sheet emanating from the edge
of a uniformly loaded disc by a series of concentric vortex rings. The strength
and position of these rings are calculated with the appropriate boundary conditions.
Sørensen & van Kuik (2011) presented an extension to Glauert’s theory for rotating
disc force fields including torque when the rotational speed tends to zero. Conway
(1995) presented analytical solutions for the linearized flow field, which was extended
to exact analytical solutions for non-uniform load distributions in inviscid flow in
Conway (1998). His results have become a benchmark to test other flow solvers.
Rosen & Gur (2008) also developed a semi-analytical actuator disc model, in which
the disc is represented by a distribution of sinks. They found a close correspondence
with Conway’s results. Also Réthoré et al. (2014) used Conway’s work to successfully
validate a CFD actuator disc method. A first CFD calculation for many actuator disc
flow states is presented by Sørensen, Shen & Munduate (1998). An example of the
calculation of the hover flow state is published by Spalart (2003).

This brief representation of the state of the art in rotor aerodynamics shows that
it has a long history with a well-developed foundation in analytical theory, vorticity
and CFD models as well as design methods. In some of the models and methods,
the blade is replaced by its force field, in order to simplify the model and accelerate
the calculations. What is underexposed in the literature discussed here is what the
requirements are for this force field to accurately represent the blade load. Wald (2006,
§ 3.4) discusses the flow singularity at the edge of an infinitely thin blade, creating
an edge force. He shows in his figure 5 the outer part of a blade having bound
vorticity in radial as well as chordwise direction. For such curved lines of vorticity
Milne-Thomson (1966, § 10.61) discusses the occurrence of in-plane Kutta–Joukowsky
forces resulting from self-induction. These effects are not accounted for in actuator
line, lifting line or BEM models. The research presented here is on these aspects of
a force field representing an actuator disc or a rotor blade.

Actuator discs are also used to model devices in flows that are restricted laterally by
walls, e.g. tubes. The flows are treated by Horlock (1978) and are outside the scope
of the present paper.

1.2. The use of external force fields in fluid dynamics
Except for the vortex lattice models and the CFD models based on real surface
boundary conditions, all the methods discussed above prescribe the force field as
input in the flow solver. The question of how to determine the force fields is solved
either by the definition of the problem (in actuator disc analyses: based on physical
arguments, a load distribution is assumed (see Sørensen et al. 1998)) or by iteration
with other methods (in actuator line and momentum analyses: for a given flow field,
the load is taken from a blade element calculation, which is used as force input in
the calculation of an updated flow field (see Shen, Zhu & Sørensen 2012)). In all
cases these forces contribute to the conversion of power, so these are classified as
non-conservative forces.
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The use of external force fields is discussed in old papers and textbooks, such as
von Kármán & Burgers (1935), but is in contrast to most fluid dynamic analyses
where the force field (or pressure distribution) is output instead of input. However,
particularly in rotor aerodynamics, the use of predefined force fields has some
advantages. It allows for much easier physical interpretation of flow problems, since
the thrust, being the integrated load, is the main parameter defining flow states.

The question addressed in this paper is whether the force field used in the
classical actuator disc theory, BEM design methods and actuator line analyses is
fully consistent with the force field or pressure distribution that would follow from a
full CFD or vortex lattice method, from experiments or, if present, from a complete
analytical solution. The motivation for this question is twofold. First is an exact
solution of Wu’s equation, to be discussed in § 3.4, where a radial component of
the disc load is present when the disc has thickness. Second, analyses of several
wind tunnel experiments (Xiao et al. 2011; Micallef 2012; Micallef et al. 2012) have
shown details of the flow field very close to the tips of model wind turbine rotor
blades for which only radial pressure gradients or loads at the blade tip provide an
explanation: after being released by the blade tip, the tip vortex first moves inboard
before the wake expansion drives it outboard. The inboard motion leads one to expect
a similar radial load.

In contrast to the components of the load contributing to the thrust and torque, a
radial load is conservative since it does not contribute to the power conversion. The
rotor and disc analyses discussed in § 1.1 make no distinction between conservative
and non-conservative loads, and do not model a radial load. It is expected that, if there
is an effect of radial loads, it will be a higher-order effect having little impact on the
overall loads. However, higher-order effects may help to improve the prediction of the
tip vortex trajectory close to the tip, which in turn may have additional advantages for
tip geometry design and associated aeroacoustic effects.

The analysis builds on previous work on actuator discs and rotors. In van Kuik
(2012) the limit transitions required to convert a rotor into a disc are analysed. When
the rotor is represented by its force field, the limit transitions, like the number of
blades going to infinity, turn this force field into the well-known uniform pressure
jump across the disc as modelled by the founders of modern rotor theory, Joukowsky
(1912–1918) and Betz (1920). Van Kuik (2014) compares the conservation of vorticity
in the disc and rotor flows. The force field of a disc is known to generate vorticity,
while the bound and wake vorticity of a rotor blade constitute a system in which the
circulation is conserved. It is shown that this is an apparent distinction since both
flows generate vorticity while the circulation is conserved.

1.3. Objective and outline
The distinction between conservative and non-conservative forces and the role of both
in actuator disc and rotor flows is investigated. The research questions are as follows:

(a) Which part of the load on a rotor blade and actuator disc is conservative or
non-conservative? What is the physical origin of both? And what effect may the
conservative force have on the flow and performance of rotors?

(b) If the conservative force is demonstrated to play a role in the rotor aerodynamics,
is this accounted for by state-of-the art rotor aerodynamic design and analysis
methods?

In the next section the distinctive properties of conservative and non-conservative
forces are analysed, after which two examples of a flow with a conservative force are
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treated. Section 3 presents an exact analytic solution of the stream-tube equation for
the disc developed by Wu (1962). The force field acting at a rotor blade is analysed in
§ 4. Finally, § 5 connects the disc and rotor analyses, evaluates the results with respect
to the research objective and presents the main conclusions.

2. (Non-)conservative force fields in the Euler equation
The flow is assumed to be incompressible, inviscid and isentropic, so the Euler

equation

ρ
∂v

∂t
+ ρ(v · ∇)v =−∇p+ f (2.1)

is valid as well as the continuity equation

∇ · v = 0, (2.2)

with v being the velocity vector (m s−1), ρ the flow density (kg m−3), p the pressure
(N m−2) and f the force density, volume force or force field (N m−3). Rewriting (2.1)
with the vector identity (v · ∇)v =∇(v · v)/2− v×ω yields

∇H = f − ρ ∂v
∂t
+ ρv×ω, (2.3)

where H is the Bernoulli constant p+ ρ/2v · v, and ω the vorticity (rad s−1).
The cylindrical coordinate system (x, r, ϕ) is used, with the disc centreline

coinciding with the positive x axis and with e denoting the unit vector with an
appropriate index, as well as the local coordinate system (s, n, ϕ); see figure 1. The
coordinate s is in the meridional plane tangent to the stream tube, and n is normal
to the stream tube. Besides these inertial coordinate systems, also the rotating system
(x, r, ϕ)rot is used, rotating with respect to the inertial system with the angular velocity
Ω (rad s−1) of the force field. The velocity and vorticity in the inertial and rotating
systems are related by

vrot = v − eϕΩr, (2.4)
ωrot = ω− 2exΩ. (2.5)

Only flows that are steady with respect to the rotating system are considered. For the
axisymmetric disc in § 3, the flow is also steady in the inertial frame. For the rotor
in § 4, the flow in the inertial system is unsteady but periodic.

The use of the force field f is discussed in old textbooks and papers, such as
Prandtl (1918) and von Kármán & Burgers (1935), without making an explicit
distinction between conservative and non-conservative components. Most modern
textbooks pay some attention to the force term but at some moment assume that f
is conservative, like the gravity force field. Here this assumption is not made but
instead force fields are assumed to be confined to thin surfaces. When the surface
has thickness ε, integration along the normal nε gives the surface load F (N m−2):

F=
∫
ε

f dnε. (2.6)

More integrations result in a line force (N m−1) or a discrete force (N), which will
be named after its function, e.g. lift or thrust.
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FIGURE 1. The vortex system of the actuator disc. Shown is the disc decelerating the
flow. All vectors are in positive direction, except Γaxis and ωϕ .

In general, the force field can have a non-conservative as well as a conservative
component. A non-conservative f satisfies ∇× f 6= 0, and is able to generate vorticity
as shown by the curl of (2.3) (see Saffman 1992, pp. 10–11):

1
ρ
∇× f non-cons =

Dω
Dt
− (ω · ∇)v, (2.7)

with the last term denoting the change of vorticity due to stretching or tilting of
already existing vortex filaments. When f is distributed on a thin surface of which
the limit ε→ 0 is taken, the gradients tangential to the surface do not vary across the
thickness ε. Integration of ∇× f then gives

lim
ε→0

∫
ε

∇× f dnε =∇×F= Dγ
Dt
− (γ · ∇)v, (2.8)

where the vortex sheet strength γ = ∫ω dnε . In the case when F is normal to the
surface S of a lifting body, integration of ∇×F on S yields∫∫

S
∇×F dS= 0, (2.9)

since the integrand consists of the tangential derivatives of the normal load, yielding
zero after integration on a closed contour. The combination of (2.8) and (2.9) shows
that the net generation of vorticity by a lifting surface with a normal load is zero.
Locally the production of vorticity can be non-zero since locally ∇ × F 6= 0, but
this is accompanied by production of an equal amount of vorticity with opposite sign
somewhere else at S. This is the force-field-based explanation of the fact that any
lifting surface produces the same amount of positive and negative vorticity.

Since the generation of vorticity implies that fluid particles receive an angular speed,
it is expected that (2.7) represents the differential balance of angular momentum like
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(2.1) represents the differential linear momentum balance. In van Kuik (2014) a proof
for this is presented in the two-dimensional plane as well as for the meridional plane
of axisymmetric flows without swirl.

A second difference between conservative and non-conservative forces regards the
conversion of power. A conservative force field satisfies ∇× f = 0 or, equivalently,

f cons =−∇F , (2.10)

where F is the potential of f . Batchelor (1970, pp. 138, 157) and Kundu (1990,
p. 102) mention that F can be considered as the potential energy. Furthermore,
Batchelor suggests that ‘under certain conditions the pressure might play the part of
a potential energy’, which is examined here. With (2.10) the Euler equation (2.1)
becomes

ρ
∂v

∂t
+ ρ(v · ∇)v = f non-cons −∇(p+F ). (2.11)

If the surface is a stream surface with steady flow, so with vn=0, and with f non-cons=0,
integration of the component normal at the surface gives 1(p + F ) = 0 by which
indeed the pressure pcons induced by f cons acts as its potential: F = −pcons. This is
reflected in the work done by a force field. Batchelor (1970, p. 157) shows the work
done by a distribution of volume forces. Rewritten for inviscid isentropic flow this
becomes

f · v = ρ
2
∂‖v‖2

∂t
+ (v · ∇)H (2.12)

or using (2.11)

f non-cons · v =
ρ

2
∂‖v‖2

∂t
+ (v · ∇)(H − pcons). (2.13)

For steady flows with only conservative forces (H − pcons)= (H +F )= const. along
a streamline. Batchelor interprets this as the total energy of a material element being
constant for inviscid steady isentropic flows when only conservative forces act. Let V
be a volume with surface S encompassing the area at which f is distributed. For the
disc and rotor flows considered here, the unsteady terms are either zero or periodic,
so vanish in the integration on V . This yields, using Gauss’s theorem,∫∫∫

V
f non-cons · v dV =

∫∫
S
(H − pcons)(v · en,S) dS, (2.14)

with en,S as unit vector normal to S. With the exception of § 3.4.1, all actuator disc and
rotor force fields are distributed on surfaces with finite dimensions. When the distance
of S to these surfaces goes to infinity, pcons→ 0, by which (2.14) shows that the non-
conservative force field does work expressed as the change of H times the cross-flow
through S.

Summarizing, force fields in the Euler equation of motion may be distinguished by:

(a) non-conservative force fields that create vorticity and perform work,
(b) conservative force fields that change the pressure field but conserve the total

energy of fluid elements.

To distinguish the two types of force fields, these properties are not unambiguous.
The force field may be non-conservative locally, so generate vorticity locally according
to (2.7) or (2.8), while the integrated force field may be conservative according to
(2.9) without a net generation of vorticity. The criterion of performing work may give
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different results when changing from an inertial coordinate system, as used above, to
a system moving with the lifting surface in which the force fields acting on it do not
perform work.

Since the force fields considered in this paper are distributed at surfaces with limited
thickness ε, the following sections proceed from the requirement ∇×F 6= 0 to classify
a force field as non-conservative.

3. The actuator disc
The actuator disc force field is defined on a disc with a constant thickness ε

and radius R. The disc and the force field rotate with angular speed Ω = exΩ . The
undisturbed parallel flow U0 is aligned with the disc centreline as shown in figure 1.
The force and flow field are assumed to be steady and axisymmetric, so all time and
azimuthal derivatives are zero.

3.1. Power conversion
The power produced or absorbed by an annulus dr of the actuator disc can
be expressed in two ways: first as torque Q times rotational speed Ω , giving
Ω dQ = 2πΩfϕr2 dr; second by integration of (2.12) on the annulus, resulting in
2πr(v · ∇)H dr. Comparison shows that

f · v =Ωr fϕ = (v · ∇)H. (3.1)

The expression for fϕ is derived from the ϕ-component of (2.3):

fϕ =−ρvsωn. (3.2)

Since the flow is axisymmetric, the expression for the vorticity ω is

ω= es
∂(rvϕ)

r∂n
− en

∂vϕ

∂s
+ eϕ

(
∂vn

∂s
− ∂vs

∂n

)
, (3.3)

so ωn is a function of vϕ only. Herewith (3.1) becomes

f · v = ρ(v · ∇)(Ωrvϕ)= ρ(v · ∇)ΩΓ2π
, (3.4)

where Γ denotes the circulation around the disc axis, Γ = 2πrvϕ . The combination
of (3.1) and (3.4) yields

ρ(v · ∇)
ΩΓ

2π
= (v · ∇)H, (3.5)

giving, with the assumption that ‖v‖ 6= 0,

1
ρ
(H −H0)=Ω Γ

2π
=Ωrvϕ, (3.6)

where H0 is the undisturbed value. This relation between converted power and
azimuthal velocity has been obtained by Thwaites (1960, p. 473) and de Vries (1979,
appendix C2). Expressed in terms of vorticity, using (3.3), this power conversion
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equation becomes
1
ρ
∇H =Ω∇(rvϕ)= eϕΩr×ω. (3.7)

Finally (3.4) is integrated on the disc volume to obtain the total power converted by
the disc force field,

P= ρ2πΩ

∫∫
(v · ∇)(rvϕ)r dr dx, (3.8)

which shows that this equals the increase of angular momentum given to the flow
times the rotational speed.

3.2. Conservative and non-conservative disc force fields
Substitution of (3.7) in the Euler equation (2.3) leads to an equation with only
kinematical terms:

1
ρ

f =−v×ω+ eϕΩr×ω. (3.9)

An alternative expression for (3.9) in the rotating reference system is, using (2.4) and
(2.5),

1
ρ

f =−vrot ×ωrot + vrot × 2Ω, (3.10)

but the mixed expression
f =−ρvrot ×ω (3.11)

is simplest. This is a general equation of motion for the actuator disc converting
power, first presented in van Kuik & van Zuylen (2009). The subscript rot in (3.11)
distinguishes it from the expression of a Kutta–Joukowsky force: the disc load is the
cross-product of the velocity as experienced in the rotating system with the vorticity
in the inertial system. Since it is expressed in kinematical terms, it enables an easier
physical interpretation of the relation between loads and vorticity than when using the
Euler equation including H.

An alternative way to derive (3.11) is to use the Euler equation (2.3) in the
rotating reference frame, including the fictitious centrifugal and Coriolis force fields
(see Batchelor 1970, p. 162),

1
ρ
∇Hrot = 1

ρ
f + vrot ×ωrot + vrot × 2Ω −Ω × (Ω × err), (3.12)

and to evaluate the left-hand side, using (3.7), as

1
ρ
∇Hrot = ∇

(
1
ρ

H − vϕΩr+ er
(Ωr)2

2

)
= erΩ

2r=−Ω × (Ω × err). (3.13)

It is apparent that the gradient of Hrot is the centripetal force balancing the centrifugal
force, by which (3.12) becomes (3.10). The first term on the right-hand side of (3.10)
is the Kutta–Joukowsky force on the bound vorticity, whereas the second term is the
Coriolis force. Both are perpendicular to the local velocity, so do not perform work
in the rotating system.
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Evaluation of ∇× f in the (s, n, ϕ) coordinate system gives

∇× f = es
∂(r fϕ)

r∂n
− en

∂fϕ
∂s
+ eϕ

(
∂fn

∂s
− ∂fs

∂n

)
, (3.14)

which becomes after integration∫
ε

∇× f ds= es
∂(rFϕ)

r∂n
− eϕ

∂Fs

∂n
. (3.15)

Since the normal derivatives are non-zero at the edge of the disc, any axisymmetric
actuator disc loading has non-conservative components in the s and ϕ directions. The
normal component is always conservative, since it cannot perform work as it does
not contribute to the torque, and since it is absent in (3.15). Still, the load itself,
Fn =

∫
fn ds, may be non-zero. Figure 1 shows that in the transition from bound

radial vorticity to free wake vorticity the direction of ω will gradually align with the
direction of vrot, to be achieved at the downstream side of the disc. Consequently,
vrot × ω 6= 0 in the transition regions near the disc centre and edge, resulting in a
load defined by (3.11):

1
ρ

fn = vsωϕ − vϕ,rotωs. (3.16)

3.3. Wu’s actuator disc equation
The actuator disc problem is treated thoroughly by Wu (1962). He considers an
actuator disc placed normal to the undisturbed flow U0, having an axisymmetric but
otherwise arbitrary load distribution with an angular velocity Ω . Since the flow field
induced by the force field is axisymmetric, it is possible to use the three-dimensional
Stokes stream function ψ . Breslin & Andersen (1994) present an extensive discussion
on Wu’s equation, so here it suffices to say that it is the normal component of the
Euler equation (2.3):

∂H
∂n
= en · f − ρvsωϕ + ρvϕωs, (3.17)

with all kinematical terms expressed in terms of ψ and Γ . Furthermore H is expressed
in terms of Γ using (3.6), resulting in

∂2ψ

∂x2
+ ∂

2ψ

∂r2
− 1

r
∂ψ

∂r
= 1

2π

∂Γ

∂ψ

(
Ωr2 − Γ

2π

)
− r
ρ

fn

vs
. (3.18)

The last term fn is the same as (3.16), being a conservative force. Without the fn
term, (3.18) is known as the Bragg–Hawthorne equation, first published in Bragg &
Hawthorne (1950).

3.4. An exact solution: the generation of a Rankine vortex
Wu (1962) suggests that fn may be neglected, as he considers this to be the component
of the axial force density normal to the stream tube. A significant value of fn then
requires a large radial velocity component at the disc, which is not present in general.
An exact solution of Wu’s equation is found below, in which the fn term is a purely
radial force density. The solution was first presented as an abstract in van Kuik & van
Zuylen (2009).
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3.4.1. The force and flow field
This solution of Wu’s equation is a Rankine vortex with a vortex core r6 δ rotating

as a solid body, and a potential flow for r> δ:

ψ = 1
2 U0r2,

vϕ =
{

g(x)Ωr, r 6 δ,
g(x)Ωδ2/r, r> δ,

g(x)=
x/ε, 0< x< ε,

1, x > ε,
0, x 6 0.


(3.19)

The Rankine vortex is generated at the disc with a linear increase of the swirl for
0 < x < ε and is sketched in figure 2. The vorticity enclosed by the disc volume is
derived by applying (3.3), with the notation ω= [ωx, ωr, ωϕ],

ω=


2Ω

x
ε

−Ω r
ε

0


r6δ

, ω=

 0

−Ω δ
2

rε
0


r>δ

, (3.20a,b)

which gives, after integration across the disc thickness, the vortex sheet strength γ =∫
ω dx,

γ =
 Ωε−Ωr

0


r6δ

, γ =

 0

−Ω δ
2

r
0


r>δ

. (3.21a,b)

For the flow outside the disc volume, the solution (3.19) satisfies (3.18) as can be
checked by substitution. At the disc itself, this substitution provides the expression
for fn, with vs = U0 and ∂/∂Ψ = (rU0)

−1∂/∂r. It is clear that fn is purely radial, so
fn = fr. At the disc volume, fϕ is determined by (3.2) and fx by (3.4). For r > δ this
gives an expression for fx that does not vanish for r→∞. Addition of a constant
force field fx = −ρ(Ωδ)2/ε for 0 6 r <∞ has no impact on the flow, since it adds
a constant pressure downstream of the disc. It is a conservative force field satisfying
(2.10) with F = ρ(Ωδ)2x/ε. The result is, in dimensionless form,

f
ρΩ2r

=


r2 − δ2

rε
− xr
ε2

2x
ε

(
1− x

ε

)
U0

Ω

1
ε


r6δ

,
f

ρΩ2r
=


−xr
ε2

(
δ

r

)4

0
U0

Ωr
δ2

rε


r>δ

. (3.22a,b)

The resultant expressions for the disc load F are obtained by integration of f across
the thickness ε:

F
ρ(Ωr)2

=


1
2
−
(
δ

r

)2

ε

3r
U0

Ωr


r6δ

,
F

ρ(Ωr)2
=


−1

2

(
δ

r

)4

0
U0

Ωr

(
δ

r

)2


r>δ

. (3.23a,b)
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FIGURE 2. An exact solution of Wu’s equation: the generation of a Rankine vortex, with
core radius δ.

The solution satisfies the equation of motion (3.11), as is clear by substitution of
(3.19) and (3.20) in (3.11). This returns (3.22), except for the conservative part of
the force field −εxρ(Ωδ)

2/ε.
The loads Fx and Fϕ are independent of the thickness ε; the load Fr,r>δ = 0 but

Fr,r<δ is O(ε), and contributes to the disc load when ε 6= 0.

3.4.2. Interpretation of the radial component of the load
Inspection in the rotating frame of reference using (3.10) shows that fr has a Kutta–

Joukowsky as well as Coriolis part, with

fr,K-J = 2ρ
(

1−
( x
ε

)2
)
Ω2r, (3.24)

fr,C = −2ρ
(

1− x
ε

)
Ω2r. (3.25)

In the inertial frame of reference, the radial pressure gradient is derived from the
radial component of the Euler equation (2.1) with vr = 0: ρv2

ϕ/r = ∂p/∂r − fr.
Evaluation of ρv2

ϕ/r with (3.19) gives

1
ρ

(
∂p
∂r
− fr

)
= Ω

∂(rvϕ)
∂r
− vϕ ∂vϕ

∂r
= Ω2rg(x)(2− g(x)). (3.26)

In the wake fr = 0 and g = 1, so ρ−1∂p/∂r = Ω2r = v2
ϕ/r satisfying the centripetal

balance. This is not the case at the disc, where g(x) = x/ε, resulting in the right-
hand side of (3.26) being unequal to ρv2

ϕ/r. However, at the disc, fr is non-zero, and
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substitution of fr in (3.26) gives

1
ρ

∂p
∂r
=Ω2rg2(x)= v

2
ϕ

r
, (3.27)

which shows that the radial force density is required to restore the centripetal
balance at the disc. This is in accordance with § 2, where it was demonstrated that a
conservative force only changes the pressure field.

By (3.15) it is clear that Fx and Fϕ are non-conservative, and Fr is conservative.
Evaluation of (3.15) gives

1
ρ

∫
ε

∇× f dx = ex2ΩU0 − eϕΩ2r, r 6 δ, (3.28)

= −eϕΩ2 δ
4

r3
, r> δ, (3.29)

which by inspection satisfies (2.7).
It is apparent that fr is required to restore the centripetal balance at those positions

in the actuator disc where the non-conservative force field creates vorticity that is
convected downstream. Unlike fx and fϕ , which behave as a Dirac delta function for
ε→ 0, fr remains finite for vanishing thickness. The physical explanation is that both
up- and downstream of the disc the pressure is independent of the thickness, by which
the value of fr required to maintain the centripetal balance at the disc has to be
independent too.

3.4.3. Numerical assessment of the impact of fr

The analytical solution shows that fr 6= 0, but does not contribute to the disc load
Fr =

∫
fr dx when ε→ 0 since fr remains finite in this limit. The question whether

omitting fr is allowed in a flow calculation is still unanswered. To investigate this, the
flow has been calculated with the CFD code ‘Fluent’ (see § B.1 for more information).
The undisturbed flow has been set to U0 =Ωδ. The thickness ε of the disc has been
set to two values: ε= 0.05δ and 1.0δ. The force density distribution (3.22) is applied,
but once with and once without the radial force fr. For the thin disc with ε = 0.05δ,
the results with and without fr are graphically almost indistinguishable, and are not
shown here: both calculations give the flow field (3.19), so the radial load does not
matter. For the thick disc with ε = δ, the results with and without fr clearly show
differences, as shown in figure 3. With the radial load included (see the upper row),
the analytical solution is reproduced exactly, and downstream of the disc the flow does
not change any more. In the absence of fr, another flow field results, displayed in the
lower row. The contrast with the analytical solution is observed in the wake, which
is not fully developed immediately downstream of the disc, but is most visible in the
plot of the radial velocity. The analytical solution gives vr = 0 in the entire flow field,
but vr in the absence of fr has a maximum value vr/U0 ≈ 0.07.

In conclusion, the numerical analysis shows that Fx and Fϕ do not define the flow
uniquely. For the thick disc, Fr satisfying (3.22) needs to be added to reproduce the
analytical solution, whereas Fr = 0 results in another flow solution with non-zero vr.
For thin discs Fr =

∫
ε

fr dx is negligible so it has no impact. Further interpretation of
fr and Fr is presented in § 5.1.
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FIGURE 3. (Colour online) The generation of a Rankine vortex flow by the force field
(3.22) with and without fr. Shown is the meridional plane with the undisturbed flow U0
coming from the left. This disc is between the vertical lines. The kernel diameter δ equals
the thickness ε. The radial velocity is not shown for fr = 0 since vr = 0 everywhere.

4. The rotor blade
Figure 4 shows the most simple rotor blade with a constant cross-section C, being

a symmetric aerofoil without pitch or twist angle. This is not an optimal rotor
design, but although not self-starting, it acts as a wind turbine rotor once ΩR/U0
is sufficiently high. In general, a tip aerofoil is cambered or has an inclination with
respect to the disc plane, so the chordwise vorticity also has an axial component.
By the chosen simple configuration, the blade can carry only radial and azimuthal
vorticity components, which suffices for the present analysis. For rotors with non-zero
axial vorticity, the analysis holds for the azimuthal part of the chordwise bound
vorticity.

4.1. Power conversion
Expression (3.4) describes the local power conversion for the actuator disc. For the
rotor, it is convenient to evaluate the azimuthally averaged power instead of the local
power since the flow in the inertial system is periodic. The same line of arguments
as in § 3.1 is followed. The power produced or absorbed at radius r is 2π

∮
f ·

vr dϕ, which equals the torque times the rotational speed in that annulus. With f · v=
(1/(2π))

∮
f · v dϕ denoting the azimuthally averaged power at position r, this gives

f · v = ρΩr fϕ. (4.1)

For the unsteady rotor flow, the right-hand side of (4.1) is evaluated with the ϕ-
component of (2.3):

fϕ = ∂H
r∂ϕ
− ∂vϕ
∂t
− ρ(vxωr − vrωx). (4.2)

Since the flow is periodic, ∂vϕ/∂t and ∂H/(r∂ϕ) do not contribute to the azimuthal
average of this component. With ωx = 0 it follows that

f · v =−ρΩr vxωr. (4.3)
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r

x

U0

Lroot

Lblade

Ltip

FIGURE 4. Rotor blade bound vorticity, with loads acting on the flow. The sign
conventions are similar to those in figure 1. The loads are drawn assuming vx > 0, vϕ,rot <
0, vr = 0 near the root and vr < 0 near the tip.

Using the complete expression for ω instead of the axisymmetric equation (3.3), an
equivalent result is obtained as in (3.4):

f · v = ρ (v · ∇)(Ωrvϕ). (4.4)

The integrated power P becomes

P= ρ2πΩ

∫
ε

∫
R
(v · ∇)(rvϕ) r dr dx, (4.5)

with the integration done across the blade thickness and from root to tip. For the disc
as well as the rotor, the converted power is expressed as the rotational speed times
the convective term ρ(v · ∇)(rvϕ), meaning the amount of angular momentum around
the axis added to the flow.

4.2. Conservative and non-conservative blade loads
The expression (4.5) does not reveal which loads contribute to power conversion.
Although the power can only be established in the inertial frame of reference since it
is always zero in the rotating one, the loads are best analysed in the rotating frame
of reference. The Euler equation in the rotating reference system is (3.12), written as
f =∇Hrot − ρvrot × ωrot − ρvrot × 2Ω + ρΩ × (Ω × err). The two terms with vrot are
combined using (2.5), giving vrot × ωrot + vrot × 2Ω = vrot × ω. The lift L is obtained
by integration of f across the blade cross-section C: L= ∫∫ f dC. The result is

L=−ρ
∫∫

C
vrot ×ω dC+

∫∫
C
∇(Hrot − ρ(Ωr)2) dC. (4.6)
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In van Kuik (2012) it is shown that the axial and azimuthal components of the second
integral are zero, but not necessarily the radial component. However, once integrated
along the span, this term becomes zero too so this term is further omitted and the lift
is

L=−ρ
∫∫

C
vrot × erωr dC− ρ

∫∫
C

vrot × eϕωϕ dC. (4.7)

The first integral gives the load on the radial vorticity, contributing to the rotor
thrust and torque. The second integral in (4.10) is the lift on the azimuthal vorticity.
Evaluated in the (s, n, ϕ) system using (2.4), vrot × eϕωϕ = v × eϕωϕ = −envsωϕ , so
the integrated load is in the meridional plane normal to the stream tube, by which it
is indicated as Ln.

In order to distinguish conservative and non-conservative contributions to L, the curl
of it,

∫∫
∇× f dC, is evaluated in the (s, n, ϕ) system, giving∫∫

C

[
es

(
∂(r fϕ)

r∂n
− ∂fn

r∂ϕ

)
+ en

(
∂fs

r∂ϕ
− ∂fϕ
∂s

)
+ eϕ

(
∂fn

∂s
− ∂fs

∂n

)]
r dϕ ds. (4.8)

Despite the fact that the derivatives with respect to ϕ and s are non-zero, they vanish
after integration on the chord (respectively thickness), so

∇× L=
∫∫

C

[
es
∂(r fϕ)

r∂n
− eϕ

∂fs

∂n

]
dC= es

∂(rLϕ)
r∂n

− eϕ
∂Ls

∂n
, (4.9)

similar to (3.15). Load Ln is not included in (4.9) so is conservative, while the other
components of L are non-conservative. Comparison of (4.7) and (4.9) leads to

Lnon-cons = −ρ
∫∫

C
vrot × erωr dC, (4.10)

Lcons = Ln = −ρ
∫∫

C
v× eϕωϕ dC. (4.11)

The non-conservative part of L acts upon the spanwise or radial vorticity, while the
conservative Ln acts upon the chordwise vorticity.

Both components of the vorticity are sketched in figure 4, where it is represented as
a vortex sheet with strength γ resulting from the integration of the vorticity across the
blade thickness. The relation between the two components is now expressed in terms
of the circulation Γ . For any lifting surface, the well-known relation between the
change of spanwise circulation and trailing vorticity is γchordwise=−∂Γspanwise/∂r, where
r is the spanwise coordinate. Inspection of the derivation of this relation as presented
by, for example, Lighthill (1986) shows that it also holds at the blade surface itself
with Γspanwise measured from the leading edge. Expressed in the coordinate system
of figure 4 this becomes γϕ = ∂Γr/∂r, where the minus sign has vanished since the
direction of the chordwise and azimuthal coordinates is opposite (see figure 5). The
subscript r indicates that Γ is defined in a plane normal to a radius. Similarly, the
circulation Γϕ is defined in a plane normal to the chordwise direction. When measured
from the tip to a local value of r then Γϕ(r)=−

∫ r
R γϕ d% or γϕ=−∂Γϕ/∂r. Combining

the two expressions for γϕ gives γϕ = ∂Γr/∂r=−∂Γϕ/∂r or

∂(Γr + Γϕ)
∂r

= 0. (4.12)
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z

x

r

FIGURE 5. (Colour online) The geometry of the tip of the TUD-B rotor, the coordinate
system and the plane at z = 0 coinciding with the quarter-chord position, used for the
measurements and calculations. The iso-lines indicate the radial velocity. The square
contour is used to determine the chordwise bound circulation (see § 4.3.3).

This gives the relation between the circulation around a radius and the circulation
around an azimuthal line, at any position at the blade. It provides a coupling between
the radial vorticity in (4.10) and the azimuthal vorticity in (4.11). For rotor blades
having the circulation distributed along the span as constant as possible, the azimuthal
vorticity will be located near the blade root and tip, so the conservative load (4.11)
will then be concentrated near the root and tip.

The occurrence of the loads on the chordwise vorticity at the tip is known from
measurements on helicopter and propeller model rotors. Grey et al. (1980) show the
measured pressure distribution at the tip of a model rotor operating in hover, resulting
in a significant increase of the normal force for r/R> 0.98. Ragni, van Oudheusden
& Scarano (2011, 2012) report propeller-tip measurements using stereo particle image
velocimetry (SPIV) and CFD calculations, showing details of the pressure distribution
at the tip. A very good agreement between experimentally obtained and calculated
tip pressure is shown, but no data for the integrated loads are given, although it
is clear that the radial load is non-zero. The tip load effect is also known from
translating wings, but it is noticeable only for non-slender wings. The additional
normal load due to chordwise vorticity is described by, for example, Kűchemann
(1984, p. 163). The additional in-plane or spanwise component of the load is less
well known. Milne-Thomson (1966, § 10.61) pays attention to the in-plane component
of the Kutta–Joukowsky load appearing when the lifting surface contains non-parallel
vorticity lines. Because of the limited importance for wings, his analysis is restricted
to the observation that the spanwise load is non-zero. In order to derive an order of
magnitude of this spanwise load S, appendix A derives S for a wing with an elliptic
planform. Load S is determined as the spanwise component of the Kutta–Joukowsky
wing load, like the induced drag D is its component tangential to the flight path.
The ratio S/D= 2cmax/(πb), where cmax is the chord at mid-span, and b is the span.
For an aspect ratio b/cmax = 10 and lift coefficient CL = 1, the spanwise force on the
half-wing is 1 % of the lift of the half-wing. It is clear that S is conservative, since
it is perpendicular to the flight path and does not perform work. The physical origin
of a possible radial load is the same as for the axial and azimuthal components: it is
the blade surface pressure, now integrated on the radially projected surface.

The question whether it is important to include the load on chordwise vorticity
in rotor design and analysis codes is still unanswered. This load is not taken into
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account in rotor design codes based on the BEM theory. These BEM codes use tip
correction models as described in Shen et al. (2005), which incorporate information
about the number of blades, tip speed ratio and tip geometry. The correction contains
two constants that have been determined from experimental data. Vortex lattice and
CFD codes that model the blade surface in sufficient detail automatically include the
effect of chordwise vorticity. Recently several experiments on wind turbine model
rotors using SPIV have provided many details of the flow around wind turbine blades.
In the next section the results of one of these experiments are combined with analyses
by a vortex panel and a CFD method. Emphasis is on assessing the occurrence of
chordwise bound vorticity, determining the order of magnitude of the conservative load
acting on it and the impact on the flow.

4.3. Experimental and numerical results for a model wind turbine rotor
4.3.1. Inboard motion of tip vortex

Akay et al. (2012), Micallef (2012) and Micallef et al. (2012, 2013) report
experiments on two two-bladed rotors (TUD-A and -B) of 2 m diameter in the
3 m diameter Open Jet Facility of TU-Delft, with emphasis on the root and tip
region. Schepers & Snel (2007) and Schepers, Boorsma & Munduate (2012) report
experiments on a 4.5 m diameter three-bladed rotor called Mexico (Measurements
and EXperiments In COntrolled conditions) in the 9.5 × 9.5 m2 open test section
of the German–Dutch Wind Tunnel. Xiao et al. (2011) report detailed tip vortex
experiments on a 1.25 m diameter model of the NREL UAE phase VI wind turbine
described by Hand et al. (2001), in an open test section of 3.2 m diameter. The
flow near the blade tip of these rotors shows the tip vortex, when leaving the tip,
moving inboard after which the wake expansion moves the vortex to a larger radius.
Micallef et al. (2013) provide a detailed description of this phenomenon, Micallef
(2012) and Micallef et al. (2012) give the experimental data of the TUD and Mexico
rotor experiments and the analyses, as Xiao et al. (2011) does for the NREL model
rotor. The first mention of this effect was by van Kuik (1991), where the physical
mechanism is explained. The tendency of any tip vortex to first move inboard may
be stronger than the wake expansion, depending on tip shape and tip load. For a
propeller, both effects sum up, and the tip vortex always travels to a smaller radius.

The TUD-A rotor shows some inboard motion of the tip vortex, but this effect is
better quantified for the other rotors. At 10◦ azimuth angle behind the blade quarter
chord position, the radial position of the tip vortex of the Mexico rotor is 0.99R, and
of the TUD-B rotor 0.995R with the expansion to values r>R starting only after 30◦
azimuth angle. The tip vortex of NREL-model rotor reaches 0.98R at 30◦ azimuth
angle after which expansion starts. The inboard induction is caused by the chordwise
vorticity at the tip, since all other blade bound or free wake vorticity components
cannot induce such an inboard velocity, as becomes clear by qualitative considerations
based on the Biot–Savart induction rules. Although the effect is least visible for the
TUD-B rotor, it is most suited for detailed tip flow analysis because of its geometry
and because the tip flow is measured in all required details. Figure 5 shows its almost
cylindrical blade shape with a blunt tip surface having a zero pitch angle at r=R. All
results concern the rotor operating at its optimal tip speed ratio seven at a wind speed
of 6 m s−1. Appendix B.3 gives more details, including an assessment of the accuracy.

4.3.2. Chordwise bound circulation
CFD codes as used by Herraez et al. (2012) as well as vortex panel codes as used

by Micallef et al. (2013) are able to capture the tip flow in detail. A summary of
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FIGURE 6. Comparison of the radial velocities in the meridional plane through the quarter-
chord tip position; U∞ is aligned with the rotor axis, and the tip speed ratio ΩR/U∞= 7;
see Micallef et al. (2011) for more details of the experiment.
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FIGURE 7. The chordwise vorticity determined by difference in radial velocities.

FIGURE 8. The pressure at the blade tip shown only qualitatively by isobars.

these codes is presented in § B.2. Figure 5 shows the plane of observation with the
coordinate systems. Besides the (x, r, ϕ) system defined in figure 4, also the local
(x, z, r) system is used since it is convenient to express local flow properties in the
chordwise coordinate z. The measured and calculated radial flow are shown in figure 6.
At the tip, a large difference in radial velocity at the pressure side of the blade tip (x<
0) and suction side is visible, indicating chordwise vorticity bounded at the tip. This
vorticity component is shown in figure 7, indicating high values for r/R> 0.97. This
chordwise vorticity may be considered as the beginning of the tip vortex. Figure 8
gives the pressure distribution at the suction side of the tip, showing for r/R> 0.98
the low-pressure region due to this vortex. Ferrer & Munduate (2007) show similar
pressure distributions for other rotor lay-outs.
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FIGURE 9. Iso-lines of constant percentage of the local circulation Γr(r, z)/Γr,max(r)
around the TUD-B rotor blade, determined by the CFD method; Γr is integrated from
the leading edge to Γr =

∫ z
le γr dζ .

Figure 9 shows how the blade bound radial vorticity γradial is connected to the
bound chordwise vorticity γchord expressed in the circulation Γ . The value of the iso-
circulation lines gives the local circulation, measured from the leading edge le, so
Γr(r, z) = ∫ z

le γradial dζ , divided by the maximum blade circulation. This maximum
occurs at the trailing edge at r/R = 0.825. With Γϕ replaced by −Γz, (4.12) gives
Γr −Γz= 0 for a fixed chordwise position z when Γz is integrated inboard: Γz(r, z)=∫ r

R γchord d%. Consequently the iso-lines give the value for Γr, measured along the chord
from the leading edge, as well as Γz, measured along the radius from the tip to
inboard. As an example at the trailing edge the spanwise circulation increases from
0 at r = R to ≈0.9Γr,max at r = 0.94R. In other words, 90 % of the radial circulation
leaves the blade as chordwise circulation in the outer 6 % of the blade. The figure
shows that a small amount of the circulation leaves the tip – see the iso-lines 0.1
and 0.2. This missing part is not analysed further, but it is unbound vorticity or the
contribution of the flat tip surface to the bound circulation. Figure 9 is similar to
figure 5 of Wald (2006).

4.3.3. The conservative tip load
The chordwise circulation between r = 0.9R and r = R, the normal force N and

radial force R are determined by several means. Equation (4.11) gives the load on
the chordwise vorticity for a certain radius, so integration along r gives the total load.
This is approximated by the following procedure. The measured and CFD-calculated
velocity field is integrated along the contour displayed in figure 5 to obtain the
circulation Γ (z) around the chordwise vorticity. The choice of the contour edges is
such that no vorticity other than chordwise vorticity is contained within the integrated
zone. On the contour side that cuts the blade, a linear jump in velocities is assumed,
but this was found to have practically no influence on the calculated circulation.
This procedure is repeated for six chordwise positions, with the results shown in
figure 10. The two curves agree reasonably, with a maximum chordwise circulation
of ≈0.9Γradial,max. According to figure 9 the spanwise circulation at the trailing edge
at r/R= 0.9 is ≈0.95Γradial,max, which confirms the contour method.
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FIGURE 10. (a) Chordwise circulation, and (b) normal and radial loads. The squares show
the K–J method applied to the CFD data. The diamonds indicate the same applied to the
experimental data. The triangles present the experimental momentum method. The error
bars for the K–J experimental load show the sensitivity for the position to determine vref .
The sensitivity of the radial load for variations of the contour in the momentum method
is 5 % of the values indicated.

The force is calculated by chordwise integration of the Kutta–Joukowsky load
−ρvref × Γ , where the equivalent velocity vref is the velocity in the (x, r) plane at a
position close to the tip. The choice of this position is not straightforward, so when
using the experimental data the sensitivity of the choice is assessed by determining
vref at five positions: (x/R, r/R) = (−0.04, 1.0), two positions with 1r = ±0.02R
and two with 1x = −0.01R and +0.015R. The variation in the results is shown by
the error bars in figure 10. When using the CFD data, for the same procedure, the
position (−0.04, 1.0) is used. Furthermore, the radial load is found by applying a
radial momentum balance using the measured velocity field based on a contour as
shown in figure 5, but with r= R as inboard boundary instead of r= 0.9R. By doing
so, the pressure at the flat tip surface is the source term in the balance giving the
radial load. The sensitivity for the choice of the contour is checked by varying the
position of the other contour sides. The momentum method is described in del Campo
et al. (2013), where it is applied to determine the load on the radial circulation, with
some more details given in § B.3.

The results of figure 10 are integrated along the chord to obtain the normal and
radial load given in table 1. Furthermore, the loads as obtained by direct integration
of the CFD-calculated pressure are given. The results agree reasonably well, with the
pressure integrated radial load deviating most. The ratio of the radial force to the
thrust of the blade has the same order of magnitude as the ratio of the spanwise
force to the lift at one half of an elliptic wing calculated in appendix A: 1–2 %, so
the contribution of the conservative tip loads to the overall rotor load is very small.
However, when N and R are normalized by the thrust acting within the area of this
research as defined in figure 5, the order of magnitude changes to 10 % of the thrust
Ttip at the blade for r> 0.9R.

Besides the loads, also the tip vortex trajectories are compared. Figure 11 shows
the calculated trajectories in comparison with the measured values. The CFD blade
results corresponds to the CFD analysis discussed so far; the actuator line (CFD AL)
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FIGURE 11. The radial coordinate of the tip vortex as a function of the azimuth angle
measured from the c/4 position.

CFD Experiment
P K–J K–J MOM

N 1.2 1.0 1.3± 0.3 —
−R 1.2 1.8 1.9± 0.4 2.2± 0.1

TABLE 1. The normal load N and the radial load R at the tip, as a percentage of Tblade.
Here P, K–J and MOM refer to the pressure, Kutta–Joukowsky and momentum methods
explained in § 4.3.3.

results are presented in the following section. Both CFD results are obtained by taking
the average position of 100 streamlines forming the tip vortex. For the panel code,
the trajectory is the vorticity filament that leaves the blade at the trailing edge of
the tip. Although there are differences between the experimental data and calculated
trajectories, the CFD blade and panel code results confirm that the tip vortex moves
somewhat inboard before expansion starts after approximately 30◦ azimuth angle after
the c/4 position.

4.4. Comparison with simulations without chordwise vorticity
In § 4 the impact of the conservative radial load on the flow was analysed by
comparing numerical flow field solutions with and without the radial load. A similar
comparison is done here, by comparing the previous CFD results with results obtained
by an actuator line analysis using the same code. In an actuator line simulation, the
blade is modelled as a line, so all chordwise information is lost like in a lifting line
approach. A lifting line models the bound vortex representing the blade bound radial
vorticity, whereas the actuator line carries the axial and azimuthal loads of the blade,
concentrated at this line. The actuator line is the force field equivalent of the lifting
line, and is used often in rotor aerodynamics. The actuator line analysis of this paper
uses the same method as explained in Shen et al. (2012).

Since all chordwise information is discarded, the bound chordwise vorticity and the
loads acting on it are absent. Figure 11 shows the comparison of the actuator line
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FIGURE 12. (Colour online) The GCI of the panel code for an increasingly finer mesh.

simulation (CFD AL) and the simulation for the blade (CFD blade), revealing a clear
difference: the wake expansion in CFD AL starts immediately after the tip vortex is
released, while this is delayed in CFD blade. The slope of the expansion is the same.
When the expansion part of CFD blade is interpolated to r=R keeping the same slope,
the equivalent delay in wake expansion compared to CFD AL is 50◦ azimuth angle.

5. Interpretation of the results and conclusions
5.1. Reflection on the role of conservative forces

Although the disc flow in § 3 and rotor flow in § 4 are very different, the conservative
part of the associated force fields show similar properties. In both cases, the
conservative force changes the pressure field locally, as they do not influence the
boundary conditions at large distances from where they act. The non-conservative
forces do so as they perform work and create vorticity. However, conservative forces
have an indirect effect on the far field since the modification of the pressure field
changes the action of the non-conservative forces.

Conservative and non-conservative forces depend in essentially different ways on
the geometry of the surface or volume carrying them. The non-conservative forces,
like those contributing to thrust and torque, are determined by the radial bound
circulation, which can be modelled by lifting line analyses. In such analyses, no
geometrical information is necessary once the circulation is defined. In contrast to
this, conservative forces do depend on geometry since they vanish for vanishing
disc thickness or blade cross-section. Unlike non-conservative forces, they do not
behave as a delta function for vanishing thickness or cross-section. This implies that
the effect of the conservative forces is of higher order compared to the effect of
non-conservative forces.

Since the conservative force field does not convert power nor produce vorticity,
it may be discarded from the force field that induces the flow, without violating
conservation laws or far-field boundary conditions. This was shown by the disc
calculations without the radial force, and the actuator line calculations for the
rotor. However, the resulting flow field differs from the ‘original’ flow field by
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this higher-order effect. For infinitely thin discs, or lifting/actuator line analyses, there
is no difference with and without the conservative force.

The physical origin of the conservative force field is the same as of the
non-conservative one, which is the pressure distribution at the rotor blade. When
expressed as the load on bound vorticity, there is a clear distinction: in the flow
cases studied here, the non-conservative load acts on radial bound vorticity, whereas
the conservative load acts on axial disc bound vorticity, § 3, or azimuthal blade bound
vorticity, § 4.

5.2. Conclusions
Here the two research questions defined in § 1.3 are answered:

(a) Force fields representing the action of lifting surfaces having non-zero thickness
or chord can be distinguished by non-conservative forces creating vorticity and
performing work, and conservative forces only changing the pressure field.

(b) The force density term in the actuator disc equation of Wu (1962) is shown to
be a conservative force density. An exact solution, representing the generation
of a Rankine vortex by a thick actuator disc, includes this force density, which
becomes a radial load after integration across the disc thickness. This load is
required to maintain the radial pressure gradient at the disc. A numerical analysis
shows that the exact solution is not reproduced when the conservative radial load
is not included. The conservative force depends linearly on the disc thickness, so
disappears for an infinitely thin disc.

(c) A similar force acts on the chordwise bound vorticity of rotor blades, with a
normal and radial component. This force is conservative, unlike the thrust and
torque. For a model wind turbine rotor, the chordwise vorticity and the load have
been identified by experimental and numerical analyses. The magnitude of the
load is 1–2 % of the axial force per blade or ≈10 % of the axial force at the tip
defined by r> 0.9R.

(d) The CFD and panel code analyses confirm the experimentally observed initial
inboard motion of the tip vortex before wake expansion moves it to a larger
radius. This happens ≈30◦ azimuth angle after the quarter-chord position of the
blade tip. An actuator line analysis, which does not account for the conservative
load, does not reproduce the inboard motion.

(e) The conservative component of the force field is taken into account by vortex
lattice and CFD methods that model the rotor blade as a surface with dimensions.

(f ) For lifting/actuator line models and analyses based on infinitely thin discs, like
the exact solutions of Conway (1998), conservative forces play no role. These
models/analyses are unaffected by the results presented here.
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Appendix A. Spanwise load on an elliptic wing
The wing is placed in a Cartesian coordinate system with the span b ranging from

y = −b/2 to y = b/2. The chord length has an elliptical distribution: c(y)/cmax =√
(1 − (2y/b)2). The undisturbed velocity U0 is in the x direction with the positive
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x pointing downstream and the z coordinate points upwards. The elliptic planform
gives an elliptic distribution of the bound circulation Γ (y)/Γmax = √(1 − (2y/b)2),
where Γmax is the circulation around the wing at mid-span position. The velocity
perpendicular to the undisturbed velocity, the downwash, is vz = −Γmax/(2b). It
is assumed that the vortex sheet emanating from the wing is in the x–y plane.
The chordwise vorticity is given by γc = −dΓ/dy, so integration of the spanwise
component of the Kutta–Joukowsky load on the surface A of the half-wing gives

S=−ρ
∫∫

A
ey · v× γ dx dy = −ρΓmax

2b

∫
b

c dΓ (A 1)

= −ρ
4
Γ 2

max
cmax

b
. (A 2)

Comparison with the induced drag, D = −πρ/(8Γ 2
max), shows that the ratio S/D =

2cmax/(bπ). For an aspect ratio b/cmax = 10 and lift coefficient CL = 1, the spanwise
force on the half-wing is 6 % of the induced drag and 0.5 % of the lift of the entire
wing.

Appendix B. The numerical and experimental methods
B.1. Actuator disc calculations in § 3

The actuator disc calculations are performed with the finite volume solver Fluent
6.3.26. The configuration models two-dimensional axisymmetric inviscid incomp-
ressible flow with swirl, hence resolving the incompressible Euler equations (2.1)
and (2.2). The actuator disc is modelled with a core radius δ = 1 m and thickness
ε. Two cases are considered, one with ε = 0.1δ and one with ε = δ. The total
domain size extends 10δ upstream of the disc, 45δ downstream and 25δ in the radial
direction from the axis of symmetry. The disc itself is discretized uniformly with
quadrilateral cells and enclosed by a region with quadrilateral cells extending 1.5δ
upstream and 5δ downstream of the disc and 2.5δ in the radial direction. The rest
of the domain is discretized with triangular cells. In both cases the total number of
cells adds up to approximately 440 100. Although steady-state solutions are sought,
the system is solved in a transient manner to increase the stability of imposing
the body force components, which, in the transient solution, have a more gradual
effect on the development of the wake, yet converge to a steady-state solution. Both
spatial and temporal discretization is first-order accurate. Spatially, the mesh is kept
very refined to minimize the spatial discretization error. The temporal accuracy is of
less importance as the solution approaches steady state. User-defined functions are
employed to incorporate the body forces (3.22) as source terms in the actuator disc
region, with Ω = 1 rad s−1. Apart from the symmetry axis, the boundary conditions
for the domain are given by a (slip) wall boundary condition at r = 25δ, preventing
any flow entering or leaving the domain in the radial direction. The inflow condition,
upstream of the disc, is defined as a pressure inlet condition with a gauge total
pressure of 0.5 Pa. As outlet condition, a target mass flow of 1963.495 kg s−1 is
prescribed, which translates to an unperturbed flow velocity of U0 = 1 m s−1, as the
density is equal to 1 kg m−3. From an initial, uniform solution field, the simulation
is run for 1200 time steps with a time step of 1 s, which develops the flow field
under the influence of the imposed actuator disc source terms.
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B.2. Rotor calculations in § 4
B.2.1. Vortex panel code

The three-dimensional unsteady potential flow panel model is described in detail
in Micallef (2012). The code is used to simulate the behaviour of time-dependent
motions of bodies such as wind turbine blades using a number of suitable boundary
conditions. The formulation used for this work is based on that proposed by Katz
& Plotkin (1991); the general procedure is given here. The bodies are discretized
into panel elements of sources and doublets. The kinematic motion of the bodies is
determined and can be represented in general by a translation and a rotation of the
following form:

∂Φ

∂n
= (U0 + vrot +Ω × r) · n, (B 1)

where Φ is the potential function, and n is the normal direction to a surface. As the
blades rotate, new wake panels are shed from the trailing edge. For this wake shedding
process, the Kutta condition must hold. Thus, for the vorticity at the trailing edge to
be zero, one must have

µWt = (µu −µl)t, (B 2)

where W refers to the wake, u to the upper surface of the blade, l to the lower surface,
t is the time, and µ represents the doublet strength. This shedding process is repeated
every time step. The panel model uses a Dirichlet boundary condition. This can then
be used to evaluate the velocities by means of differentiating the potential function,

∇Φ =− 1
4π

∫
SB

σ∇

(
1
x

)
ds+ 1

4π

∫
SB+SW

µ∇

[
∂

∂n

(
1
x

)]
dS+∇Φ0, (B 3)

where x is the distance from the panel to a point P in the flow field, SB represents
the body surface, SW represents the wake surface and σ is the source strength.

The body source and doublet distributions are hence computed numerically from

N∑
k=1

Ckµk +
Nw∑
i=1

Ciµi +
N∑

k=1

Bkσk = 0, (B 4)

where the summation from 1 to N represents the addition over all body panels, and
the summation from 1 to Nw represents the addition over all wake panels. This will
enable the wake strength to be determined for every time step. Also, for each time
step, the velocity at each panel vertex must be calculated. This enables the estimation
of the displacement of each wake vertex using a first-order Euler time-marching
approximation. This allows the wake to evolve freely under the influence of the free
stream and wake inductions.

For the panel model simulation, the grid convergence index (GCI) parameter (see
Roache 1998) is adapted for use in assessing the convergence of a solution in a vortex-
based approach. Grid independence and convergence of test quantities are considered.
The GCI is defined as

GCI(%)= |ε|η
p

ηp − 1
× 100, (B 5)

where η is the ratio of the total number of panels with respect to a reference
simulation while p is the order of the numerical method used (here taken as one
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since the method uses a first-order time-marching scheme). The error estimator ε is
defined as

ε = f − fref

fref
, (B 6)

where f is the variable on which the convergence is being assessed and fref is the value
of that variable from a reference simulation (with an extremely fine discretization). To
assess discretization convergence, a number of simulations based on a coarser body
and wake panel distribution were run. The mesh independence results show bound
vorticity at different radial stations. With increasing number of body elements, the
GCI falls below 2.5 %. The convergence for the very fine case is also assessed on the
basis of the number of revolutions of the turbine. In these simulations, 10 revolutions
are used. Results are shown for axial inductions at r/R= 0.5 and different x/R. The
convergence of maximum bound vorticity is also shown. Again, the results converge
to within 2.5 %, which is considered sufficient for these simulations.

B.2.2. CFD code
The CFD results were computed with the open-source C++ object-oriented

numerical toolbox OpenFOAM using a Reynolds-averaged Navier–Stokes simulation
approach (OpenFOAM 2013). OpenFOAM is a finite-volume software for solving
numerically partial differential equations. The computation was run in parallel in
the FLOW computer cluster of the University of Oldenburg using 180 cores. An
unstructured and hexa-dominant mesh design was chosen for its high adaptability (in
comparison to structured meshes) to complex geometries. The computational mesh
includes both blades and the nacelle. The tower is omitted, since it is assumed that
it does not significantly influence the aerodynamic phenomena studied in this work.
More than 99 % of the mesh elements are hexahedra, the rest being polyhedra. The
total number of cells is 20 million. For the actuator line simulations, the same kind
of grid was used, but the number of cells could be reduced to 4 million owing to the
fact that no turbine components were meshed. The whole mesh generation process
has been carried out with tools available in OpenFOAM. The comparatively low
computational cost of the actuator line model allowed a time-accurate computation
to be performed, whereas a steady-state simulation was used for the full rotor
approach. In that case, the rotation of the rotor was accounted for by adding the
Coriolis and centrifugal forces to the momentum equations in the regions subjected
to rotation. This avoided the use of computationally expensive moving grids. The
pressure–velocity coupling was accomplished by means of the SIMPLE algorithm
in the full rotor case and by the PIMPLE algorithm in the actuator line case. The
Prandtl/Glauert tip loss correction (see Glauert 1935, chapter VII) has been applied
to the computation with the actuator line to obtain a more realistic loading both
at the blade tip and root. An available actuator line library from NREL (2013)
was used for implementing an in-house solver for that kind of computation. In
both types of simulations, a second-order linear upwind discretization scheme has
been used for the convective terms. The simulations were run fully turbulent using
the turbulence model by Spalart & Allmaras (1994). This turbulence model has
been chosen for its robustness and satisfactory performance for wall-bounded and
adverse-pressure-gradient flows, as well as for its comparatively low sensitivity to grid
resolution. In spite of its limitations for separated and wake flows, it is well suited for
the research presented here considering blade loads at attached flow conditions. The
calculation of the forces has been accomplished in two different ways: integrating the
surface pressure along the blade walls, and applying the Kutta–Joukowsky theorem
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Tϕ,blade Tx,blade Tϕ,tip Tx,tip R/Tx,tip

GCI 0.75 1.16 0.35 0.02 0.13

TABLE 2. Discretization error of the CFD simulations.

to the circulation obtained after ‘probing’ the wind speed field at a distance of 5 mm
around the blade surface. The velocity component tangential to the blade surface was
used to derive the radial vorticity, whereas the chordwise vorticity was derived from
the radial velocity component. The radial circulation was obtained by integrating the
radial vorticity from the leading to the trailing edge. The chordwise circulation was
computed by integrating the chordwise vorticity from inboard radial positions towards
the blade tip.

The uncertainty of the CFD simulations has been assessed by means of the
GCI (Roache 1998). Simulations with a coarse, medium and fine grid have been
performed using 10× 106, 15× 106 and 20× 106 cells, respectively. In order to
achieve convergence, the residuals for all the field variables were monitored to
ensure a residual decrease of at least three orders of magnitude. Furthermore, the
integral quantities torque and thrust were also monitored during the simulation for
convergence. Starting with the 10× 106 cells grid, the mesh has been systematically
refined, i.e. the refinement itself was structured in spite of the mesh being of type
unstructured. The obtained results, summarized in table 1, refer to the finest mesh,
which is the one from which the CFD results presented in this article have been
extracted. The study of the numerical uncertainty has been done focusing first on
the azimuthal load per blade, Tϕ,blade, and thrust per blade, Tx,blade. The corresponding
levels of uncertainty presented in table 2 are sufficiently low to consider this general
verification of the simulation model as satisfactory. Further, the uncertainty in the tip
region of the blade, which is the main region of interest for the research, is analysed
in more detail. Table 2 gives the uncertainty for the thrust force Tx,tip associated with
the outer 10 % of the blade span, the radial force R as well as the ratio R/Tx,tip. This
force ratio R/Tx,tip is ≈10 %, i.e. ≈80 times higher than its corresponding uncertainty,
so the uncertainty of the simulation model is considered to be low enough for the
scope of our study.

B.3. Experiments in § 4
The SPIV experiments for the TU Delft rotor B were carried out in the Open Jet
Facility (OJF) wind tunnel at TU Delft. The wind tunnel has an octagonal jet exit
with a 3 m equivalent diameter. The test section measures 6 m × 6.5 m × 13.5 m.
The jet diameter is large enough to permit at least 2 m diameter rotors to be tested
with minimal effects on blockage. The entire flow field was measured along the
blade spanwise and chordwise directions. Wake measurements were also carried out
at various blade angles such that the full three-dimensional wake structure can be
visualized. Measurements were carried out for axial flow as well as yawed flow.

The OJF, the SPIV technique and measurement campaigns are described in Micallef
et al. (2011, 2013). The rotational speed of the TUD-B rotor model has the same
orientation as indicated in figure 4. The chord c and twist θ of the blade tip of the
model rotor vary from c= 0.107R, θ = 1.4◦ at r= 0.8R to c= 0.098R, θ = 0◦ at the tip,
so the chord line of the tip aerofoil is purely azimuthal. The tip has a flat cut-off tip
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surface. The results presented in this paper concern the rotor operating at its optimal
tip speed ratio of seven at a wind speed of 6 m s−1.

In § 4.3.3 the radial load is determined by a momentum balance as described in del
Campo et al. (2013), where it is applied to determine the load on the radial circulation.
Application of the integral momentum conservation concept permits the integral forces
acting on the body to be computed from their reaction on the flow, without the need
to explicitly evaluate the flow quantities at the surface of the model. The momentum
balance is applied in the rotating coordinate system with the centrifugal and Coriolis
forces accounted for. Viscous and turbulent stresses are neglected, as they do not play
a significant role when the integration contour is at a sufficient distance from the
body. The velocity is known from the SPIV measurements, and the pressure at the
right-hand side is determined by (3.12) written as ∇p = −(vrot · ∇)vrot + vrot × 2Ω
−Ω × (Ω × err).
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