
J. Fluid Mech. (2015), vol. 764, pp. 445–462. c© Cambridge University Press 2015
doi:10.1017/jfm.2014.702

445

The asymptotics of the moving contact line:
cracking an old nut
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For contact line motion where the full Stokes flow equations hold, full matched
asymptotic solutions using slip models have been obtained for droplet spreading and
more general geometries. These solutions to the singular perturbation problem in
the slip length, however, all involve matching through an intermediate region that is
taken to be separate from the outer–inner regions. Here, we show that the intermediate
region is in fact an overlap region representing extensions of both the outer and the
inner region, allowing direct matching to proceed. In particular, we investigate in
detail how a previously seen result of the matching of the cubes of the free surface
slope is justified in the lubrication setting. We also extend this two-region direct
matching to the more general Stokes flow case, offering a new perspective on the
asymptotics of the moving contact line problem.

Key words: interfacial flows (free surface), low-Reynolds-number flows, mathematical
foundations

1. Introduction
The moving contact line problem arises from the modelling of a system where

two immiscible phases move along a solid substrate using a classical hydrodynamic
description with a no-slip boundary condition on the substrate (Huh & Scriven 1971).
To regularise the divergent dissipation predicted by this classical description, a wide
range of possible models capturing various physical effects have been considered (see
e.g. Bonn et al. 2009; Snoeijer & Andreotti 2013; Sibley et al. 2014; Sui, Ding &
Spelt 2014).

One such model introduced is that of Navier slip, and in this case the moving
contact line is a singular perturbation problem. In regions away from the contact
line, the flow behaviour is solved at leading order satisfying the no-slip boundary
condition, whereas in an inner region of O(λ), where λ is the non-dimensional slip
length, a slip boundary layer is invoked. To make the equations tractable, the contact
line motion is assumed to be slow and thus there is a second, regular, perturbation
in terms of Ca, which is either the capillary number or a quantity closely related
to it. Thus the problem is solved for λ � Ca � 1, where (anticipating the result)
|Ca ln λ|=O(1). However, the outer and inner region solutions diverge logarithmically,
with inconsistent prefactors for the logarithmic terms. It is therefore concluded that
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a direct matching procedure is not possible and an intermediate region is introduced,
which is matched to both the outer and the inner region solutions (see e.g. the recent
review of Snoeijer & Andreotti (2013)).

In this work, we show that it is the interplay between the two expansion parameters
λ and Ca that leads to a breakdown of the formulations for the outer and inner regions.
In contrast, rearranging the Ca ordering of the inner and outer region approximations
leads to a textbook matched asymptotic procedure, with leading order (in λ) solutions
from both outer and inner regions being directly matched in an appropriate overlap
region. In order to obtain the functional form of the outer and inner region solutions
in the overlap region, one further condition is needed. We show, for both Stokes flow
and flow in the lubrication approximation, that this condition corresponds with the
intermediate region equation derived in previous work, which we shall discuss briefly.

A matched asymptotic description for the spreading of a thin droplet was
determined by Hocking (1983), employing an intermediate region. A similar procedure
to that of Hocking was considered by Eggers (2005) for a forced wetting situation,
where the lubrication approximation was again made and a plate being driven into a
liquid bath at constant speed. Eggers, however, directly matched the cube of the free
surface slope between outer and inner regions without invoking an intermediate region.
Here we give a justification as to why the direct matching procedure works. Whilst
the work of Hocking (1983) concentrated on spreading (i.e. advancing contact lines),
the analysis holds also for receding drops for certain values of (now negative) Ca,
as demonstrated in Savva & Kalliadasis (2009) with comparisons to full numerical
solutions. The work of Eggers (2005) explicitly discussed receding (dewetting) contact
line motion, finding a maximum (critical) value of |Ca| for which the analysis holds –
but with no similar restriction for the advancing case. The existence of a critical |Ca|
for receding contact lines ties with the physical picture that above a certain velocity
the contact line is no longer able to remain pinned to the substrate, and rather a film
of fluid is deposited.

The aforementioned work of Savva & Kalliadasis (2009) extended the work
of Hocking (1983) for spreading on ideally homogeneous surfaces to rough
(topographical) substrates, where it was also noticed that the asymptotic matching
procedure could be performed directly between outer and inner regions through
matching of the cube of the free surface slope, with the purpose of the intermediate
region to justify this procedure. This direct matching procedure has since been used
to simplify the asymptotic description when considering other physical effects such
as gravity (Savva & Kalliadasis 2012), chemical heterogeneities (Vellingiri, Savva &
Kalliadasis 2011) and using other models in the thin-film setting (Sibley, Savva &
Kalliadasis 2012; Sibley et al. 2014).

It appeared as though it was the specific structure of the solutions for the free
surface slope in these lubrication problems that allowed for the direct matching of
the cubes between outer and inner regions. Here we see that indeed this is the case,
but that it is a specific structure of terms not only in the first two orders of Ca, used
in all previous contact line studies, but effectively of the infinite series of the solutions
in Ca.

Similar to the three-region matching procedure in the lubrication approximation
of Hocking (1983), the Stokes flow problem has been considered by Hocking &
Rivers (1982) for droplets, and later by Cox (1986) for the general motion of a
contact line on a homogeneous surface. Both of these works perform the asymptotic
matching with three regions. Similar results to these were also obtained by Voinov
(1976). The solution for the Stokes flow problem has proven to be the cornerstone
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in the modelling of contact line motion, but the details of the intermediate solution
are relatively complicated, and thus have probably posed an obstacle in the full
understanding and further generalisation of the results for the moving contact line
problem. Through this work we develop a direct matching procedure for the Stokes
flow problem where the cube of the slope in the thin-film setting is a special case of a
general function we derive, thus offering a reinterpretation of the matched asymptotic
analysis, in particular of the so-called intermediate region.

In the following we first derive the principal result of this work in § 2. This
principal result is the ability to directly match between outer and inner regions.
Whilst we discuss the results in the example case of Navier slip, we make no specific
assumptions about the physics of the inner region other than that surface tension and
viscous effects are included, and where microscopic effects may be neglected as we
leave the inner region, moving away from the contact line. Following § 2, we then
consider the specific cases of thin-film and full Stokes flow droplet spreading with
slip in §§ 3 and 4, analysing why the matching of the cube of the free surface slope
is appropriate in the lubrication approximation and how an appropriate generalisation
of this works for the full Stokes flow situation. Finally, we give conclusions in § 5,
including a discussion on the applicability of our results for positive and negative Ca
(for advancing and receding contact lines, respectively), and applicability for other
contact line models including more complex physics.

2. The principal result
Our principal result is that matching between outer and inner regions may proceed

directly for moving contact line problems. There is an overlap region; however,
formulating the solutions as a regular perturbation in Ca and only retaining a finite
number of terms (as is commonly done) leads to the breakdown of this overlap region.
Regrouping the series of solutions by isolating the terms that cause this breakdown,
and thus incorporating this infinite series of non-negligible terms into our solution,
allows the overlap region to be retained.

To provide a guide to the asymptotic regions and procedure, we show in figure 1
a comparison between full numerical and asymptotic solutions of the forced wetting
problem in the thin-film regime (for more details, see § 3.1 and appendix A). In
particular, in figure 1(a) we show the extent of applicability of outer and inner
regions (calculated analytically), and how the overlap breaks down when the Ca series
of solutions is truncated. As a greater number of terms in the Ca perturbation are
retained, the extent of the breakdown of the overlap region reduces. In figure 1(b) we
again compare the analytic outer region solutions, but to the full (infinite order in Ca)
numerical inner region solution, computed with a cut-off at a distance x/λ= L. Three
full numerical inner region solutions are shown due to the numerical implementation
in the finite domain x/λ= [0, L], where L→∞ (more details in appendix A). Even
when having solutions only up to (and including) O(Ca2) in the outer solution, one
can observe the overlap between outer and inner regions.

In all problems for slow motion of contact lines, including the thin-film and Stokes
regimes discussed in Hocking & Rivers (1982), Hocking (1983), Cox (1986) and
Eggers (2005), the behaviour of the free surface slope in outer (slip is negligible)
and inner (slip is significant) regions can be written in a general form as

h′out(x)∼ θout +Ca[ f (θout) ln x+Cout] +O(λ, x,Ca2,Ca x ln x), as x→ 0, (2.1a)

h′in(x)∼ θin +Ca
[

f (θin) ln
x
λ
+Cin

]
+O

(
λ,Ca2,

λCa
x

ln
x
λ

)
, as

x
λ
→∞. (2.1b)
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FIGURE 1. (Colour online) Comparison of full numerical and asymptotic solutions of
the forced wetting problem in the thin-film regime. The figure is plotted for parameters
λ= 10−5 and Ca= 0.3, such as defined in § 3.1, with the apparent (rescaled) contact angle
calculated as θout = 2.38. (a) The convergence of outer and inner asymptotic solutions
to the full solution, with the first three orders in Ca given, and where the black solid
line represents the full numerical solution of (3.1). The dashed and dash-dotted lines
represent different levels of the expansion of the outer and inner solution in terms of
Ca, respectively. Progressively longer dashes for the lines in both regions correspond to
the leading-, first- and second-order solutions in Ca. (b) The overlap between outer and
inner regions. Here the outer region solutions from (a) are repeated, but compared to full
(infinite order in Ca) numerical inner region solutions. Three of these numerical solutions
are shown as grey solid lines (green online) to see numerical convergence due to the
numerical implementation in a finite domain x/λ= [0, L], where L→∞ (more details are
given in appendix A). The black dotted line is the intermediate solution of the problem,
which shows the limiting behaviour of outer and inner regions as they extend to 0 and
∞, respectively.

Here h′ denotes the slope of the free surface, the spatial variable has been denoted x,
with x = 0 being the location of the contact line (and taken to be x > 0), and λ�
Ca� 1, where Ca represents the spreading rate or capillary number, and λ is the slip
length. The unspecified parameters {θout, θin,Cout,Cin} and the function f are different
for each specific situation being considered, but could depend on quantities such as the
viscosity ratio of the fluids in contact or the droplet radius (if a droplet is considered).

The observation is usually made that in (2.1) the logarithmic terms in x do not
match, because of the different prefactors f (θout) and f (θin), with two different
corollaries offered. Either, as these terms do not match, an intermediate region must
be necessary to bridge the solutions (see also Hocking & Rivers 1982; Hocking
1983 and Cox 1986); or, as these terms do not match, the appropriate variable for
matching is not h′, but there may be a different variable that can directly match (in
the thin-film situation, this being identified as h′3; see also Eggers (2005) and Savva
& Kalliadasis (2009)). As we will see, whilst these both work, neither gives the full
story.

The critical feature of the expansions (2.1) to understand is that it is a two-
parameter expansion in λ and then Ca. All of the terms retained throughout this
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work are at leading order in the singular perturbation of λ, hence corrections of O(λ).
In (2.1), two orders in the Ca perturbation, O(Ca0) and O(Ca1), have been retained,
with terms of O(Ca2) neglected. When x takes values that are within the regions of
applicability of (2.1), and when also Ca ln x and Ca ln(x/λ) are genuinely small, the
Ca ordering of the terms in (2.1) is satisfied. Essentially, the region of validity of the
outer and inner regions, if the Ca series is truncated, is limited by

|Ca ln x| � 1 ⇒ x� e−1/|Ca| and |Ca ln(x/λ)| � 1 ⇒ x� λe1/|Ca|,(2.2a,b)

respectively. Thus, there is only an overlap between outer and inner regions in this
truncated scenario if |Ca ln λ| � 2.

The difficulties arise when this condition is not satisfied. In this case, as x→ 0
from the outer region, terms of O(|Ca ln x|) become O(1) before the region of
validity of the inner region expansion is approached. The same holds for terms
of O(|Ca ln (x/λ)|) for x/λ → ∞, coming from the inner region. This means that
neglecting terms of O(Ca2) in the expansions (2.1) is not possible if terms such as
(Ca ln x)2 occur (which they do), and indeed terms of (Ca ln x)n for any positive integer
n may not be neglected. Let us define an overlap region where |Ca ln x| =O(1). Using
this, we thus return to the outer expansion (2.1a), and instead consider an expansion
of the form

h′out(x)∼
∞∑

n=0

an(Ca ln x)n +Ca
∞∑

n=0

bn(Ca ln x)n +O(Ca2, x,Ca x ln x, λ), as x→ 0,

(2.3)

where we retain the first two summations in an expansion in Ca. Here two terms have
been retained, as this is related to the order of accuracy we wish to obtain in our final
result, achieving a correction of O(Ca2).

In our context, considering (2.3) as an extension of (2.1a) we thus have

h′out(x) ∼ θout +Ca[ f (θout) ln x+Cout] +
∞∑

n=2

an(Ca ln x)n

+
∞∑

n=1

Ca bn(Ca ln x)n +O(Ca2, x,Ca x ln x, λ), as x→ 0, (2.4)

where now all of the neglected terms will always be negligible in comparison to those
retained (for λ� x� 1). We may now rewrite expansion (2.4) in terms of the variable

z=Ca ln x, (2.5)
which is an O(1) quantity in the overlap region, and where we collect terms to
obtain

h′out(z)∼ T0(z)+Ca T1(z)+O(Ca2, ez/Ca, z ez/Ca, λ), as x→ 0, (2.6a)

where

T0(z)= θout + f (θout)z+
∞∑

n=2

anzn, T1(z)=Cout +
∞∑

n=1

bnzn. (2.6b,c)

In order to obtain forms of T0(z) and T1(z), additional information is needed. Either
all non-negligible terms in (2.4) are determined through, for example, an iterative
procedure to find solutions at higher orders of Ca, or they are obtained via a method
described in the remainder of this section.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.702


450 D. N. Sibley, A. Nold and S. Kalliadasis

As suggested by the behaviour of dzh′out in (2.6), we determine a condition to hold
for the overlap region of

x
Ca

dh′

dx
= f (h′)+O

(
Ca2; x

Ca
, x ln x; λ

x
ln

x
λ

)
. (2.7)

This equation corresponds to the physical balance of viscous and surface tension
effects, defining the mesoscopic hydrodynamic regime such as described by Snoeijer
& Andreotti (2013). We may motivate the expression as these contributions affect
the free surface through the normal stress boundary condition, which leads to (2.7)
in this context. We must, however, verify that (2.7) indeed holds for each individual
contact line geometry/case separately.

As we show in the following sections, (2.7) is equivalent to the intermediate region
equations found in the literature. Here, instead, we note that it holds for both outer and
inner regions, and throughout their overlap. By considering the left-hand side, which
corresponds to any of

dh′

dz
= x

Ca
dh′out

dx
= (x/λ)

Ca
dh′in

d(x/λ)
, (2.8)

we see that the terms retained in (2.7) are of comparable order, and the quantities
neglected are small in both the outer region as x→ 0 and the inner region as (x/λ)→
∞. We conclude that (2.7) describes the limiting behaviour of both outer and inner
region equations, and consequently it describes the limiting behaviour of both h′in and
h′out. We hence see that what is usually known as the intermediate region is in fact an
overlap region and that the apparent breakdown of the outer and inner region solutions
is an artifact due to the two-parameter expansion in the slip length λ and the non-
dimensional contact line speed Ca. For the outer region slope, (2.7) is

dh′out

dz
= f (h′out)+O(Ca2,Ca−1ez/Ca), (2.9)

where the other correction O(z ez/CaCa−1) is no longer included as |z| = O(1). Let
us now obtain the limiting behaviour of the outer solution by solving (2.9) with a
boundary condition suggested by (2.6) at |z0| =O(Ca2), z0 < 0, of

h′out(z0)= θout +Ca Cout +O(Ca2). (2.10)

Let us now use (2.6) in (2.9), giving

dzT0(z)= f (T0(z)), dzT1(z)= f ′(T0(z))T1(z), (2.11a,b)

where we note that these expressions now contain all terms (Ca ln x)n and Ca(Ca ln x)n
as they are assembled in T0, and T1. This thus means that, through solving (2.11), we
are able to determine the sum of the prefactors of all terms (Ca ln x)n and Ca(Ca ln x)n.
The leading order of (2.11) may be solved to find

T0(z)=G−1(z+ Ac), where G(T0)=
∫ T0

0

1
f (a)

da, (2.12)

where Ac is a constant of integration. The next-to-leading-order equation is then

T1(z)= Bc f (T0(z))= Bc f (G−1(z+ Ac)), (2.13)
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such that

h′out ∼ G−1(z+ Ac)+Ca Bc f (G−1(z+ Ac))+O(Ca2, λ, ez/Ca)

∼ G−1(z+ Ac +Ca Bc)+O(Ca2, λ, ez/Ca), (2.14)

given that the Ca ordering of (2.6) holds and employing (2.12), noting in general
that (G−1)′(a) = 1/[G′(G−1(a))], so that here (G−1)′(T) = f (G−1(T)). By enforcing
boundary condition (2.10) we thus determine Ac = G(θout) and Bc = Cout/f (θout). The
full asymptotic behaviour of the outer solution as x→ 0 is then

h′out ∼G−1

(
Ca ln x+G(θout)+Ca

Cout

f (θout)

)
+O(Ca2, λ, x). (2.15)

Crucially, an analogous procedure can be applied to the limiting behaviour of the inner
region, such that

h′in ∼G−1

(
Ca ln

( x
λ

)
+G(θin)+Ca

Cin

f (θin)

)
+O

(
Ca2, λ,

λ

x

)
. (2.16)

2.1. The principal result of overlap and direct matching
Comparing (2.15) and (2.16), it can now be seen that the outer and inner solutions
coincide in the full overlap region, with matching through

lim
x/λ→∞

h′in = lim
x→0

h′out, (2.17)

giving the result

G(θout)−G(θin)=Ca
[
−ln λ+ Cin

f (θin)
− Cout

f (θout)

]
+O(Ca2), (2.18)

and being the same result as the matched asymptotic derivations for Stokes and thin-
film problems discussed in the introduction, which employ a separate intermediate
region. We note that Ca in (2.18) may be positive or negative depending on whether
advancing or receding flows are considered, respectively, but that for the receding
flows the result holds only up to a critical value of |Ca| when it is negative. This is
because the validity of (2.18) depends on (2.7), which will hold only up to this critical
value of |Ca| for receding flows. Further discussion will be given in the conclusions
in § 5.

2.2. Corollary of the direct matching
Now that we have justified the direct matching procedure provided that (2.7) holds, we
see that the generalisation of ‘matching the cube of the free surface slope’ corresponds
in fact to matching G(h′). Thus we may apply G onto the expansion (2.1)

G(h′out)=
∫ θout+Ca[ f (θout) ln x+Cout]+···

0

dA
f (A)
∼G(θout)+Ca

[
ln x+ Cout

f (θout)

]
+O(Ca2),

(2.19)
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G(h′in)=
∫ θin+Ca[ f (θin) ln(x/λ)+Cin]+···

0

dA
f (A)
∼G(θin)+Ca

[
ln

x
λ
+ Cin

f (θin)

]
+O(Ca2),

(2.20)

where it is now seen that the logarithmic terms in x match (which we knew by
construction), and matching the remaining terms gives the result (2.18). In the
following, we show that the intermediate region equations derived in the literature to
solve moving contact line problems are in fact equivalent to (2.7).

3. Thin-film cases

The situation that motivated the present work was that of the spreading of a thin
two-dimensional droplet, as it was shown that matching could be performed on
the cube of the free surface slope (Savva & Kalliadasis 2009). Additionally, direct
matching was also performed between outer and inner regions with this cube in the
work of Eggers (2005) on forced wetting, as discussed in the introduction. In the
following we will show that the intermediate region equations are indeed equivalent
to (2.7), hence allowing for an overlap region and the direct matching of the previous
section to be employed.

3.1. Forced wetting
Consider the case of forced wetting where solid substrate is plunged into a liquid
bath at small plate angles, as studied, for example, by Eggers (2005). We consider the
typical length scale to be the capillary length L =√σ/(ρg), with the Bond number
then ρgL2/σ =1, and a small ratio of vertical to longitudinal length scale ε=H/L= θe,
set to be the equilibrium contact angle θe� 1. The evolution equation for the height
h then transforms to

− Ca
h2 + λh = h′′′ − h′ + θ, (3.1)

where, for simplicity, we have set the dimensionless slip length to λ = 3λdim/L, the
capillary number to 3(Uµ/σ)/θ 3

e , and θ represents the normalised plate angle. A
rescaling with λ leads to the inner region behaviour

h′in(x)∼ 1+Ca
[
ln
( x
λ

)
+ 1
]
+O(Ca2), as

x
λ
→∞, (3.2)

which corresponds to (2.1b), with θin =Cin = 1. The outer region behaviour is known
to be

h′out = θout +Ca θ−2
out [ln x+C] +O(x,Ca2), as x→ 0, (3.3)

where C depends on θout and is given explicitly in Eggers (2005). Let us now
consider what is known in the literature as the intermediate region (although Eggers
(2005) did not consider this in his work). This is obtained by defining intermediate
variables, being equivalent to those used in other situations by Hocking & Rivers
(1982), Hocking (1983) and Cox (1986), as

S(z)= h(x)/x, z=Ca ln x, (3.4)
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such that (3.1) transforms to

1= S[S+ λ e−z/Ca]
[

S′ −Ca2S′′′ + e2z/Ca

Ca
(S− θ +Ca S′)

]
. (3.5)

We can reduce this equation to one more closely resembling (2.7) provided S′′′=O(S′).
The restriction S′′′ = O(S′) holds for advancing contact lines where Ca > 0, but for
receding cases above a critical value of |Ca| it breaks down. This manifests itself here
as above the critical value the matching behaviour of the inner region gives a constant
curvature, with h ∼ x2/λ then. In the variables of (3.4) this suggests S ∼ λ−1ez/Ca,
and hence we may not neglect the term involving the third derivative – given it has
leading-order behaviour S′′′ ∼Ca−2S′.

Additionally, above the critical value, the breakdown of assumption S′′′=O(S′) also
corresponds to the collapse of expansion (2.1b) in the inner region as the result of an
additional correction term x/λ, and our direct matching procedure of § 2 only applies
when expansions (2.1) hold. Considering now the regime below the critical value for
Ca< 0, and for Ca> 0, (3.5) simplifies to

1= S2S′ +O
(

Ca2, λ,
e2z/Ca

Ca

)
, (3.6)

or

S′(z)= ftf (S)+O
(

Ca2, λ,
e2z/Ca

Ca

)
with ftf (S)= 1

S2
, (3.7)

noting that as x= ez/Ca� 1 the neglected exponential terms are indeed small (i.e. for
Ca> 0, z< 0 in this region). Continuing in the regimes where (3.7) holds, from (3.4)
we have that

dh
dx
= S+Ca S′ and thus

d
dz

(
dh
dx

)
= S′ +Ca S′′, (3.8)

and using (3.7) and S′′(z)= f ′tf (S)S
′ +O(Ca2, λ,Ca−1e2z/Ca) then

d
dz

(
dh
dx

)
= ftf (S)+Ca f ′tf (S)S

′ +O(Ca2, λ,Ca−1e2z/Ca)

= ftf (S+Ca S′)+O(Ca2, λ,Ca−1e2z/Ca)

= ftf

(
dh
dx

)
+O

(
Ca2, λ,

e2z/Ca

Ca

)
, (3.9)

which is equivalent to (2.7). Thus, if similar intermediate regions are shown to be of
the form (3.7) with an O(Ca2) correction, then this is equivalent to having (2.7) hold.
By contrast, if there is an O(Ca) correction in an equation such as (3.7) formulated in
an intermediate region, then (2.7) will hold only up to O(Ca), and thus the final result
(2.18) only holds for coefficients O(1) and O(Ca ln λ) (but not including O(Ca)). We
conclude that in the thin-film case, the map G is defined by

Gtf (h′)=
∫ h′

0

1
ftf (a)

da= h′3

3
, (3.10)

giving a clear indication as to why matching the cube of the free surface slope is the
correct procedure in this case. In figure 1, a comparison of numerical and asymptotic
results is shown.
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3.2. Thin-film droplet spreading/receding
Analysis of thin-film droplet spreading was performed by Hocking (1983) on
homogeneous substrates, but has been extended to consider a range of different
complicating physics such as gravity (Savva & Kalliadasis 2012), chemical and
substrate heterogeneities (Savva & Kalliadasis 2009; Vellingiri et al. 2011). We
will briefly revisit symmetric two-dimensional spreading/receding on a homogeneous
surface with negligible gravitational effects to see how direct matching proceeds.

In the inner region the behaviour is the same as given for the forced wetting case
in (3.2), but with Ca= ȧ (ȧ being the spreading/receding rate of the droplet, and a(t)
the location of the contact line), and x= a− x̂, where x̂ is the spatial coordinate along
the substrate. The intermediate region equation given in equation (3.19) of Hocking
(1983) and similarly in equation (52) of Savva & Kalliadasis (2009) corresponds to the
intermediate region equation in the forced wetting case (3.7), which we have already
shown to be equivalent to the overlap condition (2.7) here. In the outer region, where
slip is negligible, it is possible to find the behaviour in a quasi-static expansion (λ�
|ȧ|� 1) for the first three orders (following the analysis of Sibley et al. (2012)). We
find as x̂→ a that

−∂h
∂ x̂
∼ 3

a2
+ ȧa4

9
ln
[

e3x
2a

]
− a10ȧ2

243

{
(ln x)2 − 2 ln

[
2a
e3

]
ln x+O(1)

}
. (3.11)

Here then θout=3a−2, ftf (θ)= θ−2, Cout=a4 ln[e3/(2a)]/9. Thus, we have Gtf (θ)= θ 3/3,
and the matching condition (2.18) then corresponds to 3ȧa6 ln[λ e2/(2a)] = a6 − 27.

3.3. Dewetting corner tip
A further case related to droplet motion of interest to discuss is that of the behaviour
of the receding corner tip of a droplet, as studied by Peters et al. (2009). The authors
took an inner region Cox–Voinov law, the thin-film equivalent of (2.16), and matched
it to the appropriate outer region behaviour, again directly using the cube of the
free surface slope (in a similar way to the work of Eggers, discussed in a previous
subsection). The authors thus obtained a version of the general result (2.18), being

θ 3
out − 1= 3Ca

[
−ln λ+ ln

(
βR
φ2

)]
, (3.12)

where R is the droplet tip radius, φ is the opening angle of the leading-order outer
solution (modelled approximately by a hyperbola), β is used as a ‘fitting parameter’
and we reiterate that in our notation for dewetting Ca = 3(µU/σ)/θ 3

e < 0 (noting
the factor 3/θ 3

e as compared to Peters et al.). Peters et al. (2009) finally suggest that
θout� 1 in the corner tip regime, and thus obtain the scaling law R= ` e1/(3Ca), where
` = λφ2/β. Concluding then, the present analysis of § 2 justifies why matching the
cube of the free surface slope was an appropriate method for Peters et al. (2009).

4. Stokes flow cases
In comparison to the asymptotic analysis in the thin-film setting, when considering

full Stokes flow, the analysis becomes substantially more involved, but the general
features of outer (insignificant slip) and inner (slip important) regions remain. In this
section for notational convenience we still use h′, but this now denotes the angle of
inclination of the free surface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.702


The asymptotics of the moving contact line 455

4.1. Matching for the Cox (1986) result
We consider the Cox (1986) analysis in light of our direct matching procedure, where
the outer and inner matching behaviours were found respectively as

h′out ∼ θout +Ca[ fC(θout) ln r+Q∗o + · · · ] + · · · , as r→ 0, (4.1a)
h′in ∼ θin +Ca[ fC(θin) ln(r/λ)+Q∗i + · · · ] + · · · , as r/λ→∞, (4.1b)

where fC(θ) is given by

fC(θ)= 2 sin θ [L2(θ 2 − sin2 θ)+ 2L(θ(π− θ)+ sin2 θ)+ (π− θ)2 − sin2 θ ]
L(θ 2 − sin2 θ)(π− θ + sin θ cos θ)+ ((π− θ)2 − sin2 θ)(θ − sin θ cos θ)

,

(4.2)

which arises from the solution of the biharmonic equation for the stream function
for two fluids of viscosities µA and µB (with viscosity ratio L= µB/µA), applied in
the normal stress condition at leading order (Cox 1986). Here, in keeping with the
notation of Cox (1986), r is the radial distance from the contact line, Q∗o and Q∗i
are unspecified constants of integration, which depend on the specific problem to be
considered, and Ca� 1 is the capillary number, where Cox already identified that
receding motion is found by mapping Ca 7→−Ca. Note that we use λ to be the slip
length here in comparison to Cox’s use of ε, to avoid confusion with the previous
sections.

In general, one could solve the Stokes equation with the normal stress boundary
condition for the leading-order terms (in ln r) to all Ca orders, obtain all terms
in (2.6) and thus the form of T0 and T1. However, as this is rather involved, one
can alternatively show the validity of the overlap region (2.7). Cox (1986) derives
equation (7.9) in his work for a variable β̃0, it being

dzβ̃0 = fC(β̃0)+O(Ca2), (4.3)

where for clarity we have denoted the intermediate variable by z=Ca ln r instead of x̃,
the notation used by Cox. Here β̃0 is related to the slope θ of the interface as defined
in equation (7.12) of his work, by θ = β̃0 +Ca dzβ̃0 +O(Ca2). It may thus be shown
that

dzθ = fC(θ)+O(Ca2), (4.4)

showing the equivalence to the overlap equation (2.7). We may thus use the same
procedure as discussed in § 2, and we find that

GC(θout)−GC(θin)=Ca
[
−ln λ+ Q∗i

fC(θin)
− Q∗o

fC(θout)

]
+O(Ca2). (4.5)

In contrast, we note that the case of inertial contact line motion investigated by Cox
(1998) (and recently analysed numerically by Ding & Spelt (2007)) will not satisfy
(2.7), for example, as the intermediate equation equivalent to (3.7) has a correction
of O(Ca) in this case – see equations (6.35)–(6.38) of Cox (1998). In this inertial
case then, without further information, our direct matching procedure can only find a
result including terms up to O(Ca ln λ). The result is GCI(θout) = GCI(θin) − Ca ln λ,
where GCI(θ)= 4α∗−2(θ − sin θ), and fCI(θ)= α∗2 csc2(θ/2)/8 (where α∗ = 1.61605).
See Cox (1998) for further details, and equation (7.6) therein to see the agreement
with this result.
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4.2. Hocking & Rivers (1982)
For a droplet in the Stokes regime the expansions for the outer and inner regions as
x→ 0 and x/λ→∞, respectively, are taken from the analysis of Hocking & Rivers
(1982):

h′out ∼ θout + ε
[

sin θout

θout − sin θout cos θout

] [
ln
(ex

a

)
+Q0(θout)

]
, (4.6a)

h′in ∼ θin + ε
[

sin θin

θin − sin θin cos θin

] [
ln
(ex
λ

)
+Q1(θin)

]
, (4.6b)

where ε = 2ȧµ/σ is the small spreading parameter in this problem. Here additional
variables of note are x, which is now an arclength measured from the edge of the
droplet, and Q0(θout) and Q1(θin) are functions of the apparent and static contact angles
(see Hocking & Rivers (1982) for further details). Note that we have replaced α and
αs in Hocking & Rivers (1982) notation by θout and θin for the sake of consistency
here. Also, µ and σ are the viscosity and surface tension of the droplet, respectively,
and a is now the dimensional droplet radius (with ȧ the dimensional spreading rate).

We see, as for the previous examples, that the logarithmic terms do not balance, but
that once again both behaviours have the general form in (2.1). Unlike the thin-film
regime, where ftf (A)= 1/A2, here the form is

fHR(A)= sin A
A− sin A cos A

, (4.7)

which was also shown to be an important function for contact line motion by Voinov
(1976) and Snoeijer (2006). This function is also obtained (up to a multiplicative
constant) from Cox’s function in (4.2) when L = 0. The equivalent to the overlap
region equation (2.7) is given in equation (5.2) of Hocking & Rivers (1982). This
shows that matching will be achieved with the function G being

GHR(h′)=
∫ h′

0

dζ
fHR(ζ )

= iπ2

12
− h′ ln[1+ eih′] + i[Li2(1+ eih′)+ Li2(eih′)] − sin h′,

(4.8)

where Li2(ζ ) =
∫ ζ

1 [ln(t)/(1 − t)] dt is the dilogarithm function defined by Spence’s
integral (Abramowitz & Stegun 1972). It is also of interest to note that, as h′→0, GHR

satisfies GHR(h′) ∼ 2h′3/9 − h′5/225 + O(h′7), again suggesting why the matching of
the cube of the free surface slope is appropriate for the thin-film case and also being
suggestive as to how the solution form of the lubrication approximation successfully
predicts experimental results even at surprisingly large values of h′ – as the coefficient
of the correction to the cubic power is small. Following the procedure of § 2 we find

GHR(θout)−GHR(θin)= ε(ln[a/λ] +Qi(θin)−Qo(θout)), (4.9)

which is the result for the spreading rate found by Hocking & Rivers by matching
through an intermediate region.
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5. Conclusion
The slow-moving contact line problem is singular in the non-dimensional slip

length λ, with a second regular perturbation in the non-dimensional contact line
speed |Ca|. The principal realisation of this work is to show that it is the truncation
of the Ca series of solutions at leading order in λ that leads to the breakdown of
the overlap between outer and inner asymptotic regions. It is for this reason that a
separate intermediate region has previously been used as a bridge. However, for Stokes
flow equations, the significant terms from the infinite Ca series of solutions are now
determined, and hence matching may proceed directly between inner and outer regions.
We note that, whilst some of the cases considered are two-dimensional, the work of
Hocking & Rivers (1982) discussed in § 4.2 is three-dimensional (axisymmetric), and
our general results in § 2 apply in three-dimensional geometries provided the contact
line variations occur at much longer length scales compared to the microscopic
parameters defining the extent of the inner region. Essentially this means that, in
complex macroscopic geometries, provided the microstructure appears homogeneous
in the matching region and of the order of λ, then the flow in the contact line vicinity
may be treated as a two-dimensional problem, with our results thus applicable.

Importantly, we note that including additional macroscopic effects acting at length
scales much greater than the microscopic length scale, such as gravity or substrate
heterogeneities, does not change the regime where viscous and surface tension forces
balance. This is the physical balance of equation (2.7). It is also important to note
that a wide range of models are applied to moving contact line problems. Whilst the
specific cases discussed in §§ 3 and 4 all use slip to overcome the moving contact
line singularity, a range of other physical effects may be incorporated, from disjoining
pressures and diffuse interfaces (de Gennes 1985; Anderson, McFadden & Wheeler
1998) to shear-thinning fluid and interface formation models (Weidner & Schwartz
1994; Shikhmurzaev 1997). In particular, asymptotic analysis of liquid–gas (Sibley
et al. 2013c,b) and binary fluid (Sibley, Nold & Kalliadasis 2013a) diffuse-interface
models, and of the interface formation model (Sibley et al. 2012), has been recently
performed.

Provided the additional physics contained within these models is confined to the
inner region near the contact line and neglected elsewhere, and that the models contain
viscous and capillarity terms, the results of our analysis persist.

Two example cases of singularity-free contact line models beyond simple slip are
those of diffuse-interface methods and hybrid models. Firstly, Yue, Zhou & Feng
(2010) showed, using numerical computations, that a binary fluid diffuse-interface
model can be mapped to the slip model results of Cox (1986), with the effective
slip length being the ‘diffusion length’ of the binary fluid model – related to the
interfacial width, mobility and viscosity. Given this equivalence, it underlines the
generality of our analysis to a range of models.

Secondly, the hybrid model of Petrov & Petrov (1992) combines the solution of Cox
(1986), but with the microscopic contact angle from the molecular kinetic theory of
Blake & Haynes (1969). The hybrid model again has two regions, but the microscopic
contact angle (denoted θin here) is calculated separately from the molecular kinetic
theory equations – rather than chosen directly from phenomenological arguments. Our
analysis again applies, as it is still relevant to the matching between slip and outer
regions.

A further discussion point is about the applicability of this work to both advancing
and receding flows. Eggers (2004, 2005) determined a critical capillary number
for thin-film receding flows above which a contact line cannot be present, and
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a liquid film is instead deposited on the solid. A number of recent works have
discussed this wetting failure (Snoeijer et al. 2008; Chan, Gueudré & Snoeijer 2011;
Chan, Snoeijer & Eggers 2012; Vandre, Carvalho & Kumar 2013), with analytical
results being based on this thin-film analysis. That the analysis is performed in the
thin-film approximation is important to note for the analysis, as the results rely on a
solution of the full inner region equations given by Duffy & Wilson (1997), which
is a parametric solution involving Airy functions. Given this complexity, even in the
thin-film case, such a result is not available in general Stokes flow. However, from the
discussion in § 3.1, we may conclude that the viscocapillary balance of equation (2.7)
no longer holds for receding flows above the critical capillary number, and which
ultimately leads to the breakdown of the overlap region and matching condition.
A naive calculation for the limit of applicability would be when θout = 0. From (2.18)
this occurs when

Ca∗ = [G(0)−G(θin)]
[
−ln λ+ Cin

f (θin)
− Cout

f (0)

]−1

, (5.1)

but further analysis is beyond the scope of this work.
In conclusion, we have determined a general direct matching procedure. Through

this result, we have also justified the previously used direct matching of the cubes of
the free surface slopes in the thin-film regime, provided (2.7) is unaffected. For further
simplification of the full Stokes flow problem, it would be of interest to combine
the analysis here with that of Snoeijer (2006), where a result beyond the lubrication
approximation was found, but without performing the full analysis of Cox (1986).
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Appendix A
Here, we give details of the forced wetting case in the lubrication approximation

used to compute figure 1. This extends the analytical results of Eggers (2005) to a
further order for both outer and inner asymptotic regions and discusses how the full
numerical results for the full problem, and for the inner region, are computed.

A.1. Outer region asymptotics
From (3.1), the outer region equation in which slip is negligible is given by

−Ca/h2 = h′′′ − h′ + θ. (A 1)

For |Ca| � 1, we consider solutions of the form

h= h0 +Ca h1 +Ca2h2 +O(Ca3), (A 2)

and find at leading order that

h′′′0 = h′0 − θ, h0(0)= 0, h′0(∞)= θ, (A 3a−c)

where the boundary conditions represent zero height of the film at the contact line and
that the slope of the film approaches the (imposed) angle of inclination as x→∞. The
solution is given by

h0 = θx+ (θ − θout)(e−x − 1), (A 4)
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where θout is the ‘apparent’ contact angle, and is given by h′0(0)= θout. The equations
at higher orders satisfy the form

fn(x)= h′′′n − h′n at O(Can) for n ∈Z, n > 1, (A 5)

where, for our purposes, we are only interested in f1 =−1/h2
0 and f2 = 2h1/h3

0. This
equation is solved by

hn(x)=−ex

2

∫ ∞
1

e−tfn(t) dt+
∫ x

1
(cosh(t− x)− 1) fn(t) dt+Kn e−x +Kn,2. (A 6)

We have set the prefactor of the homogeneous solution ex such that hn does not
diverge for x→∞ (remember, this is for hn, where n> 1), and the derivative is then
given by

h′n(x)=−
ex

2

∫ ∞
1

e−tfn(t) dt−
∫ x

1
sinh(t− x) fn(t) dt−Kn e−x. (A 7)

The two coefficients Kn and Kn,2 are defined through the boundary conditions hn(0)=0
and hn(∞)= 0, which for n= 1 and n= 2 are given by

Kn =
∫ ∞

1

(
e−t

2
− 1
)

fn(t) dt+
∫ 1

0
(cosh(t)− 1) fn(t) dt, (A 8a)

Kn,2 =
∫ ∞

1
fn(t) dt. (A 8b)

The only remaining parameter to compute the outer region solutions h0, h1 and h2 is
θout. This may be ultimately obtained through the matching condition (2.18) and the
behaviour of h′1(x) as x→ 0. From (A 7) we have

lim
x→0

h′1(x)= θ−2
out [ln x+C(θout)] , (A 9)

where

C(θout)

θ 2
out

=
∫ ∞

1
(1− e−t) f1(t)dt+

∫ 1

0

{
(1− e−t) f1(t)+ 1

θ 2
outt

}
dt+ 1

θ 2
out

, (A 10)

and then using the results from §§ 2 and 3.1, and in particular matching condition
(2.18) and (3.2), we have that θout is given to O(Ca2) by the implicit equation

θ 3
out − 1= 3Ca [−ln λ+ 1−C(θout)]. (A 11)

This has allowed us to compute the leading- and first-order outer solutions, as found
by Eggers (2005), and to further find the second-order solution, to be able to plot
these results in figure 1.

A.2. Inner region asymptotics
In the inner region, h and x are of the order of the slip length λ, and hence we rescale
through

h= λH, x= λξ . (A 12a,b)
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Equation (3.1) for λ� 1 then transforms to

− Ca
H2 +H

=H′′′, (A 13)

with boundary conditions

H(0)= 0, H′(0)= 1, H′′(∞)= 0. (A 14a−c)

Note that, for receding contact lines, beyond a critical value of Ca, the third condition
in (A 14) cannot be satisfied, and a constant curvature is instead found. In cases
where all conditions in (A 14) hold, as for the outer region, the inner solution is
approximated by expanding H in Ca as

H(ξ)=H0(ξ)+Ca H1(ξ)+Ca2H2(ξ)+O(Ca3), (A 15)

which gives the equations

H′′′0 = 0, H′′′1 =
−1

H2
0 +H0

, H′′′2 =
H1(2H0 + 1)
H2

0(H0 + 1)2
, (A 16a−c)

where the boundary conditions are

Hn(0)= 0, H′n(0)=
{

1 for n= 0,
0 otherwise, H′′n (∞)= 0. (A 17a−c)

The first three orders are solved by

H0(ξ) = ξ, (A 18a)
H1(ξ) = 1

2(ξ + 1)2 ln(ξ + 1)− 1
2ξ

2 ln ξ − 1
2ξ, (A 18b)

H2(ξ) = − 1
2(ξ + 1) ln(ξ + 1)[(ξ + 2) ln ξ + 2ξ − 1]
+ 1

6ξ [6(ξ + 1) ln ξ − ξπ2 − 9] − (ξ 2 + ξ + 1)Li2(ξ + 1), (A 18c)

where Li2(ζ ) =
∫ ζ

1 [ln(t)/(1 − t)] dt. These results give us three orders of the inner
region solution, with agreement with the first two found by Eggers (2005), and these
are plotted in figure 1(a).

A.3. Numerical computations
We conclude the appendix by providing details of the numerical results for the full
problem, and for the inner region. For the full problem we solve the third-order
ordinary differential equation (ODE) given in (3.1) subject to the boundary conditions
of

h(0)= 0, h′(0)= 1, h′(∞)= θ. (A 19a−c)

The computation for this third-order ODE has been solved through implementing a
pseudospectral discretisation for the independent variable (Trefethen 2000), and plotted
in figure 1.

The full inner region ODE is once again third-order and given in (A 13), with
boundary conditions (A 14). As the first derivative is singular at infinity, we choose
to solve the ODE with the same pseudospectral method, but in the range ξ ∈ [0, L],
where H′′(L) = 0. Three curves are plotted in figure 1(b), for L = {50, 500, 5000}.
Convergence of the behaviour may be seen for large ξ (and hence large x) to the
intermediate (dotted) curve for increasing L.
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