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The reciprocation of one quadric into another. By Professor
H. F. BAKER.

[Received 16 October, read 26 October, 1925.]

It is a familiar fact that if two quadric forms, in (n + 1) homo-
geneous variables, be each expressible as a sum of squares, of
(n + 1) independent linear functions of the variables, then they
are polar reciprocals of one "another, in regard to any one of 2"
quadrics. The question arises whether this is true for any two
quadrics. Segre* states that this is an unsettled question. A solu-
tion is given, however, by Terracinif for any two non-degenerate
quadrics, supposed to have been reduced to the Weierstrass
canonical form. The present note has the purpose of pointing out
that a solution is derivable from a remark made by Frobeniusf;
this requires a knowledge of the roots of the equation satisfied by
the matrix of the two quadrics §.

§ 1. We consider two quadrics in (n + 1) homogeneous variables,
both of non-vanishing discriminant. The matrix of the coefficients
of one of these being mr1, the matrix of the coefficients of the
tangential-form of this will be m; let the matrix of the coefficients
of the point-form of the other quadric be M. If the quadric which
is sought, by means of which the two given quadrics are polar
reciprocals of one another, be of matrix p, we are to substitute,
for the tangential coordinates u in the first form, mu2, the values
given by u = px, and the result is to be the second form Mx2. Now

mu2 = mpx.px — pmp.x2,
where p denotes, as usual, the matrix obtained from p by trans-
position of rows and columns. In other words, the problem is,
given m and M, to find a symmetrical matrix p such that

pmp = M;
by hypothesis m and M are symmetrical.

* Encykl. Math, m, C. 7, p. 864, 1912.
t Ann. d. Mat. xxx, 1921, p. 155.
% Berlin. SHzungsber. 1896, p. 7. Frobenius refers to Kelland and Tait, Qua-

ternions (1873), chap, x, and to Sylvester, Papers, in, pp. 562-567 (1882). Sylvester
refers to Babbage's Calculus of Functions.

§ This equation may be the same for cases of different invariant factors. For
example, if m be the matrix of the coefficients of the form 2xy +z* +12, and J/,, Mt
be the respective matrices of the coefficients of the two forms

26xy + x* + 8z2 + <pt\ 20xy + x1 + <j
both the matrices Mxm, M2m satisfy the equation
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§ 2. Now we can, without loss of generality, suppose the quadric
form m-*x2 reduced to a sum of (n + 1) independent squares, at
starting, and find the form to which Mx2 is reduced by the same
transformation. Thus it is clear that there is no loss of generality
in supposing m = 1. Then the problem is to find p such that

p2 = M.
But, if the equation satisfied by M be of order (r + 1), it is

an obvious suggestion of the theory of algebraic numbers to attempt
to solve this equation by substituting for p a polynomial in M of
order r; the number of conditions to be satisfied by the coefficients
in this polynomial is then equal to the number of these coefficients.
Frobenius (loc. cit.) has given an explicit formula for this poly-
nomial when the roots of the equation satisfied by M are known;
this may be regarded as the well-known Lagrange's interpolation
formula extended to the case of repeated roots. It is clear that
if M is symmetrical, this polynomial will likewise represent a sym-
metrical matrix. The formula is quoted below (§ 5).

§ 3. Without this reduction of the matrix m to a unit matrix,
the equation pmp = M may be solved by finding q such that

q2 = Mm,
and then taking p = qm,-1. To prove this it is only necessary to
show that qm'1 is a symmetrical matrix; for, from q2 = Mm, we
have

pmpm — Mm,
and hence pmp = M.
Now the equation q2 = Mm leads, because m, M are symmetrical, to

q2 = mM;
thus, if q = Ar (Mm)r + ... + A (Mm) + Ao,
we have, for q,

q = Ar (mM)r + ... + At (mM) + Ao;
and hence, as

m (Mm)k = mMmMm ... Mm = (mM)k m,
we have mq = qm,
or qm-1 = m^q,
which, since m is symmetrical, shows that qm~x is symmetrical.

We may illustrate this procedure by deducing Terracini's result.
The forms to which Weierstrass reduces any two quadrics have
matrices such as
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wherein ax is a matrix whose diagonal coincides with that of the
whole matrix, and 6X a similarly placed matrix of the same order;
likewise a2, b2 are similarly placed matrices of equal order; and so
on; each of the couples (a1; bj, (a2, b2), ... is associated with one
of the elementary divisors of the matrix formed by the original
family of quadrics, that is, of the matrix M + pm~x. As the
product of two matrices of these reduced forms is the matrix

it is clear on consideration that it is sufficient to consider only the
two matrices %, &!, the other couples being similarly treated. Thus
we may suppose, in the equation pmp = M, limiting ourselves to
four rows and columns, and recalling the forms obtained by
Weierstrass, that

m = . . . l , M = . . 1 6 '
. 1 6 .
1 0 ' . .
6 . . .

the elements not written being zeros. Here m~x = m, and we have

= 6

Thus (Mm — 6)1 = 0; therefore, denoting Mm — 6 by N, a matrix,
q, such that q2 = 6 + N, may be obtained by expanding (6 + ^
in powers of N, as far as the term in q3. Namely we have

q =

this, however, is

(1 + 9-i N - W-

1 . . .
. 1 . .
. . 1 .
. . . 1

+ io-1 . 1 . .
. . 1 .
. . . 1

. . 1 .

. . . 1
. . . 1

1 i0-i _ £0-2
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thus p, = qm,-1, is given by

Terracini obtains this result by trying, as a form for p, the matrix

p = Ax A2 A3 A4

A2 A3 A 4 . .
A3 A4

A4 . . .

then, with the proper m, we have

pmp — (1234) (234) (34) (4)
(234) (34) (4) .
(34) (4)
(4) . .

where (1234) = (A1; \ , A3, A4) (A4, A3) \ , Ax) = 2AXA4 + 2Ai,A3,
(234) = (A,,, A3, A4) (A4, A3, A2) = 2A,A4 + A3

2,
(34)= (A3,A4)(A4,A3) = 2 A A ,

( 4 ) = (A4)(A4) = A4*;

to identify this pmp with the matrix M we require

A4
2 = 6, 2A3A4 = 1, 2AA + A3

2 = 0, 2AA + 2A.A, = 0,

and these give, for A1; A2, A3, A4, the values obtained otherwise above.

§ 4. We may compare the procedures under § 2 and § 3. To
put the matrix m in unit form, i t is necessary to take a matrix a
such that

m — ad;

the equation to be solved is then

paap = M,

or, if r = Spa, r2 = aMa.

Conversely, when r is found from this, p can be found. To
identify this with the procedure in § 3, it is necessary to show that

a(Maa)*= (aMa)* a;

this can be proved precisely as it was proved that

m (Mm)* = (mM)* m.
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§ 5. The formula of Frobenius, referred to above, for the
matrix p such that p2 — M, is as follows: Let the equation of least
order satisfied by M be

(M - 0)a (M - <f>)» ... = 0 ,
where 0, <f>, ... are all different. If the determinant | M — p I divide
by (p — 0)1, and all the first minors divide by (p — dp, then
a = I — 1^; and similarly for b, ...*; thus, to find the equation, we
may divide the determinant | M — p | by the highest common
factor (as regards p) of the first minors of this determinant, and
then replace p by M. The process is rational when M is given;
the determination of 0,<f>, ... is a subsequent step. Now expand
the fraction

where the denominator is obtained by omission of the factor
(M — 0)", as if M were a single number, in powers of M — 0;
denote the terms of this expansion, up to the term in (M — 0)a~x

inclusive, with an arbitrary ± sign prefixed, by [0]. Then the
polynomial in M, consisting of the sum of such terms as

computed for all the roots 0,<f>, ... in turn, is such that, when
squared and then reduced by means of the equation satisfied by M,
it reduces to M. This polynomial, U, is of order less than the
order of the equation satisfied by M. The verification is by ex-
panding M — U2 in powers of M — 0, M — <f>, .... in turn, which
shows that this divides by the left side of the equation satisfied
by M. If k be the number of different roots of | M — p \ = 0,
there are 2k possibilities for U. The product of any two such terms of
U as [0] (M-<f>Y... contains all the factors of (M - 0f (M - <j>f ...;
thus U2 is the sum of the squares of the separate terms.

As a simple illustration, suppose

M = 0
0
1

1
0
0

0
1
0

then M3 = 1, and we find

ifef* = i («M2 + bM + c),

where, with ex
2 = e2

2 = e3
2 = 1, wz = 1,

a = ej + e2 + e3, b = €1 + €2<D + €3<x)2, C — e1 + e2cu2 + e3co.

§ 6. Certainly for some particular values of m and M, the pre-
ceding does not give the general solution of the equation pmp = M.

* Proc. Lond. Math. Soc. xxx, 1899, p. 196.
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For instance, when m = M = 1, and the matrices are, respectively,
of orders 2 and 3, we have solutions, with arbitrary parameters,

cos 9 sin 6p =
sin 9 — cos 9

a2 + b2 + c2)- >2 + c2 - a2, - 2ab, - 2ac
- 2ab, c2 + a2- b2, - 26c
- 2ac, - 26c, a2 + 62 - c2 ,

these being symmetrical orthogonal transformations.
With somewhat more generality, if the matrix, x, of an ortho-

gonal transformation, for which xx = 1, be capable of the form
x = fi~lpa, .

where p involves arbitrary parameters, but a and /? are definite,
the matrix p being symmetrical, the equation xx = 1 is the same as

fi'ipaapd'1 = 1,
or pmp = M,
whereby the symmetric matrix TO, = da, is changed, with the
symmetric matrix p, involving parameters, into the symmetric
matrix M, = $8. A case of this, the only one existing for matrices
of order 3, is

1

0

0

2V2
0

2
0

- i

0

0 0 1 i i 1 0

0 - 1 - T O ! ' 0 V2
1 - TO \ (1 - m2) I j 1 0 i

This arises from the symmetric orthogonal form quoted above by
taking a = m, b = 2 V2, c = im. It corresponds to the fact that
the conies

2xz + y2 = 0, 2xz + y2 + z2 = 0
are polar reciprocals not only with regard to

2xz + y2 + \z2 = 0,
but also with regard to

2xz + y
2+\z*-\ (mz + 2yY = 0,

for any value of m.

§ 7. We have deduced Terracini's result from Frobenius' work.
But the converse view may be taken. And, by a combination of
both, we are in a position to write down at once a general mth
root of any matrix, supposed first put in reduced form—namely,
by means of components such as that called q in § 3 above, the
fractional coefficients being replaced by the coefficients in the

expansion of (1 + t)m, and 6^ by 9m. Or, indeed, to write down
explicitly any algebraic function of the matrix.
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