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Abstract
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel
contexts, and we also introduce Morita ∗-contexts and enlargements for rings with involution. We prove that two
idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full
Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita ∗-context between
those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence
functors between the categories of firm modules over the given rings with involution.

1. Introduction

In this paper, we study Morita theory for idempotent rings (i.e., rings R such that RR= R) with invo-
lution. The classical Morita theory ([16]) dealt with unital rings, but by now Morita theory has been
developed for a wide range of algebraic structures, including nonunital rings ([1, 2, 27] etc). In the
1970s, Rieffel published an influential series of articles on Morita theory of C∗-algebras ([21, 22, 4,
23]). His works have inspired several mathematicians, among them Ara ([3]), who developed Morita
theory for idempotent nondegenerate rings with involution, and Steinberg ([24]), who studied Morita
equivalence for inverse semigroups.

Although the Morita equivalence relation is usually defined by requiring the equivalence of suit-
able module categories, it is often easier to work with some related bimodules and compatible bimodule
homomorphisms, which form so-called Morita contexts. For example, Ara [3] uses inner product bimod-
ules to prove that the centroids of two Morita equivalent idempotent nondegenerate rings are isomorphic.
In this paper, we consider relationships between four different approaches to Morita theory: Morita con-
texts, inner product bimodules, enlargements and equivalence of module categories. A Morita context
for rings consists of two bimodules and two bimodule homomorphisms. Rieffel showed that in the pres-
ence of a ∗-operation (an involution) one can use just one bimodule together with two inner products.
The notion of an enlargement comes actually from semigroup theory ([11, 13]). In [12], Lawson showed
that two semigroups with local units are Morita equivalent if and only if there exists the third semigroup
where the initial semigroups can be embedded “in a nice way.” Later it has been shown that joint enlarge-
ments work naturally also in the case of idempotent rings ([9]) and quantales ([14]). One of the aims of
this paper is to define joint enlargements for rings with involutions in a suitable way and show that the
existence of a joint enlargement is equivalent to the existence of a Morita context of a certain type.

In Section 2, we introduce the necessary notions and prove some basic facts about Rieffel contexts
and Morita ∗-contexts. By a Rieffel context, we will mean a bimodule together with two so-called inner
products satisfying certain axioms.

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0017089524000302 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000302
https://orcid.org/0000-0002-2028-8609
https://orcid.org/0000-0003-0089-5548
mailto:valdis.laan@ut.ee
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0017089524000302&domain=pdf
https://doi.org/10.1017/S0017089524000302


2 Valdis Laan and Kristo Väljako

Section 3 contains our main theorem, which states that, for idempotent rings with involution, certain
statements about enlargements, Rieffel contexts and Morita ∗-contexts are equivalent. In particular, we
have the following result.

Theorem. Two idempotent rings with involution are connected by a unitary and full Rieffel context if
and only if they have a joint enlargement.

After that, in Section 4 we show that, up to isomorphism, each unitary Rieffel context is induced in
a canonical way by a joint enlargement of two idempotent rings with involution.

Sections 5 and 6 are devoted to module categories. We define, in a suitable way, a ∗-equivalence
between rings with involution (essentially, it consists of two pairs of equivalence functors between cer-
tain module categories, which satisfy some extra conditions) and prove that any firm and full Rieffel
context gives rise to a ∗-equivalence between two idempotent rings with involution. After that we prove
that the existence of a firm and full Rieffel context is equivalent to the existence of certain equivalence
functors between module categories.

In our final section, we compare our results with the results obtained by Ara in [3].

2. Preliminaries

In this paper, by a ring we mean an associative ring.

Definition 2.1. A ring with an involution is a pair (R, ∗), where R is a ring and ∗ : R→ R, a �→ a∗ is a
mapping such that

(a+ b)∗ = a∗ + b∗, (a∗)∗ = a, (ab)∗ = b∗a∗ (2.1)

for all a, b ∈ R. Note that 0∗ = (0+ 0)∗ = 0∗ + 0∗ implies 0∗ = 0.

Let (R, ∗) and (S, �) be rings with involution. A ring homomorphism f : R→ S is called a homomor-
phism of rings with involution, if f (r∗)= f (r)� holds for every r ∈ R.

We recall that a right R module MR is called unitary if MR=M, and firm if the natural mapping
μM : M⊗R R→M, m⊗ r �→mr is bijective (see [20]). A bimodule is unitary (firm) if it is unitary (firm)
as a left and a right module. Note that MR=M if and only if μM is surjective; hence, every firm module
is unitary. Recall that a ring R is called idempotent if R= RR.

Rieffel introduced imprimitivity bimodules over C∗-algebras ([22, Definition 6.10]) and used them to
develop Morita theory for C∗-algebras ([4, 21]). Inspired by this notion we give the following definition.

Definition 2.2. By a Rieffel context, we mean a 5-tuple (S, T , X, 〈 , 〉 , [ , ]), where

• S and T are rings with involution,
• X is an (S, T)-bimodule,
• 〈 , 〉 : X × X→ S and [ , ] : X × X→ T are mappings, additive in both arguments, such that the

following identities hold for x, y, z ∈ X, s ∈ S and t ∈ T:

RC1. 〈 sx, y 〉 = s 〈 x, y 〉;
RC2. 〈 y, x 〉 = 〈 x, y 〉∗;
RC3. [x, yt]= [x, y]t;
RC4. [y, x]= [x, y]∗;
RC5. 〈 x, y 〉 z= x[y, z].

We say that (S, T , X, 〈 , 〉 , [ , ]) is a Rieffel context between rings S and T . Such a context is called full
(cf. [3, page 243]) if every s ∈ S can be written as s=∑n

k=1 〈 xk, yk 〉 for some n ∈N, xk, yk ∈ X, and
analogously for [ , ]. (Note that a Rieffel context is full if and only if the mappings 〈 , 〉 and [ , ] are
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pseudo-surjective [26, Definition 2.2].) It is called unitary (firm) if the bimodule SXT is unitary (firm).
Similarly to [3], we call SXT an inner product bimodule.

In addition to the axioms listed in Definition 2.2, Rieffel contexts have some more calculation rules.

Lemma 2.3. If (S, T , X, 〈 , 〉 , [ , ]) is a Rieffel context, then, for every x, y ∈ X, s ∈ S and t ∈ T ,

RC6. 〈 x, y 〉 s= 〈 x, s∗y 〉;
RC7. t[x, y]= [xt∗, y].

If this context is full, then also

RC8. 〈 x, yt∗ 〉 = 〈 xt, y 〉;
RC9. [s∗x, y]= [x, sy].

Proof. The proof of RC6 and RC7 is inspired by [24, Proposition 2.3], and the proof of RC8 and
RC9 by [22, Lemma 6.12]. We have

〈 x, s∗y 〉 = 〈 s∗y, x 〉∗ = (s∗ 〈 y, x 〉 )∗ = 〈 y, x 〉∗ s∗∗ = 〈 x, y 〉 s,

[xt∗, y]= [y, xt∗]∗ = ([y, x]t∗)∗ = t∗∗[y, x]∗ = t[x, y].

If the mapping 〈 , 〉 is full and s ∈ S, then there exist n ∈N and xk, yk ∈ X such that s=∑n
k=1 〈 xk, yk 〉.

Now

[s∗x, y]=
[

n∑
k=1

〈 yk, xk 〉 x, y

]
(RC2)

=
n∑

k=1

[ 〈 yk, xk 〉 x, y] (additivity)

=
n∑

k=1

[yk[xk, x], y] (RC5)

=
n∑

k=1

[yk[xk, x]∗∗, y] (by (2.1))

=
n∑

k=1

[xk, x]∗[yk, y] (RC7)

=
n∑

k=1

[x, xk][yk, y] (RC4)

=
n∑

k=1

[x, xk[yk, y]] (RC3)

=
n∑

k=1

[x, 〈 xk, yk 〉 y] (RC5)

=
[

x,
n∑

k=1

〈 xk, yk 〉 y
]

(additivity)

= [x, sy],

so RC9 holds. The proof of RC8 is analogous.

We give some natural examples of Rieffel contexts.
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Example 2.4. Consider a ring S with involution as a bimodule SSS and define

〈 s, z 〉 := sz∗, [s, z] := s∗z

for every s, z ∈ S. We obtain a Rieffel context (S, S, S, 〈 , 〉 , [ , ]). If S is an idempotent ring, then this
context is full and unitary.

Example 2.5. Let R be a ring and consider matrix rings S=Mm(R) and T =Mn(R) with transposing
as an involution operation. Then X := Mm,n(R) is an (S, T)-bimodule with respect to usual addition of
matrices and actions defined by matrix multiplication. Defining

〈 A, B 〉 := ABT , [A, B] := ATB

we see easily that the required axioms are satisfied.

If we consider the relation of having a Rieffel context between two rings with involution, then it is
clear that this relation is reflexive and symmetric. Next, we show that the relation of having a full and
unitary Rieffel context is also transitive. Therefore, the notion of a Rieffel context allows us to consider
an equivalence relation on the class of all idempotent rings with involution. But first let us prove a small,
but useful, lemma.

Lemma 2.6. Let R and S be rings, MR a right R module and RNS an (R, S)-bimodule such that NS is
unitary. Then the tensor product M⊗R N is a unitary right S-module.

Proof. We know that M⊗R N is a right S-module with an obvious S-action. Let
∑t

k=1 mk ⊗ nk ∈
M⊗R N be arbitrary. Since NS is unitary, for every k ∈ {0, . . . , t}, there exist elements nk1, . . . , nku ∈N
and sk1, . . . , sku ∈ S such that nk = nk1sk1 + . . .+ nkusku. Now,

t∑
k=1

mk ⊗ nk =
n∑

k=1

mk ⊗
(

u∑
h=1

nkhskh

)
=

n∑
k=1

u∑
h=1

(mk ⊗ nkh)skh ∈ (M⊗R N)S.

Hence, M⊗R N is a unitary right S-module.

The next result is a ring theoretic analogue of [24, Proposition 2.5].

Proposition 2.7. Let S, T , R be rings with involution. If (S, T , X, 〈 , 〉1, [ , ]1) and (T , R, Y , 〈 , 〉2, [ , ]2)
are unitary and full Rieffel contexts, then there exists a unitary and full Rieffel context between S and R.

Proof. Let (S, T , SXT , 〈 , 〉1, [ , ]1) and (T , R, TYR, 〈 , 〉2, [ , ]2) be unitary and full Rieffel contexts.
Consider the (S, R)-bimodule X⊗T Y . Since SX and YR are unitary modules, the bimodule X⊗T Y is
also unitary by Lemma 2.6 and its dual. Define mappings

〈 , 〉 : (X⊗T Y)× (X⊗T Y)→ S,

(
n∑

k=1

xk ⊗ yk,
m∑

h=1

xh
′ ⊗ yh

′
)
�→

n∑
k=1

m∑
h=1

〈xk〈yk, y′h〉2, xh
′〉1,

[ , ] : (X⊗T Y)× (X⊗T Y)→ R,

(
n∑

k=1

xk ⊗ yk,
m∑

h=1

xh
′ ⊗ yh

′
)
�→

n∑
k=1

m∑
h=1

[yk, [xk, xh
′]1yh

′]2.

By using the universal property of the tensor product a few times, it can be shown that these mappings
are well-defined homomorphisms of groups.

The mappings 〈 , 〉 and [ , ] are full because 〈 , 〉1, 〈 , 〉2, [ , ]1, [ , ]2 are full and the modules XT , TY
are unitary.
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It suffices to verify the axioms RC1–RC5 on the generators x⊗ y of X⊗T Y . The axioms RC1 and
RC3 are clearly satisfied. For every x, x′ ∈ X and y, y′ ∈ Y , we have

〈x⊗ y, x′ ⊗ y′〉∗ = 〈x〈y, y′〉2, x′〉∗1 (def. of 〈 , 〉 )
= 〈x′, x〈y, y′〉2〉1 (RC2)

= 〈x′〈y, y′〉∗2, x〉1 (RC8)

= 〈x′〈y′, y〉2, x〉1 (RC2)

= 〈x′ ⊗ y′, x⊗ y〉. (def. of 〈 , 〉 )
Hence, RC2 holds. RC4 holds for similar reasons. Furthermore, for every x, x′, x′ ′ ∈ X and y, y′, y′ ′ ∈ Y ,

〈x⊗ y, x′ ⊗ y′〉(x′ ′ ⊗ y′ ′)= 〈x〈y, y′〉2, x′〉1x′ ′ ⊗ y′ ′ = x〈y, y′〉2[x′, x′ ′]1 ⊗ y′ ′

= x⊗ 〈y, y′〉2[x′, x′ ′]1y′ ′ = x⊗ y[y′, [x′, x′ ′]1y′ ′]2

= (x⊗ y)[x′ ⊗ y′, x′ ′ ⊗ y′ ′].

So RC5 also holds. We have constructed a unitary and full Rieffel context (S, R, X⊗T Y , 〈 , 〉, [ , ]).

There is also the classical notion of Morita context for rings (see, e.g., [17]).

Definition 2.8. A Morita context connecting two rings S and T is a six-tuple (S, T , SPT , TQS, θ , φ), where
SPT , TQS are bimodules and θ : P⊗T Q→ SSS, φ : Q⊗S P→ TTT are bimodule homomorphisms such
that θ (p⊗ q)p′ = pφ(q⊗ p′) and φ(q⊗ p)q′ = qθ (p⊗ q′) for all p, p′ ∈ P and q, q′ ∈Q.

Such a context is called unitary if SPT and TQS are unitary. It is called surjective if θ and φ are
surjective.

Let S and T be rings with involution. Given any (S, T)-bimodule SXT , one can construct its dual
bimodule TXS as follows (see [22, Definition 6.17]). As an abelian group, X is the same as X. We write
x when we consider an element x ∈ X as a member of X. So x+ y= x+ y. The T- and S-actions on X
are defined by

tx := xt∗, xs := s∗x. (2.2)

Definition 2.9. By a Morita ∗-context connecting rings S and T with involution we mean a Morita
context (S, T , SXT , TXS, θ , φ) satisfying

θ (x⊗ y)∗ = θ (y⊗ x) and φ(y⊗ x)∗ = φ(x⊗ y)

for all x, y ∈ X.

The following proposition shows that the conditions appearing in Definition 2.9 are natural.

Proposition 2.10. Let (S, T , SXT , TXS, θ , φ) be a Morita ∗-context. Then the tensor product ring X⊗φT X
defined by φ is a ring with involution and θ : X⊗φT X→ S is a homomorphism of rings with involution.

Proof. Recall that the multiplication on X⊗φT X is given by

(x⊗ y)(x1 ⊗ y1) := x⊗ φ(y⊗ x1)y1 = x⊗ y1φ(y⊗ x1)∗ = x⊗ y1φ(x1 ⊗ y).

By Theorem 2.11 in [26], the mapping θ is a homomorphism of rings. We define an involution on the
ring X⊗φT X by

(x⊗ y)∗ := y⊗ x.

https://doi.org/10.1017/S0017089524000302 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000302


6 Valdis Laan and Kristo Väljako

For every x, x1 ∈ X and y, y1 ∈ X, we have

((x⊗ y)(x1 ⊗ y1))∗ = (x⊗ y1φ(x1 ⊗ y))∗ = y1φ(x1 ⊗ y)⊗ x= y1 ⊗ φ(x1 ⊗ y)x

= (y1 ⊗ x1)(y⊗ x)= (x1 ⊗ y1)∗(x⊗ y)∗,

θ ((x⊗ y)∗)= θ (y⊗ x)= θ (x⊗ y)∗.

Hence, we see that X⊗φT X is indeed a ring with involution and θ is a homomorphism of rings with
involution.

Remark 2.11. Note that the bimodules SXT and TXS actually form a natural example of something that
might be called a 4-module. Indeed, let S, R, T , P be rings. An abelian group X could be called a
(S, R, T , P) 4-module, if there exist four actions

S× X→ X, (s, x) �→ sx, X × T→ X, (x, t) �→ xt,

R× X→ X, (r, x) �→ rx, X × P→ X, (x, p) �→ xp

such that they induce bimodules SXT , SXP, RXT , RXP and the conditions

s(rx)= r(sx), (xt)p= (xp)t

hold for every x ∈ X, r ∈ R, s ∈ S, t ∈ T and p ∈ P. We believe that such structures merit studying on their
own and hope it will be done some day.

Next, we adopt the notion of an enlargement to the case of rings with involution.

Definition 2.12. Let R be a ring with an involution � and let S and T be rings with involution, which is
denoted in both case by ∗. We say that R is a joint enlargement of S and T if there exist subrings S′ and
T ′ of R and ring isomorphisms f : S→ S′ and g : T→ T ′ such that

1. S′ and T ′ are closed with respect to �;
2. f (s∗)= f (s)� for every s ∈ S and g(t∗)= g(t)� for every t ∈ T;
3. R= RS′R, S′ = S′RS′, R= RT ′R, T ′ = T ′RT ′.

In particular, S′ and T ′ are rings with involution, whose involution is the restriction of � to S′ and T ′,
respectively. Note also that if S or T is idempotent, then R is also idempotent by [9, Proposition 2.2].

Lemma 2.13. If R is a joint enlargement of S and T as in Definition 2.12, then f −1(u�)= (f −1(u))∗ for
every u ∈ S′ and g−1(v�)= (g−1(v))∗ for every v ∈ T ′.

Proof. Denote s := f −1(u). Then we have f (s∗)= f (s)� = (f (f −1(u)))� = u�, which implies (f −1(u))∗ =
s∗ = f −1(u�). A similar argument works for g−1.

3. Main theorem

Our main theorem is the following one. It can be compared with [12, Theorem 1.1] for semigroups with
local units and with [9, Theorem 3.3] for idempotent rings.

Theorem 3.1. Let S and T be idempotent rings with involution. Then the following conditions are
equivalent.

1. S and T are connected by a firm and full Rieffel context.
2. S and T are connected by a unitary and full Rieffel context.
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3. S and T are connected by a unitary and surjective Morita ∗-context.
4. S and T have a joint enlargement.

Proof. (1) =⇒ (2). Every firm bimodule is unitary.
(2) =⇒ (3). Assume that (S, T , X, 〈 , 〉 , [ , ]) is a unitary and full Rieffel context. We are going to

build a Morita ∗-context using the bimodules SXT and TXS. Consider the mappings

θ̂ : X × X→ S, (x, y) �→ 〈 x, y 〉 ,
φ̂ : X × X→ T , (y, x) �→ [y, x].

We note that the mapping θ̂ is T-balanced, because it is additive in both arguments and, for all x, y ∈ X
and t ∈ T ,

θ̂ (xt, y)= 〈 xt, y 〉 (def. of θ̂ )

= 〈 x, yt∗ 〉 (RC8)

= θ̂ (x, yt∗) (def. of θ̂ )

= θ̂ (x, ty). by (2.2)

Similarly φ̂ is S-balanced. By the universal property of tensor product there exist abelian group
homomorphisms θ : X⊗T X→ S and φ : X⊗S X→ T such that

θ (x⊗ y)= 〈 x, y 〉 and φ(y⊗ x)= [y, x] (3.1)

for all x, y ∈ X. Condition RC1 implies that θ preserves left S-action. It also preserves right S-action,
because

θ (x⊗ ys)= θ (x⊗ s∗y) (by (2.2))

= 〈 x, s∗y 〉 (by (3.1))

= 〈 x, y 〉 s (RC6)

= θ (x⊗ y)s by (3.1)

for every x, y ∈ X and s ∈ S. Thus, θ (and similarly φ) is a homomorphism of bimodules. These mappings
satisfy compatibility conditions, because

θ (x⊗ y)x′ = 〈 x, y 〉 x′ by (3.1)

= x[y, x′] (RC5)

= xφ(y⊗ x′) by (3.1)

and

φ(y⊗ x)y′ = [y, x]y′ (by (3.1))

= y′[y, x]∗ (by (2.2))

= y′[x, y] (RC4)

= 〈 y′, x 〉 y (RC5)

= y 〈 y′, x 〉∗ (by (2.2))

= y 〈 x, y′ 〉 (RC2)

= yθ (x⊗ y′). by (3.1)
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If s ∈ S, then there exist n ∈N, x1, . . . , xn, y1, . . . , yn ∈ X such that

s=
n∑

k=1

〈 xk, yk 〉 =
n∑

k=1

θ (xk ⊗ yk)= θ
(

n∑
k=1

xk ⊗ yk

)
.

Hence, θ (and analogously φ) is surjective. The bimodule SXT is unitary by assumption. Let x ∈ X. Since
SX is unitary, there exist n ∈N, s1, . . . , sn ∈ S and x1, . . . , xn ∈ X such that x=∑n

k=1 skxk. Hence,

x=
n∑

k=1

skxk =
n∑

k=1

skxk =
n∑

k=1

xks
∗
k .

We have shown that XS is unitary. Analogously we see that TX is unitary. Finally, we notice that, for
every x, y ∈ X,

θ (x⊗ y)∗ = 〈 x, y 〉∗ = 〈 y, x 〉 = θ (y⊗ x),

φ(y⊗ x)∗ = [y, x]∗ = [x, y]= φ(x⊗ y).

(3) =⇒ (4). Let (S, T , SXT , TXS, θ , φ) be a unitary surjective Morita ∗-context. We consider the matrix
set

R=
{(

s x

y t

)∣∣∣∣∣ s ∈ S, t ∈ T , x, y ∈ X

}
with componentwise addition and with the multiplication(

s x

y t

)(
s1 x1

y1 t1

)
:=

(
ss1 + θ (x⊗ y1) sx1 + xt1

ys1 + ty1 φ(y⊗ x1)+ tt1

)
=
(

ss1 + θ (x⊗ y1) sx1 + xt1

s∗1y+ y1t∗ φ(y⊗ x1)+ tt1

)
.

The unary �-operation on R is defined as(
s x

y t

)�
:=

(
s∗ y

x t∗

)
.

It is well known (see, e.g., [19, Section 2]) that R with these operations is a ring (called a Morita ring
of a Morita context). Two things remain to verify.

a) The operation � is an involution on R, because((
s x

y t

)
+
(

s1 x1

y1 t1

))�
=
(

s+ s1 x+ x1

y+ y1 t+ t1

)�
=
(

s∗ + s∗1 y+ y1

x+ x1 t∗ + t∗1

)
=
(

s∗ y

x t∗

)
+
(

s∗1 y1

x1 t∗1

)
=
(

s x

y t

)�
+
(

s1 x1

y1 t1

)�
,

(
s x

y t

)��
=
(

s∗ y

x t∗

)�
=
(

s∗∗ x

y t∗∗

)
=
(

s x

y t

)
,

((
s x

y t

)(
s1 x1

y1 t1

))�
=
(

ss1 + θ (x⊗ y1) sx1 + xt1

s∗1y+ y1t∗ φ(y⊗ x1)+ tt1

)�

=
(

(ss1)∗ + θ (x⊗ y1)∗ s∗1y+ y1t∗

sx1 + xt1 φ(y⊗ x1)∗ + (tt1)∗

)

=
(

s∗1s∗ + θ (y1 ⊗ x) s∗1y+ y1t∗

s∗∗x1 + xt∗∗1 φ(x1 ⊗ y)+ t∗1t∗

)
=
(

s∗1 y1

x1 t∗1

)(
s∗ y

x t∗

)
=
(

s1 x1

y1 t1

)� (
s x

y t

)�
.
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b) We will verify the conditions in Definition 2.12, that are related to S. Similar arguments will apply
for T . The set

S′ =
{(

s 0X

0X 0T

)∣∣∣∣∣ s ∈ S

}
is a subring of R, which is also closed under �-operation (for the latter we need that 0∗T = 0T). It is easy
to see that the mapping

f : S→ S′, s �→
(

s 0X

0X 0T

)
is an isomorphism of rings. Moreover, it preserves the involution, because

f (s∗)=
(

s∗ 0X

0X 0T

)
=
(

s∗ 0X

0X 0∗T

)
=
(

s 0X

0X 0T

)�
= f (s)�.

The equalities R= RS′R and S′ = S′RS′ hold by [9, Proposition 3.5].
(4) =⇒ (1). Assume that R is a joint enlargement of S and T . It suffices to consider the case, where

S and T are subrings of R. In that case s� = s∗ and t� = t∗ for every s ∈ S and t ∈ T . We consider the
bimodule

SXT := S⊗S SRT ⊗T T

with natural actions of S and T . By [15, Proposition 2.5], the bimodule SXT is firm, because the rings S
and T are idempotent. Consider the mapping

σ̂ : S× SRT × T→ R, (s, ρ, t) �→ t∗ρ�s∗.

Note that

σ̂ (ss1, ρ, t)= t∗ρ�(ss1)
∗ = t∗ρ�s∗1s∗ = t∗ρ�s�1s

∗ = t∗(s1ρ)�s∗ = σ̂ (s, s1ρ, t),

σ̂ (s, ρt1, t)= t∗(ρt1)�s∗ = t∗t�1ρ
�s∗ = t∗t∗1ρ

�s∗ = (t1t)
∗ρ�s∗ = σ̂ (s, ρ, t1t)

and also σ̂ is additive in all three arguments. Consequently, there exists a group homomorphism
σ : S⊗S SRT ⊗T T→ R such that σ (s⊗ ρ ⊗ t)= t∗ρ�s∗ for every s ∈ S, ρ ∈ SRT and t ∈ T . Note that
if ρ =∑n

k=1 skrktk ∈ SRT , then

ρ� =
(

n∑
k=1

skrktk

)�
=

n∑
k=1

(skrktk)
� =

n∑
k=1

t∗k r�ks∗k ∈ TRS.

A little bit shorter argument shows that there also exists a group homomorphism τ : S⊗S SRT ⊗T T→ R
such that τ (s⊗ ρ ⊗ t)= sρt for every s ∈ S, ρ ∈ SRT and t ∈ T . We define

〈 x, y 〉 := τ (x)σ (y), [x, y] := σ (x)τ (y)

for every x, y ∈ X. In particular, on elementary tensors we have

〈 s⊗ ρ ⊗ t, s1 ⊗ ρ1 ⊗ t1 〉 := sρtt∗1ρ
�

1s∗1 ∈ SSRTTTTRSS= SRTRS= SRS= S,

[s⊗ ρ ⊗ t, s1 ⊗ ρ1 ⊗ t1] := t∗ρ�s∗s1ρ1t1 ∈ TTRSSSSRTT = TRSRT = TRT = T ,

which implies that 〈 x, y 〉 ∈ S and [x, y] ∈ T for every x, y ∈ X, because every element of X is a finite sum
of elementary tensors. Thus we have defined mappings

〈 , 〉 : X × X→ S and [ , ] : X × X→ T ,

which are additive in both arguments, because τ and σ preserve addition and S and T have the
distributivity law.
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To prove that 〈 〉 is full, we consider an element z ∈ S. Since S= S(SRT)TT(TRS)S, z is a finite sum
of products of the form sρtt1ρ1s1, where s, s1 ∈ S, t, t1 ∈ T , ρ ∈ SRT and ρ1 ∈ TRS. It suffices to show
that each such product has a preimage with respect to 〈 , 〉. Indeed,

sρtt1ρ1s1 = sρt(t∗1)∗(ρ�1)�(s∗1)∗ = 〈 s⊗ ρ ⊗ t, s∗1 ⊗ ρ�1 ⊗ t∗1
〉
.

A similar proof shows that [ , ] is full. Finally, we verify the conditions RC1–RC5.
RC1. For every z ∈ S,

〈 z(s⊗ ρ ⊗ t), s1 ⊗ ρ1 ⊗ t1 〉 = zsρtt∗1ρ
�

1s∗1 = z 〈 s⊗ ρ ⊗ t, s1 ⊗ ρ1 ⊗ t1 〉 .
RC2. We calculate

〈 s⊗ ρ ⊗ t, s1 ⊗ ρ1 ⊗ t1 〉∗ = (sρtt∗1ρ
�

1s∗1)∗ (def. of 〈 , 〉)
= (sρtt�1ρ

�

1s�1)
� (t∗1 = t�1, s∗1 = s�1)

= s��1 ρ
��

1 t��1 t�ρ�s� ((ab)� = b�a�)

= s1ρ1t1t
�ρ�s� (a�� = a)

= s1ρ1t1t
∗ρ�s∗ (t� = t∗, s� = s∗)

= 〈 s1 ⊗ ρ1 ⊗ t1, s⊗ ρ ⊗ t 〉 . (def. of 〈 , 〉)
RC3. Analogous to RC1.
RC4. Analogous to RC2.
RC5. To prove this, we need to use that S and T are idempotent rings. We calculate

〈 s⊗ ρ ⊗ t, s1 ⊗ ρ1 ⊗ t1 〉 (s2 ⊗ ρ2 ⊗ t2)= sρtt∗1ρ
�

1s∗1(s2 ⊗ ρ2 ⊗ t2) (def. of 〈 , 〉)
= sρtt∗1ρ

�

1s∗1s2 ⊗ ρ2 ⊗ t2 (def. of S-action)

=
(

n∑
k=1

uku′k

)
ρtt∗1ρ

�

1s∗1s2 ⊗ ρ2 ⊗ t2 (s=∑n
k=1 uku′k)

=
(

n∑
k=1

uku′kρtt∗1ρ
�

1s∗1s2

)
⊗ ρ2 ⊗ t2 (distributivity)

=
n∑

k=1

(uku′kρtt∗1ρ
�

1s∗1s2 ⊗ ρ2 ⊗ t2) (property of ⊗)

=
n∑

k=1

(uk ⊗ u′kρtt∗1ρ
�

1s∗1s2ρ2 ⊗ t2) (S(SRT)T(TRS)S=S)

=
n∑

k=1

(uku′k ⊗ ρtt∗1ρ
�

1s∗1s2ρ2 ⊗ t2) (u′k ∈ S)

=
(

n∑
k=1

uku′k

)
⊗ ρtt∗1ρ

�

1s∗1s2ρ2 ⊗ t2 (property of ⊗)

= s⊗ ρtt∗1ρ
�

1s∗1s2ρ2 ⊗ t2. (s=∑n
k=1 uku′k)

A similar calculation shows that

(s⊗ ρ ⊗ t)[s1 ⊗ ρ1 ⊗ t1, s2 ⊗ ρ2 ⊗ t2]= (s⊗ ρ ⊗ t)t∗1ρ
�

1s∗1s2ρ2t2 = s⊗ ρtt∗1ρ
�

1s∗1s2ρ2 ⊗ t2.

This completes the proof.
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It would be natural to call two idempotent rings with involution Morita equivalent if they satisfy the
conditions of Theorem 3.1.

Remark 3.2. The only place in the proof of Theorem 3.1, where we used the existence of an additive
inverse in a ring is the fact that 0∗ = 0 (see Definition 2.1). Hence, if we define a semiring with involution
by requiring identities (2.1) and 0∗ = 0, and modify the other definitions in an obvious way, then our
proof shows that two idempotent semirings with involution are connected by a unitary full Rieffel context
if and only if they have a joint enlargement.

Example 3.3. Consider again the Rieffel context from Example 2.5, but let R be an idempotent ring.

• The (S, T)-bimodule SXT =Mm,n(R), where S=Mm(R) and T =Mn(R), is unitary.
Indeed, let Dmn

kh (r) denote a (m× n)-matrix, which has r in position (k, h) and zeros everywhere
else. Note that every matrix [rkh]

m,n
k,h=1 ∈ X can be expressed as follows:

[rkh]=
m∑

k=1

n∑
h=1

Dmn
kh (rkh)=

m∑
k=1

n∑
h=1

Dmn
kh

(
t∑

j=1

rkhjrkhj
′
)

=
m∑

k=1

n∑
h=1

t∑
j=1

Dmn
kh

(
rkhjrkhj

′)= m∑
k=1

n∑
h=1

t∑
j=1

Dmn
kh

(
rkhj

)
Dnn

hh

(
rkhj
′) ∈ XT ,

where rkh =∑t
j=1 rkhjrkhj

′ holds for every k ∈ {1, . . . , m} and h ∈ {1, . . . , n} due to R being
idempotent. This shows that XT is unitary. The unitarity of SX is analogous.

• The rings S=Mm(R) and T =Mn(R) are idempotent.
The proof of this claim is similar to the previous part if we take m= n.

• The mappings 〈 , 〉 : (A, B) �→ ABT and [ , ] : (A, B) �→ ATB are full.
Indeed, by Lemma 5.6 in [26] we have that Mm,n(R)=Mm,1(R)M1,n(R) holds for every m and n.
Let Y ⊆ X be a subset that consist of matrices which have non-zero elements only in the first
row and Z ⊆ X a subset of matrices with non-zero elements only in the first column. Now we
see that the restrictions 〈 , 〉|Y×Y and [ , ]|Z×Z are full. Hence, the mappings 〈 , 〉 and [ , ] are
also full.

• We conclude that Mm(R) and Mn(R) are Morita equivalent for every m, n ∈N.

Remark 3.4. Consider the implication (4) =⇒ (2) in Theorem 3.1. Assume that R is a joint enlargement
of S and T as in Definition 2.12, with isomorphisms

f : S→ S′, s �→ ŝ, g : T→ T ′, t �→ t̂.

Then, it turns out that there is a simpler construction yielding a unitary full Rieffel context between S
and T . We consider the bimodule

SXT := S′RT ′ =
{

n∑
k=1

ŝkrkt̂k

∣∣∣∣∣n ∈N, sk ∈ S, rk ∈ R, tk ∈ T

}
⊆ R.

Addition of X is the restriction of the addition of R. The actions of S and T on X are defined by

s · x := ŝx, x · t := xt̂,

where ŝx is the product of ŝ and x in R and xt̂ is the product of x and t̂ in R. It is straightforward to show
that SXT is an (S, T)-bimodule. Since S and T are idempotent rings, the bimodule SXT is unitary.

Note that

(ŝrt̂)(ŝ1r1 t̂1)
� = ŝrt̂(t̂1)

�r�1(ŝ1)
� = ŝrt̂(t̂∗1)r�1(ŝ∗1) ∈ S′RT ′T ′RS′ = S′RT ′RS′ = S′,
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and, analogously, (ŝrt̂)�(ŝ1r1 t̂1) ∈ T ′. Hence, we can define the mappings

〈 , 〉 : X × X→ S and [ , ] : X × X→ T ,

by

〈 x, y 〉 := f −1(xy�), [x, y] := g−1(x�y),

for every x, y ∈ X. These mappings are additive in both arguments, because f −1 and g−1 are ring
isomorphisms.

To prove that 〈 , 〉 is full, we consider an element z ∈ S. Since S′ = S′RT ′T ′RS′, ẑ ∈ S′ is a finite sum of
products of the form ŝrt̂t̂1r1ŝ1, where s, s1 ∈ S, t, t1 ∈ T , r, r1 ∈ R. Now

f −1(ŝrt̂t̂1r1ŝ1)= f −1(ŝrt̂(t̂1)
��r��1 (ŝ1)

��)= f −1(ŝrt̂((ŝ1)
�r�1(t̂1)

�)�)= 〈 ŝrt̂, (ŝ1)
�r�1(t̂1)

�
〉
.

It follows that z= f −1(ẑ)=∑n
k=1 〈 xk, yk 〉, where n ∈N and xk, yk ∈ X. A similar proof shows that [ , ] is

full. It is easy to verify the conditions RC1–RC5.
We will say that (S, T , S′RT ′, 〈 , 〉 , [ , ]) is the Rieffel context induced by a joint enlargement R of S

and T .

4. Rieffel contexts come from enlargements

In this section, we will show that, up to isomorphism, every unitary Rieffel context is induced by a
joint enlargement. Isomorphism of classical Morita contexts is defined in [17]. Its analogue for Rieffel’s
contexts is the following.

Definition 4.1. Let S and T be rings with involution. We say that a Rieffel context (S, T , X, 〈 , 〉X , [ , ]X)
is isomorphic to a Rieffel context (S, T , Y , 〈 , 〉Y , [ , ]Y) if there exists a bimodule isomorphism h : X→ Y
such that, for every x1, x2 ∈ X,

〈 h(x1), h(x2) 〉Y = 〈 x1, x2 〉X and [h(x1), h(x2)]Y = [x1, x2]Y .

Theorem 4.2. Every unitary Rieffel context connecting idempotent rings S and T with involution is
isomorphic to a Rieffel context induced by a joint enlargement of S and T .

Proof. Let (S, T , X, 〈 , 〉X , [ , ]X) be a unitary Rieffel context. Putting together implications (2=⇒ 3)
and (3=⇒ 4) in Theorem 3.1 we see that it gives rise to a joint enlargement R of S and T . More precisely,

R=
{(

s x

y t

)∣∣∣∣∣ s ∈ S, t ∈ T , x, y ∈ X

}
is a ring with componentwise addition and with the multiplication(

s x

y t

)(
s1 x1

y1 t1

)
:=

(
ss1 + 〈 x, y1 〉 sx1 + xt1

ys1 + ty1 [y, x1]+ tt1

)
=
(

ss1 + 〈 x, y1 〉 sx1 + xt1

s∗1y+ y1t∗ [y, x1]+ tt1

)
.

The unary �-operation on R is defined by(
s x

y t

)�
:=

(
s∗ y

x t∗

)
.

The mappings

f : S→ R, s �→
(

s 0X

0X 0T

)
and g : T→ R, t �→

(
0S 0X

0X t

)
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are injective ring homomorphisms and the subrings

S′ = f (S)=
{(

s 0X

0X 0T

)∣∣∣∣∣ s ∈ S

}
and T ′ = g(T)=

{(
0S 0X

0X t

)∣∣∣∣∣ t ∈ T

}
of R satisfy the equalities S′ = S′RS′, R= RS′R, T ′ = T ′RT ′ and R= RT ′R. Let the Rieffel context induced
by the joint enlargement R be (S, T , Y , 〈 , 〉Y , [ , ]Y). By Remark 3.4, this means that SYT = S′RT ′,
〈 y1, y2 〉Y = f −1(y1y�2) and [y1, y2]Y = g−1(y�1y2). Observe that(

s′ 0X

0X 0T

)(
s x

y t

)(
0S 0X

0X t′

)
=
(

s′s s′x

0X 0T

)(
0S 0X

0X t′

)
=
(

0S s′xt′

0X 0T

)
for every s, s′ ∈ S, t, t′ ∈ T and x ∈ X. Hence,

SYT =
{

n∑
k=1

(
0S skxktk

0X 0T

)∣∣∣∣∣ n ∈N, sk ∈ S, xk ∈ X, tk ∈ T

}
=
{(

0S x

0X 0T

)∣∣∣∣∣ x ∈ X

}
,

where the last equality holds because SXT is a unitary bimodule.
We define a mapping h : X→ Y by

h(x) :=
(

0S x

0X 0T

)
.

Then, h is clearly an isomorphism of abelian groups. Note that

s · h(x)= s ·
(

0S x

0X 0T

)
=
(

s 0X

0X 0T

)(
0S x

0X 0T

)
=
(

0S sx

0X 0T

)
= h(sx),

h(x) · t=
(

0S x

0X 0T

)(
0S 0X

0X t

)
=
(

0S xt

0X 0T

)
= h(xt)

for every x ∈ X, s ∈ S and t ∈ T . Hence, h is an isomorphism of (S, T)-bimodules.
Finally, if x1, x2 ∈ X, then

〈 h(x1), h(x2) 〉Y = f −1(h(x1)h(x2)�)= f −1

((
0S x1

0X 0T

)(
0S 0X

x2 0T

))

= f −1

((〈 x1, x2 〉X 0X

0X 0T

))
= 〈 x1, x2 〉X ,

and, analogously, [h(x1), h(x2)]Y = [x1, x2]Y .

5. From a Rieffel context to an equivalence of module categories

In this section, we study relationships between Rieffel contexts and equivalences between module cate-
gories. When moving from unital rings to bigger classes of rings, one has to choose which categories of
modules to use in order to develop Morita theory (see the Introduction of [5]). There are three natural
choices proposed in the literature: the categories of a) unitary torsion-free modules (see, e.g., [3, 7, 18]),
b) closed modules, c) firm modules ([5, 6]). In the case of an idempotent ring, all three categories are
equivalent. While [3] uses unitary torsion-free (= nondegenerate) modules, we prefer to work with firm
modules.

In [3, Theorem 4.1(i)] it is shown that if there exists a full nondegenerate Rieffel context between two
nondegenerate idempotent rings with involution, then there is a ∗-equivalence between the categories
of unitary torsion-free modules over these rings. In this section we will prove an analogue of this result
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by a) replacing unitary torsion-free modules by firm modules and b) abandoning the requirement that
the rings and Rieffel contexts be nondegenerate. We start by modifying the necessary definitions for our
purposes and by proving some lemmas that will be needed later.

Definition 5.1. Let R be a ring. A dual R-pair consists of modules RP and QR and a mapping δ : P×Q→
R such that

1. δ is additive in both arguments;
2. δ(rp, q)= rδ(p, q) for every r ∈ R, p ∈ P, q ∈Q;
3. δ(p, qr)= δ(p, q)r for every r ∈ R, p ∈ P, q ∈Q.

Compared to the definition given on page 229 of [3], we have dropped the condition of nondegeneracy
(condition (4)). Note that if S is a ring with involution and δ : P×Q→ S is a dual S-pair, then there exists
another dual S-pair

←−
δ : Q× P→ S,

←−
δ (q, p) := δ(p, q)∗. (5.1)

We also use a modification of Definition 1.2 in [3]. Instead of categories of unitary nondegenerate
modules, we use the category SFMod of firm left S-modules and the category FModS of firm right
S-modules.

Definition 5.2. [Cf. [3, Definition 1.2]] Let S and T be two idempotent rings. A functor-multiplier from
S to T is a pair (F, G) such that

1. F : SFMod→ TFMod is an additive functor;
2. G : FModS→ FModT is an additive functor;
3. for every dual S-pair δ : V1 ×W1→ S, where V1 and W1 are firm S-modules, there exists a dual

T-pair δFG : F(V1)×G(W1)→ T;
4. if δ1 : V1 ×W1→ S and δ2 : V2 ×W2→ S are dual pairs of firm modules and f : V1→ V2,

f 	 : W2→W1 are module homomorphisms such that

δ2(f (v1), w2)= δ1(v1, f 	(w2))

in S for all v1 ∈ V1 and w2 ∈W2, then

δFG
2 (F(f )(a), b)= δFG

1 (a, G(f 	)(b))

in T for every a ∈ F(V1) and b ∈G(W2).

For a ring S with involution, we have the dualization functors

HS : FModS→ SFMod, HS(XS) := SX,

and

H′S : SFMod→ FModS, H′S(SX) := XS.

If f : XS→ YS is a morphism in FModS, then HS(f ) : SX→ SY is defined by HS(f )(x) := f (x), and similarly
for H′S. Note that HS ◦H′S and H′S ◦HS are identity functors.

FMod FMod

FMod FMod

′ ′

FMod FMod

FMod FMod

⇓

𝐹

𝐺

𝐹

𝐺

𝐻𝑆
′𝐻 𝛼𝑆𝑆 𝑇

𝑇 𝑇

𝑇

𝑇 𝑇𝑆

𝑆 𝑆

𝑆

𝐻 𝐻 𝐻 𝑇𝐻
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Definition 5.3 (Cf. [3, page 234]). Let S and T be idempotent rings with involution. A ∗-functor from S to
T is a triple (F, G, α), where (F, G) is a functor-multiplier from S to T and α : F⇒HT ◦G ◦H′S a natural
isomorphism such that, for every dual pair δ : V ×W→ S, every a ∈ F(V) and b ∈ (H′T ◦ F ◦HS)(W),
we have

←−−←−
δ FG (αV(a), b)= δFG(a, H′T(αHS(W))(b)). (5.2)

Note that here (αV(a), b) ∈ (HT ◦G ◦H′S)(V)× (H′T ◦ F ◦HS)(W)=G(V)× F(W),

αHS(W) : (F ◦HS)(W)→ (HT ◦G ◦H′S ◦HS)(W)= (HT ◦G)(W),

H′T(αHS(W)) : (H′T ◦ F ◦HS)(W)→ (H′T ◦HT ◦G)(W)=G(W),

and (a, H′T(αHS(W))(b)) ∈ F(V)×G(W).

Lemma 5.4. If (F, G, α) is a ∗-functor from S to T , δ : V ×W→ S is a dual pair, x ∈G(W) and y ∈
(HT ◦G ◦H′S)(V), then

←−−←−
δ FG

(
y, H′T(α−1

HS(W))(x)
)= δFG

(
α−1

V (y), x
)

.

Proof. Denote a := α−1
V (y) and b := H′T(α−1

HS(W))(x). Then
←−−←−
δ FG

(
y, H′T(α−1

HS(W))(x)
)=←−−←−δ FG (αV(a), b)

= δFG
(
a, H′T(αHS(W))(b)

)
((F, G, α) is a ∗-functor)

= δFG
(
a, H′T(αHS(W) ◦ α−1

HS(W))(x)
)

(H′T is a functor)

= δFG
(
a, idG(W)(x)

)
= δFG

(
α−1

V (y), x
)

,

which proves the lemma.

Note that (idSFMod, idFModS , idid
SFMod ) is a ∗-functor from S to S. By Lemma 2.1 in [3], we know that if

(F, G, α) is a ∗-functor from S to T and (F′, G′, β) a ∗-functor from T to R, then the triple (F′ ◦ F, G′ ◦
G′, β ∗ α) is a ∗-functor from S to R, where β ∗ α is the horizontal composition of natural transformations
α and β. Also, for every dual S-pair δ : V ×W→ S we have the formula

δF
′
F,G
′
G = (δFG)F

′
G
′
: F′(F(V))×G′(G(W))→ R. (5.3)

Definition 5.5. [Cf. [3, page 235]] A ∗-functor (F, G, α) from S to T is called a ∗-equivalence if there
exists a ∗-functor (F′, G′, β) from T to S such that there exist natural isomorphisms ϕ : F′ ◦ F⇒ idSFMod,
ψ : F ◦ F′ ⇒ idT FMod, for every dual pair δS : V ×W→ S we have

δS(ϕV(a), b)= δF
′
F,G
′
G

S

(
a, HS

′ ((β ∗ α)HS(W) ◦ ϕ−1
HS(W)

)
(w)
)

(5.4)

for every a ∈ (F′ ◦ F)(V) and b ∈W and for every dual pair δT : V ′ ×W ′ → T we have

δT(ψV(x), y)= δFF
′
,GG
′

T

(
x, HT

′ ((α ∗ β)HT (W) ◦ψ−1
HT (W)

)
(y)
)

(5.5)

for every x ∈ (F′ ◦ F)(V ′) and y ∈W ′. Here β ∗ α : F′ ◦ F⇒HS ◦G′ ◦G ◦H′S is the horizontal composi-
tion of α and β and

HS(W)→ϕ−1
HS (W) (F′◦ F ◦HS)(W)→(β∗α)HS (W) (HS ◦G′◦G ◦H′S ◦HS)(W)=(HS ◦G′ ◦G)(W).
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FMod FMod

FMod FMod

FMod

FMod

′

𝐹

𝐺

𝐻

′𝐺

′𝐹

𝑆

𝑆

𝑆

𝑆

𝑆

′𝐻𝑆𝐻𝑆 𝐻𝑆𝑇

𝑇

𝑇

𝐻 𝑇𝐻

Lemma 5.6. Let (F, G, α) be a ∗-equivalence from S to T with an inverse ∗-equivalence (F′, G′, β) from
T to S. Then, there exist natural isomorphisms σ : idFModS⇒G′ ◦G and ρ : idFModT ⇒G ◦G′.

Proof. Let the assumptions of this lemma hold with natural isomophisms ϕ : F′ ◦ F⇒ idSFMod and
ψ : F ◦ F′ ⇒ idT FMod. The required natural isomorphisms from the claim of the lemma have components
σW =HS

′((β ∗ α)HS(W) ◦ ϕ−1
HS(W)) : W→ (G′ ◦G)(W) (for every W ∈ FModS) and ρU =HT

′((α ∗ β)HT (U) ◦
ψ−1

HT (U)) : U→ (G ◦G′)(U) (for every U ∈ FModT).

Now we are ready to prove the main result of this section. It is an analogue of the classical Morita I
theorem (see, e.g., [10, Theorem 18.24]).

Theorem 5.7. Let (S, T , SXT , 〈 , 〉 , [ , ]) be a firm and full Rieffel context connecting idempotent rings S
and T with involution. Then there is a ∗-equivalence from S to T .

Proof. We construct a functor-multiplier from S to T . If MS ∈ FModS, then M⊗S XT ∈ FModT ,
because μM⊗X = idM ⊗μX , where idM and μX are isomorphisms. Similarly, TX⊗S N ∈ TFMod if SN ∈
SFMod. This allows us to consider the tensor functors

F := X⊗S :SFMod→ TFMod,

G := ⊗S X : FModS→ FModT .

The following proof is divided into several claims, which are proved separately.

Claim 1. The pair (F, G) is a functor-multiplier.
Conditions (1) and (2) in Definition 5.2 are obvious.
(3) Let δ : V ×W→ S be a dual S-pair. Define a mapping

δFG : (X⊗S V)× (W ⊗S X)→ T

by

δFG(y⊗ v, w⊗ x) := [y, δ(v, w)x] ∈ T . (5.6)

We will show that δFG is well-defined. Note that for every pair (w′, x′) ∈W × X, there is a well-defined
mapping

dw
′
,x
′ : X × V→ T , (y, v) �→ [y, δ(v, w′)x′].

The mapping dw
′
,x
′ is S-balanced, because, for every y, y′ ∈ X, v, v′ ∈ V and s ∈ S, we have

dw
′
,x
′ (y+ y′, v)= dw

′
,x
′ (y+ y′, v)= [y+ y′, δ(v, w′)x′]= dw

′
,x
′ (y, v)+ dw

′
,x
′(y′, v),

dw
′
,x
′ (y, v+ v′)= [y, δ(v+ v′, w′)x′]= [y, (δ(v, w′)+ δ(v′, w′))x′]

= [y, δ(v, w′)x′]+ [y, δ(v′, w′)x′]= dw
′
,x
′ (y, v)+ dw

′
,x
′ (y, v′),

dw
′
,x
′ (ys, v)= dw

′
,x
′ (s∗y, v)= [s∗y, δ(v, w′)x′]= [y, sδ(v, w′)x′]= [y, δ(sv, w′)x′]

= dw
′
,x
′ (y, sv).
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By the universal property of the tensor product, we have a well-defined group homomorphism
dw
′
,x
′ : X⊗S V→ T such that

dw
′
,x
′ (y⊗ v)= [y, δ(v, w′)x′]

for every y ∈ X and v ∈ V . Also, for every t ∈ T , y ∈ X and v ∈ V , using RC7 we have

dw
′
,x
′ (ty⊗ v)= dw

′
,x
′ (yt∗ ⊗ v)= [yt∗, δ(v, w′)x′]= t[y, δ(v, w′)x′]= tdw

′
,x
′ (y⊗ v).

Hence, dw
′
,x
′ is a homomorphism of left T-modules. Now we may define a mapping

τ : W × X→Hom
(
X⊗S V , T

)
, (w, x) �→ dw,x.

Note, that for every w, w′ ∈W, x, x′, y ∈ X, v ∈ V and s ∈ S we have

τ (w+w′, x)(y⊗ v)= dw+w
′
,x(y⊗ v)= [y, δ(v, w+w′)x]= [y, δ(v, w)x]+ [y, δ(v, w′)x]

= dw,x(y⊗ v)+ dw
′
,x(y⊗ v)= (τ (w, x)+ τ (w′, x))(y⊗ v),

τ (ws, x)(y⊗ v)= dws,x(y⊗ v)= [y, δ(v, ws)x]= [y, δ(v, w)sx]= τ (w, sx)(y⊗ v)

and τ (w, x+ x′)= τ (w, x)+ τ (w, x′). Hence, τ is S-balanced and by the universal property of the tensor
product, we may consider a well-defined group homomorphism τ : W ⊗S X→Hom

(
X⊗S V , T

)
such

that τ (w⊗ x)= dw,x for every w ∈W and x ∈ X. Putting

δFG(a, b) := τ (b)(a) ∈ T

we have a well-defined mapping δFG : (X⊗S V)× (W ⊗S X)→ T such that

δFG

(
n∑

k=1

yk ⊗ vk,
m∑

h=1

wh ⊗ xh

)
=τ

(
m∑

h=1

wh ⊗ xh

)(
n∑

k=1

yk ⊗ vk

)
=

n∑
k=1

m∑
h=1

[yk, δ(vk, wh)xh].

It easily follows that δFG is additive in both arguments. We also have

δFG(t(y⊗ v), w⊗ x)= δFG(yt∗ ⊗ v, w⊗ x)= [yt∗, δ(v, w)x]= t[y, δ(v, w)x]

= tδFG(y⊗ v, w⊗ x),

δFG(y⊗ v, (w⊗ x)t)= [y, δ(v, w)xt]= [y, δ(v, w)x]t= δFG(y⊗ v, w⊗ x)t

for every t ∈ T , x, y ∈ X and v ∈ V . So δFG is a dual T-pair.
(4) Let δ1 : V1 ×W1→ S and δ2 : V2 ×W2→ S be dual pairs and let f : V1→ V2, f 	 : W2→W1 be

module homomorphisms such that

δ2(f (v1), w2)= δ1

(
v1, f 	(w2)

)
in S for all v1 ∈ V1 and w2 ∈W2. Then, for every x, y ∈ X,

[y, δ2(f (v1), w2)x]= [y, δ1(v1, f 	(w2))x]

=⇒ δFG
2 (y⊗ f (v1), w2 ⊗ x)= δFG

1 (y⊗ v1, f 	(w2)⊗ x)

=⇒ δFG
2 ((idX ⊗ f )(y⊗ v1), w2 ⊗ x)= δFG

1 (y⊗ v1, (f 	 ⊗ idX)(w2 ⊗ x))

=⇒ δFG
2 (F(f )(y⊗ v1), w2 ⊗ x)= δFG

1 (y⊗ v1, G(f 	)(w2 ⊗ x)),

as needed. Thus, the pair (F, G) is a functor-multiplier.

Claim 2. The functor-multiplier (F, G) is a ∗-functor.
We need to define a natural transformation α : F⇒HT ◦G ◦H′S. For every SM ∈ SFMod, we define

a mapping

αM : F(M)= X⊗S M→M⊗S X = (HT ◦G ◦H′S)(M)
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by

αM(y⊗m) := m⊗ y.

We will show that α := (αM)M∈SFMod : F⇒HT ◦G ◦HS is a natural isomorphism.

Well-defined. Let SM ∈ SFMod. Consider the mapping

α̂M : X ×M→M⊗S X, (y, m) �→m⊗ y.

Note that, for every y, y′ ∈ X, m, m′ ∈M and s ∈ S, we have

α̂M(y+ y′, m)= α̂M(y+ y′, m)=m⊗ (y+ y′)=m⊗ y+m⊗ y′

=m⊗ y+m⊗ y′ = α̂M(y, m)+ α̂M(y′, m),

α̂M(ys, m)= α̂M(s∗y, m)=m⊗ s∗y=ms∗ ⊗ y= sm⊗ y= α̂M(y, sm)

and α̂M(y, m+m′)= α̂M(y, m)+ α̂M(y, m′). By the universal property of the tensor product, we see that
αM is a well-defined group homomorphism.

Homomorphism of T-modules. Let SM ∈ SFMod. Note that, for every t ∈ T , y ∈ X and m ∈M,
we have

αM(ty⊗m)= αM(yt∗ ⊗m)=m⊗ yt∗ = (m⊗ y)t∗ = tm⊗ y= tαM(y⊗m).

Hence, we see that αM is a homomorphism of left T-modules.

Bijective. Let MS ∈ FModS. Analogously to the first point, we see that there exists a well-defined group
homomorphism

βM
′ : M⊗S X→ X⊗S M, m⊗ y �→ y⊗m.

We may also consider a mapping βM : M⊗S X→ X⊗S M, m⊗ y �→ y⊗m, because βM = βM
′ ◦ uM⊗X ,

where uM⊗X : M⊗S X→M⊗S X, a �→ a. Clearly, βM is the inverse of αM in Set, which proves that αM

is bijective.

Natural transformation. Let SM, SM′ ∈ SFMod and f : SM→ SM′ be a homomorphism of left S-
modules. We need to show that the diagram

⊗ ⊗

⊗

id ⊗

⊗

( ◦ ◦ ) ( )

X

X M�M� X

M M XS
M

H G H fT s

ss

X f

𝛼

M𝛼

commutes. If y ∈ X and m ∈M, then

((HT ◦G ◦HS)(f ) ◦ αM)(y⊗m)= (HT ◦G ◦HS)(f )(m⊗ y)

= (G ◦HS)(f )(m)⊗ y= (HS(f )⊗ idX)(m⊗ y)

=HS(f )(m)⊗ y= f (m)⊗ y

= αM
′(y⊗ f (m))= (αM

′ ◦ (idX ⊗ f ))(y⊗m).

Therefore we see that α is indeed a natural transformation.
In conclusion, we have shown that α is a natural isomorphism.
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To verify the equality (5.2), let δ : V ×W→ S be a dual pair and consider a ∈ X⊗S V = F(V) and
b ∈ X⊗S W = (H′T ◦ F ◦HS)(W). Then a=∑n

k=1 yk ⊗ vk, b=∑m
h=1 xh ⊗wh and

←−−←−
δ FG(αV(a), b)=

←−−←−
δ FG

(
αV

(
n∑

k=1

yk ⊗ vk

)
,

m∑
h=1

xh ⊗wh

)

=
←−−←−
δ FG

(
n∑

k=1

vk ⊗ yk,
m∑

h=1

xh ⊗wh

)
(def. of αV)

=←−δ FG

(
m∑

h=1

xh ⊗wh,
n∑

k=1

vk ⊗ yk

)∗
(by (5.1))

=
m∑

h=1

n∑
k=1

[xh,
←−
δ (wh, vk)yk]

∗ (by (5.6))

=
m∑

h=1

n∑
k=1

[xh, δ(vk, wh)∗yk]
∗ (by (5.1))

=
m∑

h=1

n∑
k=1

[δ(vk, wh)∗yk, xh] (RC4)

=
m∑

h=1

n∑
k=1

[yk, δ(vk, wh)xh] (RC9)

= δFG

(
n∑

k=1

yk ⊗ vk,
m∑

h=1

wh ⊗ xh

)
(by (5.6))

= δFG

(
a,

m∑
h=1

wh ⊗ xh

)

= δFG

⎛⎝a, αW

(
m∑

h=1

xh ⊗wh

)⎞⎠ (def. of αW)

= δFG

(
a, HT

′(αW)

(
m∑

h=1

xh ⊗wh

))
(def. of H′T)

= δFG(a, HT
′(αHS(W))(b)). (def. of HS)

Hence, we see that (F, G, α) is indeed a ∗-functor from S to T .

Claim 3. The ∗-functor (F, G) is a ∗-equivalence.
Analogously, we see that the pair (F′, G′, β) is a ∗-functor from T to S, where

F′ := X⊗T : TFMod→ SFMod,

G′ := ⊗T X : FModT→ FModS;

β = (βM)M∈T FMod : F′ ⇒HS ◦G′ ◦HT
′,

βM(x⊗m) := m⊗ x.
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Also, for any dual T-pair δT : V ×W→ T , we have

δF
′
G
′

T : F′(V)×G′(W)→ S, (x⊗ v, w⊗ y) �→ 〈x δT(v, w), y〉. (5.7)

To complete the proof we need to show that the requirements of Definition 5.5 are met. For every SM ∈
SFMod, consider the mapping

τM : (F′ ◦ F)(SM)= X⊗T X⊗S M→ S⊗S M, x⊗ y⊗m �→ 〈x, y〉 ⊗m.

As in (3.1), we have a well-defined group homomorphism θ : X⊗T X→ S, x⊗ y �→ 〈x, y〉, which is a
homomorphism of (S, S)-bimodules. This implies that τM = θ ⊗ idM is a well-defined homomorphism
of left S-modules. The homomorphism τM is surjective, because 〈 , 〉 is full. We will show that τM is also
injective. Consider the short exact sequence of (S, S)-bimodules

{0}→Kerθ
ι→ X⊗T X

θ→ S→{0},
where ι : Kerθ→ X⊗T X is the inclusion. By [28, Result 12.8(1)], the sequence of left S-modules

Kerθ ⊗S M
ι⊗idM→ X⊗T X⊗S M

τM→ S⊗S M→{0} (5.8)

is also exact. We show that (Kerθ )S= {0}. Let
∑n

k=1 xk ⊗ yk ∈Kerθ and s ∈ S. Since θ is surjective, there
exists

∑m
h=1 ξh ⊗ ζ h ∈ X⊗T X such that s= θ (

∑m
h=1 ξh ⊗ ζ h). Now(

n∑
k=1

xk ⊗ yk

)
s=

n∑
k=1

xk ⊗ ykθ

(
m∑

h=1

ξh ⊗ ζ h

)
=

n∑
k=1

m∑
h=1

xk ⊗ yk〈ξh, ζh〉

=
n∑

k=1

m∑
h=1

xk ⊗ 〈ξh, ζh〉∗yk =
n∑

k=1

m∑
h=1

xk ⊗ 〈ζh, ξh〉yk =
n∑

k=1

m∑
h=1

xk ⊗ ζh[ξh, yk]

=
n∑

k=1

m∑
h=1

xk ⊗ [ξh, yk]
∗ζh =

n∑
k=1

m∑
h=1

xk[ξh, yk]
∗ ⊗ ζh =

n∑
k=1

m∑
h=1

xk[yk, ξh]⊗ ζh

=
n∑

k=1

m∑
h=1

〈xk, yk〉ξh ⊗ ζh =
m∑

h=1

θ

(
n∑

k=1

xk ⊗ yk

)
ξh ⊗ ζh =

m∑
h=1

0ξh ⊗ ζh = 0.

Hence, (Kerθ )S= {0}.
Now let ξ ⊗m be an elementary tensor in Kerθ ⊗S M (then ξ ⊗m is also a generator of Kerθ ⊗S M).

Since SM is unitary, there exist s1, . . . , sj ∈ S and m1, . . . , mj ∈M such that m= s1m1 + . . .+ sjmj. Then
ξsh = 0 for every h ∈ {1, . . . , j} and

ξ ⊗m= ξ ⊗
(

j∑
h=1

shmh

)
=

j∑
h=1

ξ ⊗ shmh =
j∑

h=1

ξsh ⊗mh = 0.

It follows that Kerθ ⊗S M= {0}. Hence, τM is bijective, due to the exactness of the sequence (5.8).
Let SM, SM′ ∈ SFMod and f : SM→ SM′ a morphism in SFMod. The diagram

⊗ ⊗ ⊗

⊗ ⊗

id
⊗

⊗

⊗ ⊗

⊗

⊗

id ⊗

X X SM� M�

SX M MT

T

S

S S

S

X SX f f

M𝜏

M �𝜏

commutes, because

((idS ⊗ f ) ◦ τM)(x⊗ y⊗m)= (idS ⊗ f )( 〈 x, y 〉 ⊗m)= 〈 x, y 〉 ⊗ f (m)

= τM
′ (x⊗ y⊗ f (m))= (τM

′ ◦ (idX⊗X ⊗ f ))(x⊗ y⊗m).
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We have shown that τ = (τM)M∈SFMod : F′ ◦ F⇒ S⊗S is a natural isomorphism. By the definition of
the category SFMod, there exists a natural isomorphism ν = (νM)M∈SFMod : S⊗S ⇒ idSFMod, where

νM : S⊗S M→M, x⊗m �→ sm.

Composing τ and ν, we obtain a natural isomorphism

ϕ = (ϕM) : F′ ◦ F⇒ idSFMod,

ϕM : X⊗T X⊗S M→ SM, x⊗ y⊗m �→ 〈x, y〉m.

We will show that ϕ satisfies condition (5.4). Similar reasoning will lead to a natural transformation
ψ : F ◦ F′ ⇒ idT FMod satisfying (5.5). First, we calculate the natural isomorphism

β ∗ α : F′ ◦ F= X⊗T X⊗S ⇒ (HS ◦G′ ◦HT
′) ◦ (HT ◦G ◦HS

′)=HS ◦ ( ⊗S X⊗T X) ◦H′S.

For every SM ∈ SFMod,

(β ∗ α)M = βHT GHS
′
(M) ◦ F′(αM) : X⊗T X⊗S M→M⊗S X⊗T X,

x⊗ y⊗m �→ βHT GHS
′
(M)(x⊗m⊗ y)=m⊗ y⊗ x.

Let δ : V ×W→ S be a dual pair. We will prove (5.4). Let a ∈ (F′ ◦ F)(V) and b ∈W. Then a=∑n
k=1 xk ⊗ yk ⊗ vk for some xk, yk ∈ X and vk ∈ V . Since WS is firm (thus unitary) and 〈 , 〉 is full, we can

write b=∑j
h=1 wh〈ξh, ζh〉, where wh ∈W and ξh, ζh ∈ X. Now

b=
j∑

h=1

wh 〈 ξh, ζh 〉 =
j∑

h=1

〈 ξh, ζh 〉∗ wh =
j∑

h=1

〈 ζh, ξh 〉wh = ϕH(W)

(
j∑

h=1

ζh ⊗ ξh ⊗wh

)
,

so we have

HS
′((β ∗ α)H(W) ◦ ϕ−1

H(W))(b)= (HS
′((β ∗ α)H(W)) ◦H′S(ϕ−1

H(W))
) (

b
)

(H′S is a functor)

=HS
′((β ∗ α)H(W))

(
ϕ−1

H(W)

(
b
))

(def. of H′S)

=HS
′((β ∗ α)H(W))

⎛⎝ j∑
h=1

ζh ⊗ ξ h ⊗wh

⎞⎠
= (β ∗ α)H(W)

(
j∑

h=1

ζh ⊗ ξ h ⊗wh

)
(def. of H′S)

=
j∑

h=1

wh ⊗ ξh ⊗ ζ h (def. of (β ∗ α)H(W))

=
j∑

h=1

wh ⊗ ξh ⊗ ζ h,
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and therefore

δF
′
F,G
′
G(a, HS

′((β ∗ α)H(W) ◦ ϕ−1
H(W))(b))

= δF
′
F,G
′
G

(
n∑

k=1

xk ⊗ yk ⊗ vk,
j∑

h=1

wh ⊗ ξh ⊗ ζ h

)

=
n∑

k=1

j∑
h=1

〈
xkδ

FG(yk ⊗ vk, wh ⊗ ξh), ζh

〉
(by (5.7))

=
n∑

k=1

j∑
h=1

〈xk[yk, δ(vk, wh)ξh], ζh〉 (by (5.6))

=
n∑

k=1

j∑
h=1

〈xk, ζh[yk, δ(vk, wh)ξh]
∗〉 (RC8)

=
n∑

k=1

j∑
h=1

〈xk, ζh[δ(vk, wh)ξh, yk]〉 (RC4)

=
n∑

k=1

j∑
h=1

〈xk, 〈ζh, δ(vk, wh)ξh〉yk〉 (RC5)

=
n∑

k=1

j∑
h=1

〈xk, yk〉〈ζh, δ(vk, wh)ξh〉∗ (RC6)

=
n∑

k=1

j∑
h=1

〈xk, yk〉〈δ(vk, wh)ξh, ζh〉 (RC2)

=
n∑

k=1

j∑
h=1

〈xk, yk〉δ(vk, wh)〈ξh, ζh〉 (RC1)

= δ
(

n∑
k=1

〈xk, yk〉vk,
j∑

h=1

wh〈ξh, ζh〉
)

(additivity)

= δ
(
ϕV

(
n∑

k=1

xk ⊗ yk ⊗ vk

)
, b

)
(def. of ϕV)

= δ(ϕV(a), b).

The proof is complete.

Corollary 5.8. If there exists a unitary and full Rieffel context between idempotent rings with involution
R and S, then the rings R and S are Morita ∗-equivalent.

6. From a category equivalence to a Rieffel context

In this section, we will give a necessary and sufficient condition for the existence of a firm and full
Rieffel context between two idempotent rings with involution in terms of equivalence of categories of
firm modules.
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Lemma 6.1. Let S and T be rings with involution. For every bimodule SXT , there exists a group
homomorphism σX : X⊗T X→ X⊗T X such that

σX(x⊗ y)= y⊗ x

for every x, y ∈ X.

Proof. The mapping σ̂ : X × X→ X⊗T X, (x, y) �→ y⊗ x, is T-balanced, because

σ̂ (xt, y)= y⊗ xt= y⊗ t∗x= yt∗ ⊗ x= σ̂ (x, yt∗)= σ̂ (x, ty),

and it is obviously additive in both arguments. Now the claim follows from the universal property of
tensor product.

We recall that there exist two natural transformations μ= (μM)M∈ModS : ⊗S S⇒ idModS and ν =
(νN)N∈SMod : S⊗S ⇒ idSMod with components

μM : M⊗S S→M, m⊗ s �→ms,

νN : S⊗S N→N, s⊗ n �→ sn.

Lemma 6.2. Let S and T be rings with involution. A bimodule SXT is firm if and only if the dual bimodule
TXS is firm.

Proof. The mappings

κ̂ : X × T→ T ⊗T X, (x, t) �→ t∗ ⊗ x,

ω̂ : T × X→ X⊗T T , (t, x) �→ x⊗ t∗

are T-balanced, because

κ̂(xt1, t)= t∗ ⊗ xt1 = t∗ ⊗ t∗1x= t∗t∗1 ⊗ x= (t1t)
∗ ⊗ x= κ̂(x, t1t),

ω̂(tt1, x)= x⊗ (tt1)
∗ = x⊗ t∗1t∗ = xt∗1 ⊗ t∗ = ω̂(t, xt∗1)= ω̂(t, t1x),

and additivity in both arguments is clear. Hence, there exist group homomorphisms κ : X⊗T T→ T ⊗T

X and ω : T ⊗T X→ X⊗T T such that

κ(x⊗ t)= t∗ ⊗ x,

ω(t⊗ x)= x⊗ t∗.

It is easy to see that κ =ω−1, so κ is a bijective mapping. Moreover, the square

⊗

⊗

( )

XX

XT

T

X
X

T

T
X𝜇

𝜅

commutes, because

(( ) ◦μX)(x⊗ t)= xt= t∗x= νX(t∗ ⊗ x)= (νX ◦ κ)(x⊗ t).

Since κ and ( ) are bijections, μ is a bijection if and only if ν is a bijection.
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Theorem 6.3. For idempotent rings S and T with involution, the following are equivalent.

1. There exists a firm and full Rieffel context connecting S and T .
2. There exists a firm bimodule SXT such that for the functors

F= X⊗S − : SFMod→ TFMod, G=−⊗S X : FModS→ FModT ,

F′ = X⊗T − : TFMod→ SFMod, G′ = −⊗T X : FModT→ FModS

there exist natural isomorphisms

ϕ : F′ ◦ F⇒ id, ψ : F ◦ F′ ⇒ id, ξ : G′ ◦G⇒ id, ζ : G ◦G′ ⇒ id

such that ζXT = ϕSX and ψT X = ξXS as mappings and the following diagrams commute:

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

(R1)

id ⊗ −1 id ⊗ −1 ⊗ id ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

id ⊗ −1 id ⊗ −1 ⊗ id
⊗

( )∗

⊗ ⊗

⊗X X XX S X X S S S S S

S,SSSSXXX X SXX

X X

X

XX

S S𝜑

𝜎

S S𝜑𝜇𝜇

S𝜇𝜇𝜇

S𝜇

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

(R2)

−1 ⊗ id id ⊗ −1 ⊗ id

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

−1 ⊗ id id ⊗ −1 ⊗ id

( )∗

X X XT X T T X X T T T

T .TTXXTTT X XXX

X X

X

X

X

⊗T T𝜁

𝜎

⊗T T𝜁

T𝜇

T𝜇

Proof. (1) =⇒ (2). Let (S, T , SXT , 〈 , 〉 , [ , ]) be a firm and full Rieffel context. In the proof of
Theorem 5.7, we have seen that

F= X⊗S − : SFMod→ TFMod, G=−⊗S X : FModS→ FModT ,

F′ = X⊗T − : TFMod→ SFMod, G′ = −⊗T X : FModT→ FModS

are equivalence functors and ϕ = (ϕSM) : F′ ◦ F⇒ idSFMod, where

ϕSM : X⊗T X⊗S M→ SM, x⊗ y⊗m �→ 〈 x, y 〉m,

is a natural isomorphism. Analogously we can construct natural isomorphisms ψ , ξ and ζ by
defining

ψT N : X⊗S X⊗T N→ TN, y⊗ x⊗ n �→ [y, x]n,

ξNS : N ⊗S X⊗T X→NS, n⊗ x⊗ y �→ n 〈 x, y 〉 ,
ζMT : M⊗T X⊗S X→MT , m⊗ y⊗ x �→m[y, x].

Now, for every x, x′, y, y′ ∈ X,

ζXT (x′ ⊗ y⊗ x)= x′[y, x]= 〈 x′, y 〉 x= ϕSX(x′ ⊗ y⊗ x),

ψT X(y⊗ x⊗ y′)= [y, x]y′ = y′[y, x]∗ = y′[x, y]= 〈 y′, x 〉 y
= 〈 x, y′ 〉∗ y= y 〈 x, y′ 〉 = ξXS (y⊗ x⊗ y′).

So ζXT = ϕSX and ψT X = ξXS .
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We will prove the commutativity of rectangle (R1) (for rectangle (R2) the proof will be similar). Take
x⊗ y ∈ X⊗T X. Since SX is unitary, we can write

x=
ı̂∑

i=1

sixi, xi =
ĵ∑

j=1

sijxij, y=
k̂∑

k=1

ukyk, yk =
l̂∑

l=1

uklykl (6.1)

for some xi, xij, yk, ykl ∈ X and si, sij, uk, ukl ∈ S. Then

((idX ⊗μX) ◦ (idX ⊗μX ⊗ idS))

⎛⎝ k̂∑
k=1

l̂∑
l=1

x⊗ ykl ⊗ u∗kl ⊗ u∗k

⎞⎠

= (idX ⊗μX)

⎛⎝ k̂∑
k=1

l̂∑
l=1

x⊗ yklu
∗
kl ⊗ u∗k

⎞⎠ (def. of μX)

= (idX ⊗μX)

⎛⎝ k̂∑
k=1

l̂∑
l=1

x⊗ uklykl ⊗ u∗k

⎞⎠ (by (2.2))

= (idX ⊗μX)

⎛⎝ k̂∑
k=1

x⊗ yk ⊗ u∗k

⎞⎠ (by (6.1))

=
k̂∑

k=1

x⊗ yku
∗
k (def. of μX)

=
k̂∑

k=1

x⊗ ukyk (by (2.2))

= x⊗ y (by (6.1))

and, analogously,

((idX ⊗μX) ◦ (idX ⊗μX ⊗ idS))

(
ı̂∑

i=1

ĵ∑
j=1

y⊗ xij ⊗ s∗ij ⊗ s∗i

)
= y⊗ x. (6.2)

Hence, (
( )∗ ◦μS ◦ ϕS⊗S ◦ (idX ⊗μ−1

X
⊗ idS) ◦ (idX ⊗μ−1

X
)
)

(x⊗ y)

= (( )∗ ◦μS ◦ ϕS⊗S)

⎛⎝ k̂∑
k=1

l̂∑
l=1

x⊗ ykl ⊗ u∗kl ⊗ u∗k

⎞⎠
=

k̂∑
k=1

l̂∑
l=1

(( )∗ ◦μS ◦ ϕS⊗S)
(
x⊗ ykl ⊗ u∗kl ⊗ u∗k

)
(additivity)

=
k̂∑

k=1

l̂∑
l=1

(( )∗ ◦μS)
(〈 x, ykl 〉 (u∗kl ⊗ u∗k)

)
(def. of ϕS⊗S)

=
k̂∑

k=1

l̂∑
l=1

(( )∗ ◦μS)
(〈 x, ykl 〉 u∗kl ⊗ u∗k

)
(S-action of S⊗ S)
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=
k̂∑

k=1

l̂∑
l=1

(〈 x, ykl 〉 u∗klu
∗
k

)∗
(def. of μS and ( )∗)

=
⎛⎝ k̂∑

k=1

l̂∑
l=1

〈 x, ykl 〉 u∗klu
∗
k

⎞⎠∗ (by (2.1))

=
⎛⎝ k̂∑

k=1

l̂∑
l=1

〈 x, uklykl 〉 u∗k
⎞⎠∗ (RC6)

=
⎛⎝ k̂∑

k=1

⎛⎝〈 x,
l̂∑

l=1

uklykl

〉⎞⎠ u∗k

⎞⎠∗ (additivity)

=
⎛⎝ k̂∑

k=1

〈 x, yk 〉 u∗k
⎞⎠∗ (by (6.1))

=
⎛⎝ k̂∑

k=1

〈 x, ukyk 〉
⎞⎠∗ (RC6)

= 〈 x, y 〉∗ (by (6.1))

= 〈 y, x 〉 (RC2)

and (
μS ◦ ϕS⊗S ◦ (idX ⊗μ−1

X
⊗ idS) ◦ (idX ⊗μ−1

X
) ◦ σX

)
(x⊗ y)

= (μS ◦ ϕS⊗S ◦ (idX ⊗μ−1
X
⊗ idS) ◦ (idX ⊗μ−1

X
)
)

(y⊗ x) (def. of σX)

= (μS ◦ ϕS⊗S)

(
ı̂∑

i=1

ĵ∑
j=1

y⊗ xij ⊗ s∗ij ⊗ s∗i

)
(by (6.2))

=
ı̂∑

i=1

ĵ∑
j=1

(μS ◦ ϕS⊗S)
(
y⊗ xij ⊗ s∗ij ⊗ s∗i

)
(additivity)

=
ı̂∑

i=1

ĵ∑
j=1

μS

(〈
y, xij

〉
(s∗ij ⊗ s∗i )

)
(def. of ϕS⊗S)

=
ı̂∑

i=1

ĵ∑
j=1

μS

(〈
y, xij

〉
s∗ij ⊗ s∗i

)
(S-action of S⊗ S)

=
ı̂∑

i=1

ĵ∑
j=1

〈
y, xij

〉
s∗ijs
∗
i (def. of μS)

=
ı̂∑

i=1

ĵ∑
j=1

〈
y, sijxij

〉
s∗i (RC6)

https://doi.org/10.1017/S0017089524000302 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000302


Glasgow Mathematical Journal 27

=
ı̂∑

i=1

〈 y, xi 〉 s∗i (by (6.1))

=
ı̂∑

i=1

〈 y, sixi 〉 (RC6)

= 〈 y, x 〉 . (by (6.1))

Thus, the rectangle (R1) commutes.
(2) =⇒ (1). By Theorem 3.1, it suffices to prove that there exists a firm and surjective Morita

∗-context (S, T , SXT , TXS, θ , φ). We will use the mappings ϕS⊗S : X⊗ X⊗ S⊗ S→ S⊗ S and ζT⊗T : T ⊗
T ⊗ X⊗ X→ T ⊗ T for this. Since TXS is a firm bimodule by Lemma 6.2, the mappings

μX : X⊗S S→ X, x⊗ s �→ xs= s∗x,

νX : T ⊗T X→ X, t⊗ x �→ tx= xt∗

are bijective. Idempotency of S and T means that the mappings

μS : S⊗S S→ S, s⊗ u �→ su,

μT : T ⊗T T→ T , t⊗ v �→ tv

are surjective. We define θ as the composite

⊗
id ⊗ −1

⊗ ⊗
id ⊗ −1⊗id

⊗ ⊗ ⊗
⊗

⊗X X X X X S S S S SXS
X X

𝜇 X S S S SX
𝜇 𝜇𝜑

and φ as the composite

⊗

−1⊗id
⊗ ⊗

id ⊗ −1⊗id
⊗ ⊗ ⊗

⊗
⊗X X T X X T T X X T T T .X XT X T TX T𝜇𝜁

From here we see immediately that θ and φ are surjective homomorphisms of left modules. Take x, y ∈ X.
Using twice the fact that SXT is unitary, we can write y as

y=
n∑

k=1

ukskyk =
m∑

l=1

zltlvl (6.3)

for some m, n ∈N, uk, sk ∈ S, tl, vl ∈ T and yk, zl ∈ X. Then,

x⊗ y= x⊗
n∑

k=1

ukskyk =
n∑

k=1

x⊗ ukskyk =
n∑

k=1

x⊗ yks
∗
ku∗k

=
n∑

k=1

(idX ⊗μX) (x⊗ yks
∗
k ⊗ u∗k) (def. of μX)

=
n∑

k=1

((idX ⊗μX)◦(idX ⊗μX ⊗ idS)) (x⊗ yk ⊗ s∗k ⊗ u∗k). (def. of μX)

Hence,

θ (x⊗ y)=
n∑

k=1

(μS ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ u∗k) (6.4)
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and, analogously,

φ(y⊗ x)=
m∑

l=1

(μT ◦ ζT⊗T)(v∗l ⊗ t∗l ⊗ zl ⊗ x). (6.5)

Note that ρs : SS⊗S S→ SS⊗S S, u⊗ v �→ u⊗ vs is a homomorphism of left S-modules for every
s ∈ S. Since ϕ is a natural transformation, the square

⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗

id ⊗ ⊗

X X

XX

X X

S S

S S SS

S

S S

SS

SS

S SS
SS

𝜌

𝜑

𝜑

𝜌

commutes. Hence,

ϕS⊗S((x⊗ y⊗ u⊗ v)s)= ϕS⊗S(x⊗ y⊗ u⊗ vs) (S-action of X⊗ X⊗ S⊗ S)

= (ϕS⊗S ◦ (idX⊗X ⊗ ρs)) (x⊗ y⊗ u⊗ v) (def. of ρs)

= (ρs ◦ ϕS⊗S)(x⊗ y⊗ u⊗ v) (naturality of ϕ)

= ϕS⊗S(x⊗ y⊗ u⊗ v)s, (def. of ρs)

which means that ϕS⊗S is a homomorphism of (S, S)-bimodules. Analogously, ζT⊗T is a homomorphism
of (T , T)-bimodules. Using this and the equality s∗y=∑n

k=1 (s∗uk)skyk, we see that

θ ((x⊗ y)s)= θ (x⊗ s∗y) (by (2.2))

=
n∑

k=1

(μS ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ (s∗uk)
∗) (by (6.4))

=
n∑

k=1

(μS ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ u∗ks) (by (2.1))

=
n∑

k=1

(μS ◦ ϕS⊗S)((x⊗ yk ⊗ s∗k ⊗ u∗k)s) (S-action of X⊗ X⊗ S⊗ S)

=
n∑

k=1

(μS ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ u∗k)s (μS, ϕS⊗S are homomorphisms)

= θ (x⊗ y)s, (by (6.4))

so θ is a homomorphism of (S, S)-bimodules, and, analogously, φ is a homomorphism of (T , T)-
bimodules.

Next we verify the compatibility conditions. Let x, y be as above and take also x′ ∈ X. Consider the
module homomorphisms

rx
′ : SS→ SX, s �→ sx′, (6.6)

lx : TT→ XT , t �→ xt (6.7)

and the composites ρx
′ := rx

′ ◦μS : S⊗S S→ X and λx := lx ◦μT : T ⊗T T→ XT . Since ϕ and ζ are
natural transformations, the squares
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⊗ ⊗

⊗ ⊗ ⊗ ⊗X S S SSXS

X
X X XS XS

S
⊗SS𝜑

𝜑

id ⊗ ⊗X X x�𝜌 x�𝜌

⊗ ⊗

⊗ ⊗ ⊗ ⊗
⊗

⊗ id ⊗

T T T TX

X X

T T
T

XXx

T
X

TX TX

𝜁

X𝜁

𝜆 x𝜆

commute. Therefore,

θ (x⊗ y)x′ =
n∑

k=1

(μS ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ u∗k)x′ (by (6.4))

=
n∑

k=1

(rx
′ ◦μS ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ u∗k) (by (6.6))

=
n∑

k=1

(ρx
′ ◦ ϕS⊗S)(x⊗ yk ⊗ s∗k ⊗ u∗k) (def. of ρx

′ )

=
n∑

k=1

(ϕX ◦ (idX⊗X ⊗ ρx
′ ))(x⊗ yk ⊗ s∗k ⊗ u∗k) (naturality of ϕ)

=
n∑

k=1

ϕX(x⊗ yk ⊗ s∗ku∗kx′) (def. of ρx
′ )

=
n∑

k=1

ϕX(x⊗ yks
∗
ku∗k ⊗ x′) (property of ⊗)

=
n∑

k=1

ϕX(x⊗ ukskyk ⊗ x′) (by (2.2))

= ϕX(x⊗ y⊗ x′) (by (6.3))

= ζX(x⊗ y⊗ x′) (ϕX = ζX)

=
m∑

l=1

ζX(x⊗ zltlvl ⊗ x′) (by (6.3))

=
m∑

l=1

ζX(x⊗ v∗l t∗l zl ⊗ x′) (by (2.2))

=
m∑

l=1

ζX(xv∗l t∗l ⊗ zl ⊗ x′) (property of ⊗)
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=
m∑

l=1

(ζX ◦ (λx ⊗ idX⊗X))(v∗l ⊗ t∗l ⊗ zl ⊗ x′) (def. of λx)

=
m∑

l=1

(λx ◦ ζT⊗T)(v∗l ⊗ t∗l ⊗ zl ⊗ x′) (naturality of ζ )

=
m∑

l=1

(lx ◦μT ◦ ζT⊗T)(v∗l ⊗ t∗l ⊗ zl ⊗ x′) (def. of λx)

=
m∑

l=1

x(μT ◦ ζT⊗T)(v∗l ⊗ t∗l ⊗ zl ⊗ x′) (by (6.7))

= xφ(y⊗ x′). (by (6.5))

Similarly, we can establish the compatibility condition φ(y⊗ x)y′ = yθ (x⊗ y′).
The equalities θ (x⊗ y)∗ = θ (y⊗ x) and φ(y⊗ x)∗ = φ(x⊗ y) follow from the commutativity of the

rectangles (R1) and (R2).

7. Comparison with earlier results

In this section, we compare our results with those of Ara [3].
A module MR is called nondegenerate ([3]) or torsion-free ([15, p. 221]) if, for every m ∈M, mR= 0

implies m= 0. A ring R is called nondegenerate if it is nondegenerate as a right and left module over
itself.

Recall that a module MR is called s-unital ([25]) if, for every m ∈M, there exists r ∈ R such that
m=mr. A ring R is called s-unital if it is s-unital as a right and left module over itself. It is easy to see
that every s-unital module is nondegenerate.

Lemma 7.1 ([8, Proposition 1.8]). Every unitary left module over a left s-unital ring is s-unital.

Definition 7.2. We say that a Rieffel context (S, T , X, 〈 , 〉 , [ , ]) is nondegenerate if, for every x ∈ X,

( 〈 X, x 〉 = {0S} =⇒ x= 0X) and ([x, X]= {0T} =⇒ x= 0X),

where 〈 X, x 〉 := {〈 ξ , x 〉 | ξ ∈ X} and [x, X] := {[x, ξ ] | ξ ∈ X}.

Proposition 7.3. Let S and T be s-unital rings with involution. Then every unitary and full Rieffel context
between S and T is nondegenerate.

Proof. Let (S, T , X, 〈 , 〉 , [ , ]) be a unitary and full Rieffel context and assume that 〈 X, x 〉 = {0S}. By
Lemma 7.1, XT is s-unital. Hence, x= xt for some t ∈ T . Since [ , ] is full, there exist yk, y′k ∈ X such that
t=∑n

k=1 [yk, y′k]. Now

x= xt= x

(
n∑

k=1

[yk, y′k]

)
=

n∑
k=1

x[yk, y′k]=
n∑

k=1

〈 x, yk 〉 y′k =
n∑

k=1

〈 x, yk 〉∗∗ y′k

=
n∑

k=1

〈 yk, x 〉∗ y′k =
n∑

k=1

0∗Sy′k =
n∑

k=1

0Sy′k = 0X .

A similar proof shows that [x, X]= {0T} implies x= 0X .
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If (S, T , X, 〈 , 〉 , [ , ]) is a nondegenerate Rieffel context, then according to the terminology of [3,
page 243], SXT is called an inner product (S, T)-bimodule.

In [3, page 235], two nondegenerate idempotent rings with involution R and S are called Morita ∗-
equivalent if there exists a ∗-equivalence (F, G) (which is a pair of certain functors between categories
of unitary torsion-free modules) from R to S.

Theorem 7.4 ([3]). Two nondegenerate idempotent rings with involution are Morita ∗-equivalent if and
only if there exists a full nondegenerate unitary Rieffel context connecting these rings.

Proof. Necessity. As explained in the second paragraph of [3, page 243], by Theorem 3.1 of that
article, there exists a full nondegenerate unitary Rieffel context.

Sufficiency. This is shown in [3, Theorem 4.1(i)].

As a consequence, we obtain the following result.

Proposition 7.5. Two s-unital rings S and T with involution are Morita ∗-equivalent if and only if they
are connected by a unitary and full Rieffel context.

Proof. Necessity. Let S and T be Morita ∗-equivalent. By s-unitality, rings S and T are both
idempotent and nondegenerate. Hence Theorem 7.4 applies.

Sufficiency. Assume that S and T are connected by a unitary and full Rieffel context. By Proposition
7.3, this context is nondegenerate. By Theorem 7.4, S and T are Morita ∗-equivalent.

So for s-unital rings with involution, the theory developed in this paper is compatible with that of [3].
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