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This paper presents a stability analysis of a mixed convection problem in an inclined
parallel-plate channel with uniform heating (or cooling) from the top and bottom. The
channel is filled with a saturated homogeneous porous medium and the momentum
equation is given by Darcy’s model. A forced through-flow is prescribed across
the channel. Linear stability analysis is thus employed to determine the onset of
thermoconvective instability. The channel inclination is shown to play an important
role in the stability of the problem, where two different regimes can be present:
a buoyancy-assisted regime and a buoyancy-opposed regime. The analysis of the
problem leads to a differential eigenvalue problem composed of a system of four
complex-valued equations that are used to determine the critical values of the
Rayleigh number leading to an instability under different problem configurations.
This eigenproblem is solved by employing the generalised integral transform technique
(GITT), in which simpler real eigenfunction bases are used to expand the complex
eigenproblem. The results indicate that the longitudinal rolls are always more unstable
than oblique and transverse rolls. For a buoyancy-opposed regime, even with a very
small channel inclination angle, the basic through-flow is always unstable. This result
has an important implication for experimental research, as it shows that a perfect
alignment must be employed for horizontal mixed-convection experiments to avoid
instabilities that arise in the buoyancy-opposed regime.

Key words: buoyancy-driven instability, computational methods, convection in porous media

1. Introduction
Convective instability induced by thermal gradients is a subject widely explored in

the literature. The typical set-up giving rise to unstable behaviour is one where the
vertical temperature gradient is directed downward. Such a configuration may pertain
to a motionless basic state, as in the classical Rayleigh–Bénard problem and its many
variants (Drazin & Reid 2004), as well as to basic forced or mixed convection flow
states.

Much research has been done over the past sixty years to investigate thermal
instability in fluid-saturated porous media. Surveys of current knowledge in this field
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are available in Nield & Bejan (2013), as well as in Rees (2000), Tyvand (2002) and
Barletta (2011). The thermoconvective instability of a basic motionless state, much
like a porous medium version of the Rayleigh–Bénard problem, was first studied
by Horton & Rogers (1945) and Lapwood (1948). These studies were related to a
horizontal layer with impermeable and isothermal walls kept at different temperatures,
and they defined what is now well known as the Darcy–Bénard problem.

A direct extension of the Darcy–Bénard problem arises when the plane porous
layer is inclined to the horizontal. The pioneering studies on this subject are the
papers by Bories & Combarnous (1973), Weber (1975) and Caltagirone & Bories
(1985). The basic set-up considered by these authors is a porous medium modelled
by Darcy’s law, and confined between a pair of impermeable walls kept at different
uniform temperatures. The main consequence of the layer inclination is that the basic
state cannot be motionless, but it is given by a stationary and parallel buoyant flow
with a zero mass flow rate. Further developments have been achieved more recently
by several authors (Karimi-Fard, Charrier-Mojtabi & Mojtabi 1999; Storesletten &
Tveitereid 1999; Rees & Bassom 2000; Rees & Postelnicu 2001; Rees, Storesletten
& Postelnicu 2006; Barletta & Storesletten 2011; Nield, Barletta & Celli 2011;
Rees & Barletta 2011; Barletta & Rees 2012). Many different physical effects
have been studied, including the anisotropy of the porous medium, the viscous
dissipation, and the modelling of the layer walls as isoflux, instead of isothermal,
boundaries. In all these studies, with the single exception of Barletta & Rees (2012),
the thermal boundary conditions were such that the temperature in the basic state is
streamwise-invariant, with no net heating or cooling effects.

Linear stability analysis has been employed as a useful methodology in determining
the onset of convective stability for many of the above-mentioned studies. This
methodology generally leads to a complex differential eigenvalue problem that
needs to be solved for the Rayleigh number and wavenumber values, in order to
determine the condition when a given flow becomes unstable. While a variety of
techniques are available for this purpose, many of which are of a numerical nature, a
hybrid analytical–numerical methodology known as the generalised integral transform
technique (GITT) (Cotta 1990, 1993, 1994) can be used as a powerful tool for
solving differential eigenvalue problems that arise in linear stability analysis. The
solution of differential eigenproblems via the GITT, as described in Mikhailov &
Cotta (1994), has been employed for different convection and diffusion problems,
such as multidimensional heat diffusion in irregular geometries (Sphaier & Cotta
2000, 2002), diffusion in heterogeneous media (Naveira-Cotta et al. 2009), conjugate
convection–conduction in a single channel (Knupp, Naveira-Cotta & Cotta 2012), and
conjugate convection–conduction in multiple micro-channels (Knupp, Naveira-Cotta
& Cotta 2014).

The aim of this paper is to go beyond the analysis of the Darcy–Bénard problem
in an inclined porous channel by devising a set-up where both walls are impermeable
and symmetrically heated or cooled. The existence of a stationary solution is
ensured, in this case, only if a net mass flow rate is allowed, so that the excess
heat is removed or supplied by convection along the streamwise direction. Hence
the basic state is one of mixed convection. The analysis to be carried out is an
extension of the work by Barletta (2012, 2013) and Sphaier & Barletta (2014),
with reference to the special cases of a horizontal and a vertical layer. The results
obtained herein reveal an important feature peculiar to the inclined-channel situation:
two different regimes occur, and one of them is unstable for any finite inclination
angle, no matter how small. This is an important finding for experimental research
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FIGURE 1. Sketch of the system.

involving mixed convection in horizontal channels, as it shows that the control of the
channel inclination must be done in a very careful fashion. In fact, the usual scheme
supporting a linear stability analysis is based, according to Lyapunov’s theory, on a
test of the effects of small deviations from the initial conditions. However, vanishingly
small deviations from the prescribed boundary conditions and from the geometrical
layout can also be crucial when assessing the critical conditions for the onset of
instability. This novel finding may cast new light on future investigations concerning
the stability of convective flow systems.

2. Mathematical model

The problem considered in this study is that of a plane porous layer bounded by
inclined impermeable walls separated by a distance H (see figure 1). A uniform wall
heat flux, q0, is prescribed both on the lower boundary plane z= 0 and on the upper
boundary plane z = H. The buoyancy-driven flow in the porous layer is investigated
under the following assumptions:

(i) the Oberbeck–Boussinesq approximation holds;
(ii) the saturated porous medium is considered as homogeneous, isotropic and with

constant properties, except for the density in the gravitational body force;
(iii) the momentum transfer is described by Darcy’s law;
(iv) local thermal equilibrium between the solid phase and the fluid phase holds;
(v) viscous dissipation is negligible and no internal heat generation effects are

present.

The dimensionless quantities are defined by rescaling the dimensional quantities as
follows:

(x, y, z)
1
H
→ (x, y, z), t

α

σ H2
→ t, (2.1a)

(u, v,w)
H
α
→ (u, v,w), (T − T0)

k
q0 H
→ T, (2.1b)

where (x, y, z) are the Cartesian coordinates, t is the time, u = (u, v, w) is the
velocity, T is the temperature and T0 is the constant reference temperature, α is the
average thermal diffusivity of the saturated porous medium, σ is the ratio between
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the volumetric heat capacity of the saturated medium and that of the fluid, g is the
modulus of the gravitational acceleration g, β is the thermal expansion coefficient
of the fluid, K is the permeability and k is the average thermal conductivity of the
saturated porous medium.

With the above assumptions, the governing local balance equations can be written
in dimensionless form as

∇ · u= 0, (2.2a)
∇× u= Ra∇×[T (sin φ êx + cos φ êz)], (2.2b)

∂T
∂t
+ u · ∇T =∇2T, (2.2c)

where êx, êz are unit vectors along the x and z directions. The following boundary
conditions are prescribed:

z= 0: w= 0, −∂T
∂z
= 1, (2.2d)

z= 1: w= 0,
∂T
∂z
= 1. (2.2e)

As is shown in figure 1, φ is the channel inclination angle to the horizontal. The
Darcy–Rayleigh number Ra is defined in terms of the heat flux:

Ra= gβq0KH2

ναk
, (2.3)

where ν is the kinematic viscosity of the fluid. Either fluid cooling, Ra< 0, or fluid
heating, Ra> 0, are allowed.

A time-independent solution of (2.2) is found by assuming a net horizontal flow
rate along the x direction,

ub = F(z) êx, (2.4a)

∇Tb = 2
Pe

êx + 1
Pe

G(z) êz, (2.4b)

where the functions F(z) and G(z) are given by

F(z) = Γ

2

[
Pe coth

(
Γ

2

)
+ 2 tanh

(
Γ

2

)
cot φ

]
cosh(Γ z)

− Γ
2
(Pe+ 2 cot φ) sinh(Γ z), (2.4c)

G(z) = 2 cot φ +
[

Pe coth
(
Γ

2

)
+ 2 tanh

(
Γ

2

)
cot φ

]
sinh(Γ z)

− (Pe+ 2 cot φ) cosh(Γ z), (2.4d)

where the parameter Γ is defined as

Γ =
√

2 Ra sin φ
Pe

, (2.4e)
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and the Péclet number is the average dimensionless velocity in the porous channel:

Pe=
∫ 1

0
F(z) dz. (2.4f )

Two flow regimes exist: buoyancy-assisted flow (Ra/Pe > 0), and buoyancy-opposed
flow (Ra/Pe< 0).

As noted from (2.4), positive values of Pe lead to an increasing temperature in the
positive x direction, while a negative value naturally yields the opposite behaviour.
Moreover, it is evident from these equations that the basic solution is left invariant
by the transformation

Ra→−Ra, Pe→−Pe, φ→π− φ, x→−x. (2.5a−d)

Hence, it is not restrictive to focus the forthcoming stability analysis to cases where
φ ∈ [0◦, 90◦], Ra is positive, while Pe is either positive or negative. Further cases, not
explicitly accounted for, can be easily recovered by applying the transformation (2.5).

3. Formulation of the stability problem
In order to study the linear stability of the basic flow, the basic solution is perturbed

with very small disturbances:

u= ub + εU, T = Tb + εΘ, (3.1a,b)

where ε is a real positive parameter, such that ε� 1.
Substituting (3.1) into (2.2), taking into account (2.4), and finally dropping terms

O(ε2) yields

∇2Ψ = Ra
(

sin φ
∂Θ

∂x
+ cos φ

∂Θ

∂z

)
, (3.2a)

∂Θ

∂t
+ F(z)

∂Θ

∂x
+ 2

Pe

(
RaΘ sin φ − ∂Ψ

∂x

)
+ 1

Pe
G(z)

(
RaΘ cos φ − ∂Ψ

∂z

)
=∇2Θ,

(3.2b)

z= 0, 1: ∂Ψ

∂z
= RaΘ cos φ,

∂Θ

∂z
= 0, (3.2c)

where the auxiliary field Ψ was introduced so that the perturbation U can be written
as

U = Ra
[
Θ
(
sin φ êx + cos φ êz

)]−∇Ψ. (3.3)

3.1. Normal mode analysis
The auxiliary function Ψ and the dimensionless temperature Θ are represented as
plane waves propagating along an arbitrary direction in the (x, y) plane:

Ψ =ψ(z) ei (ax x+ay y−ω t), Θ = θ(z) ei (ax x+ay y−ω t), (3.4a,b)

where ax and ay are the real-valued components of the wavevector, a = (a2
x + a2

y)
1/2

is the wavenumber, and ω is the complex-valued frequency. Moreover, functions
ψ(z) and θ(z) are the amplitudes of the disturbances. The real part of ω defines the
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angular frequency, whereas the imaginary part determines the unstable (if positive) or
stable (if negative) nature of the flow. Since this study focuses on the neutral stability
analysis, one considers Im(ω)= 0, where Im denotes the imaginary part of a complex
number.

Substitution of (3.4) into system (3.2) leads to the following eigenproblem:

ψ ′′(z)− a2 ψ(z)− Ra[i ax θ(z) sin φ + θ ′(z) cos φ] = 0, (3.5a)

θ ′′(z)−
[

a2 − iω+ i ax F(z)+ 2 Ra
Pe

sin φ + Ra
Pe

G(z) cos φ
]
θ(z)

+ i ax
2
Pe
ψ(z)+ 1

Pe
G(z) ψ ′(z)= 0, (3.5b)

ψ ′(0)− Ra θ(0) cos φ = θ ′(0)= 0, (3.5c)
ψ ′(1)− Ra θ(1) cos φ = θ ′(1)= 0, (3.5d)

where primes denote derivatives with respect to z. In order to have an eigenvalue
problem with simpler boundary conditions, two new functions are introduced,

f (z)=ψ ′(z)− Ra θ(z) cos φ, h(z)= a θ(z), (3.6a,b)

together with a new parameter γ ∈ [0, 1], defined as

γ = ax

a
. (3.7)

The special cases γ = 0 and γ = 1 lead to longitudinal and transverse rolls,
respectively, while 0< γ < 1 defines the oblique rolls.

Using the new definitions (3.6), the eigenvalue problem can be rewritten as

f ′′(z)− a2 f (z)− Ra [a h(z) cos φ + i γ h′(z) sin φ] = 0, (3.8a)

h′′(z)−
[

a2 − iω+ i γ a F(z)+ 2 Ra
Pe

(1− γ 2) sin φ
]

h(z)

+ 2 i γ
Pe

f ′(z)+ a
Pe

G(z) f (z)= 0, (3.8b)

f (0)= h′(0)= 0, (3.8c)
f (1)= h′(1)= 0. (3.8d)

This problem naturally admits the trivial solution f (z) = h(z) = 0, due to its
homogeneous nature. However, the existing non-trivial solutions are the ones that
are sought. Such solutions can be found only for specific values of Ra and ω, once
(a, γ , φ, Pe) are prescribed.

3.2. Splitting up into two coupled real eigenproblems
In order to analyse oblique and transverse rolls (i.e. γ 6= 0), the eigenfunctions f and
h are rewritten in terms of real and imaginary components:

f (z)= fRe(z)+ i fIm(z), h(z)= hRe(z)+ i hIm(z). (3.9a,b)

Thus, the original system (3.8) is rewritten as

f ′′Re(z)− a2 fRe(z)− Ra [a hRe(z) cos φ − γ h′Im(z) sin φ] = 0, (3.10a)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.394


434 L. A. Sphaier, A. Barletta and M. Celli

f ′′Im(z)− a2 fIm(z)− Ra [a hIm(z) cos φ + γ h′Re(z) sin φ] = 0, (3.10b)

h′′Re(z)−
[

a2 + 2 Ra
Pe

(1− γ 2) sin φ
]

hRe(z)− [ω− γ a F(z)]hIm(z)

− 2 γ
Pe

f ′Im(z)+
a
Pe

G(z) fRe(z)= 0, (3.10c)

h′′Im(z)−
[

a2 + 2 Ra
Pe

(1− γ 2) sin φ
]

hIm(z)+ [ω− γ a F(z)]hRe(z)

+ 2 γ
Pe

f ′Re(z)+
a
Pe

G(z) fIm(z)= 0, (3.10d)

fRe(0)= fIm(0)= h′Re(0)= h′Im(0)= 0, (3.10e)
fRe(1)= fIm(1)= h′Re(1)= h′Im(1)= 0. (3.10f )

System (3.10) should be solved for the real and imaginary parts of f and h, namely
fRe, fIm, hRe and hIm, as well as for the eigenvalues Ra and ω.

4. Integral transform solution of eigenvalue problem
4.1. Integral transform pairs and eigenfunction bases

A solution to the eigenproblem (3.10a–f ) is now developed using the GITT (Cotta
1990, 1993, 1994). The solution process starts with the definition of the following
transformation pairs:

f inverse ⇒ fRe(z)+ i fIm(z)=
∞∑

n=1

f̄ Re
n Ωn(z)

Nn
+ i

∞∑
n=1

f̄ Im
n Ωn(z)

Nn
, (4.1a)

f transform ⇒ f̄ Re
n + i f̄ Im

n =
∫ 1

0
fRe(z)Ωn(z) dz+ i

∫ 1

0
fIm(z)Ωn(z) dz, (4.1b)

h inverse ⇒ hRe(z)+ i hIm(z)=
∞∑

n=0

h̄Re
n Λn(z)

N̂n

+ i
∞∑

n=0

h̄Im
n Λn(z)

N̂n

, (4.1c)

h transform ⇒ h̄Re
n + i h̄Im

n =
∫ 1

0
hRe(z)Λn(z) dz+ i

∫ 1

0
hIm(z)Λn(z) dz, (4.1d)

which have naturally been written with explicit real and imaginary parts. The functions
Ωn and Λn are infinite sets of orthogonal solutions of Sturm–Liouville-type eigenvalue
problems, while Nn and N̂n are the corresponding L 2-norms. For this particular
application, Helmholtz problems that satisfy the same boundary conditions as the
original eigensystem are selected:

Ω ′′n +µ2
nΩn = 0, Ωn(0)=Ωn(1)= 0, (4.2a)

Λ′′n + λ2
nΛn = 0, Λ′n(0)=Λ′n(1)= 0. (4.2b)

These problems yield the following simple solutions:

Ωn = sin(µn z), µn = n π, for n= 1, 2, . . . , (4.3a)
Λn = cos(λn z), λn = n π, for n= 0, 1, 2, . . . , (4.3b)
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where the associated norms are given by

Nn =
∫ 1

0
Ω2

n dz= 1
2
, (4.3c)

N̂n =
∫ 1

0
Λ2

n dz=
{

1 for n= 0,
1
2 for n> 0.

(4.3d)

4.2. Integral transformation
The transformation of the problem is carried out by multiplying (3.10a) and (3.10b)
by Ωn and (3.10c) and (3.10d) by Λn and integrating the resulting equations within
the problem domain. By applying the boundary conditions, substituting the inversion
formulas into the non-transformable terms, and simplifying, one obtains

−µ2
n f̄ Re

n − a2 f̄ Re
n − a Ra cos φ

∞∑
m=0

An,mh̄Re
m + Ra γ sin φ

∞∑
m=0

Rn,mh̄Im
m = 0, (4.4a)

−µ2
n f̄ Im

n − a2 f̄ Im
n − a Ra cos φ

∞∑
m=0

An,mh̄Im
m − Ra γ sin φ

∞∑
m=0

Rn,mh̄Re
m = 0, (4.4b)

−λ2
n h̄Re

n −
[

a2 + 2 Ra
Pe

(1− γ 2) sin φ
]

h̄Re
n −ω h̄Im

n + γ a
∞∑

m=0

Bn,m h̄Im
m

− 2
γ

Pe

∞∑
m=1

Sn,m f̄ Im
m +

a
Pe

∞∑
m=1

Cn,m f̄ Re
m = 0, (4.4c)

−λ2
n h̄Im

n −
[

a2 + 2 Ra
Pe

(1− γ 2) sin φ
]

h̄Im
n +ω h̄Re

n − γ a
∞∑

m=0

Bn,m h̄Re
m

+ 2
γ

Pe

∞∑
m=1

Sn,m f̄ Re
m +

a
Pe

∞∑
m=1

Cn,m f̄ Im
m = 0, (4.4d)

where the involved integral coefficients are given by

An,m = 1

N̂m

∫ 1

0
ΛmΩn dz, (4.5a)

Bn,m = 1

N̂m

∫ 1

0
F(z)ΛmΛn dz, (4.5b)

Cn,m = 1
Nm

∫ 1

0
G(z)ΩmΛn dz, (4.5c)

Sn,m = 1
Nm

∫ 1

0
Ω ′mΛn dz, (4.5d)

Rn,m = 1

N̂m

∫ 1

0
Λ′mΩn dz. (4.5e)

Equations (4.4a,b) are valid for n = 1, 2, . . . , ∞, while (4.4c,d) are valid for
n= 0, 1, . . . ,∞.
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System (4.4) is then truncated to a finite order nmax, and rearranged in a compact
vector form, which is obtained by eliminating the vectors f̄ Re and f̄ Im from the
truncated algebraic system:

−E h̄Re − K h̄Im + Ra
Pe

(
G h̄Re + F h̄Im

)= 0, (4.6a)

−E h̄Im + K h̄Re + Ra
Pe

(
G h̄Im − F h̄Re

)= 0, (4.6b)

where

F = a γ
[
2 cos φ S D A+ sin φ C D−1R

]
, (4.7a)

G= 2 sin φ
[
γ 2 S D R − (1− γ 2) I

]− a2 cos φ C D A, (4.7b)
K = (ω I − γ a B) (4.7c)

and D and E are diagonal matrices given by the following coefficients:

Dn,n = (µ2
n + a2)−1, En,n = (λ2

n + a2). (4.7d)

System (4.6) is a nonlinear eigenvalue problem if Ra is to be calculated in terms
of the remaining parameters, while it is a linear eigenvalue problem if the angular
frequency ω is to be calculated in terms of the remaining parameters. Since the
computation of ω in terms of the other parameters requires considerably less CPU
time, system (4.6) is rewritten in the form

H y=ωM y, (4.8a)

in which H and M are block matrices:

H =

 −E + Ra
Pe

G γ a B+ Ra
Pe

F

−γ a B− Ra
Pe

F −E + Ra
Pe

G

 , M =
(

0 I
−I 0

)
. (4.8b)

The new vector y is defined as

y= (h̄Re
0 , h̄Re

1 , . . . , h̄Re
nmax
, h̄Im

0 , h̄Im
1 , . . . , h̄Im

nmax

)
. (4.9)

System (4.8) constitutes a generalised linear algebraic eigenvalue problem, which is
finally solved numerically using a single run of Mathematica ( c© Wolfram Research)
function Eigenvalues.

4.3. Simplification for large Péclet numbers
The limiting behaviour of F(z) and G(z) for Pe� 1 is such that

lim
Pe→∞

F(z)
Pe
= 1, lim

Pe→∞
G(z)
Pe
= 2 z− 1. (4.10a,b)

Thus, (3.8b) is simplified to yield

h′′(z)− (a2 − iχ)h(z)+ a (2 z− 1) f (z)= 0, (4.11)

where χ =ω− γ a Pe is assumed to be O(1) when Pe→∞.
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With this simplification, the truncated transformed system (4.6) is reduced to

−E h̄Re − χ h̄Im + Ra
(
G+ h̄Re + F+ h̄Im

)= 0, (4.12a)

−E h̄Im + χ h̄Re + Ra
(
G+ h̄Im − F+ h̄Re

)= 0, (4.12b)

where

F+ = a γ sin φ C+ D R, (4.12c)
G+ =−a2 cos φ C+ D A, (4.12d)

and C+ is a matrix generated by the coefficients

C+n,m =
1

Nm

∫ 1

0
(2 z− 1)ΩmΛn dz. (4.13)

Introducing the y vector, as defined by (4.9), equations (4.12) can be written in the
form

H+ y= χ M y, (4.14)

in which H+ is the following block matrix:

H+ =
( −E + Ra G+ Ra F+

−Ra F+ −E + Ra G+

)
. (4.15)

Finally, the solution of system (4.14) is directly obtained by using Mathematica
function Eigenvalues, as similarly employed for solving system (4.8).

4.4. Calculation of Ra and a in terms of ω or χ
The previous sections described how to obtain the angular frequency ω, or its modified
counterpart χ , using a single numerical stage which involves the calculation of matrix
eigenvalues from given values of a and Ra, as well as Pe, φ and γ . Nevertheless, in
order to draw neutral stability curves and to determine critical Rayleigh number values,
an additional step must be incorporated. This involves calculating a and Ra (and ω or
χ as well) from a given configuration, that is, from given Pe, φ and γ values. This
step is carried out by enforcing a condition that the angular frequency must be real,
thus satisfying the neutral stability requirement. This is done by calculating values of
Ra and a that yield Im(ω)= 0. In the Mathematica implementation employed, this is
accomplished by using the FindRoot routine (Newton and secant-type methods) to
find the values of Ra and a that satisfy Im(ω)= 0.

5. Asymptotic solution for a→ 0

Let us expand eigenfunctions f and h, as well as eigenvalues Ra and ω, in powers
of a:

f (z)= f0(z)+ f1(z) a+ f2(z) a2 +O(a3),

h(z)= h0(z)+ h1(z) a+ h2(z) a2 +O(a3),

Ra= Ra0 + Ra1 a+ Ra2 a2 +O(a3),

ω=ω0 +ω1 a+ω2 a2 +O(a3).

 (5.1)
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By keeping only terms of order 0 in a, the eigenproblem (3.8) for arbitrary oblique
rolls yields

f ′′0 (z)− i Ra0 γ h′0(z) sin φ = 0, (5.2a)

h′′0(z)+
[

iω0 − 2 Ra0

Pe
(1− γ 2) sin φ

]
h0(z)+ 2 i γ

Pe
f ′0(z)= 0, (5.2b)

f0(0)= h′0(0)= 0, (5.2c)
f0(1)= h′0(1)= 0. (5.2d)

Thus, we can substitute (5.2a) into (5.2b), differentiated with respect to z, so that we
get

h′′′0 +
(

iω0 − 2 Ra0

Pe
sin φ

)
h′0 = 0, (5.3a)

h′0(0)= h′0(1)= 0. (5.3b)

Equations (5.3) are solved, up to an arbitrary multiplicative constant, by

h0 = cos(n π z)+C, (5.4)

where n= 0, 1, 2, . . . and C is a real constant, provided that the dispersion relation,

n2π2 = iω0 − 2 Ra0

Pe
sin φ, (5.5)

holds. Equation (5.5) allows one to conclude that ω0 = 0 and that

Ra0 cos φ =−Pe
2

n2 π2 cot φ. (5.6)

On account of (5.6), for any buoyancy-opposed basic flow (Ra/Pe< 0) and for any
non-vanishing inclination angle φ, one may conclude that the neutral stability curves
in the (a,Ra cosφ)-plane display an infinite sequence of points at a= 0. The lowest is
Ra cosφ=0, and this proves that even a vanishingly small inclination to the horizontal,
producing a buoyancy-opposed flow, is capable of yielding instability. Higher values
are

Ra cos φ =−Pe π2

2
cot φ,−2 Pe π2 cot φ, . . . . (5.7)

This information is used in the numerical calculation of the higher neutral stability
curves that occur for buoyancy-opposed flow.

6. Results and discussion
In this section, numerical results are presented and discussed. The first data are

displayed for the validation of the hybrid methodology employed to obtain the
solution of the differential eigenvalue problem (3.8). The results obtained with this
methodology are compared with the data computed using a numerical shooting
scheme based on a fourth-order Runge–Kutta (RK4) solver. More details on this
numerical technique can be found in Barletta (2012). Tables 1 and 2, relating to
Pe→∞ and Pe= 50 respectively, display the critical values of the rescaled Rayleigh
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nmax γ = 0 γ = 1
ac Rac cos φ χc ac Rac cos φ χc

φ = 1◦ 10 2.79937 119.208 0.0 2.79985 119.216 0.111986
20 2.80054 119.083 0.0 2.80102 119.092 0.111990
30 2.80066 119.070 0.0 2.80114 119.078 0.111991
40 2.80069 119.066 0.0 2.80117 119.075 0.111991
60 2.80070 119.064 0.0 2.80118 119.073 0.111991
80 2.80071 119.064 0.0 2.80119 119.072 0.111991

100 2.80071 119.064 0.0 2.80119 119.072 0.111991
RK4 2.80071 119.064 0.0 2.80119 119.072 0.111991

φ = 10◦ 10 2.79937 119.208 0.0 2.84823 120.056 1.16252
20 2.80054 119.083 0.0 2.84936 119.928 1.16252
30 2.80066 119.070 0.0 2.84947 119.914 1.16253
40 2.80069 119.066 0.0 2.84950 119.911 1.16253
60 2.80070 119.064 0.0 2.84951 119.909 1.16253
80 2.80071 119.064 0.0 2.84952 119.909 1.16253

100 2.80071 119.064 0.0 2.84952 119.909 1.16253
120 2.80071 119.064 0.0 2.84952 119.908 1.16253
RK4 2.80071 119.064 0.0 2.84952 119.908 1.16253

TABLE 1. Critical Rayleigh number, wavenumber and modified angular frequency for
different truncation orders, for Pe→∞, and different values of φ and γ .

number Ra cos φ, wavenumber a and modified angular frequency χ calculated with
various truncation orders. The results are presented for longitudinal rolls (γ = 0) and
transverse rolls (γ = 1), with reference to inclination angles φ = 1◦, 10◦.

As can be seen from the results, there is perfect agreement between the integral
transform implementation and the solution obtained using the fully numerical RK4-
shooting scheme. All values agree within six significant digits for a truncation order
of 80. However, if four-digit precision is desired, working with nmax= 20 is sufficient,
while 10 terms give an error of less than 1 %.

After examining the convergence behaviour of the solution, the next results are
focused on the stability analysis itself. As mentioned earlier, the effect of the channel
inclination to the horizontal is different depending on the sign of the Péclet number.
On assuming positive values of Ra, a positive Pe yields a buoyancy-assisted flow,
whereas a negative Pe yields a buoyancy-opposed flow. Figure 2 shows neutral stability
curves for longitudinal rolls in the plane (a, Ra cos φ) with different inclination
angles and different Péclet numbers. This figure displays neutral stability curves for
the buoyancy-assisted regime (Pe > 0) including the limiting case with infinite Pe.
As one can observe from these curves, when the Péclet number is very large, the
neutral stability curves reach an asymptotic regime where the onset of convection is
practically independent of the inclination angle. We note that the case with Pe= 500
almost matches that with Pe→∞. Conversely, for smaller values of Pe, the neutral
stability curves move upward as φ increases, thus describing more stable conditions.
When Pe becomes as small as 20, the neutral stability curves assume the shape
of closed loops that shrink in size and, as Pe further decreases, they collapse and
eventually disappear. This phenomenon is first displayed with small inclinations and
then it also appears for larger values of φ. As already observed, the horizontal case,
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nmax γ = 0 γ = 1
ac Rac cos φ χc ac Rac cos φ χc

φ = 1◦ 10 2.93669 128.211 0.0 2.98338 130.535 5.39261
20 2.93783 128.051 0.0 2.98449 130.367 5.38948
30 2.93794 128.034 0.0 2.98460 130.349 5.38912
40 2.93797 128.029 0.0 2.98462 130.345 5.38903
50 2.93798 128.028 0.0 2.98463 130.343 5.38899
60 2.93798 128.027 0.0 2.98464 130.342 5.38898
80 2.93798 128.026 0.0 2.98464 130.342 5.38896

100 2.93799 128.026 0.0 2.98464 130.342 5.38896
120 2.93799 128.026 0.0 2.98464 130.341 5.38896
RK4 2.93799 128.026 0.0 2.98464 130.341 5.38896

φ = 10◦ 10 3.18369 140.360 0.0 3.36006 163.662 10.7841
20 3.18479 140.157 0.0 3.36084 163.345 10.7769
30 3.18489 140.136 0.0 3.36090 163.312 10.7762
40 3.18492 140.130 0.0 3.36091 163.303 10.7760
60 3.18493 140.127 0.0 3.36092 163.299 10.7759
80 3.18493 140.126 0.0 3.36092 163.298 10.7759

100 3.18493 140.126 0.0 3.36092 163.297 10.7759
120 3.18494 140.126 0.0 3.36092 163.297 10.7759
RK4 3.18494 140.126 0.0 3.36092 163.297 10.7759

TABLE 2. Critical Rayleigh number, wavenumber and modified angular frequency for
different truncation orders, for Pe= 50, and different values of φ and γ .

i.e. φ = 0◦, is always the most unstable case. This implies, for the buoyancy-assisted
regime, that horizontal channels are more prone to the development of instability than
their inclined counterparts.

Figure 3 displays neutral stability curves for longitudinal rolls in the plane
(a, Ra cos φ) with different inclination angles and different Péclet numbers, for
the buoyancy-opposed flow regime. With the exception of the horizontal channel,
whose basic state is independent of the flow direction, very different behaviour is
seen in comparison with the buoyancy-assisted flow. The main feature of figure 3
is that the neutral stability curves display their minimum at Ra = 0 and a = 0, as
predicted by the asymptotic analysis for small wavenumbers (see § 5). Moreover,
as predicted by the same analysis, the curves intersect the vertical axis at multiple
positions. Higher branches of neutral stability are also displayed in figure 3.

Figure 4 refers to oblique rolls and displays neutral stability curves in the plane
(a, Ra cos φ) for the case of buoyancy-assisted flow with φ = 5◦ and different values
of γ and Pe. This figure shows that the longitudinal rolls are the most unstable,
as the lowest curves are always those with γ = 0. It is also interesting to note
that, for small inclination angles, the dependence on γ is minor, which is further
reduced for higher values of Pe. In fact, in the limiting situation of an infinite Péclet
number, there is neither dependence on γ nor on the inclination angle. Results
for a null inclination angle are not presented, since the dependence on γ is even
smaller than for φ = 5◦, being noticeable only for smaller values of Pe, as previously
documented in Barletta (2012). Following the previous results, higher inclinations are
now analysed. Figures 5 and 6 display the neutral stability curves relative to oblique
rolls for φ = 15◦ and φ = 30◦, respectively. As one can infer from these figures, the
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FIGURE 2. Buoyancy-assisted flow: neutral stability curves in the plane (a,Ra cosφ) with
different Péclet numbers and inclination angles for longitudinal rolls (γ = 0): (a) Pe=∞,
(b) 500, (c) 100, (d) 50, (e) 25, (f ) 20.

longitudinal rolls are still the most unstable. In contrast to what was discussed for
small inclination angles, the neutral stability curves are much more dependent on
the oblique roll parameter γ when larger inclination angles are considered. If the
inclination is sufficiently high (e.g. 30◦), the curves for larger values of γ move
upwards to such an extent that they are no longer visible within the vertical range of
the plots. As well as this phenomenon, for sufficiently small Péclet numbers, some
neutral stability curves become a closed loop, which shrinks and collapses to a point
as the value of Pe is further reduced, similarly to what happens for longitudinal
rolls when Pe approaches its lowest bound for instability. This means that unstable
oblique rolls with larger values of γ disappear for a sufficiently high inclination. This
occurrence is further intensified as Pe decreases so that, for sufficiently small Péclet
numbers and a sufficiently high channel inclination, there are no unstable transverse
rolls. In order to further clarify what happens with the neutral stability curves for
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FIGURE 3. Buoyancy-opposed flow: neutral stability curves in the plane (a,Ra cosφ) with
different Péclet numbers and inclination angles for longitudinal rolls (γ = 0): (a) Pe =
−500, (b) −100, (c) −50, (d) −25, (e) −10, (f ) −1.

Pe = 500 and φ = 30◦, as γ is increased past 5/8, additional curves for this case
are displayed in figure 7. As can be seen from this figure, the point on the curve
for γ = 5/8 near a = 6 and Ra cos(φ) = 600 rapidly moves upwards, splitting the
curves in two parts, as γ is increased from 5/8 to 3/4. The split occurs just after
γ = 21/32; for γ = 169/256 the curve is already separated into two branches. As γ
is further increased the left branch of neutral stability shrinks and moves upwards at
a higher rate than the branch on the right, until it ceases to exist, as was observed
in figure 6 for γ = 7/8.

Figure 8 displays neutral stability curves for oblique rolls, ranging from longitudinal
(γ = 0) to transverse (γ = 1), under different channel inclination angles for cases of
buoyancy-opposed flow. This figure shows data for a channel inclination angle φ= 5◦.
As one can infer from the plots, for most of the wavenumber range presented there
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FIGURE 4. (Colour online) Buoyancy-assisted flow: neutral stability curves in the plane
(a, Ra cos φ) with different Péclet numbers and values of γ for φ = 5◦: (a) Pe = 500,
(b) 100, (c) 50, (d) 25.

is a small variation in the curves with γ , especially for larger values of the Péclet
number, which was similarly observed for buoyancy-assisted flows. However, as
smaller values of a are involved (i.e. near zero), a notable difference between the
curves is seen, where curves with higher γ values move above the local maximum
that occurs in the range 0 < a < 1. This behaviour is observed for the cases with
Pe = −500, −100 and −50. In the case Pe = −25, there is no local maximum as
the neutral stability curves for all values of γ are separated into two disconnected
branches. As already pointed out in relation to the previous figures, figure 8 confirms
that longitudinal rolls are more unstable than oblique and transverse rolls.

Figures 9 and 10 show similar results for 15◦ and 30◦, respectively. In these higher
channel inclination angles, there is a larger difference between curves with different
values of γ throughout the wavenumber spectrum, again with the minimum for a given
value of a occurring for γ = 0. For cases where γ is sufficiently large, the curves
again separate into two regions, where the one to the right assumes the shape of an
inverted C or becomes a closed loop. Although this can easily be seen for Pe=−25
and φ= 15◦, it occurs also in other instances. Most of them are not displayed in these
figures as it would require much larger vertical and horizontal scales.

By performing an overall view of figures 8–10, a few additional points can be
highlighted. The portion of the neutral stability curves that connects the two intercepts
with the vertical axis is a perfect straight line for transverse rolls, which can be seen in
all of the previous figures. Regardless of this, transverse rolls can also lead to a closed
region on the right. With respect to the closed detached region on the right, one can
also see that curves for a given value of γ are always enclosed by curves with smaller
γ . For some situations, as the Péclet number decreases or the inclination increases, the
closed portion of the curve on the right collapses and eventually disappears.

In figure 11, the behaviour of the critical Rayleigh number versus the Péclet
number is displayed. Obviously, only the results for buoyancy-assisted flow are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.394


444 L. A. Sphaier, A. Barletta and M. Celli

200

400

600

800

1000

200

400

600

800

1000

200

400

600

800

1000

200

400

600

800

1000

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

(a) (b)

(c) (d )

a a

FIGURE 5. (Colour online) Buoyancy-assisted flow: neutral stability curves in the plane
(a, Ra cos φ) with different Péclet numbers and values of γ for φ = 15◦: (a) Pe = 500,
(b) 100, (c) 50, (d) 25.

displayed, as the buoyancy-opposed flow regime leads to Rac = 0 for all cases
with a finite Péclet number. The results confirm the previous observations about the
existence of a minimum Péclet number value that may lead to instability. This effect
was demonstrated in Barletta (2012), for a horizontal channel, and it is corroborated
here for φ = 0◦. In fact, the case with φ = 0◦ yields the lowest Pe compatible with
the onset of convective instability. As the channel inclination increases, the lowest
unstable Pe becomes higher, reflecting the fact that increasing the inclination of the
channel has a stabilising effect on the flow.

7. Summary and conclusions
A linear stability analysis of the mixed convection in a porous channel inclined to

the horizontal was carried out. Both channel walls were assumed to be impermeable
and uniformly heated or cooled by a uniform flux. The stability of the basic stationary
and parallel flow was tested in a traditional way, by perturbing the basic solution
with small-amplitude plane waves propagating along an arbitrary direction parallel to
the bounding walls. This formulation led to a complex differential eigenvalue problem
where the perturbation amplitudes were the desired eigenfunctions, and where the
Rayleigh number, Ra, the wavenumber, a, and the angular frequency, ω, were the
eigenvalues. The computation was performed for different Péclet numbers, Pe, channel
inclinations to the horizontal, φ, and disturbance wavevector orientations, defined by
the parameter γ . A symmetry of the basic solution was determined, allowing the
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FIGURE 6. (Colour online) Buoyancy-assisted flow: neutral stability curves in the plane
(a, Ra cos φ) with different Péclet numbers and values of γ for φ = 30◦: (a) Pe = 500,
(b) 100, (c) 50, (d) 25.
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FIGURE 7. (Colour online) Buoyancy-opposed flow: neutral stability curves in the plane
(a, Ra cos φ) with Pe= 500 and φ = 30◦ and different values of γ .

analysis to be focused on cases where Ra > 0 and φ ∈ [0◦, 90◦], with a negative or
positive Pe.

The stability eigenvalue problem was solved by means of the GITT framework,
namely a hybrid analytical–numerical method. By employing the GITT, the differential
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FIGURE 8. (Colour online) Buoyancy-opposed flow: neutral stability curves in the plane
(a, Ra cos φ) with different Péclet numbers and values of γ for φ = 5◦: (a) Pe = −500,
(b) −100, (c) −50, (d) −25.
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FIGURE 9. (Colour online) Buoyancy-opposed flow: neutral stability curves in the plane
(a, Ra cos φ) with different Péclet numbers and values of γ for φ = 15◦: (a) Pe=−500,
(b) −100, (c) −50, (d) −25.
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FIGURE 10. (Colour online) Buoyancy-assisted flow: neutral stability curves in the plane
(a, Ra cos φ) with different Péclet numbers and values of γ for φ = 30◦: (a) Pe=−500,
(b) −100, (c) −50, (d) −25.

eigenproblem was transformed into an algebraic eigenvalue problem, which was
solved numerically using a matrix eigenvalue calculation routine. Since this problem
is nonlinear in Ra and a, but linear in the angular frequency ω, this computational
algorithm was applied such that ω could be calculated from any combination of
input data (a, Ra, Pe, γ , φ). Then, by constraining the imaginary part of ω to
be zero, the neutral stability curves in the plane (a, Ra cos φ) were determined.
Compared to traditional numerical methods (e.g. Runge–Kutta) for the calculation of
the eigenvalues involved in the stability analysis, the methodology presented herein
has the advantage of computing multiple eigenvalues at the same time. Furthermore,
the semi-analytical nature of the integral transform methodology allows very efficient
control of the global solution error. In addition, it is important to emphasise that the
solution algorithm can be quickly modified to solve other eigenvalue problems that
arise in stability analysis. The main changes would be different expressions for the
integral coefficients and a different form for the block matrices that appear in the
generalised algebraic eigenvalue problem (equations (4.14)).

The methodology was verified by performing a convergence analysis of the solution,
and a comparison with a fully numerical solution based on the Runge–Kutta method
and the shooting method. We have shown that a 1 % error can be ensured with
10 terms in the truncated series and four-digit precision can be obtained if the
truncation is raised to 20 terms. All figures were plotted using 20 terms in the series
to ensure graphical convergence for the presented results. As well as this verification,
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FIGURE 11. Critical Rayleigh number, Rac, versus Pe with different inclination angles for:
(a) longitudinal (γ = 0), (b) oblique (γ = 1/3), (c) oblique (2/3) and (d) transverse (γ = 1)
rolls in buoyancy-assisted flow.

an asymptotic analysis for small wavenumbers showed that there can be multiple
intercepts at a= 0 for the buoyancy-opposed regime, where Pe< 0.

Neutral stability curves were analysed for different channel inclination angles and
different Péclet numbers, as well as for longitudinal, oblique and transverse rolls.
The results have been presented for two distinct types of flow: the buoyancy-assisted
regime (positive Pe), in which the buoyancy force has a component in the direction
of the through-flow, and a buoyancy-opposed regime (negative Pe), in which the same
force has a component opposing the through-flow. These two regimes naturally have
no meaning when the channel is perfectly horizontal, but also when Pe approaches
infinity, as the magnitude of the buoyant component in the flow direction has no
effect on the forced convection flow. For finite Péclet numbers, the buoyancy-assisted
regime was shown to have a stabilising effect on the flow, which is greater as the
channel inclination increases. In this regime, higher critical Rayleigh numbers are
required for the onset of convective instability when larger inclination angles are
present. There exists a minimum Péclet number required to achieve an instability of
the basic flow. This feature was previously documented for horizontal channels. The
current work showed that this minimum value increases with the channel inclination
angle, φ.

While the buoyancy-assisted basic flow becomes more and more stable as φ

increases, the buoyancy-opposed flow is always unstable, as the neutral stability
curves have their minimum at Ra = 0 with a→ 0. This feature has an important
implication for the design of experiments dealing with horizontal channels. In fact,
even a minimal systematic error in setting the horizontal may cause an undesired
buoyancy-opposed configuration with a completely altered transition to instability,
even with extremely small Rayleigh numbers.
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The analysis of stability carried out under the assumption of a perfectly horizontal
channel leads to the conclusion that instability takes place if Ra exceeds its critical
value, which depends on Pe and which cannot be smaller than 119.064 (Barletta
2012). Relaxing the assumption of a perfectly horizontal channel implies that even
a vanishingly small inclination could be sufficient for the onset of instability for
every value of Ra, however small. This conclusion casts new light on the linear
stability analysis of a base flow. In fact, the linear stability analysis is usually based
on the idea of perturbing the initial conditions while the boundary conditions and
the geometrical layout of the system are kept constrained. However, in an actual
experimental set-up, nothing is perfectly constrained. Hence, prediction of the effects
of small, possibly random, perturbations of the initial conditions, but also of the
boundary conditions and of the geometrical layout, is definitely important. This kind
of analysis represents an essential extension of the usual scope of a linear stability
analysis. The result described above is just an example of a fresh view which can be
extended to a plethora of different cases.
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