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Abstract

In many system designs, it is a challenging task for system designers to predict the system reliability due to limited infor-
mation about component designs, which is often proprietary to component suppliers. This research addresses this issue by
considering the following situation: all the components share the same system load, and system designers know component
reliabilities with respect to the component load, but do not know other information, such as component limit-state functions.
The strategy is to reconstruct the equivalent component limit-state functions during the system design stage such that they
can accurately reproduce component reliabilities. Because the system load is a common factor shared by all the recon-
structed component limit-state functions, the component dependence can be captured implicitly. As a result, more accurate
system reliability can be produced compared with traditional methods. An engineering example demonstrates the feasibility
of the new system reliability method.
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1. INTRODUCTION

In the early design stage of an engineering system, it is impor-
tant to consider the reliability of the system under design. Re-
liability is usually quantified as the probability that a system
performs its intended function without failures. When gener-
ating design concepts, designers not only identify potential
solutions that can realize the overall function of the system
but also normally focus on those solutions that may lead to
high reliability. After a number of design concepts are gener-
ated, best design concepts are selected for further develop-
ments in the later design stages. System reliability may be
again a focus when design concepts are evaluated and com-
pared. Design concepts with low system reliability are likely
to be screened out. It is therefore desirable to accurately pre-
dict the system reliability during the system design stage.

Predicting system reliability, however, is difficult because
there are many uncertainties and challenges that system de-
signers will face. Some of the challenges are shown below.

† Systems, such as mechanical systems, power systems,
and software systems, become more complicated. It is

hard to know the explicit statistical relationships be-
tween the states of components in a system. This infor-
mation is often essential for the accurate system reliabil-
ity analysis.

† Many components of a system are outsourced to outside
suppliers. Although this common practice brings larger
profits by greatly reducing production costs, it also
poses a challenge as system designers may have no access
to details of component design (Cheng & Du, 2016).

† Without physical prototypes and facilities in the early
design stage, it is difficult for system designers to obtain
enough experimental information to predict system reli-
ability (Ormon et al., 2002).

In spite of the above challenges, it is possible to predict sys-
tem reliability approximately with assumptions. For example,
if the reliability of each component in the system is available
to system designers, they could use the assumption that com-
ponent sates are independent. Then for a given system config-
uration (series, parallel, or mix), the system reliability is a
function of only component reliabilities and can be readily
calculated (Dhingra, 1992; Arnljot & Rausand, 2009). The
assumption, however, may lead to large errors, especially
for engineering systems, such as those in mechanical, civil,
and aerospace engineering applications. The major reason
is that component failures are actually dependent. The state
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of one component affects those of other components in the
system.

Even though components may be designed and manufac-
tured independently by different companies, they become de-
pendent once they operate with other components in the sys-
tem. For example, all the components may share the same
stochastic external load (Pozsgai et al., 2003) and may be
exposed to the same random operating environment. In this
case, a failure of any component in the system may affect
the states of others.

When components are dependent, the accuracy of the sys-
tem analysis relies on the complete joint probability distribu-
tion of all the component states, and only the marginal distri-
butions of component states (or component reliabilities) are
not sufficient. Knowing the joint probability distribution,
however, requires that the system designers have all the de-
tailed information about the component designs, such as the
limit-state functions, concrete structures, and material proper-
ties of the components. However, the information is usually
unknown to the system designers and is proprietary to only
component designers. To this end, approximations, espe-
cially the bounds of system reliability, are used (Ditlevsen,
1979; Zhang, 1993). The common problem is that the differ-
ence between the upper and lower reliability bounds is often
large. In many cases, the width of system reliability bounds is
too large to make any reliable decisions.

Feasibility studies on more accurate system reliability pre-
diction have been recently reported (Cheng & Du, 2016; Hu
& Du, 2016). A physics-based system reliability method
(Cheng & Du, 2016) allows system designers to obtain nar-
rower system reliability bounds in the early design stage by
considering dependent components that share the same sys-
tem load. This method treats unknown distribution parame-
ters of component details as to-be-determined variables or
design variables of an optimization model. All types of
information available to system designers, such as component
reliabilities, are treated as constraints. Optimization is then
used to solve for such unknown variables while maximizing
and minimizing the system reliability, thereby producing nar-
rower system reliability bounds. The major contributor to the
more accurate system reliability is the consideration of com-
ponent dependence that is embedded in the system reliability
analysis, which is part of the optimization model. It is demon-
strated that the narrower system reliability bounds can better
assist system designers to make decisions on design concept
selection.

The other feasibility study (Hu & Du, 2016) indicates that
it is possible to produce a single-valued system reliability pre-
diction, instead of reliability bounds, with more information
supplied to system designers by component designers. Given
components reliabilities at different load levels, system de-
signers can construct physics-based component and system
reliability models using the strength-stress interference the-
ory. With this method, it is flexible for component designers
to generate their component reliability functions with respect
to the component load. They could use statistics-based

approaches based on field and testing data, and they could
also use any physics-based approaches, such as the first-order
reliability method, the second-order reliability method, or the
saddle point approximation approach (Dolinski, 1982; Ho-
henbichler & Rackwitz, 1982; Cai & Elishakoff, 1994; Du
& Chen, 2000; Du & Sudjianto, 2004; Dilip et al., 2013). Be-
cause the component reliabilities are functions of component
loads, which are also functions of the stochastic system load,
the component reliability functions are statistically depen-
dent. The system reliability model, which depends on the de-
pendent component reliability functions, can therefore ac-
count for component dependence and thus produce an
accurate system reliability prediction. This work, however,
is only a proof-of-concept study, and there are many open
questions that need to be answered.

The objective of this research is to realize the concept de-
veloped in (Hu & Du, 2016). More specifically, the objective
of this research is to allow system designers to accurately pre-
dict system reliability for systems whose components share a
stochastic system load. The new developments in this re-
search include the following:

1. Construct component reliability functions with respect
to component loads (Sec. 3.2)

This task creates a continuous reliability function
with respect to the component load for each of the com-
ponents in the system. The function construction is
based on data of component reliabilities, and the data
may be discrete or tabulated.

2. Construct composite component limit-state functions
(Sec. 3.3)

Without knowing component design details, for each
of the components, system designers construct a com-
ponent limit-state function no matter how many failure
modes a component may have. The reconstructed com-
ponent limit-state function can accurately predict the
state of the component (either a working state or a fail-
ure state).

3. Refine the system analysis procedure (Sec. 3.4)
Using the component reliability functions, system

designers build the system reliability analysis model
and obtain the joint probability density function needed
for the system reliability analysis. Then the system reli-
ability can be produced.

The rest of this article is organized as follows. Basic con-
cepts and methodologies used in this study are reviewed in
Section 2. The proposed methodology is discussed in Section
3 and is demonstrated with an example in Section 4. The con-
clusions and future work are given in Section 5.

2. REVIEW OF SYSTEM RELIABILITY
ANALYSIS

System reliability is the probability that a system works prop-
erly without failures. The overall system may fail due to the
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failure of one or more components in the system. In this work,
we focus on time-invariant reliability.

2.1. System reliability with independent component
states

A series system is shown in Figure 1, in which the compo-
nents in the system are denoted by C1, C2, . . . , Cn. The system
will fail if one of its components fails. If all the component
failures are independent, the system reliability RS is

RS ¼
Yn

i¼1

Ri, (1)

where Ri (i ¼ 1, 2, . . . , n) is the reliability of component i.
Component reliability can be estimated by a statistics-

based approach with testing or field data. It can also be esti-
mated by a physics-based approach. If the latter approach is
used, component reliability is given by

R ¼ Pr Y ¼ gðXÞ . 0f g, (2)

where X is a vector of random input variables, and Y is the
state variable. If Y . 0, the component functions; otherwise,
the component fails.

In this work, we focus on mechanical applications where
series systems are usually involved.

2.2. System reliability bounds

Eq. (1) is easy to use, but may produce a large error due to the
independent component assumption and may be too conser-
vative. The actual system reliability is bounded as shown
(Arnljot & Rausand, 2009):

Yn

i¼1

Ri � RS � minfRig, i ¼ 1, . . . , n: (3)

If a mechanical system consists of 20 components with
identical component reliabilities R ¼ 0.999, Eq. (3) gives
the bounds of 0.9802 � RS � 0.999. The bounds may be
too wide to help system designers to compare design concepts
for concept selection.

2.3. System reliability with components sharing the
same system load

To improve system reliability analysis, we performed a pre-
liminary study for systems whose components share the same

stochastic system load L (Hu & Du, 2016). The system de-
signers have good knowledge about L and therefore know
the cumulative distribution function (CDF) of L; L is distrib-
uted through components, and the component load Li (i ¼ 1,
2, . . . , n) of component i is a function of L. Such a function is
assumed to be

Li ¼ wiL, (4)

where wi indicates the fraction of the load that the component
shares. This wi can be determined from a system level analy-
sis, such as a force analysis.

System designers request component designers to provide
component reliability functions at different component load
levels, specified by variable l. The component designers
may conduct experiments or use a physics-based approach
to calculate component reliability Ri by varying the values
of l. Then the component reliability functions Ri (l ) are avail-
able to system designers.

System designers then assume that the component state
could be predicted by the following component limit-state
function:

giðLiÞ ¼ Yi ¼ Si � Li ¼ Si � wiL, (5)

where Si is the general resistance of the component. The com-
ponent limit-state function should reproduce the same com-
ponent reliability, namely,

RiðLiÞ ¼ PrfgiðLiÞ . 0g: (6)

The probability of system failure is then given by

pfs ¼ Pr {S1 , L1

[
S2 , L2

[
� � �
[

Sn , Ln}

¼ Pr
[n
i¼1

Si , wiL

( )
: (7)

The system reliability is then available and is given by

RS ¼ 1� p fs: (8)

It is obvious that component failure events Si , wiL are
dependent because of the common random variable L. The
component dependence is therefore considered automati-
cally. The reliability function Ri(l ) is directly related to the
CDF of Si, because the CDF of Si is 1 2 Ri(l ) (Hu & Du,
2016). If Si and L are independent, system designers know
the joint distribution of all the random variables in Eq. (7),
and thus, they can use Eq. (7) to find the system reliability.

3. SYSTEM RELIABILITY ANALYSIS WITH
SHARED LOAD AND UNKNOWN
COMPONENT DETAILS

The objective of this research is to realize the concept pro-
posed in the feasibility study in (Hu & Du, 2016), which

Fig. 1. A series system.
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has been reviewed in Section 2.3. We now discuss how the
concept could be realized with more detailed models and
procedures.

We are concerned with systems whose components are
provided by outside companies. The system may also have
in-house components designed and manufactured by the
firm of system designers. This is a common practice, espe-
cially in automotive and defense industries where most of
components of a system come from multiple-layer suppliers.
The proposed method intends to be used by system designers
whose task is to predict the system reliability in the system
design stage. The method is applicable for systems with the
following features:

† The system load is distributed through all the compo-
nents. The components are subjected to component
loads that are fractions of the system load.

† System designers know the relationship between the
system load and component loads through statics, dy-
namics, stress, or other analyses.

† Component and system failures are primarily due to ex-
cessive general loading, such as forces, stresses, deforma-
tion, and demand. Component failures can therefore be
predicted by limit-state functions defined by the design
margin, or the difference between a general resistance
(yield strength, allowable deformation, capacity, etc.)
and a general load (forces, stress, strain, demand, etc.).

3.1. Procedure of system reliability prediction

To make system reliability prediction possible, system de-
signers ask component suppliers to provide component reli-
abilities with respect to their component loads. As the infor-
mation of component reliabilities may be in different forms,
for system designers, the first step is to formulate component
reliability functions Ri(l ), i ¼ 1, 2, . . . , n, with respect to the
component load l. The second step is to construct composite
component limit-state functions gi(.) based on Ri(l ). A com-
posite component limit-state function ensures that it can
reproduce accurate component reliability regardless of the
number of failure modes the component may have. A compos-
ite component limit-state function does not require any com-
ponent design details, and thus, it prevents the proprietary in-
formation of the component supplier. Because the common
system load appears in all composite component limit-state
functions, the dependence between component states is pre-
served. This helps improve the accuracy of system reliability
prediction. The last step is to perform system reliability
analysis. The flowchart indicating the procedure is given in
Figure 2.

3.2. Formulation of component reliability functions

Component designers may use different methods to estimate
component reliabilities Ri(l ), such as using testing, field data,
simulations, or a physics-based method. This may result in

Fig. 2. Flowchart of the proposed method.
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different forms of information about Ri(l ), such as limited re-
liability data, a scatter plot, or a mathematical model. If no
mathematical model exits, system designers need to fit a
model from these limited data. As will be discussed in Sec-
tion 3.3, the probability of failure, pfi (l ) ¼ 1 2 Ri(l ), is ac-
tually the CDF of the general component resistance. Then,
the task becomes to fit a CDF model. Many methods could
be used for the CDF fitting such as metamodeling methods,
the saddle point approximation, and the Weibull analysis.

Now we discuss how system designers could fit a CDF
model given the limited reliability data. For a general compo-
nent with probability of failure pf (l ), the available data are
given as a set of (lj, pf (lj)), j¼ 1, 2, . . . , m. Let the continuous
mathematical model be

pf ¼ HðlÞ: (9)

Next, we discuss two specific approaches to obtain H(l )
from (lj, pf (lj)), j ¼ 1, 2, . . . , m.

3.2.1. Kriging method

The kriging method has been widely used in engineering
applications, including reliability analysis (Kleijnen, 2009;
Viana & Haftka, 2012; Kolios & Salonitis, 2013). The krig-
ing method considers the mathematical model in Eq. (9) as
a realization of a Gaussian process given by (Sacks et al.,
1989):

pfðlÞ ¼ HðlÞ ¼ aðlÞjþ ZðlÞ, (10)

where a(l ) is a regression function, j is the regression coeffi-
cient, and Z(.) is a stationary Gaussian process with zero
mean. The covariance between two points li and lj is defined
by

cov[Z(li), Z(lj)] ¼ s2
ZKðli, ljÞ,

i ¼ 1, 2, . . . , m; j ¼ 1, 2, . . . , m, (11)

where s2
Z is the variance of the Gaussian process, and K( . , . )

is the correlation function and is commonly defined by the
following Gaussian correlation (Sacks et al., 1989; Lophaven
et al., 2002):

K(li, lj) ¼ exp [�u(li � lj)
2], (12)

where u is a parameter that indicates the correlation between
the points. The best linear unbiased predictor (Sacks et al.,
1989) of H(l ) gives to a random prediction

p̂f ¼ ĤðlÞ � N(mH(l),s2
H(l)), (13)

where the prediction mH(.) and the associated variance are
computed by

mHðlÞ ¼ aðlÞĵþ rTðlÞK�1ðpf � FĵÞ, (14)

s2
HðlÞ ¼ ŝ2

Z

1� ½rðlÞ�T K�1rðlÞ
þ FT K�1rðlÞ � aðlÞ
� �T

FT K�1F
� ��1

FT K�1rðlÞ � aðlÞ
� �

8><
>:

9>=
>;, (15)

in which K is the correlation matrix defined by K ¼ [Kðli, ljÞ],
pf is a column vector of responses of current sample points,
and rð�Þ is the vector of cross-correlations between the m sam-
ples and the prediction point, rðlÞ ¼ [Rðl, l1Þ, . . . , Rðl, lmÞ]T .
F is a column vector with rows a(li), i ¼ 1, 2, . . . , m, and
ŝ2

Z is the maximum likelihood estimation of the process
variance,

ŝ2
Z ¼

1
m
ðpf � FĵÞT K�1ðpf � FĵÞ, (16)

and ĵ is the generalized least square estimate of j,

ĵ ¼ FT K�1F
� ��1

FT K�1pf : (17)

Substituting Eqs. (14) and (15) into Eq. (13), system de-
signers obtain the reliability mathematical model in the
form of pf ¼ ĤðlÞ for pf ¼ H(l ) in Eq. (9).

3.2.2. Weibull method

A Weibull distribution can fit different data and distribu-
tions. Due to this advantage, system designers may use a
Weibull model to fit the component reliability data. A
three-parameter Weibull distribution is given by

pf ¼ HðlÞ ¼ 1� exp

�
�
�

l� g

h

�b�
, (18)

in which l . g, b . 0, h . 0. The location parameter g de-
fines the location of the distribution; b is the shape parameter,
and h is the scale parameter.

For a given set of (lj, pf (lj)), j¼ 1, 2, . . . , m, system design-
ers could use the maximum likelihood method (Lockhart &
Stephens, 1994) to find the three distribution parameters.
They could also use a curve fitting method (Hamming,
2012) to find the three distribution parameters.

Other regression analysis methods could also be used for
the CDF fitting. One example showing the CDF fitting fol-
lows. Suppose the probabilities of component failure pf at
seven load levels are given and are shown in Figure 3. A
mathematical model of pf with respect to the component
load l can be then fitted as shown in Figure 4.

3.3. Reconstruction of component limit-state functions

The next task of system designers is to reconstruct component
limit-state functions, which should meet the following
requirements:

† Do not require component design details
† Maintain dependence between component states
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† Be functions of the system load
† Be easy to evaluate
† Accommodate multiple component failure modes

Based on these requirements, for the ith component,
system designers reconstruct the limit-state function in the
form of

Yi ¼ Si � L, (19)

where Si is the general component resistance, and L is the sys-
tem load. Note that no matter how many failure modes the

component may have, there is only one reconstructed compo-
nent limit-state function as shown in Eq. (19).

Although the reconstructed component limit-state function
is linear with respect to L, it can accommodate the situation
where the actual component limit-state function is nonlinear
with respect to L. One example follows. Let the yield strength
of the i-th component be Sy. If the maximum stress is h(L ),
where h(.) is a nonlinear function, also depending on other
component parameters, such as dimensions, and then compo-
nent designers build their limit-state function as

Y 0i ¼ Sy � hðLÞ: (20)

Fig. 3. Component reliability data.

Fig. 4. The complete pf model.
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Theoretically, they can solve for L by letting Sy 2 h(L)¼ 0 at
the limit state and obtain

L ¼ h�1ðSyÞ, (21)

where h21(.) is the inverse function of h(.).
Then the limit-state function is modified as

Yi ¼ h�1ðSyÞ � L: (22)

Let Si ¼ h21(Sy), which is regarded as the general component
resistance. Then Eq. (22) is exactly the one reconstructed by
system designers in Eq. (19). This indicates that the recon-
struct component limit-state functions do cover actual compo-
nent limit-state functions that are nonlinear with respect to the
system load.

Before explaining the procedure of reconstructing the com-
posite limit-state function, we first prove that the probability
of component failure pfi(l ) is the CDF of the general compo-
nent resistance Si. According to Eq. (19), for a constant l,

p fiðlÞ ¼ PrðSi , lÞ: (23)

The CDF of Si is defined by

FSiðsÞ ¼ PrðSi , sÞ: (24)

Replacing l with s in Eq. (23), we have p fiðsÞ ¼ PrðSi , sÞ:
As a result,

FSiðsÞ ¼ p fiðsÞ ¼ 1� RiðsÞ: (25)

Because system designers know the component reliability
function Ri(l ) or probability of component failure pfi(l ),
they also know the CDF of the general component resis-
tance Si.

The composite component limit-state function is not only a
simple (linear) function but also safeguards the proprietary
information of component designers. Next, let us look at
the component design of the example that will be presented
in Section 4.

In the example, Component 2 has two failure modes due to
excessive normal stress and excessive shear stress. The com-
ponent designer decides to use a physics-based approach to
evaluate the component reliability. The limit-state functions
of the two failure modes are given by

Y21 ¼ Sy �
ðhþ H1Þ

Wx

L

2
, (26)

Y22 ¼ t� 1
hb

L

2
, (27)

in which L=2 is the load shared by the component, and h, H1,
Wx, and b are random parameters related to component de-
tails. The two limit-state functions indicated that component
details are required for the component reliability analysis. The

details include material properties, component structure, and
component dimensions.

The two limit-state functions for the two failure modes can
be rewritten as

Y 021 ¼
2WxSy

hþ H1
� L ¼ S21 � L, (28)

Y 022 ¼ 2thb� L ¼ S22 � L, (29)

in which S21 ¼ ð2WxSyÞ=ðhþ H1Þ and S22 ¼ 2thb. Then, the
probability of component failure is

p f2 ¼ Pr{S21 , L
[

S22 , L}

¼ Pr{min (S21, S22) , L} ¼ Pr{S2 , L}, (30)

where S2 ¼min(S21, S22) is the general component resistance
in Eq. (19). Note that the details such as h, H1, Wx, and b in
Eqs. (26) through (29) are only known to component design-
ers who could find the component probabilities of failure at
different load levels of load li(i ¼ 1, 2, . . . , n) by testing
or using a physics-based reliability approach. Then the results
could be provided to the system designers in the form of
( pf2(li), li). As shown in Eqs. (24) and (25), the probability
of component failure pf2 is exactly the CDF of the general
component resistance S2. Thus, the distribution of S2 is
known to system designers, and with this distribution, they
no longer need any design details. No proprietary information
is therefore required. Equation (19) also indicates that the sys-
tem load L appears in all the reconstructed component limit-
state functions, and the dependence between component
states is automatically maintained. Meanwhile, the composite
limit-state function takes into account the multiple compo-
nent failure modes, and it has a simple expression to evaluate.
Thus, the obtained composite limit-state functions satisfy all
the requirements mentioned above.

3.4. System reliability analysis

We now discuss how system designers use the reconstructed
composite component limit-state functions in Eq. (19) to pre-
dict system reliability. The probability of system failure is
given by

pfs ¼ Pr
[n
i¼1

Yi ¼ Si � L , 0

( )
: (31)

The prerequisite for calculating pfs is to find the joint prob-
ability distribution of Si (i¼ 1, 2, . . . , n) and L. We now dis-
cuss how to obtain such a joint probability distribution.

Denote the n þ 1 input random variables by Z ¼

(S1, S2, . . . , Sn, L) and all the output variables by Y ¼ (Y1,
Y2, . . . , Yn). As discussed in Section 3.3, the general compo-
nent resistances Si (i ¼ 1, 2, . . . , n) are determined by com-
ponent material properties, concrete component structures,
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geometric dimensions, and other component parameters. As
all the components are independently designed, manufac-
tured, and tested by different suppliers, their general resistan-
ces are likely statistically independent. The system load L is
also independent from the general component resistances.
Thus, all the components in Z are independent.

Denote the CDF of Si and L by FSiðsiÞ, and FL (l ), respec-
tively. The joint CDF of Z is then given by

FZðzÞ ¼ FLðlÞ
Yn

i¼1

FSi ðsiÞ, (32)

where z ¼ ðs1, s2, . . . , sn, lÞ. Because system designers know
CDFs of Si and L, it is easy for them to predict the probability
of system failure. Denote the joint probability density func-
tion (PDF) of Z by fZðzÞ. Then the probability of system fail-
ure is computed by

pfs ¼
ð
V

fZðzÞdz, (33)

where V is the system failure region defined by

V ¼ ZjSi , L, i ¼ 1, 2, . . . , nf g, (34)

where pfs can be calculated by an numerical integration or
Monte Carlo simulation (MCS). Next, we demonstrate this
with two special cases.

In the first case, the components Si (i ¼ 1, 2, . . . , n) of
Z ¼ (S1, S2, . . . , Sn, L) follow Weibull distributions, while
L follows a distribution with PDF FL(l ). Note that Yi ¼

Si 2 L, and thus Y1, Y2, . . . , Yn are dependent. Because the
distribution parameters of Y are unknown, it is not possible
to directly find pfs using Eq. (31). However, as we know
that S1, S2, . . . , Sn, and L are independent, the joint PDF
of Z could be calculated by

fZðzÞ ¼ fZðs1, s2, . . . , sn, lÞ

¼ fLðlÞ
Yn

i¼1

�
bi

hi

si � gi

hi

� �bi�1

exp

�
�
�

si � gi

hi

�bi
�	
: (35)

Then, according to Eq. (33), by integrating the joint PDF
fZðzÞ in Eq. (35) in the failure region V defined in Eq. (34),
system designers can obtain the probability of system failure.

In the second case, the components of Z ¼ ðS1, S2,
. . . , Sn, LÞ are normally distributed. From Eq. (31), the distri-
bution of the reconstructed component limit-state function is

Yi � NðmYi
,s2

Yi
Þ, with mYi

¼mSi
�mL, and sYi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

Si
þs2

L

q
,

in which mL and sL are the mean and standard deviation of L.
All the reconstructed limit-state functions Y¼ðY1,Y2, . . . ,YnÞ
then follow a multivariate normal distribution determined by
the following mean vector and covariance matrix:

m¼ (mS1
�mL,mS2

�mL, . . . ,mSn
�mL), (36)

XXXXX
¼

s2
Y1

covðY1,Y2Þ � � � covðY1,YnÞ
covðY2,Y1Þ s2

Y2
covðY2,YnÞ

..

. ..
. . .

. ..
.

covðYn,Y1Þ covðYn,Y2Þ � � � s2
Yn

2
666664

3
777775, (37)

in which covðYi,YjÞ¼s2
L. For this special case, because the

distribution parameters of Y could be easily derived, it is
more convenient to find pfs using the PDF of Y, which is
given by

fYðyÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞnjPPPPPjp exp �1
2
ðy�mÞ

XXXXX�1ðy�mÞ
� �

: (38)

Then pfs is easily obtained by integrating Eq. (38) in the fail-
ure region fYjY , 0g.

4. EXAMPLE

In this section, an engineering example is used to show the
procedure of the proposed method and demonstrate its feasi-
bility and accuracy.

A lifting system, as shown in Figures 5 and 6, consists
of two components from different suppliers: one cable (Com-
ponent 1) from Company 1 and one spreader beam (Compo-
nent 2) from Company 2.

Company 1 designs the cable with a diameter d and an
allowable tensile stress Sa1 as shown in Table 1. The design-
ers of Component 1 also evaluate the reliability of the cable
with respect to different component load levels. They could
obtain the component reliability using either a physics-based
reliability method or by testing. If a physics-based reliability
method is used, the limit-state function is given by

Y11 ¼ Sa1 �
L1

2 sin u
, (39)

Fig. 5. Lifting system.
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in which L1 is the component load. Component designers cal-
culate the probabilities of component failure pf1(l ) by replac-
ing L1 with different load levels, denoted by l1. The equation
is given by

p f1ðl1Þ ¼ Pr Y11 ¼ Sa1 �
l1

2 sin u
, 0

� �
: (40)

Note that l1 is a deterministic variable in the component reli-
ability analysis.

Component designers then provide the results to system
designers, and the results are given in Table 2. The reliability
results may also be generated by testing at the same load
levels.

At Company 2, the designers decide to use a W12� 40
beam, as shown in Figure 6. They know the allowable normal
and shear stresses of the beam, denoted by Sa2 and ta2, re-
spectively. The design details are shown in Table 3. There
are two failure modes caused by excessive normal and exces-
sive shear stresses. The associated limit-state functions are
then given by

Y21 ¼ Sa21 �
L2ðhþ H1Þ

2Wx
, (41)

Y22 ¼ ta2 �
L2

2hb
: (42)

The component designers perform reliability analysis and
supply their results in Table 4 to system designers.

Note that neither Component 1 designers nor Component 2
designers need to know the system load L. Only component
loads are needed at the component design level. The compo-

Fig. 6. Cross-section of the spreader beam.

Table 1. Detailed information of Component 1

Variable Mean SD Distribution

d (in.) 0.96 1×10–3 Normal
Sa1 (psi) 28×103 2×103 Normal

Table 2. Reliability data
of Component 1

No. pf1 l1 (lb.)

1 0 11450
2 4×1026 12450
3 1.527×1024 13450
4 0.0022 14450
5 0.0193 15450
6 0.0976 16450
7 0.3004 17450
8 0.5982 18450
9 0.8460 19450

10 0.9635 20450
11 0.9949 21450
12 0.9996 22450
13 1.0000 23450

Table 3. Detailed information of Component 2

Variable Mean SD Distribution

b (in.) 0.2 1×1023 Normal
Wx (in.3) 51.9 1.5 Normal
Sa21 (psi) 30×103 2×103 Normal
ta2 (psi) 6×103 1×103 Normal
h (in.) 11.94 — —
W (in.) 8.005 — —
H1 (ft.) 2.5 — —
H2 (ft.) 15 — —
H3 (ft.) 2.5 — —
H4 (ft.) 5 — —

Table 4. Reliability data
of Component 2

No. pf2 l2 (lb.)

1 1.667×1026 6000
2 4×1026 7000
3 1.033×1025 8000
4 2.100×1025 9000
5 4.933×1025 10000
6 1.127×1024 11000
7 2.430×1024 12000
8 5.633×1024 13000
9 0.0020 14000

10 0.0123 15000
11 0.0675 16000
12 0.2353 17000
13 0.5191 18000
14 0.7909 19000
15 0.9405 20000
16 0.9893 21000
17 0.9988 22000
18 0.9999 23000
19 1.0000 24000
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nent load values are treated as deterministic, and this makes
component reliability analysis easier.

Now let us discuss how system designers use component re-
liability functions to predict the system reliability. To make the
numerical analysis robust, system designers may add more data
points to the probabilities of component failure. For example,
for Component 1, the data from Company 1 show that when

l1 ¼ 11450 lb, pf1 ¼ 0. If the component load is less than
11450 lb., pf1 will therefore be 0. System designers then add
two more points (9450.0) and (10450.0), where the first ele-
ment denotes the load, and the second element denotes the
probability of failure. When the load is greater than 23450
lb., pf1 will be 1. System designers also add two other data
points (24450.1) and (25450.1). For the same reason, they
also add one data point (25000.1) for Component 2. Adding
more data points makes the CDF fitting more robust.

All the information that the system designers know is
shown in Table 5, including the limited component reliability
data provided by Component 1 and 2 designers, added data
points, and the distribution of the system load.

To predict the system reliability, system designers first
fit the CDFs of component resistances with the kriging
method. The results are shown in Figures 7 and 8. Then they

Fig. 7. Fitted probability of failure for Component 1.

Table 5. Information available to system designers

Known Information Value

Reliability data of Component 1 Table 2 and added points
Reliability data of Component 2 Table 4 and added points
Distribution of system load L N(1.2×104, (1.2×103)2) lb.

Fig. 8. Fitted probability of failure for Component 2.
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reconstruct two composite component limit-state functions
as

Y1 ¼ S1 � L, (43)

Y2 ¼ S2 � L: (44)

Finally, the probability of system failure is evaluated
by Eq. (45) using MCS. Other physics-based reliability
methods, such as first-order reliability method, second-order
reliability method or saddle point approximation approach,
can also be used:

pfs ¼ Pr{Y1 , 0 < Y2 , 0}: (45)

The results of the probabilities of failure of Component 1
(pf1), Component 2 (pf2), and the system (pfs) generated by
system designers are shown in Table 6.

To evaluate the accuracy of the proposed method, we use
MCS to find the true probability of system failure as if every-
thing was known at the system analysis level. The complete
information includes the three original limit-state functions
in Eqs. (39), (41), and (42), and the distributions of all the de-
sign variables and the system load. The true result is shown as
“True value” in Table 6. The results indicate that the proposed
method leads to an accurate probability of system failure, and
the error is only 0.8%.

5. CONCLUSIONS

Accurately predicting system reliability in the design stage is
a challenging task, and one of the major challenges is to in-
corporate statistical dependence between components in the
system reliability analysis. Previous concept-proof studies
have demonstrated the feasibility of improving the accuracy
of system reliability prediction by considering component de-
pendence through a shared system load, and this work devel-
ops a methodology to realize the concept.

The proposed work is intended to be used by system design-
ers and is applicable to series mechanical systems with com-
ponents that share a stochastic system load. The components
may be designed and manufactured by independent outside
suppliers. The detailed information about component design
is not available to system designers. As a result, the statistical
component dependence is unknown to system designers even
though they have access to component reliabilities.

The requirement of the present method is the component
reliability function with respect to the component load. Sys-
tem designers therefore need to request information about
component reliability with respect to the component load
and then use the information to generate the component reli-
ability function. After this, the proposed method helps system
designers construct composite component limit-state func-
tions that can not only reproduce the same component reli-
abilities but also incorporate component dependence auto-
matically. As a result, system designers can accurately
predict system reliability without knowing proprietary infor-
mation about component design.

The present method is limited to systems with components
whose failures are caused by excessive loads (stresses, defor-
mation, etc.). It is also limited to applications where only one
system load is applied. The method could be extended to
multiple system loads in future work. Other future research
directions include the application to parallel systems and
mix systems, accommodation of time-dependent failures,
and consideration of non-strength failure modes.
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