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Kolmogorov introduced dissipative scales based on the mean dissipation 〈ε〉 and
the viscosity ν, namely the Kolmogorov length η = (ν3/〈ε〉)1/4 and the velocity
uη = (ν〈ε〉)1/4. However, the existence of smaller scales has been discussed in the
literature based on phenomenological intermittency models. Here, we introduce exact
dissipative scales for the even-order longitudinal structure functions. The derivation
is based on exact relations between even-order moments of the longitudinal velocity
gradient (∂u1/∂x1)

2m and the dissipation 〈εm〉. We then find a new length scale
ηC,m = (ν3/〈εm/2〉2/m)1/4 and uC,m = (ν〈εm/2〉2/m)1/4, i.e. the dissipative scales depend
rather on the moments of the dissipation 〈εm/2〉 and thus the full probability density
function (p.d.f.) P(ε) instead of powers of the mean 〈ε〉m/2. The results presented here
are exact for longitudinal even-ordered structure functions under the assumptions of
(local) isotropy, (local) homogeneity and incompressibility, and we find them to hold
empirically also for the mixed and transverse as well as odd orders. We use direct
numerical simulations (DNS) with Reynolds numbers from Reλ= 88 up to Reλ= 754
to compare the different scalings. We find that indeed P(ε) or, more precisely, the
scaling of 〈εm/2〉/〈ε〉m/2 as a function of the Reynolds number is a key parameter, as
it determines the ratio ηC,m/η as well as the scaling of the moments of the velocity
gradient p.d.f. As ηC,m is smaller than η, this leads to a modification of the estimate
of grid points required for DNS.

Key words: isotropic turbulence, turbulent flows

1. Introduction
Kolmogorov (1941b) introduced the idea of local isotropy, i.e. that turbulence

is isotropic at small scales (and possibly universally), provided that the Reynolds
number is large enough so that a scale separation occurs, while the large scales are
determined by the flow geometry and boundary conditions. Furthermore, Kolmogorov
proposed two similarity laws. The first similarity hypothesis states that, for locally
homogeneous and isotropic turbulence, the statistics of structure functions, defined as
the velocity difference between two points separated by a distance r, are determined
by the viscosity ν and the mean dissipation 〈ε〉. For r situated in the inertial range
between the very small scales and the large scales, the dependence on the viscosity
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ν should vanish according to the second hypothesis of similarity. From the two
quantities ν and 〈ε〉 relevant at the very small scales, he introduced η = (ν3/〈ε〉)1/4
and uη= (ν/〈ε〉)1/2 as characteristic length and velocity scales, which were derived for
the second order. The main focus of the present work is to revisit these results and
generalise them for higher orders under the same assumptions, i.e. (local) isotropy,
(local) homogeneity and incompressibility. We are able to present some new and
exact results for longitudinal, even-ordered structure functions.

In a second paper, Kolmogorov (1941a) proceeded to rewrite the Kármán–Howarth
equation (cf. de Karman & Howarth 1938) in terms of the second-order longitudinal
structure function. This led to analytic solutions for the second-order structure function
for r→ 0, which agrees with his previously derived result using only isotropy and
Taylor series, as given in the first 1941 paper, and the third-order structure function
in the inertial range η� r� L under the assumption of very large (infinite) Reynolds
number, where L is the integral length scale.

The two papers had a huge impact, as they provided specific predictions about
the nature of turbulent flows stemming directly from the governing Navier–Stokes
equations, one of which is that in the inertial range the structure functions should
follow a power law in terms of the separation distance r. Furthermore, Kolmogorov’s
postulate that velocity differences at small scales are isotropic, leading to the idea
that some small-scale properties should be flow-independent, is quite appealing
(see Sreenivasan & Antonia (1997) for an overview). It was found that, although
Kolmogorov’s results for the second- and third-order structure functions are in very
good agreement with measurements (see e.g. Anselmet, Gagne & Hopfinger 1984),
the generalisation to higher orders is rather poor. For instance, the experimentally
observed inertial range power-law exponents ζm at higher orders deviate significantly
from the values one would obtain by applying Kolmogorov’s original postulate that
only the mean dissipation 〈ε〉 and ν are relevant. For that matter, Kolmogorov (1962)
modified his theory following Obukhov (1962) based on the phenomenological
observation that turbulent fluctuations of the dissipation play a crucial role in
turbulence. In particular, they substituted a locally averaged dissipation εr for the
overall dissipation 〈ε〉 and assumed a log-normal distribution for εr. This led the
way to (multi-)fractal models providing equations for ζm using some additional
parameters (see Sreenivasan (1991) and Frisch (1995) for overviews). Equations for
structure functions of all orders were derived by Hill (2001) and Yakhot (2001), using
different methods.

The notion of order-dependent cut-off length scales is also related to the multi-
fractal framework – see, for example, Paladin & Vulpiani (1987a,b), who used the
multi-fractal model to estimate grid resolution scaling. Frisch & Vergassola (1991)
used the notion of scales smaller than the Kolmogorov scale to modify the second-
order structure function as well as the energy spectrum in the so-called intermediate
dissipation range (situated in between the Kolmogorov scale and the smallest scale
determined by the lowest fractal exponent). They then proposed a renormalisation of
the energy spectrum to collapse it to a universal curve.

Meneveau (1996) examined the dissipative range by employing an order-dependent
interpolation formula accompanied by using a multi-fractal model to examine order-
and Reynolds-number-dependent collapse of structure functions in the dissipative
range. He showed that order-dependent cut-off length scales as given by a multi-fractal
model are consistent with extended self-similarity (ESS; cf. Benzi et al. 1993) for
small Reynolds numbers, but that the collapse of ESS worsens for high Reynolds
numbers and order.
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Yakhot (2003) derived order-dependent cut-off length scales by matching the
dissipative range and the inertial range, and related these cut-off scales to the inertial
range exponents ζm. Yakhot & Sreenivasan (2005) then used Yakhot’s result and
derived additional constraints on the inertial range scaling exponents. Furthermore,
they considered the implications regarding the grid resolution of numerical studies
in the context of Yakhot’s theory. More recently, Schumacher, Sreenivasan & Yakhot
(2007) examined structure functions using highly resolved direct numerical simulations
(DNS) and found that they collapse in the dissipation range when normalised with
the cut-off lengths defined by the inertial range exponents given by Yakhot (2003).

The approach presented in this paper differs from those described above inasmuch
as we derive cut-off scales by using information gained from the (isotropic) tensorial
properties of the velocity gradient tensor, for which we do not need any specific
assumptions other than isotropy, homogeneity and incompressibility. This allows us
to define the cut-off scales with dissipative quantities only (namely, the moments of
the dissipation), and we find exact relations for the longitudinal structure functions
of arbitrary even order, using only the same assumptions as in Kolmogorov’s seminal
1941 work (henceforth often abbreviated as K41).

The paper is organised as follows. We use data from DNS, which are described
in § 2. In § 3, we look at velocity structure functions in the dissipative range and
find analytical relations for even-order longitudinal structure functions. From these
follow new mth-order cut-off length scales ηC,m and velocities uC,m, resulting in
Reynolds-number-independent non-dimensional structure functions in the dissipation
range, which we discuss and check against our DNS data. We want to emphasise
that these results are not connected in any way to the multi-fractal models, in the
sense that those models are not needed to derive the results presented here. However,
any theory predicting the scaling of the dissipation εr predicts the scaling of the
normalised moments of the dissipation in the dissipative range and therefore also
of ηC,m. This is examined in detail in § 4, and we compare the results obtained
from some well-known models to our DNS. The new scales ηC,m and uC,m lead to
modifications of grid resolution requirements for DNS and to a modified scaling
of the number of grid points as discussed in § 5. Different from previous studies
(e.g. Yakhot & Sreenivasan 2005), we use the exact results of § 3 instead of those
stemming from multi-fractal models. We then summarise the results in § 6.

2. Direct numerical simulations

For the analysis carried out in the present paper, we use data from DNS of forced
homogeneous isotropic turbulence with six different sets of Taylor-based Reynolds
numbers, ranging from Reλ = 88 to Reλ = 754, where Reλ = urmsλ/ν, λ denotes
the Taylor scale λ = √10ν〈k〉/〈ε〉, urms = 〈uiui/3〉 is the root-mean-square velocity,
〈k〉 = 〈uiui〉/2 is the mean kinetic energy and 〈ε〉 = 2ν〈SijSij〉 is the mean energy
dissipation, with the strain tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2. Angle brackets 〈 · · · 〉
denote ensemble averages over the full box and several time steps spanning more
than an integral turnover time after the simulation has reached its statistically steady
state (as given by the ratio tavg/τ ). We use M to denote the number of time steps
used to compute the averages.

The six datasets have been computed on the JUQUEEN supercomputer at
Forschungszentrum Jülich using a pseudo-spectral code with MPI/OpenMP parallel-
isation. The three-dimensional Navier–Stokes equations were solved in rotational
form, where all terms except the nonlinear term were evaluated in spectral space.
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R0 R1 R2 R3 R4 R5

N 512 1024 1024 2048 2048 4096
Reλ 88 119 184 215 331 754
ν 0.01 0.0055 0.0025 0.0019 0.0010 0.00027
κmaxη 3.57 4.54 2.66 4.01 2.30 1.76
〈k〉 11.15 11.38 11.42 12.70 14.35 24.42
〈ε〉 10.78 11.04 10.30 11.87 12.55 26.54
λ 0.322 0.238 0.166 0.143 0.107 0.050
η 0.0175 0.0111 0.0062 0.0049 0.0030 0.00093
L 1.02 0.94 0.97 1.01 0.97 1.18
τη 0.031 0.022 0.016 0.013 0.009 0.0032
τ 1.03 1.03 1.11 1.07 1.14 0.92
tavg/τ 100 30 30 10 10 3
M 112 42 40 10 10 6

TABLE 1. Characteristics of DNS cases.

For a faster computation, the nonlinear term is evaluated in physical space. The
computational domain is a box with periodic boundary conditions and length 2π.
For dealiasing, the scheme of Hou & Li (2007) has been used. For the temporal
advancement, a second-order Adams–Bashforth scheme is used in the case of the
nonlinear term, while the linear terms are updated using a Crank–Nicolson scheme.
To keep the simulation statistically steady, the stochastic forcing scheme of Eswaran
& Pope (1988) is applied. The 2DECOMP and FFT library (Li & Laizet 2010) has
been used for spatial decomposition and to perform the fast Fourier transforms. The
only parameter varied to increase the Reynolds number is the viscosity ν; the forcing
parameters have been held constant. The properties of the DNS cases can be found
in table 1. The five datasets were computed on a computational mesh with 5123 grid
points for case R0 up to 40963 grid points for case R5. There, η = (ν3/〈ε〉)1/4 is
the Kolmogorov length scale with corresponding time scale τη = (ν/〈ε〉)1/2, L is the
integral length scale, computed here using the energy spectrum function

L= 3π

4

∫
κ−1E(κ) dκ∫

E(κ) dκ
, (2.1)

and τ = 〈k〉/〈ε〉 is the integral time scale. The integral length scale L is small
compared to the size of the boxes in order to reduce the influence of the periodic
boundary condition. Our data are well resolved with κmaxη> 1.7 for all five datasets,
where κmax is the largest resolved wavenumber. In turn, this also implies that the
Reynolds number is not as high as for other DNS with comparable mesh size
reported in the literature. We discuss this in more detail in § 5.

3. Dissipative cut-off scales
Kolmogorov’s first similarity hypothesis (cf. Kolmogorov 1941b) states that ‘for

the locally isotropic turbulence the distributions Fn are uniquely determined by the
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FIGURE 1. Longitudinal structure function D20 normalised with η and uη for: ∗, Reλ= 88;
♦, Reλ = 119;A, Reλ = 184;@, Reλ = 215; C, Reλ = 331; andE, Reλ = 754. The dashed
line corresponds to (3.16) with K̃2,0 = 1/15.

quantities ν and 〈ε〉’, where Fn are the distributions of the velocity increments
(note that Frisch (1995) interprets Fn as ‘small-scale properties’). In other words, all
structure functions Dp,q = 〈[1u1]p[1u2]q〉 (where 1uj = uj(xi + ri) − uj(xi) and the
separation vector ri with magnitude r is aligned without loss of generality with the
x1 axis) are supposed to be uniquely determined by the viscosity ν and the mean
dissipation 〈ε〉 for r → 0. Kolmogorov backed up this claim by determining the
solution for the second-order structure functions in the dissipative range,

D2,0 = 1
2

D0,2 = 1
15
〈ε〉
ν

r2, (3.1)

where he obtained the factor 15 by relating the mean dissipation 〈ε〉 to 〈(∂u1/∂x1)
2〉

(Kolmogorov 1941b). Indeed, it is possible to express the full tensor 〈(∂ui/∂xj)

(∂uk/∂xl)〉 by a single scalar (e.g. the mean dissipation) under the assumption of
isotropy, homogeneity and incompressibility, which implies that D2,0 and D0,2 are
exactly related in the dissipative range. Figure 1 shows the second-order structure
function D2,0 normalised in this way for the different Reynolds numbers given in
§ 2, which we show here to allow a visual comparison with higher-order structure
functions normalised with the Kolmogorov scales η and uη as presented below. In
that spirit, the ‘goodness of collapse’ of the different curves onto a single curve as
seen in figure 1 can be used as reference for the collapse or non-collapse of higher
orders. We find that D2,0 collapses indeed as expected and scales as r2 for r→ 0.
The dissipative range extends to r/η ∼ 10 and is followed by a transitional region.
For larger r/η, there is the inertial range which increases with increasing Reynolds
number, in agreement with the classical picture of turbulent flows.

Generalising Kolmogorov’s first similarity hypothesis implies

Dm,0 =Km,0
〈ε〉m/2
νm/2

rm, (3.2)
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where the constant Km,0 should depend on the order m only and is supposed to be
independent of the Reynolds number. Non-dimensionalising this relation with the
Kolmogorov velocity uη = (ν〈ε〉)1/4 and the Kolmogorov length η= (ν3/〈ε〉)1/4 gives

Dm,0

um
η

=Km,0

(
r
η

)m

. (3.3)

This implies that the structure functions should collapse for small r→ 0 according to
(3.3) if normalised with uη and η. Taylor-expanding the structure functions of arbitrary
order m= p+ q, one finds

Dp,q =
〈(

∂u1

∂x1

)p (
∂u2

∂x1

)q〉
rp+q + · · · . (3.4)

In the following, we focus on longitudinal structure functions, for which there are
exact results as presented below. We then have for r→ 0

Dm,0 =
〈(

∂u1

∂x1

)m〉
rm. (3.5)

Similarly to Kolmogorov’s approach for the second order, we then relate the moments
of the longitudinal velocity gradient to the moments of the dissipation. One would
immediately estimate that 〈(

∂u1

∂x1

)m〉
∼ 〈ε

m/2〉
νm/2

, (3.6)

i.e. 〈(
∂u1

∂x1

)m〉
= 〈(SijSij)

m/2〉
Cm,0

, (3.7)

in disagreement with Kolmogorov’s first similarity hypothesis and (3.2), as the
exponent and the averaging operator do not commute. The question then becomes
whether Cm,0 is Reynolds-number-independent. For even m, it is possible to find
the exact values of Cm,0 following Siggia (1981), as carried out by Boschung (2015).
From this, we have C2= 15/2 (cf. (3.1)), C4,0= 105/4 (cf. Siggia 1981), C6,0= 567/8,
C8,0 = 2673/16 and so on, and in general (for m even)

Cm,0 = 3m/2−1(m+ 1)(m+ 3)
2m/2

. (3.8)

Consequently, for even m we have

Dm,0 = K̃m,0
〈εm/2〉
νm/2

rm, (3.9)

with K̃m,0 = (2m/2Cm,0)
−1 and where the Cm,0 are exact, Reynolds-number-independent

values as given by (3.8). Therefore, the even longitudinal structure function of order m
is determined by the moment 〈εm/2〉 of the dissipation and the viscosity ν for r→ 0
and we also have the exact solutions of some of the structure function equations
for r→ 0 as the prefactor Cm,0 is also known. In other words, we have found the
exact solution for arbitrary even-order structure functions in the dissipative range
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analogously to Kolmogorov’s result at the second order. Note that it is not possible
to arrive at these conclusions simply on dimensional grounds, because 〈εm〉 and 〈ε〉m
have the same dimensions.

What about the mixed and transverse structure functions at even orders? We note
that these structure functions are not uniquely determined this way except for the
second order m = 2, because the mixed derivatives 〈(∂u1/∂x1)

p(∂u2/∂x1)
q〉 are not

completely determined by 〈ε(p+q)/2〉. In other words, the higher-order tensors are not
determined by only a single scalar function under the constraints of homogeneity and
incompressibility. For instance, the general eighth-order velocity gradient tensor is
determined by the four invariants I1, I2, I3 and I4 given by Siggia (1981) (cf. also
Hierro & Dopazo 2003). In particular,〈(

∂u1

∂x1

)4
〉
= 4

105
I1 = 4

105
〈SijSjiSklSlk〉 = 1

105
〈ε2〉
ν2
, (3.10)〈(

∂u1

∂x1

)2 (
∂u2

∂x1

)2
〉
= 1

105
I1 + 1

70
I2 − 1

105
I3, (3.11)〈(

∂u2

∂x1

)4
〉
= 3

140
I1 + 11

140
I2 − 3

35
I3 + 1

80
I4. (3.12)

The invariants I1, I2, I3 and I4 are independent and therefore there are no relations
between I1, . . . , I4 and similarly at higher orders; consequently, the fourth-order mixed
and transverse structure functions depend also on I2, I3 and I4 and not solely on
I1 ∼ 〈ε2〉/ν2. However, Ishihara et al. (2007) found that the ratios I2/I1, I3/I1 and
I4/I1 are constant if the Reynolds number is large enough. This implies that all
fourth-order structure functions scale with 〈ε2〉 for r→ 0 with universal prefactors
including the mixed and transverse structure functions, although their prefactors
cannot be determined analytically as multiples of the longitudinal prefactor, and the
same holds at higher orders. Furthermore, the present approach cannot relate odd
moments of the velocity gradients to moments of the dissipation. For the third order,
we have the exact result 〈(∂u1/∂x1)

3〉 = −2〈ωiSijωj〉/35, which can be derived from
the general sixth-order velocity gradient tensor (see Pope 2000) and which leads
to the well-known relation between vortex stretching and the negative skewness of
the velocity gradient (cf. e.g. Townsend 1951; Betchov 1956; Rotta 1972). As we
have seen that the even longitudinal orders are determined by the moments of the
dissipation, we will try to use 〈ε3/2〉 and its generalisation, i.e. we will assume (3.9)
to hold also for odd orders (albeit with unknown, but Reynolds-number-independent,
K̃m,0). The only justification for odd orders up to this point is that this equation
has the correct dimensions. Rather, we would expect the odd orders to scale with
〈ωiSijSjk · · ·ωl〉, as these terms can be given in terms of the general velocity gradient
tensor while terms like 〈ε3/2〉 cannot.

We show higher even orders D4,0, D6,0 and D8,0 normalised by uη and η in the left
column of figure 2 for different Reynolds numbers. Noticeably, these higher orders do
not collapse and the disparity increases with Reynolds number and order m. This was
anticipated by Landau & Lifshitz (1959) (cf. also Frisch 1995), who argued that 〈ε〉
could not be the relevant quantity for all orders m, i.e. that the proportionality factor
Km,0 of (3.3) should be flow-dependent. Normalising (3.9), K41 scaling then implies

Dm,0

um
η

= K̃m,0
〈εm/2〉
〈ε〉m/2

(
r
η

)m

, (3.13)
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FIGURE 2. Longitudinal structure functions Dm,0: (a,b) D4,0, (c,d) D6,0, and (e, f ) D8,0.
(a,c,e) Kolmogorov scaling with η and uη. (b,d, f ) Scaling with ηC (3.14) and uC (3.15).
Symbols: ∗, Reλ = 88; ♦, Reλ = 119; A, Reλ = 184; @, Reλ = 215; C, Reλ = 331; and
E, Reλ = 754. Dashed lines correspond to (3.16) with K̃4,0 = 1/105 (b), K̃6,0 = 1/567 (d)
and K̃8,0 = 1/2673 ( f ).

where the Reynolds-number dependence of 〈εm/2〉/〈ε〉m/2 increases with increasing
order m. Consequently, Kolmogorov scaling cannot collapse structure functions
different from those at the second order (m= 2) in the dissipative range, as is clearly
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seen in the left column of figure 2. By introducing a modified order-dependent cut-off
length scale,

ηC,m =
(

ν3

〈εm/2〉2/m
)1/4

, (3.14)

and a cut-off velocity,

uC,m = (ν〈εm/2〉2/m)1/4, (3.15)

we find (3.9) normalised as

Dm,0

um
C,m
= K̃m,0

(
r
ηC,m

)m

, (3.16)

in the spirit of Kolmogorov’s 1941 work on the dissipative range for the second order,
where the prefactor is constant. This scaling is shown in the right column of figure 2,
again for D4,0, D6,0 and D8,0 for different Reynolds numbers. Thus, (3.16) indeed
collapses the structure functions for r→ 0, and K̃m,0 is universal in the sense that
it does not depend on the Reynolds number but is an order-dependent constant with
the exact values K̃2,0 = 1/15, K̃4,0 = 1/105 and so on. This collapse also serves as a
numerical confirmation of the relation between the moments of the dissipation and the
even moments of the longitudinal velocity gradient as reported by Boschung (2015).
We find (3.16) to hold for r= 0 to r/ηC,m≈ 10 independent of the order. That is, the
order-dependent dissipation range scales with ηC,m as expected. As seen in figure 2,
this clearly holds for even orders in general, due to (3.9). We note in passing that

ReC,m = uC,mηC,m

ν
= 1, (3.17)

as we might have expected, i.e. that inertial and viscous forces balance. Consequently,
ηC,m and uC,m are indeed viscous scales; for order m= 2, K41 scaling (i.e. the classical
Kolmogorov scaling) is recovered, as ηC,2 = η and uC,2 = uη.

Let us look at the cut-off length from a slightly different point of view. Considering
only the longitudinal even-ordered structure functions, which are determined by the
velocity gradients 〈(∂u1/∂x1)

m〉 with dimensional units [s−m], one needs a second
quantity with dimensions [mα sβ] (with α 6= 0 and β 6= 0) to find a characteristic
length scale lm with dimensional units [m]. As we are concerned with the dissipative
range, the viscosity ν with dimensions [m2 s−1] is a natural choice. We then have

lm =
[

νm

〈(∂u1/∂x1)m〉
]1/(2m)

=
[

ν(3/2)m

νm/2〈(∂u1/∂x1)m〉
]1/(2m)

∼
[

ν3

〈εm/2〉2/m
]1/4

= ηC,m (3.18)

and similarly for uC,m. That is, when choosing the viscosity as the second quantity
to build the length scale, ηC,m and uC,m naturally follow. Different scales can only be
obtained by choosing a different quantity than ν.

Different from the dissipative range, it is not possible to determine a priori how
to normalise Dm,0 = Cm,0rζm in the inertial range so that Cm,0 does not depend on
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the Reynolds number. This is due to the fact that we do not know the exact value
of ζm and thus cannot choose suitable velocity and length scales so that Cm is
non-dimensional; therefore we cannot expect the structure functions to collapse in
the inertial range. The only exception is of course the third-order structure function
D3,0 = −(4/5)〈ε〉r, which collapses using the K41 scales uη and η. Deviations
from K41 for the second-order structure functions in the inertial range are usually
attributed to intermittency effects. For higher orders, it is therefore necessary to
consider deviations of the higher-order structure functions normalised in such a
way that they collapse for r→ 0 (as do the second-order structure functions when
normalised with the K41 quantities), i.e. not with η and uη but with ηC,m (3.14) and
uC,m (3.15). If one examines deviations of higher-order structure functions normalised
with the second-order quantities η and uη, one includes the well-known increase of
higher-order derivative moments scaled by the second moment. These effects are
not present when using ηC,m and uC,m, as with these scales the Reynolds-number
dependence cancels out.

Next, we also look at the odd orders, which should be determined by 〈ωiSijωj〉
(third order), 〈ωiSijSikSklωl〉 (fifth order) and so on. We find that their behaviour
resembles that of the even orders, inasmuch as Kolmogorov scaling (3.3) does not
collapse the structure functions for r→ 0 (cf. the left column of figure 3). Again,
we find that deviations increase with increasing order and Reynolds number, as was
the case for the even orders. Using ηC,m (3.14) and uC,m (3.15) collapses the data
and again we have an order-dependent dissipation range up to r/ηC,m ∼ 10. Thus,
the general relation (3.16) also holds for odd orders, although we cannot determine
the prefactors K̃m,0 analytically. Furthermore, we would expect the odd moments of
the (longitudinal) velocity gradient probability density function (p.d.f.) to scale with
〈εm/2〉/〈ε〉m/2, if 〈(∂u1/∂x1)

m〉 ∼ νm/2〈εm/2〉 for odd orders as well, as our data suggest.
Ishihara et al. (2007) find 0.11 ± 0.1 for the Reynolds-number dependence of the
skewness of ∂u1/∂x1, which agrees with the scaling 〈ε3/2〉/〈ε〉3/2 ∼ Re0.12

λ from our
DNS. This implies that 〈ε3/2〉 ∼ ν3/2〈ωiSijωj〉 and so on, with constant proportionality
factors. However, these factors cannot be determined by the isotropic form of the
general velocity gradient tensor, as 〈ε3/2〉 etc. cannot be expressed in terms of it.

To summarise, ηC,m and uC,m are the right quantities to non-dimensionalise structure
functions in the dissipative range, as shown in figures 2 and 3. Using the new scales
ηC,m and uC,m collapses the higher orders as well as η and uη in the case of the second
order (cf. figure 1).

Naturally, the question arises how ηC,m scales with η. From (3.14) we find

ηC,m

η
=
( 〈ε〉m/2
〈εm/2〉

)1/(2m)

∼ Re−αm/2/(2m)
λ . (3.19)

Figure 4 shows the scaling of 〈εm/2〉/〈ε〉m/2 as a function of the Reynolds number Reλ
as evaluated from our DNS,

〈εm/2〉
〈ε〉m/2 ∼ Reαm/2

λ , (3.20)

where the dashed lines correspond to a least-squares fit and we use the values of
αm/2 from our DNS in the following. Noticeably, the scaling exponent αm/2 of (3.20)
increases with m, in agreement with the notion of intermittency of ε. Donzis, Yeung &
Sreenivasan (2008) compared 〈εm/2〉 and 〈ε〉m/2 as well as the ratio for different orders
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FIGURE 3. Longitudinal structure functions Dm,0: (a,b) D3,0, (c,d) D5,0, and (e, f ) D7,0.
(a,c,e) Kolmogorov scaling with η and uη. (b,d, f ) Scaling with ηC (3.14) and uC (3.15).
Symbols: ∗, Reλ = 88; ♦, Reλ = 119; A, Reλ = 184; @, Reλ = 215; C, Reλ = 331; and
E, Reλ = 754.

m/2 = 2, 3, 4 as a function of the Reynolds number and grid resolution. They find
that a grid resolution κmaxη somewhere between κmaxη= 1 and κmaxη= 3 is sufficient
to resolve the second to fourth moments of ε. Interestingly enough, the sensitivity of
the normalised moments with respect to the resolution κmaxη seems to decrease with
increasing Reynolds number, at least for the two cases Reλ = 140 and Reλ = 240 that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.172


244 J. Boschung, F. Hennig, M. Gauding, H. Pitsch and N. Peters

50 100 200 500 1000 1 2 3 4 5 6

0

0.1

0.2

0.3
She–Leveque model
p-model
K62
DNS

100

101

102

103

104

(a) (b)

FIGURE 4. (a) Scaling of 〈εm/2〉/〈ε〉m/2 as a function of the Reynolds number. (b) Plot of
αm/2/(2m) as a function of m/2. Symbols, DNS data; solid line, K62 theory with µ=0.25;
dashed line, p-model with p1 = 0.7; dotted line, She–Leveque model.

they considered (their figure 4 and table 2). For that matter, we feel rather confident
that the data shown in our figure 4(a,b) are adequate for the issues addressed in the
present study, although we cannot claim that there might be no (small) errors in the
values of αm/2 used below. In a recent paper, Schumacher et al. (2014) compared
different flows for m/2= 2, 3, 4 and found that the Reynolds-number dependence of
〈εm/2〉/〈ε〉m/2 is the same for the different flows they examined (homogeneous isotropic
turbulence, a turbulent channel flow and turbulent Rayleigh–Bénard convection). This
implies that the moments of the (longitudinal) velocity gradient should also have
the same Reynolds-number dependence for the different flow types. This seems to
be the case; Sreenivasan & Antonia (1997) and Ishihara et al. (2007) compiled data
of different flows and found a good collapse of the skewness and flatness of the
longitudinal velocity gradient.

Thus, the cut-off length ηC,m decreases with increasing Reynolds number Reλ,
while the order dependence needs to be examined more closely. Figure 4(b) shows
the ratio αm/2/(2m) for m= 1, . . . , 8, where αm/2 has been obtained by fitting the data
of figure 4(a). We find that αm/2/(2m) plotted over m/2 is concave and non-decreasing,
at least for the orders observed. This can also be seen in figure 2, where the
transitional range is shifted towards smaller scales with increasing order. This
immediately raises the question of the asymptotic behaviour of αm/2 at high orders, as
it would imply that there is a myriad of smaller and smaller scales (m/2 is unbounded
in principle). If there is no upper limit of α for m→∞, then the smallest scale
ηm→∞→ 0 independent of the Reynolds number, as seen from (3.19).

4. Scaling of the normalised dissipation

With the definition of the scales ηC,m, it is natural to write

〈εm/2〉
〈ε〉m/2 ∼

〈εm/2
r 〉
〈ε〉m/2

∣∣∣∣
r→ηC,m

∼
(
ηC,m

η

)γm/2 (η
L

)γm/2

, (4.1)
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where εr is the volume-averaged dissipation as proposed by Obukhov (1962) and
where γm/2 is the scaling exponent of the normalised dissipation,

〈εm/2
r 〉
〈ε〉m/2 ∼

( r
L

)γm/2

. (4.2)

With (3.19) and (3.20), we then find with η/L∼ Re−3/2
λ that

αm/2 =−3
2

(
γm/2

1+ γm/2/(2m)

)
, (4.3)

and consequently any model specifying γm/2 can be used to determine αm/2. If one
assumes together with Kolmogorov (1962) the ansatz

Dp,0 ∼ 〈εp/3
r 〉rp/3 ∼ rζp, (4.4)

as is widely accepted, also γm/2 = ζ3(m/2) − m/2, and therefore any theory predicting
the structure function scaling exponents ζ3(m/2) predicts αm/2. One could also look at
α in a different way: given α, e.g. by some theory or measurements, one can solve
for γ and then use γm/2 = ζ3(m/2) −m/2 to compute the scaling exponents,

ζ3(m/2) = m
2

(
1− 4

αm/2

αm/2 + 3m

)
. (4.5)

Then, the larger αm/2, the larger are the deviations from K41 scaling ζ3(m/2)=m/2 for a
given m. As larger values of αm/2 imply larger higher moments of the dissipation, this
is consonant with the notion that anomalous scaling is connected to the intermittency
of the dissipation.

Since ζ3(m/2)> 0 for all m, we find from (4.5) an upper limit for the scaling of the
normalised dissipation as well as the ratio of the order-dependent scales,

αm/2 6 m,
αm/2

2m
6

1
2
. (4.6a,b)

Because αm/2 increases with increasing m/2 and α1 = 0, this implies that αm/2/(2m)
is concave and that αm/2/(2m) increases linearly for large m.

Let us now briefly look at some well-known theories found in the literature and
compare their predictions with our DNS. For the rest of this section, we consider even
m, i.e. m/2= 1, 2, 3, . . . .

K62 theory (Kolmogorov 1962) assumes a log-normal distribution for the
dissipation, which gives

αm/2,K62 = m
2

6µ(m/2− 1)
8+µ(1−m/2)

, (4.7)

where µ is a coefficient parametrising the intermittency. Sreenivasan & Kailasnath
(1993) concluded that µ= 0.25 ± 0.05. From (4.7), α1,K62 = 0 as required. However,
K62 gives αm/2,K62→∞ for m/2→ 8/µ+ 1 and negative αm/2,K62 for m/2> 8/µ+ 1.
Similarly, the ratio ηC,m/η→ 0 for m/2→ 8/µ+ 1, while ηC,m>η for m/2> 8/µ+ 1.
This is at odds with the observation that the normalised moments 〈εm/2〉/〈ε〉m/2
increase with increasing Reynolds number for m/2> 1, i.e. αm/2 > 0 for all m/2> 1.
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When using K62, at first the moments 〈εm/2〉 strongly increase with Reλ and then
strongly decrease when m/2 is increased further. Similarly, the order-dependent scales
ηC,m become smaller and smaller than the Kolmogorov scale and then jump to
ηC,m >η after a critical threshold. With µ= 0.25, we find the singularity for the 33rd
moment of the normalised dissipation and a reduced intermittency for m/2> 33.

Multi-fractality of the dissipation (4.2) has been examined in detail by Meneveau
& Sreenivasan (1991). An example for such a multi-fractal model is, for example, the
p-model (see Meneveau & Sreenivasan 1987), which assumes that an eddy breaks up
into two smaller eddies receiving fractions p1 and p2 = 1− p1 of the energy. The p-
model then yields

αm/2,p = 6
m/2− {1− log2[pm/2

1 + (1− pm/2
1 )]}

3+ (2/m){1− log2[pm/2
1 + (1− pm/2

1 )]} . (4.8)

The p-model then gives α1,p = 0, while for m/2 → ∞, αm/2,p → m because the
parameter p1 6 1.

Different from the (multi-)fractal framework, She & Leveque (1994) proposed
a hierarchy of powers of the dissipation moments εm/2

r = 〈εm/2+1
r 〉/〈εm/2〉. They then

assumed that εm/2+1
r is determined by εm/2

r and ε∞r for all m/2. Dubrulle (1994)
and She & Waymire (1995) found that the She–Leveque model corresponds to the
assumption of a log-Poisson distribution for the dissipation. The She–Leveque model
yields

αm/2,SL = 6

m/2− 3

[
1−

(
2
3

)m/2
]

5+ 3
m/2

[
1−

(
2
3

)m/2
] , (4.9)

which contains no parameters, different from the other models examined in this
section. The She–Leveque model has been found to be in excellent agreement with
structure function exponents obtained by measurements and DNS (see e.g. Anselmet
et al. 1984; Benzi et al. 1995; Gotoh, Fukayama & Nakano 2002). Similarly to
the other models examined here, the She–Leveque model gives α1,SL = 0 and, for
m/2→∞, αm/2,SL→ (6/5)(m/2), i.e. for very large m, 〈εm/2〉/〈ε〉m/2 scales linearly.
Therefore, the order-dependent cut-off scales ηC,m/η scale as αm/2/2m → 3/10 for
large m/2 and the She–Leveque model satisfies (4.6), i.e. the cut-off scales remain
bounded at finite Reynolds numbers.

The αm/2 as computed from the three models above are shown in figure 4(b).
While K62 overpredicts αm/2 as expected, both the p-model and the She–Leveque
model are in very good agreement with our DNS. Structure function exponents as
computed with (4.5) using the αm/2 from our DNS are shown in table 2, together
with the measurements of Anselmet et al. (1984) and Gotoh et al. (2002), which
we have averaged when more than one value was reported. While we find very
good agreement, it should be kept in mind that the higher orders (for both the
measurements of Anselmet et al. (1984) and the DNS of Gotoh et al. (2002) as well
as the ones computed from our data) might be subject to significant error bands. It
is also worth mentioning that numerical errors in αm/2 translate to smaller errors in
ζ3(m/2), at least up to m/2= 4. This error decreases with increasing m/2: for instance,
α2 ± 10 % yields ζ6 ± 3.77 %, while α4 ± 10 % yields ζ12 ± 1.16 %.
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m/2 Equation (4.5) Anselmet et al. (1984) Gotoh et al. (2002)

1 ζ3 = 1 ζ3 = 1 ζ3 = 1.015
2 ζ6 = 1.7871 ζ6 = 1.8 ζ6 = 1.78
3 ζ9 = 2.3904 ζ9 = 2.465 ζ9 = 2.35
4 ζ12 = 2.8696 ζ12 = 2.84 —

TABLE 2. Comparison of ζ3(m/2) computed with (4.5) using αm/2 from our DNS and
literature.

5. Resolution requirements
From the existence of scales smaller than the Kolmogorov scale, it follows that this

might influence the resolution requirements of DNS, as characterised by the product
κmaxη, where κmax is the maximum wavenumber resolved by the simulation. Different
from earlier work, e.g. by Yakhot & Sreenivasan (2005), where the multi-fractal
model was used to determine the cut-off scales, we use here the exact length scales
(3.14). It is therefore worthwhile to examine the required grid resolution in some
detail, although it has been studied in the literature by employing different approaches
before. Naturally, there is a trade-off for a given number of grid points corresponding
to a given κmax between a highly resolved simulation (i.e. a large κmaxη) and a high
Reynolds number implying a low κmaxη. Common wisdom is to resolve at least
kmaxη= 1 and usually κmaxη= 1.3 is considered high enough. Note that some studies
require a higher resolution, especially if the examined quantities depend on high-order
derivatives of the velocity field. An example is the study of Jiménez et al. (1993),
which required κmaxη= 2.

It is evident that κmaxη > 1 is needed to resolve the higher moments of the velocity
gradient p.d.f., as these are linked to the higher moments of the dissipation. The higher
the order of the moment, the higher the necessary resolution. This can also be seen
from the data of Ishihara et al. (2007) as well as Donzis et al. (2008), where the
velocity gradient p.d.f. did not collapse at similar Reynolds number with κmaxη = 1
and κmaxη = 2; the dissimilarity is less in the core of the p.d.f. and stronger in the
tails, which are determined by the higher moments.

From (3.19), we see that the cut-off lengths ηC,m are less resolved for a given
κmaxη with increasing order m. In order to compare these influences, the normalised
resolution

[κmaxηC,m]∗ = κmaxηC,m

κmaxη
(5.1)

is provided in table 3, where we have used the values of 〈εm/2〉/〈ε〉m/2 from our
data. We also give extrapolated resolutions for Reλ = 103 and Reλ = 104, which were
computed using the fits shown in figure 4(a). These resolutions are not meant to give
exactly the required resolution to resolve the eighth order at Reλ= 103, say, but rather
to provide an estimate and to show the influence of the Reynolds number and order.
For instance, κmaxη = 1.3 would suggest that the fourth-order structure function (and
with it the flatness of the velocity gradient p.d.f.) is completely resolved at Reλ =
104, while higher orders are only partially resolved. Equivalently, we would expect
κmaxη = 1.3 at Reλ = 215 to fully resolve the sixth-order structure function, i.e. this
rule of thumb ensures a well enough resolved DNS, if one is interested in lower-order
moments at (from the present point of view) low to intermediate Reynolds numbers.
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R0 R1 R2 R3 R4 R5 Reλ = 103 Reλ = 104

[κmaxη]∗ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[κmaxηC,4]∗ 0.894 0.883 0.871 0.864 0.849 0.819 0.805 0.738
[κmaxηC,6]∗ 0.806 0.785 0.763 0.749 0.725 0.678 0.663 0.551
[κmaxηC,8]∗ 0.730 0.700 0.672 0.652 0.623 0.571 0.551 0.424

TABLE 3. Normalised resolution [κmaxηC,m]∗ = κmaxηC,m/κmaxη as a function of Reynolds
number Reλ and order m.

To summarise, if κmaxη= κmaxηC,2= 1 completely resolves the second-order structure
function, the variance of the velocity gradient p.d.f., the mean dissipation 〈ε〉 and
low-order statistics like the mean kinetic energy 〈k〉 (cf. Yeung & Pope 1989), then
κmaxηC,3 = 1 additionally completely resolves the third-order structure function, the
skewness of the velocity gradient p.d.f. and the vortex stretching 〈ωiSijωj〉, while
κmaxηC,4 = 1 also resolves the flatness of the velocity gradient p.d.f., the variance of
the p.d.f. P(ε) and the fourth-order structure function, and so on.

Thus, we need more grid points to resolve a certain order when increasing the
Reynolds number than the classical estimate using K41 would suggest. There are
several estimates of the scaling of numbers of grid points with the Reynolds number
– see, for instance, Paladin & Vulpiani (1987b), Davidson (2004) and Yakhot &
Sreenivasan (2005). In the following, we will use (3.19). If we assume that αm/2/(2m)
converges to a finite number for m→∞, we can use (3.19) to estimate the number
of grid points to completely resolve all scales, sometimes also called the number of
degrees of freedom of the flow. That is, we can estimate the scaling of grid points
with the Reynolds number via

N ∼
(

LBox

1x

)3

∼
(

LBox

L

)3 ( L
ηC,m→∞

)3

∼
(

LBox

L

)3 (L
η

)3 (
η

ηC,m→∞

)3

∼
(

LBox

L

)3

Re9/4[1+αm/2/(3m)]
L , (5.2)

where 1x is the grid spacing, LBox the length of the DNS box (cube) and L the integral
length. Consequently, N is larger than the K41 estimate N ∼ Re9/4

L since αm/2 > 0 and
the scaling of N depends on the asymptotic behaviour of αm/2/(2m) for m/2→∞.
From (4.6), αm/2/(2m)6 1/2 (i.e. αm/2/(3m)6 1/3) and therefore

N ∼
(

LBox

L

)3

Re3
L, (5.3)

as upper bound. Paladin & Vulpiani (1987b) used the multi-fractal framework to also
obtain N ∼ Re3

L as the largest Reynolds-number scaling possible (see also Yakhot &
Sreenivasan (2005), where also a Re3

L scaling has been found). For the She–Leveque
model, αm/2/(2m)→ 3/10 and one obtains N ∼ Re27/10

L . Paladin & Vulpiani (1987b)
reported N ∼ Re2.3

L using data from Anselmet et al. (1984).

6. Conclusion
Let us briefly summarise the main results. Using relations between the moments

of the longitudinal velocity gradient and the moments of the dissipation, we find
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the exact solution of longitudinal structure functions in the dissipative range without
ambiguity or any free parameters for arbitrary even orders as given by (3.9), where
the Cm,0 are known universal (Reynolds-number-independent) constants. That is, we
can precisely and without ambiguity show how the moments of the dissipation
enter the structure function solutions in the dissipative range. The only required
assumptions are (local) isotropy, (local) homogeneity and incompressibility. From
this, we find generalised cut-off scales as given by (3.14) and (3.15). These scales
are exact under the above assumptions and can be interpreted as a generalisation of
the Kolmogorov scales η and uη and are determined by dissipative quantities (the
moments of the dissipation and the kinematic viscosity) only. The question then
becomes whether the same results hold for mixed and transverse structure functions
as well as odd orders. We find empirically from our data that this is indeed the case
for the mixed and transverse structure functions, because the ratio of the velocity
gradients 〈(∂u2/∂x1)

p+q〉 and 〈(∂u1/∂x1)
p(∂u2/∂x1)

q〉 to 〈(∂u1/∂x1)
p+q〉 is constant

at sufficiently high Reynolds number, as was previously shown by Ishihara et al.
(2007). However, these constants can only be determined numerically. Also, we find
that using moments 〈εm/2〉 with odd m collapses the odd-order structure functions,
although the required connectors again cannot be derived. As the normalised moments
of the dissipation increase with increasing Reynolds number and order, the cut-off
length scales ηC,m decrease. Again, we want to emphasise that we only employ the
same assumptions as Kolmogorov in his 1941 papers (Kolmogorov 1941a,b) and
the results of the present paper can be viewed as a generalisation of Kolmogorov’s
work for higher orders in the dissipative range. This implies that K41 scaling is only
correct for the second order (and for the third order in the inertial range), while
for higher orders the new scales should be used, which are defined by (3.14) and
(3.15) without any ambiguity or additional assumptions. At scales r ∼ O(ηC,m), the
normalised moments of the dissipation cross over to the volume-averaged dissipation
εr. Consequently, any theory predicting the scaling of εr or the structure function
exponents in the inertial range, ζ , can be used to determine the scaling of ηC,m. We
find that K62 makes unphysical predictions, while both the multi-fractal p-model as
well as the She–Leveque model agree very well with our DNS. As there is a myriad
of order-dependent (and Reynolds-number-dependent) cut-off length scales, the grid
needs to be finer with increasing order and Reynolds number, an effect well known
in the literature, which is not captured by K41. We use the exact cut-off lengths of
§ 5 and our DNS data to estimate the grid resolution at a given order, which gives
satisfactory agreement with previous results in the literature. Thus when carrying out
DNS studies, one should consider the desired Reynolds number that one is aiming at
as well as the order that needs to be fully resolved. Resolving the (K41) Kolmogorov
scale η is sufficient to resolve the transport of kinetic energy down the cascade and
its dissipation. Higher resolution is necessary if one is interested in higher-order
statistics, which consequently need higher orders correctly resolved. This is evident
inasmuch as the moments of the velocity gradient p.d.f. can be obtained from the
limit of Dp,q/rp+q for r→ 0.
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