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Abstract In 1969, Baumslag introduced a family of parafree groups Gi,j which share many properties
with the free group of rank 2. The isomorphism problem for the family Gi,j is known to be difficult; a few
small partial results have been found so far. In this paper, we compute the twisted Alexander ideals of
the groups Gi,j associated with non-abelian representations into SL(2,Z2). Using the twisted Alexander
ideals, we prove that several pairs of groups among Gi,j are not isomorphic. As a consequence, we solve
the isomorphism problem for sub-families containing infinitely many groups Gi,j .

Keywords: group isomorphism problem; twisted Alexander ideal; parafree groups

2010 Mathematics subject classifications: Primary 20Exx
Secondary 57M05

1. Introduction

The isomorphism problem is a fundamental problem in group theory in which one has
to decide whether two finitely presented groups are isomorphic. Because the general
isomorphism problem is unsolvable, people often restrict the problem to a special class
of groups. Recall that a group G is called n-parafree if it is residually nilpotent and has
the same nilpotent quotient as the free group Fn and parafree if n-parafree for some n.
As parafree groups share many properties with free groups, the isomorphism problem for
parafree groups is known to be difficult.
In this paper, we study a family of parafree groups Gi,j which was introduced by

Baumslag in [2,3]:

Gi,j := 〈a, b, c | a = [ci, a][cj , b]〉,
where [x, y] := x−1y−1xy and i, j are positive integers. The isomorphism problem for
the family Gi,j has attracted considerable interest. The family Gi,j is mentioned in [6]
by Magnus and Chandler to demonstrate the difficulty of the isomorphism problem for
torsion-free one-relator groups. They also note that as of 1980 it was unknown whether
any pair of the groups Gi,j was non-isomorphic. Later, several approaches were used to
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attack the isomorphism problem for the family Gi,j . In 1994, Lewis and Liriano [13]
distinguished a number of parafree groups in the family Gi,j by counting the homomor-
phisms between Gi,j and the finite groups SL(2,Z/4) and SL(2,Z/5). A group-theoretical
attack by Fine, Rosenberger and Stille [7] was able to show that Gi,1 �∼= G1,1 for i > 1
and Gi,1 �∼= Gj,1 for distinct primes i, j.More recently, by using a computational approach
along the lines of [13], Baumslag et al. [5] showed that all the groups Gi,j , 1 ≤ i, j ≤ 10
are distinct.
In our previous work [11], we used the Alexander ideal, an algebraic invariant of groups

which originated from topology, to study the isomorphism problem for families of groups.
Our approach in [11] completely solves the isomorphism problem for the Baumslag–
Solitar groups and a family of parafree groups Ki,j :=

〈
a, s, t| ai[s, a] = tj

〉
introduced by

Baumslag and Cleary in [4]. However, as noted in [11], the Alexander ideals of all the
group Gi,j are trivial.
In this paper, we develop our approach in [11] further to attack the isomorphism

problem for the family of groups Gi,j by using the twisted Alexander ideals. The twisted
Alexander ideal is a non-abelian generalization of the classical Alexander polynomial. It
turns out that, for certain values of i, j, the twisted Alexander ideals of Gi,j are non-
trivial. By comparing the twisted Alexander ideals, we obtain sub-families of Gi,j which
contain infinitely many pairwise non-isomorphic groups. Our result is completely disjoint
from the known results in [5,7,13].

Theorem 1.1.

(i) Let p, q be two positive odd integers such that gcd(p, q) = 1. For any d, d′ ≥ 1, the
following holds:

Gp(2d−1),q(2d−1)
∼= Gp(2d′−1),q(2d′−1) if and only if d = d′.

(ii) Let p, q be two positive integers such that gcd(p, q) = 1 and 3|(p+ q). Then, for
any d, d′ > 1 and 3� | d, 3� | d′, the following holds:

Gpd,qd
∼= Gpd′,qd′ if and only if d = d′.

The rest of this paper consists of four sections. In § 2, we give a brief review of the
background on twisted Alexander ideals of a group. In § 3, we classify conjugacy classes
of non-abelian representations from Gi,j into Gi,j and prove a series of technical lemmas
about Laurent polynomials. Section 4 contains the computation of the twisted Alexander
ideals ofGi,j associated to non-abelian representations into SL(2,Z2). Section 5 is devoted
to applications of the twisted Alexander ideals to the isomorphism problem for the family
Gi,j . In particular, we show that several pairs of groups among Gi,j are non-isomorphic
and, as a consequence, we obtain Theorem 1.1 above.

2. Background on twisted Alexander ideals

The Alexander polynomial (see [1,10]) is a topological invariant of knots which can be
computed from the information on the fundamental group of its complement. The twisted
Alexander ideals are non-abelian generalizations of the classical Alexander polynomials.
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The twisted Alexander ideals for knots were introduced by Lin in [14]. In this paper,
we use a version of twisted Alexander ideals by Wada [15] which is defined for a finitely
presented group. There is an effective algorithm to compute the twisted Alexander ideals
by using Fox’s free differential calculus [8,9], which we will describe briefly below.
Suppose that Fk = 〈x1, . . . , xk|〉 is the free group on k generators. Let ε : ZFk → Z

be the augmentation homomorphism defined by ε(
∑
nigi) =

∑
ni. The jth partial Fox

derivative is a linear operator ∂/∂xj : ZFk → ZFk which is uniquely determined by the
following rules:

∂

∂xj
(1) = 0

∂

∂xj
(xi) =

{
0 if i �= j
1 if i = j;

∂

∂xj
(uv) =

∂

∂xj
(u)ε(v) + u

∂

∂xj
(v).

As consequences of the above rules we get:

(i)
∂

∂xi
(xni ) = 1 + xi + x2i + · · ·+ xn−1

i for all n ≥ 1;

(ii)
∂

∂xi
(x−n

i ) = −x−1
i − x−2

i − · · · − x−n
i for all n ≥ 1.

Let G = 〈x1, . . . , xk|r1, . . . , rl〉 be a finitely presented group. We denote by ab(G) the
maximal abelian quotient of G. From the sequence

Fk
φ→ G

α→ ab(G)

we get the sequence

ZFk
φ̃→ ZG

α̃→ Z[ab(G)].

Under the assumption that ab(G) is torsion-free, we fix an isomorphism χ : ab(G) → Z
r.

So the group ring Z[ab(G)] can be identified with Z[t±1
1 , t±1

2 , . . . , t±1
r ].

Given a homomorphism ρ : G→ GL(n,R), where R is an unique factorization domain,
we get the induced homomorphism of group ring ρ̃ : ZG→M(n,R).
Denote by ρ̃⊗ α̃ : ZG→M(n,R[t±1

1 , t±1
2 , . . . , t±1

r ]) the tensor product homomorphism
which is defined by

(ρ̃⊗ α̃)
(∑

nigi
)
=

∑
niρ(gi)α(gi) where ni ∈ Z, gi ∈ G. (2.1)

We also need the composition map Φ := (ρ̃⊗ α̃) ◦ φ̃ : ZFk →M(n,R[t±1
1 , t±1

2 , . . . , t±1
r ]).

More details of the construction of the twisted Alexander ideals can be found in [12, § 2].
We regard (Φ(∂/∂xjri))i=1,...,�,j=1,...,k as an n�× nk matrix whose entries belong to

R[t±1
1 , t±1

2 , . . . , t±1
r ], which we call the twisted Alexander matrix of G associated with the

n-dimensional representation ρ.
The dth twisted Alexander ideal of G associated with the n-dimensional representation

ρ is defined as the ideal generated by all the (nk − d)-minors of the twisted Alexander
matrix. Recall that a k-minor of a m× n matrix A, with 0 < k ≤ min(m,n), is the deter-
minant of some k × k matrix obtained from A by deleting (m− k) rows and (n− k)
columns.
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Theorems 2.1 and 2.2 of [12] say that the twisted Alexander ideal does not depend on
the choice of the presentation of G. It depends only on the group G, the conjugacy class
of the representation ρ and the choice of the isomorphism χ. Since we have freedom in
choosing the isomorphism χ, the twisted Alexander ideal is an invariant of (G, ρ) defined
up to a monomial automorphism of R[t±1

1 , t±1
2 , . . . , t±1

r ]; that is, an automorphism of the
form ϕ(ti) = tai1

1 tai2
2 · · · tair

r , i = 1, 2, . . . r, where (aij) ∈ GL(n,Z). In summary, we have
the following.

Theorem 2.1. The twisted Alexander ideal is an invariant of the pair (G, ρ) consisting
of a group G and a conjugacy class of the representation ρ : G→ GL(n,R), up to a
monomial automorphism of R[t±1

1 , t±1
2 , . . . , t±1

r ].

3. Auxiliary results

This section is devoted to some auxiliary results to set up the computation of the twisted
Alexander ideals. Note that, for all i, j, the maximal abelian quotient of Gi,j has the
following presentation:

ab(Gi,j) :=
〈
a, b, c | a = [ci, a][cj , b], [a, b] = [b, c] = [c, a] = 1

〉
= 〈b, c‖ [b, c] = 1〉 .

Therefore, ab(Gi,j) is isomorphic to a free abelian group of rank 2:

ab(Gi,j)
a
b
c

∼=

→

→

→

〈x〉 ⊕ 〈y〉
0
x
y.

We will fix an identification of Z[ab(Gi,j)] with the ring of Laurent polynomials
Z[x±1, y±1] by mapping b to x and c to y.We denote by L the ring of Laurent polynomials
with Z2 coefficients Z2[x

±1, y±1].
As each group Gi,j is given by three generators and one relation, the twisted Alexander

matrix is of size 2× 6. We will compute the fourth twisted Alexander ideal of Gi,j , that
is, the ideal in L generated by all the 2-minors of the twisted Alexander matrix. From
now on, when we refer to twisted Alexander ideals of Gi,j , we always mean the fourth
twisted Alexander ideals.
We only consider the ‘twisting’ given by non-abelian representations, since the abelian

case reduces to the usual Alexander ideal, which is trivial as noted above. As we know
from Theorem 2.1, the twisted Alexander ideal only depends on the conjugacy class of ρ.
We have the following.

Proposition 3.1. There are exactly three conjugacy classes of non-abelian represen-
tations ρ : Gi,j → SL(2,Z2), for every i, j.

Proof. It is well known that the group SL(2,Z2) is isomorphic to the symmetric group
S3 and its structure is very simple.
If ρ is a representation, then ρ(a) = [ρ(ci), ρ(a)][ρ(cj), ρ(b)]. Because the commutator

subgroup of SL(2,Z2) is abelian, we get ρ(a) = [ρ(cj), ρ(b)][ρ(ci), ρ(a)]. From that we
easily find that ρ(a) = ρ(ci)[ρ(cj), ρ(b)]ρ(c−i). Therefore, any representation ρ is uniquely
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Table 1. Conjugacy classes of non-abelian representations.

Type of Repr. ρ(b) ρ(c)

1

(
1 1
0 1

) (
0 1
1 0

)

2

(
0 1
1 1

) (
0 1
1 0

)

3

(
0 1
1 0

) (
0 1
1 1

)

specified by the images ρ(b) and ρ(c). Direct calculation gives us that, independent of i, j,
there are three conjugacy classes that each contain six representations. The representative
of each conjugacy class is given in Table 1. �

We now compute the Fox derivatives of the relation of Gi,j . Choosing the relation
r = a[cj , b]−1[ci, a]−1 = ab−1c−jbcja−1c−iaci, we find

∂r

∂a
= 1− a[cj , b]−1a−1 + a[cj , b]−1a−1c−i.

Now, as r = 1 in Gi,j , we simplify to get

φ̃

(
∂r

∂a

)
= 1− c−ia−1ci + c−ia−1.

Similarly, we get the other Fox derivatives:

φ̃

(
∂r

∂b

)
= −ab−1 + ab−1c−j ,

φ̃

(
∂r

∂c

)
= −ab−1(c−1 + · · ·+ c−j) + ab−1c−jb(1 + c+ · · ·+ cj−1)

− c−ia−1(1 + c+ · · ·+ ci−1) + (c−1 + · · ·+ c−i).

To simplify the twisted Alexander ideals, we need to employ several technical lemmas
about greatest common divisors and divisibilities of Laurent polynomials. Before going
into computing the twisted Alexander ideals, we will present here a series of utility lem-
mas. We first remind the readers of some basic properties of the Laurent polynomial ring
L which will be used later.

(a) L is a unique factorization domain, that is, it has no zero-divisor and every non-zero
non-unit element can be written as a product of irreducible elements, uniquely up
to order and units.

(b) Any two elements of L have a greatest common divisor which is unique up to
multiplication by units.
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(c) Units of L are elements of the form xmyn, where m,n are integers.

(d) A polynomial in L has Z2-coefficients, so we are free to write 1 or (−1) for any
non-zero coefficient when it is convenient.

Lemma 3.2. In the Laurent polynomial ring L, for all integers m,n which are not
simultaneously zero, we have

gcd(1 + ym, 1 + yn) = 1 + ygcd(m,n).

Proof. If one of the numbers m or n is zero, the assertion is obviously true. Note that
(1 + y−n) and (1 + yn) differ by a unit factor: (1 + y−n) = y−n(1 + yn). Therefore, we
only need to prove the case where m and n are both positive.
We proceed by induction on m+ n. The case m+ n = 2 is obviously true. Suppose

that the lemma holds for all m+ n < t; we now show that it also holds for m+ n = t. If
m = n the lemma is also obviously true, so we may assume that m > n. We see that

gcd(1 + ym, 1 + yn) = gcd(yn(1 + ym−n) + (1 + yn), 1 + yn) = gcd(1 + ym−n, 1 + yn).

By induction hypothesis, gcd(1 + ym−n, 1 + yn) = 1 + ygcd(m−n,n) = 1 + ygcd(m,n). So
the lemma is proved. �

Lemma 3.3. Suppose that 3� | s. Then, in the Laurent polynomial ring L, we have

gcd(1 + yt + y2t, 1 + ys) = 1 for any t.

Proof. As 3� | s, using Lemma 3.2 we obtain:

gcd((1 + yt)(1 + yt + y2t), 1 + ys) = gcd(1 + y3t, 1 + ys) = 1 + ygcd(3t,s) = 1 + ygcd(t,s).
(3.1)

On the other hand, since gcd(1 + yt, 1 + yt + y2t) = gcd(1 + yt, y2t) = 1, we also have

gcd((1 + yt)(1 + yt + y2t), 1 + ys) = gcd(1 + yt, 1 + ys) gcd(1 + yt + y2t, 1 + ys).

It follows from Lemma 3.2 that

gcd((1 + yt)(1 + yt + y2t), 1 + ys) = (1 + ygcd(t,s)) gcd(1 + yt + y2t, 1 + ys). (3.2)

From (3.1) and (3.2), it follows that gcd(1 + yt + y2t, 1 + ys) = 1. �

Lemma 3.4. Suppose that m = kd and n = ld where d = gcd(m,n). Assume further
that 3� | k, 3� | l, and 3|(k + l). Then, in the ring L, the following holds:

gcd(1 + ym + y2m, 1 + ym+n) = 1 + yd + y2d.
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Proof. As 3|(k + l), by Lemma 3.2 we have

gcd((1 + ym)(1 + ym + y2m), 1 + ym+n) = gcd(1 + y3kd, 1 + y(k+l)d) = 1 + yd gcd(3k,k+l)

= 1 + y3d gcd(k,k+l) = 1 + y3d. (3.3)

On the other hand, as in the proof of Lemma 3.3 above,

gcd((1 + ym)(1 + ym + y2m), 1 + ym+n) = (1 + yd) gcd(1 + ym + y2m, 1 + ym+n).
(3.4)

Combining 3.3 and 3.4, we get

(1 + yd) gcd(1 + ym + y2m, 1 + ym+n) = 1 + y3d = (1 + yd)(1 + yd + y2d).

It follows that gcd(1 + ym + y2m, 1 + ym+n) = 1 + yd + y2d. �

Corollary 3.5. Suppose that 3� | k. Then (1 + yd + y2d)|(1 + ykd + y2kd) for any
positive integer d.

Proof. We can always reduce to the case where k is odd, since if k is even then
1 + ykd + y2kd = (1 + ykd/2 + ykd)2. The corollary then follows by applying Lemma 3.4
for m = kd, n = d if k ≡ 2 mod 3 and for m = kd, n = 2d if k ≡ 1 mod 3. �

Lemma 3.6. Suppose that m, l, d are positive integers satisfying m = ld and 3� |m.
The following hold in L:

(i) if l is even then (1 + y + y2)(1 + yd + y2d)|(1 + ym + y2m);

(ii) if l ≡ 1 mod 6 then (1 + y + y2)(1 + yd + y2d)|((1 + ym + y2m)− (1 + yd + y2d));

(iii) if l ≡ 5 mod 6 then (1 + y + y2)(1 + yd + y2d)|((1 + ym + y2m)− y−2d(1 + yd +
y2d)).

Proof. If l is even then m = 2td, and we get

1 + ym + y2m = (1 + ytd + y2td)2.

As 3� |m = 2td, it follows from Corollary 3.5 that (1 + ytd + y2td) is divisible by both
(1 + y + y2) and (1 + yd + y2d). So (i) holds.

For the proof of (ii), we assume that l = 6t+ 1 and first consider the case where 3� | t.
By Corollary 3.5, (1 + ytd + y2td) is divisible by both (1 + y + y2) and (1 + yd + y2d).
It follows that 1 + y6td = (1 + ytd)2(1 + ytd + y2td)2 is divisible by (1 + y + y2)(1 + yd +
y2d). We deduce that

(1 + ym + y2m)− (1 + yd + y2d) = yd(1 + y6td) + y2d(1 + y12td)

is divisible by (1 + y + y2)(1 + yd + y2d) and (ii) holds in this case.
In the case 3|t, by Lemma 3.2, (1 + ytd) is divisible by both 1 + y3 = (1 + y)(1 +

y + y2) and 1 + y3d = (1 + yd)(1 + yd + y2d). Therefore, (1 + ytd)2 is divisible by (1 +
y + y2)(1 + yd + y2d) and so is 1 + y6td = (1 + ytd)2(1 + ytd + y2td)2. As in the previous
paragraph, we deduce that (ii) also holds.
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For the proof of (iii), we assume that l = 6t+ 5 and first consider the case where
3� | (t+ 1). By Corollary 3.5, (1 + y(t+1)d + y2(t+1)d) is divisible by both (1 + y + y2)
and (1 + yd + y2d). It follows that 1 + y6(t+1)d = (1 + y(t+1)d)2(1 + y(t+1)d + y2(t+1)d)2

is divisible by (1 + y + y2)(1 + yd + y2d). We deduce that

(1 + ym + y2m)− y−2d(1 + yd + y2d) = y−d(1 + y6(t+1)d) + y−2d(1 + y12(t+1)d)

is divisible by (1 + y + y2)(1 + yd + y2d) and (iii) holds in this case.
In the case 3|(t+ 1), by Lemma 3.2, (1 + y(t+1)d) is divisible by both 1 + y3 = (1 +

y)(1 + y + y2) and 1 + y3d = (1 + yd)(1 + yd + y2d). Therefore, (1 + y(t+1)d)2 is divis-
ible by (1 + y + y2)(1 + yd + y2d) and so is 1 + y6(t+1)d = (1 + y(t+1)d)2(1 + y(t+1)d +
y2(t+1)d)2. Arguing as in the previous paragraph, we deduce that (iii) also holds. �

4. Computations of the twisted Alexander ideals

In each of the following subsections, we will present the computation of the twisted
Alexander ideal of the group Gi,j associated with each type of conjugacy class of
representation ρ : Gi,j → SL(2,Z2).

4.1. Representation of type 1

To state the next result, we need to introduce the following Laurent polynomials in the
ring L:

f2n := 1 + y2 + · · ·+ y2n for n ≥ 1, f0 := 1 and f2n := 0 for n < 0.

The rest of this subsection is devoted to the proof of the following.

Proposition 4.1. Let I be the twisted Alexander ideal of Gi,j associated with a
representation of type 1. We write d := gcd(i, j) and f2n defined as above. Then:

(i) I = L in the case where either j or i is even;

(ii) I = (f2(d−1)) in the case where both i, j are odd and 4|(i− j);

(iii) I = (1 + y2d, f2(d−1) + xyf2(d−1)) in the case where both i, j are odd and 4� | (i− j).

Proof. To find the twisted Alexander matrix we have to compute Φ(∂r/∂a),Φ(∂r/∂b)
and Φ(∂r/∂a) where Φ is defined in (2.1). We divide into several cases.

Case 1: j is even. From Table 1 above, we know ρ(b) and ρ(c). We find that ρ(a) =
ρ(ci)[ρ(cj), ρ(b)]ρ(c−i) = ( 1 0

0 1 ). We deduce that Φ(∂r/∂a) = y−iρ(c)−i and therefore
det(Φ(∂r/∂a)) = y−i.
As y−i is a unit, we see that in this case I is the whole ring L.

Case 2: i is even and j is odd. In this case, we compute ρ(a) = ( 1 1
1 0 ). Next, we find

that

Φ

(
∂r

∂a

)
=

(
1 1 + y−i

1 + y−i y−i

)
and Φ

(
∂r

∂b

)
= x−1

(
1 y−j

1 + y−j 1 + y−j

)
.
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Note that multiplying a column by a unit does not affect the twisted Alexander ideal (see
[12, p. 298]). From now on, in every case, we always ignore the factor x−1 in Φ(∂r/∂b).
Consider two 2-minors:

det

(
1 y−j

1 + y−i 1 + y−j

)
= 1 + y−i−j , det

(
1 + y−i 1
y−i 1 + y−j

)
= 1 + y−i−j + y−j .

We conclude that the I contains y−j , which is a unit. Therefore, part (i) is proved.

Case 3: i and j are odd. We find that ρ(a) = ( 0 1
1 1 ). From that we get

Φ

(
∂r

∂a

)
=

(
1 + y−i 1
1 + y−i y−i

)
, Φ

(
∂r

∂b

)
=

(
y−j 1
1 y−j

)
and

Φ

(
∂r

∂c

)
= −ρ(ab−1)x−1(ρ(c−1)y−1 + · · ·+ ρ(c−j)y−j)

+ ρ(ab−1c−jb)y−j(ρ(1) + ρ(c)y · · ·+ ρ(cj−1)yj−1)

− ρ(c−ia−1)y−i(ρ(1) + ρ(c)y + · · ·+ ρ(ci−1)yi−1)

+ (ρ(c−1)y−1 + · · ·+ ρ(c−i)y−i). (4.1)

As ρ(c) = ( 0 1
1 0 ), ρ(c)

2 = ( 1 0
0 1 ), we have the following identities:

ρ(1) + ρ(c)y · · ·+ ρ(c2n)y2n =

(
1 0
0 1

)
f2n +

(
0 1
1 0

)
yf2(n−1); (4.2)

ρ(c−1)y−1 + · · ·+ ρ(c−2n+1)y−2n+1 =

(
1 0
0 1

)
y−2n+2f2(n−2) +

(
0 1
1 0

)
y−2n+1f2(n−1).

(4.3)

As i, j are odd, we use (4.2) and (4.3) to simplify (4.1) as follows:

Φ

(
∂r

∂c

)
= −

(
1 0
0 1

)
x−1y−jfj−1 −

(
0 1
1 0

)
x−1y−j+1fj−3 +

(
1 1
0 1

)
y−jfj−1

+

(
1 1
1 0

)
y−j+1fj−3 −

(
1 0
1 1

)
y−ifi−1 −

(
0 1
1 1

)
y−i+1fi−3

+

(
1 0
0 1

)
y−i+1fi−3 +

(
0 1
1 0

)
y−ifi−1.

Now, we change the coefficients to 1 and combine all into the following matrix:

⎛
⎜⎝

x−1y−jfj−1 + y−jfj−1 + y−j+1fj−3 x−1y−j+1fj−3 + y−j+1fj−3 + y−jfj−1

+y−ifi−1 + y−i+1fi−3 +y−ifi−1 + y−i+1fi−3

x−1y−j+1fj−3 + y−j+1fj−3 + y−i+1fi−3 x−1y−jfj−1 + y−jfj−1 + y−ifi−1

⎞
⎟⎠ .

Next, we perform the elementary operations to simplify the twisted Alexander matrix
(see [12, p. 298], for a list of elementary operations). Notice that the second column of
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Φ(∂r/∂a) is ( 1
y−i ). We use this column to make all the entries in the first row of any

other column (XY ) to be zero by replacing it with(
X
Y

)
+X

(
1
y−i

)
=

(
0

Y + y−iX

)
.

So we bring the twisted Alexander matrix to the form(
0 1 0 0 0 0

1 + y−2i y−i 1 + y−i−j y−i + y−j A B

)
,

where

A = y−i−j(x−1fj−1 + fj−1 + yfj−3) + y−2i(fi−1 + yfi−3)

+ x−1y−j+1fj−3 + y−j+1fj−3 + y−i+1fi−3,

B = y−i−j(x−1yfj−3 + yfj−3 + fj−1) + y−2i(fi−1 + yfi−3)

+ x−1y−jfj−1 + y−jfj−1 + y−ifi−1.

Since multiplying a generator of an ideal by unit of the ring does not affect the ideal, we
change each generator of the form (1 + y−n) to yn(1 + y−n) = 1 + yn and (y−i + y−j) to
yi(y−i + y−j) = 1 + yi−j . So we get I = (1 + y2i, 1 + yi+j , 1 + yi−j , A,B).
Writing i = kd, j = ld, where gcd(k, l) = 1, as i, j are odd, we easily deduce that

gcd(2i, i+ j, i− j) = 2d. It follows from Lemma 3.2 that I = (1 + y2d, A,B). We will
simplify A and B to write I in a simpler form.

Note that I is unchanged if we replace the generator A by A′ = A+ f ∈ L, where f is
a multiple of (1 + y2d). In the proof of this Proposition, we use the notation A ≡ A′ if
and only if (A−A′) is a multiple of (1 + y2d). In the following, we are allowed to replace
the generator A (or B) by A′ (or B′) such that A ≡ A′ (or B ≡ B′).

As (1 + y2i) is a multiple of (1 + y2d), for any polynomial g we have

y−2ig = y−2i(1 + y2i)g + g ≡ g.

So we can replace the factor y−2i of any term in the generators A or B by 1. Similarly,
other terms such as y2i, y±2j , y±i±j , . . . appearing in A or B can also be replaced by 1.

With this in mind, we find that

A ≡ (x−1fj−1 + fj−1 + yfj−3) + (fi−1 + yfi−3)

+ x−1y−j+1fj−3 + y−j+1fj−3 + y−i+1fi−3

and

B ≡ (x−1yfj−3 + yfj−3 + fj−1) + (fi−1 + yfi−3) + x−1y−jfj−1 + y−jfj−1 + y−ifi−1.

After regrouping, we get:

A ≡ x−1(fj−1 + y−j+1fj−3) + (fj−1 + y−j+1fj−3)

+ (fi−1 + y−i+1fi−3) + (yfi−3 + yfj−3), (4.4)

B ≡ x−1(yfj−3 + y−jfj−1) + (yfj−3 + y−jfj−1) + (yfi−3 + y−ifi−1) + (fi−1 + fj−1).
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As noted before, multiplying B by the unit y−j does not change the twisted Alexander
ideal. So we may assume that

B = x−1(y−2jfj−1 + y−j+1fj−3) + (y−2jfj−1 + y−j+1fj−3)

+ (y−j−ifi−1 + yi−jy−i+1fi−3) + (yi−jy−ifi−1 + y−jfj−1).

After replacing y−2j , y−j−i and yi−j by 1, we get

B ≡ x−1(fj−1 + y−j+1fj−3) + (fj−1 + y−j+1fj−3) + (fi−1 + y−i+1fi−3)

+ (y−ifi−1 + y−jfj−1). (4.5)

We simplify the terms in A and B as follows:

fj−1 + y−j+1fj−3 = (1 + y2 + · · ·+ yj−1) + y−2jyj+1(1 + y2 + · · ·+ yj−3)

≡ (1 + y2 + · · ·+ yj−1) + yj+1(1 + y2 + · · ·+ yj−3)

= f2(j−1).

Now, since l is odd, we write

f2(j−1) =
1 + y2j

1 + y2
=

(1 + y2d)(1 + y2d + · · · y2(l−1)d)

1 + y2

=
1 + y2d

1 + y2
+

1 + y2d

1 + y2
(y2d + y4d + · · ·+ y2(l−1)d)

= f2(d−1) + (1 + y2d)

[
y2d(1 + y2d)

1 + y2
+
y6d(1 + y2d)

1 + y2
+ · · ·+ y2(l−2)d(1 + y2d)

1 + y2

]

≡ f2(d−1).

So we obtain

fj−1 + y−j+1fj−3 ≡ f2(d−1). (4.6)

By similar computation, we get

fi−1 + y−i+1fi−3 ≡ f2(d−1). (4.7)

Moreover, we have

(yfi−3 + yfj−3) = y
(1 + yi−1)

1 + y2
+ y

(1 + yj−1)

1 + y2
=

(yi + yj)

1 + y2
, (4.8)

(y−ifi−1 + y−jfj−1) = y−i (1 + yi+1)

1 + y2
+ y−j (1 + yj+1)

1 + y2
= y−i−j (y

i + yj)

1 + y2
≡ (yi + yj)

1 + y2
.

(4.9)

By substituting the identities in (4.6)–(4.9) into (4.4) and (4.5), we deduce that

A ≡ x−1f2(d−1) +
(yi + yj)

1 + y2
and B ≡ x−1f2(d−1) +

(yi + yj)

1 + y2
.

To simplify further, we need to divide into two sub-cases.
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Sub-case 3a: 4|(i− j). As i, j are odd, it follows that 4|(k − l). Without loss of
generality, we assume that i− j > 0. Then,

(yi + yj)

1 + y2
= yj

(1 + yi−j)

1 + y2
= yj

1 + y2d

1 + y2
(1 + y2d + y4d · · ·+ y2((k−l)/2−1)d)

= yj(1 + y2d)

[
(1 + y2d)

1 + y2
+
y4d(1 + y2d)

1 + y2
+ · · ·+ y2((k−l)/2−2)d(1 + y2d)

1 + y2

]
.

So in this case (yi + yj)/(1 + y2) is a multiple of (1 + y2d) and therefore A ≡ B ≡
x−1f2(d−1). As a result, we have I = (1 + y2d, f2(d−1)). As f2(d−1) | (1 + y2d), we deduce
(ii).

Sub-case 3b: 4 � |(i− j). As i, j are odd, in this case i− j ≡ 2 mod 4. Similar to the
previous sub-case, we get

(yi + yj)

1 + y2
= yj

(1 + yi−j)

1 + y2
= yj

1 + y2d

1 + y2
(1 + y2d + y4d · · ·+ y2((k−l)/2−1)d)

= yj
(1 + y2d)

1 + y2
+ yj(1 + y2d)

[
y2d(1 + y2d)

1 + y2
+ · · ·+ y2((k−l)/2−2)d(1 + y2d)

1 + y2

]

≡ yjf2(d−1).

So in this case A ≡ B ≡ x−1f2(d−1) + yjf2(d−1). Moreover, note that (1 + y2)f2(d−1) =

1 + y2d, so y2f2(d−1) ≡ f2(d−1). As j is odd, we deduce that yjf2(d−1) ≡ yf2(d−1).

After multiplying both A and B by the unit x, we can write I = (1 + y2d, f2(d−1) +
xyf2(d−1)) and (iii) follows. �

4.2. Representation of type 2

The next proposition allows us to find the twisted Alexander ideal associated with a
representation of type 2.

Proposition 4.2. The twisted Alexander ideal of Gi,j associated with a representation
of type 2 can be obtained from that of a representation of type 1 by the change of variables
x 
→ xy−1, y 
→ y.

Proof. It is not hard to check that the map ψ below is a well-defined automorphism
of Gi,j :

ψ : Gi,j → Gi,j defined by ψ(b) = c−1b, ψ(c) = c, ψ(a) = a.

Notice that if ρ is a representation of type 2 then ρ ◦ ψ is of type 1. By a result in [15]
(p. 246), the twisted Alexander ideal of Gi,j associated with ρ is the image of the one
associated with ρ ◦ ψ under the map

ψ∗ : Z[ab(Gi,j)]
x
y

→

→

→

Z[ab(Gi,j)]
xy−1

y.
(4.10)

So the Proposition is proved. �
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4.3. Representation of type 3

In the case of type 3 representation, we obtain the following result.

Proposition 4.3. We put d := gcd(i, j) and let I be the twisted Alexander ideal of
Gi,j associated with a representation of type 3. Then:

(i) I = L in the case where 3|j or both 3� | j and 3� | i+ j hold;

(ii) I = (1 + yd + y2d) in the case where 3� | j, 3|(i+ j) and l is even;

(iii) I = ((1 + yd + y2d)/(1 + y + y2)) in the case where 3� | j, 3|(i+ j) and l is odd.

Proof. We write i = kd, j = ld and divide into the following cases.

Case 1: 3|j. Since ρ(c) has order 3, we have

ρ(a) = ρ(ci)[ρ(cj), ρ(b)]ρ(c−i) =

(
1 0
0 1

)
.

Similar to the first case in the proof of Proposition 4.1, we also deduce that Φ(∂r/∂a) =
y−iρ(c)−i. So we get I = L.

Case 2: 3� | j and 3� | i+ j. We need to consider four sub-cases.

Sub-case 2a: j ≡ 1 mod 3, i ≡ 0 mod 3. We first find that ρ(a) = ( 0 1
1 1 ). From that

we get

Φ

(
∂r

∂a

)
=

(
y−i 1 + y−i

1 + y−i 1

)
and Φ

(
∂r

∂b

)
=

(
1 + y−j y−j

1 1 + y−j

)
.

We compute the 2-minors:

detΦ

(
∂r

∂b

)
= y−2j(1 + yj + y2j), det

(
1 + y−i 1 + y−j

1 1

)
= y−i(1 + yi−j).

As (i− j) ≡ 2 mod 3, it follows from Lemma 3.3 that gcd(1 + yj + y2j , 1 + yi−j) = 1.
Since I contains both (1 + yj + y2j) and (1 + yi−j), we deduce that I = L. So assertion
(i) holds.

Sub-case 2b: j ≡ 1 mod 3, i ≡ 1 mod 3. In this case we also have ρ(a) = ( 0 1
1 1 ). From

that we get

Φ

(
∂r

∂a

)
=

(
0 1 + y−i

1 + y−i 1 + y−i

)
and Φ

(
∂r

∂b

)
=

(
1 + y−j y−j

1 1 + y−j

)
.

We find the determinants

detΦ

(
∂r

∂a

)
= y−2i(1 + y2i), detΦ

(
∂r

∂b

)
= y−2j(1 + yj + y2j).

As 2i ≡ 2 mod 3, it follows from Lemma 3.3 that gcd(1 + yj + y2j , 1 + y2i) = 1. We
deduce that I = L and assertion (i) follows.
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Sub-case 2c: j ≡ 2 mod 3, i ≡ 0 mod 3. In this case ρ(a) = ( 1 1
1 0 ) and we can compute

Φ

(
∂r

∂a

)
=

(
1 1 + y−i

1 + y−i y−i

)
and Φ

(
∂r

∂b

)
=

(
1 + y−j 1
y−j 1 + y−j

)
.

We compute the 2-minors:

detΦ

(
∂r

∂b

)
= y−2j(1 + yj + y2j), det

(
1 1

1 + y−i 1 + y−j

)
= y−i(1 + yi−j).

As (i− j) ≡ 1 mod 3, it follows from Lemma 3.3 that gcd(1 + yj + y2j , 1 + yi−j) = 1.
Therefore, we deduce that I = L as required.

Sub-case 2d: j ≡ 2 mod 3, i ≡ 2 mod 3. We also have ρ(a) = ( 1 1
1 0 ), and we can find

that

Φ

(
∂r

∂a

)
=

(
1 + y−i 1 + y−i

1 + y−i 0

)
and Φ

(
∂r

∂b

)
=

(
1 + y−j 1
y−j 1 + y−j

)
.

We compute two determinants:

detΦ

(
∂r

∂a

)
= y−2i(1 + y2i), detΦ

(
∂r

∂b

)
= y−2j(1 + yj + y2j).

As 2i ≡ 1 mod 3, it follows from Lemma 3.3 that gcd(1 + yj + y2j , 1 + y2i) = 1. We
obtain I = L as required.

Case 3: j ≡ 1 mod 3, i ≡ 2 mod 3. In this case, we have ρ(a) = ( 0 1
1 1 ).

We compute Φ(∂r/∂b) = ( 1+y−j y−j

1 1+y−j ) and Φ(∂r/∂a) = ( y
−i 1

1 1+y−i ).

To simplify Φ(∂r/∂c) in (4.1), we need to introduce the following polynomials:

g3n := 1 + y3 + · · ·+ y3n for n ≥ 1, g0 := 1 and g3n := 0 for n < 0.

As ρ(c) = ( 0 1
1 1 ), ρ(c

2) = ( 1 1
1 0 ), ρ(c

3) = ( 1 0
0 1 ), we have the following identities:

ρ(1) + ρ(c)y · · ·+ ρ(ci−1)yi−1 =

(
1 0
0 1

)
gi−2 +

(
0 1
1 1

)
ygi−2 +

(
1 1
1 0

)
y2gi−5, (4.11)

ρ(1) + ρ(c)y · · ·+ ρ(cj−1)yj−1 =

(
1 0
0 1

)
gj−1 +

(
0 1
1 1

)
ygj−4 +

(
1 1
1 0

)
y2gj−4,

(4.12)

ρ(c−1)y−1 + · · ·+ ρ(c−i)y−i =

(
1 0
0 1

)
y−i+2gi−5

+

(
0 1
1 1

)
y−igi−2 +

(
1 1
1 0

)
y−i+1gi−2, (4.13)

ρ(c−1)y−1 + · · ·+ ρ(c−j)y−j =

(
1 0
0 1

)
y−j+1gj−4

+

(
0 1
1 1

)
y−j+2gj−4 +

(
1 1
1 0

)
y−jgj−1. (4.14)
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Putting the identities (4.11)–(4.14) into Φ(∂r/∂c) in (4.1), we get

Φ

(
∂r

∂c

)
= −

(
1 0
1 1

)
x−1y−j+1gj−4 −

(
0 1
1 0

)
x−1y−j+2gj−4 −

(
1 1
0 1

)
x−1y−jgj−1

+

(
1 1
1 0

)
y−jgj−1 +

(
1 0
0 1

)
y−j+1gj−4 +

(
0 1
1 1

)
y−j+2gj−4

−
(
1 0
0 1

)
y−igi−2 −

(
0 1
1 1

)
y−i+1gi−2 −

(
1 1
1 0

)
y−i+2gi−5

+

(
1 0
0 1

)
y−i+2gi−5 +

(
0 1
1 1

)
y−igi−2 +

(
1 1
1 0

)
y−i+1gi−2.

After changing all the coefficients to 1, we find that the matrix for Φ(∂r/∂c) is

⎛
⎜⎜⎜⎜⎝

y−igi−2 + y−i+1gi−2 + x−1y−jgj−1+ y−igi−2 + y−i+2gi−5 + x−1y−jgj−1+

x−1y−j+1gj−4 + y−jgj−1 + y−j+1gj−4 x−1y−j+2gj−4 + y−jgj−1 + y−j+2gj−4

y−igi−2 + y−i+2gi−5 + x−1y−j+1gj−4+ y−i+1gi−2 + y−i+2gi−5 + x−1y−jgj−1+

x−1y−j+2gj−4 + y−jgj−1 + y−j+2gj−4 x−1y−j+1gj−4 + y−j+1gj−4 + y−j+2gj−4

⎞
⎟⎟⎟⎟⎠ .

Now, using column ( y
−i

1
) of Φ(∂r/∂a), we make the second row of any other column

(XY ) to be zero by replacing it with (XY ) + Y ( y
−i

1
) = (X+y−iY

0
). So we bring the twisted

Alexander matrix to the form

(
y−i 1 + y−i + y−2i 1 + y−i + y−j y−i−j + y−i + y−j y−jC y−jD
1 0 0 0 0 0

)
,

where

C = yj−2igi−2 + yj−2i+2gi−5 + yj−igi−2 + yj−i+1gi−2 + y−igj−1 + y−i+2gj−4

+ gj−1 + ygj−4 + x−1(y−i+1gj−4 + y−i+2gj−4 + gj−1 + ygj−4),

D = yj−2i+1gi−2 + yj−2i+2gi−5 + yj−igi−2 + yj−i+2gi−5 + y−i+1gj−4 + y−i+2gj−4

+ gj−1 + y2gj−4 + x−1(y−i+1gj−4 + y−igj−1 + gj−1 + y2gj−4).

After multiplying generators of I by appropriate units, we obtain

I = (1 + yi + y2i, yi+j + yi + yj , 1 + yi + yj , C,D).

As (yi+j + yi + yj) + (1 + yi + yj) = 1 + yi+j , we have I = (1 + yi + y2i, 1 + yi+j , 1 +
yi + yj , C,D).
From Lemma 3.4, we know that gcd(1 + yi + y2i, 1 + yi+j) = 1 + yd + y2d. We now

show that the third generator is also divisible by (1 + yd + y2d).
In fact, as j ≡ 1 mod 3, i ≡ 2 mod 3 we obtain 3|(2j − i). Moreover, as 3� | j = ld we

also have gcd(d, 3) = 1. As a result, we have 3d|(2j − i). So we use Lemma 3.2 to get
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(1 + yd)(1 + yd + y2d) = (1 + y3d)|(1 + y2j−i). We arrive at

(1 + yd + y2d) | (1 + y2j−i). (4.15)

Moreover, Corollary 3.5 implies that (1 + yd + y2d)|(1 + yj + y2j). Combining this
with (4.15), we get that 1 + yi + yj = (1 + yj + y2j) + yi(1 + y2j−i) is also divisible by
(1 + yd + y2d).
It follows that I = (1 + yd + y2d, C,D).
We now proceed by simplifying the generators C and D as we did in Case 3 of Propo-

sition 4.1. Note that adding to C or D a multiple of (1 + yd + y2d) will not change the
twisted Alexander ideal. In the proof of this Proposition, we will use the notation X ≡ Y
if (X − Y ) is a multiple of (1 + yd + y2d). As g3n = (1 + y3n+3)/(1 + y3), we simplify C
and D as follows:

C =

(
yj−2i 1 + yi+1

1 + y3
+ yj−2i+2 1 + yi−2

1 + y3
+ yj−i 1 + yi+1

1 + y3
+ yj−i+1 1 + yi+1

1 + y3

)

+ (1 + y−i−j)(yjgj−1 + yj+2gj−4) +
(
yjgj−1 + yj+2gj−4 + gj−1 + ygj−4

)
+ x−1

(
(1 + y−i−j)(yj+1gj−4 + yj+2gj−4) + yj+1gj−4 + yj+2gj−4 + gj−1 + ygj−4

)

=
(yj+1 + yj−2i + yj−2i+1)(1 + y)

1 + y3
+ (1 + y−i−j)(yjgj−1 + yj+2gj−4)

+
(
yjgj−1 + yj+2gj−4 + gj−1 + ygj−4

)
+ x−1

(
(1 + y−i−j)(yj+1gj−4 + yj+2gj−4) + yj+1gj−4 + yj+2gj−4 + gj−1 + ygj−4

)
.

As noted above, by Lemma 3.4, gcd(1 + yi + y2i, 1 + yi+j) = 1 + yd + y2d. So 1 +
y−i−j = y−i−j(1 + yi+j) is a multiple of (1 + yd + y2d) and we may write

C ≡ (yj+1 + yj−2i + yj−2i+1)(1 + y)

1 + y3
+ (yjgj−1 + yj+2gj−4 + gj−1 + ygj−4)

+ x−1(yj+1gj−4 + yj+2gj−4 + gj−1 + ygj−4).

=
(yj+1 + yj−2i + yj−2i+1)

1 + y + y2
+

(
yj

1 + yj+2

1 + y3
+ yj+2 1 + yj−1

1 + y3
+

1 + yj+2

1 + y3
+ y

1 + yj−1

1 + y3

)

+ x−1

(
yj+1 1 + yj−1

1 + y3
+ yj+2 1 + yj−1

1 + y3
+

1 + yj+2

1 + y3
+ y

1 + yj−1

1 + y3

)

=
yj+1 + yj−2i + yj−2i+1

1 + y + y2
+

(1 + y2j+1)(1 + y)

1 + y3
+ x−1 (1 + yj + y2j)(1 + y)

1 + y3
.

Therefore, we get

C ≡ yj+1 + yj−2i + yj−2i+1

1 + y + y2
+

1 + y2j+1

1 + y + y2
+ x−1 1 + yj + y2j

1 + y + y2
. (4.16)
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We will do the same thing for D:

D =

(
yj−2i+1 1 + yi+1

1 + y3
+ yj−2i+2 1 + yi−2

1 + y3
+ yj−i 1 + yi+1

1 + y3
+ yj−i+2 1 + yi−2

1 + y3

)

+ (1 + y−i−j)(yj+1gj−4 + yj+2gj−4) + (yj+1gj−4 + yj+2gj−4 + gj−1 + y2gj−4)

+ x−1((1 + y−i−j)(yj+1gj−4 + yjgj−1) + yj+1gj−4 + yjgj−1 + gj−1 + y2gj−4)

=
(yj + yj−2i+1)(1 + y)

1 + y3
+ (1 + y−i−j)(yj+1gj−4 + yj+2gj−4)

+ (yj+1gj−4 + yj+2gj−4 + gj−1 + y2gj−4)

+ x−1((1 + y−i−j)(yj+1gj−4 + yjgj−1) + yj+1gj−4 + yjgj−1 + gj−1 + y2gj−4).

Now, we discard the terms which are multiples of (1 + y−i−j) and plug in g3n =
(1 + y3n+3)/(1 + y3). We obtain

D ≡ (yj + yj−2i+1)(1 + y)

1 + y3
+

(
yj+1 1 + yj−1

1 + y3
+ yj+2 1 + yj−1

1 + y3
+

1 + yj+2

1 + y3
+ y2

1 + yj−1

1 + y3

)

+ x−1

(
yj+1 1 + yj−1

1 + y3
+ yj

1 + yj+2

1 + y3
+

1 + yj+2

1 + y3
+ y2

1 + yj−1

1 + y3

)

=
(yj + yj−2i+1)(1 + y)

1 + y3
+

(1 + yj + y2j)(1 + y)

1 + y3
+ x−1 (1 + y2)(1 + yj + y2j)

1 + y3
.

We arrive at

D ≡ yj + yj−2i+1

1 + y + y2
+

1 + y + y2j

1 + y + y2
+ x−1 (1 + y)(1 + yj + y2j)

1 + y + y2
. (4.17)

Now, we combine (4.16) and (4.17) to get

D + y2C ≡ (yj + yj+3) + yj−2i+1(1 + y + y2) + (1 + y + y2) + (y2j + y2j+3)

1 + y + y2

+ x−1(1 + yj + y2j)

= yj(1 + y) + yj−2i+1 + 1 + y2j(1 + y) + x−1(1 + yj + y2j)

= (1 + y)(1 + yj + y2j) + y(1 + yj−2i) + x−1(1 + yj + y2j).

As 3� | j, by Corollary 3.5, 1 + yj + y2j is divisible by 1 + yd + y2d. It follows from the
equality above that

D + y2C ≡ y(1 + yj−2i).

Similar to the proof of (4.15), we also have that (j − 2i) is divisible by 3d. It follows from
Lemma 3.2 that (1 + yd)(1 + yd + y2d) = (1 + y3d) | (1 + yj−2i). So we obtain

D + y2C ≡ y(1 + yj−2i) ≡ 0.

So D belongs to the ideal (1 + yd + y2d, C). This means that I = (1 + yd + y2d, C).
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Now we rewrite

C ≡ (1 + y)(1 + yj−2i)

1 + y + y2
+
y(1 + yj + y2j)

1 + y + y2
+ x−1 1 + yj + y2j

1 + y + y2
. (4.18)

As 3� | j, we also have 3� | l. So we divide further into three sub-cases.

Sub-case 3a: l is even. We have (j − 2i) = (l − 2k)d. So, in this case, 2 | (l − 2k).
Moreover, as j ≡ 1 mod 3, i ≡ 2 mod 3, we obtain 3|(j − 2i) = (l − 2k)d. We know
already that gcd(3, d) = 1. So we also have 3 | (l − 2k). Therefore, we obtain that j − 2i =
(l − 2k)d is divisible by 6d. So, by Lemma 3.2,

(1 + y6d) | (1 + yj−2i). (4.19)

On the other hand, by Lemma 3.6(i), (1 + y + y2)(1 + yd + y2d)|(1 + y2d + y4d). So it
follows that

(1 + y + y2)(1 + yd + y2d) | (1 + y2d)(1 + y2d + y4d) = (1 + y6d). (4.20)

It follows from (4.19) and (4.20) that (1 + y + y2)(1 + yd + y2d) | (1 + yj−2i) or, equiva-
lently, (1 + y)(1 + yj−2i)/(1 + y + y2) ≡ 0. Plugging this into (4.18), we obtain

C ≡ y(1 + yj + y2j)

1 + y + y2
+ x−1 1 + yj + y2j

1 + y + y2
.

Moreover, as 3� | j, by using Lemma 3.6(i) we obtain C ≡ 0.We deduce that I is generated
by (1 + yd + y2d).

Sub-case 3b: l = 6t+ 1. As (l − 2k) is odd, we have that (j − 2i) = (l − 2k)d is not
divisible by 6d, only by 3d. As a consequence, 6d | (j − 2i− 3d). So, by Lemma 3.2, we
obtain (1 + y6d)|(1 + yj−2i−3d). Combining this with (4.20), we get

(1 + yj−2i)

1 + y + y2
− (1 + y3d)

1 + y + y2
=
y3d(1 + yj−2i−3d)

1 + y + y2
≡ 0.

We put this into (4.18) and then use Lemma 3.6(ii) to get

C ≡ (1 + y)(1 + y3d)

1 + y + y2
+
y(1 + yd + y2d)

1 + y + y2
+ x−1 1 + yd + y2d

1 + y + y2

=
(1 + yd + yd+1)

1 + y + y2
(1 + yd + y2d) + x−1 1 + yd + y2d

1 + y + y2
.

Note that since l = 6t+ 1 and j = ld = (6t+ 1)d ≡ 1 mod 3, we have d ≡ 1 mod 3. So,
by Lemma 3.2, we get (1 + y3) | (1 + yd−1). This implies that 1 + yd + yd+1 = (1 + y +
y2) + y(1 + yd−1) + y2(1 + yd−1) is divisible by (1 + y + y2). So we have

(1 + yd + yd+1)

1 + y + y2
(1 + yd + y2d) ≡ 0 and therefore C ≡ x−1 1 + yd + y2d

1 + y + y2
.

So in this case I is generated by (1 + yd + y2d)/(1 + y + y2).

Sub-case 3c: l = 6t+ 5. As in the previous case, we also have 3d | (j − 2i) but 6d�
| (j − 2i). So by the same argument as in the previous case, using Lemma 3.6(iii), we
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obtain

C ≡ (1 + y)(1 + y3d)

1 + y + y2
+
y1−2d(1 + yd + y2d)

1 + y + y2
+ x−1y−2d 1 + yd + y2d

1 + y + y2

=
(1 + y)(1 + yd) + y1−2d

1 + y + y2
(1 + yd + y2d) + x−1y−2d 1 + yd + y2d

1 + y + y2
.

Note that since l = 6t+ 5 and j = ld = (6t+ 5)d ≡ 1 mod 3, we have d ≡ 2 mod 3.
So, by Lemma 3.2, both (1 + yd−2) and (1 + y3d) are divisible by (1 + y3) = (1 + y)
(1 + y + y2). We obtain that (1 + y)(1 + yd) + y1−2d = (1 + y + y2) + y2(1 + yd−2) +
y1−2d(1 + y3d) is divisible by (1 + y + y2).
We deduce that C ≡ x−1y−2d((1 + yd + y2d)(1 + y + y2)) and therefore I is generated

by (1 + yd + y2d)/(1 + y + y2).

Case 4: j ≡ 2 mod 3, i ≡ 1 mod 3. In this case we get ρ(a) = ( 1 1
1 0 ),

Φ

(
∂r

∂a

)
=

(
y−i + 1 1

1 y−i

)
and Φ

(
∂r

∂b

)
=

(
y−j + 1 1
y−j y−j + 1

)
.

Similar to Case 3, we also use the following identities to simplify Φ(∂r/∂c):

ρ(1) + ρ(c)y · · ·+ ρ(ci−1)yi−1 =

(
1 0
0 1

)
gi−1 +

(
0 1
1 1

)
ygi−4 +

(
1 1
1 0

)
y2gi−4, (4.21)

ρ(1) + ρ(c)y · · ·+ ρ(cj−1)yj−1 =

(
1 0
0 1

)
gj−2 +

(
0 1
1 1

)
ygj−2 +

(
1 1
1 0

)
y2gj−5,

(4.22)

ρ(c−1)y−1 + · · ·+ ρ(c−i)y−i =

(
1 0
0 1

)
y−i+1gi−4

+

(
0 1
1 1

)
y−i+2gi−4 +

(
1 1
1 0

)
y−igi−1, (4.23)

ρ(c−1)y−1 + · · ·+ ρ(c−j)y−j =

(
1 0
0 1

)
y−j+2gj−5

+

(
0 1
1 1

)
y−jgj−2 +

(
1 1
1 0

)
y−j+1gj−2. (4.24)

Now we plug (4.21)–(4.24) into (4.1) to get

Φ

(
∂r

∂c

)
= −

(
1 1
0 1

)
x−1y−j+2gj−5 −

(
1 0
1 1

)
x−1y−jgj−2 −

(
0 1
1 0

)
x−1y−j+1gj−2

+

(
0 1
1 1

)
y−jgj−2 +

(
1 1
1 0

)
y−j+1gj−2 +

(
1 0
0 1

)
y−j+2gj−5

−
(
1 0
0 1

)
y−igi−1 −

(
0 1
1 1

)
y−i+1gi−4 −

(
1 1
1 0

)
y−i+2gi−4

+

(
1 0
0 1

)
y−i+1gi−4 +

(
0 1
1 1

)
y−i+2gi−4 +

(
1 1
1 0

)
y−igi−1.
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Changing all coefficients to 1, we get the following matrix for Φ(∂r/∂c):

⎛
⎜⎜⎝
y−i+2gi−4 + y−i+1gi−4 + x−1y−jgj−2+ y−igi−1 + y−i+1gi−4 + x−1y−j+1gj−2+
x−1y−j+2gj−5 + y−j+1gj−2 + y−j+2gj−5 x−1y−j+2gj−5 + y−jgj−2 + y−j+1gj−2

y−igi−1 + y−i+1gi−4 + x−1y−jgj−2+ y−igi−1 + y−i+2gi−4 + x−1y−jgj−2+
x−1y−j+1gj−2 + y−jgj−2 + y−j+1gj−2 x−1y−j+2gj−5 + y−jgj−2 + y−j+2gj−5

⎞
⎟⎟⎠ .

As in Case 3, by using the column ( 1
y−i ) of Φ(∂r/∂a) we make the first-row entries of

other columns to be zero. The twisted Alexander matrix can be brought into the form

(
0 1 0 0 0 0

1 + y−i + y−2i y−i y−i−j + y−i + y−j 1 + y−i + y−j y−jE y−jF

)
,

where

E = yj−2i+1gi−4 + yj−2i+2gi−4 + yj−igi−1 + yj−i+1gi−4 + y−i+1gj−2 + y−i+2gj−5

+ gj−2 + ygj−2 + x−1(y−igj−2 + y−i+2gj−5 + gj−2 + ygj−2),

F = yj−2igi−1 + yj−2i+1gi−4 + yj−igi−1 + yj−i+2gi−4 + y−igj−2 + y−i+1gj−2

+ gj−2 + y2gj−5 + x−1(y−i+1gj−2 + y−i+2gj−5 + gj−2 + y2gj−5).

After multiplying generators of I by appropriate units, it is not hard to see that

I = (1 + yi + y2i, yi+j + yi + yj , 1 + yi + yj , E, F )

= (1 + yi + y2i, 1 + yi+j , 1 + yi + yj , E, F ).

We argue as in Case 3. From Lemma 3.4, we know that

gcd(1 + yi + y2i, 1 + yi+j) = 1 + yd + y2d.

We now show that the third generator is also divisible by (1 + yd + y2d).
In this case, we also have d|(2j − i), 3|(2j − i) and 3� | j = ld. Therefore, we obtain

3d|(2j − i). So it follows from Lemma 3.2 that (1 + yd)(1 + yd + y2d) = (1 + y3d)|(1 +
y2j−i). So we have

(1 + yd + y2d) | (1 + y2j−i). (4.25)

Moreover, Corollary 3.5 implies that (1 + yd + y2d)|(1 + yj + y2j). Combining this
with (4.25), we get that 1 + yi + yj = (1 + yj + y2j) + yi(1 + y2j−i) is also divisible by
(1 + yd + y2d). So we deduce that I = (1 + yd + y2d, E, F ).
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We now proceed by simplifying the generators E,F as we did for C,D in Case 3 above.
First, we substitute g3n = (1 + y3n+3)/(1 + y3) into E to get

E =

(
yj−2i+1 1 + yi−1

1 + y3
+ yj−2i+2 1 + yi−1

1 + y3
+ yj−i 1 + yi+2

1 + y3
+ yj−i+1 1 + yi−1

1 + y3

)

+ (1 + y−i−j)(yj+1gj−2 + yj+2gj−5) + (yj+1gj−2 + yj+2gj−5 + gj−2 + ygj−2)

+ x−1
(
(1 + y−i−j)(yjgj−2 + yj+2gj−5) + yjgj−2 + yj+2gj−5 + gj−2 + ygj−2

)

=
(yj + yj+1 + yj−2i+1)(1 + y)

1 + y3
+ (1 + y−i−j)(yj+1gj−2 + yj+2gj−5)+

(yj+1gj−2 + yj+2gj−5 + gj−2 + ygj−2) + x−1(1 + y−i−j)(yjgj−2 + yj+2gj−5)

+ x−1(yjgj−2 + yj+2gj−5 + gj−2 + ygj−2).

As 1 + y−i−j = y−i−j(1 + yi+j) is a multiple of 1 + yd + y2d, we can simplify

E ≡ (yj + yj+1 + yj−2i+1)(1 + y)

1 + y3
+ (yj+1gj−2 + yj+2gj−5 + gj−2 + ygj−2)

+ x−1(yjgj−2 + yj+2gj−5 + gj−2 + ygj−2)

=
(yj + yj+1 + yj−2i+1)

1 + y + y2
+

(
yj+1 1 + yj+1

1 + y3
+ yj+2 1 + yj−2

1 + y3
+

1 + yj+1

1 + y3
+ y

1 + yj+1

1 + y3

)

+ x−1

(
yj

1 + yj+1

1 + y3
+ yj+2 1 + yj−2

1 + y3
+

1 + yj+1

1 + y3
+ y

1 + yj+1

1 + y3

)

=
yj + yj+1 + yj−2i+1

1 + y + y2
+

(1 + y2j + y2j+1)(1 + y)

1 + y3
+ x−1 (1 + yj + y2j)(1 + y)

1 + y3

=
yj + yj+1 + yj−2i+1

1 + y + y2
+

1 + y2j + y2j+1

1 + y + y2
+ x−1 1 + yj + y2j

1 + y + y2
.

Similarly, we simplify F as follows:

F =

(
yj−2i 1 + yi+2

1 + y3
+ yj−2i+1 1 + yi−1

1 + y3
+ yj−i 1 + yi+2

1 + y3
+ yj−i+2 1 + yi−1

1 + y3

)

+ (1 + y−i−j)(yjgj−2 + yj+1gj−2) + (yjgj−2 + yj+1gj−2 + gj−2 + y2gj−5)

+ x−1((1 + y−i−j)(yj+1gj−2 + yj+2gj−5) + yj+1gj−2 + yj+2gj−5 + gj−2 + y2gj−5)

=
(yj+1 + yj−2i)(1 + y)

1 + y3
+ (1 + y−i−j)(yjgj−2 + yj+1gj−2)

+ (yjgj−2 + yj+1gj−2 + gj−2 + y2gj−5)

+ x−1((1 + y−i−j)(yj+1gj−2 + yj+2gj−5) + yj+1gj−2 + yj+2gj−5 + gj−2 + y2gj−5)

≡ (yj+1 + yj−2i)(1 + y)

1 + y3
+ (yjgj−2 + yj+1gj−2 + gj−2 + y2gj−5)

+ x−1(yj+1gj−2 + yj+2gj−5 + gj−2 + y2gj−5).
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We can simplify F further:

F ≡ yj+1 + yj−2i

1 + y + y2
+

(
yj

1 + yj+1

1 + y3
+ yj+1 1 + yj+1

1 + y3
+

1 + yj+1

1 + y3
+ y2

1 + yj−2

1 + y3

)

+ x−1

(
yj+1 1 + yj+1

1 + y3
+ yj+2 1 + yj−2

1 + y3
+

1 + yj+1

1 + y3
+ y2

1 + yj−2

1 + y3

)

=
yj+1 + yj−2i

1 + y + y2
+

(1 + y + y2j+1)(1 + y)

1 + y3
+ x−1 (1 + yj + y2j)(1 + y2)

1 + y3

=
yj+1 + yj−2i

1 + y + y2
+

1 + y + y2j+1

1 + y + y2
+ x−1 (1 + y)(1 + yj + y2j)

1 + y + y2
.

From the simplification of E and F above, we have the following identity:

F + y2E ≡ yj+1(1 + y + y2) + yj−2i(1 + y3) + y2j+1(1 + y + y2) + (1 + y + y2)

1 + y + y2

+ x−1(1 + yj + y2j)

≡ yj+1 + yj−2i(1 + y) + y2j+1 + 1 + x−1(1 + yj + y2j)

≡ y(1 + yj + y2j) + (1 + y)(1 + yj−2i) + x−1(1 + yj + y2j).

As 3� | j, by Corollary 3.5, 1 + yj + y2j is divisible by 1 + yd + y2d. In this case, simi-
lar to the proof of (4.15), we also have that (j − 2i) is divisible by 3d. It follows from
Lemma 3.2 that (1 + yd)(1 + yd + y2d) = (1 + y3d) | (1 + yj−2i). So we obtain F + y2E ≡
0 and therefore I = (1 + yd + y2d, F ).
We rewrite F as

F ≡ y(1 + yj + y2j)

1 + y + y2
+

1 + yj−2i

1 + y + y2
+ x−1 (1 + y)(1 + yj + y2j)

1 + y + y2
. (4.26)

We obtain the twisted Alexander ideal in each of the following sub-cases.

Sub-case 4a: l is even. In this case, j − 2i = (l − 2k)d is divisible by both 2d and 3d.
We deduce that (j − 2i) is divisible by 6d and therefore (4.19) and (4.20) continue to
hold. It follows that

F ≡ y(1 + yj + y2j)

1 + y + y2
+ x−1 (1 + y)(1 + yj + y2j)

1 + y + y2
.

Now, by Lemma 3.6(i), we get that F ≡ 0 and I is generated by (1 + yd + y2d).

Sub-case 4b: l = 6t+ 1. Arguing in the same way as in sub-case 3b, we also get
3d | (j − 2i) but 6d� | (j − 2i). Therefore, we also get the identity

(1 + yj−2i)

1 + y + y2
≡ (1 + y3d)

1 + y + y2
.

So we deduce that

F ≡ y(1 + yj + y2j)

1 + y + y2
+

(1 + y3d)

1 + y + y2
+ x−1(1 + y)

1 + yj + y2j

1 + y + y2
.
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By using Lemma 3.6(ii), we deduce that

F ≡ y(1 + yd + y2d)

1 + y + y2
+

(1 + y3d)

1 + y + y2
+ x−1(1 + y)

1 + yd + y2d

1 + y + y2

=
(1 + y + yd)

1 + y + y2
(1 + yd + y2d) + x−1(1 + yd + y2d) + x−1y2

1 + yd + y2d

1 + y + y2
.

Note that since l = 6t+ 1 and j ≡ 2 mod 3, we have d ≡ 2 mod 3. It follows from
Lemma 3.2 that 1 + y + yd = (1 + y + y2) + y2(1 + yd−2) is a multiple of (1 + y + y2).
We deduce that F ≡ x−1y2((1 + yd + y2d)(1 + y + y2)) and I is generated by

(1 + yd + y2d)/(1 + y + y2).
Note that as 3� | d, (1 + yd + y2d)/(1 + y + y2) is a Laurent polynomial by Corollary 3.5.

Sub-case 4c: l = 6t+ 5. In this case, we also have 3d | (j − 2i) but 6d� | (j − 2i). By
the same arguments as in the previous case, we get

F ≡ y(1 + yj + y2j)

1 + y + y2
+

(1 + y3d)

1 + y + y2
+ x−1(1 + y)

1 + yj + y2j

1 + y + y2
.

Now, by using Lemma 3.6(iii), we deduce that

F ≡ y1−2d(1 + yd + y2d)

1 + y + y2
+

(1 + y3d)

1 + y + y2
+ x−1(1 + y)y−2d 1 + yd + y2d

1 + y + y2

=
1 + yd + y1−2d

1 + y + y2
(1 + yd + y2d) + x−1y−2d(1 + yd + y2d) + x−1y2−2d 1 + yd + y2d

1 + y + y2
.

Note that since l = 6t+ 5 and j ≡ 2 mod 3, we have d ≡ 1 mod 3. Therefore, by
Lemma 3.2, (1 + y2d−2) is divisible by (1 + y3).
Since both (1 + y2d−2) and (1 + y3d) are divisible by (1 + y3) = (1 + y)(1 + y + y2),

it follows that 1 + yd + y1−2d = y−2d((1 + y + y2) + y2(1 + y2d−2) + 1 + y3d) is divisible
by (1 + y + y2).
So in this case F ≡ x−1y2−2d((1 + yd + y2d)/(1 + y + y2)) and therefore I is generated

by (1 + yd + y2d)/(1 + y + y2).
The assertions (ii) and (iii) of the Proposition are proved. �

5. Applications to the isomorphism problem

In this section, we will apply the computation results obtained above to deduce that
several pairs of groups Gi,j are non-isomorphic. For each group Gi,j , we will denote by
I1i,j , I

2
i,j and I3i,j its twisted Alexander ideals associated with representations of type 1, 2

and 3, respectively. We know that if two groups Gi,j and Gi′,j′ are isomorphic then there
should be a monomial automorphism of L under which the multi-set of twisted Alexander
ideals of one group is mapped to that of the other. Note that the monomial automorphism
does not need to preserve the representation type, i.e. I1i,j could be mapped to I3i′,j′ . We
obtain the following result.
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Proposition 5.1. Consider the following three disjoint subsets of the set of order pairs
of positive integers:

A := {(i, j)| i is even or j is even} ∪ {(i, j)| i, j are both odd,

gcd(i, j) = 1 and 4|(i− j)},
B := {(i, j)| i, j are both odd, gcd(i, j) > 1 and 4|(i− j)},
C := {(i, j)| i, j are both odd and 4� | (i− j)}.

If (i, j) and (i′, j′) do not belong to the same set among A,B and C then Gi,j �∼= Gi′,j′ .

Proof. We put d := gcd(i, j) and d′ := gcd(i′, j′). Suppose that (i, j) ∈ A and (i′, j′) ∈
B. By Propositions 4.1 and 4.2, two twisted Alexander ideals I1i,j and I2i,j of Gi,j both
coincide with L. On the other hand, as (i′, j′) belongs to B, both twisted Alexander
ideals I1i′,j′ and I

2
i′,j′ of Gi′,j′ are (f2(d′−1)). Since d

′ > 1 by the definition of B, the ideal
(f2(d′−1)) is not the whole ring. It is obvious that there exists no automorphism of L that
maps a multi-set of three ideals, two of which coincide with L, to a multi-set of three
ideals, two of which are proper. Therefore, we conclude that Gi,j �∼= Gi′,j′ .

Now we consider the case where (i, j) ∈ A and (i′, j′) ∈ C. We first prove the following
claim.

Claim. The ideals (1 + y2, 1 + xy) and (1 + y2, 1 + x) are neither principal nor the
whole ring L.

Proof of the claim. As (1 + y2, 1 + x) is the image of (1 + y2, 1 + xy) under the
monomial automorphism (4.10), it is enough to verify the claim for (1 + y2, 1 + xy).
Notice that the ideal (1 + y2, 1 + xy) does not coincide with L, because for any f(x, y) ∈
(1 + y2, 1 + xy) we have f(1, 1) ≡ 0 mod 2. Moreover, the ideal (1 + y2, 1 + xy) can-
not be principal because if (1 + y2, 1 + xy) = (g) then g| gcd(1 + y2, 1 + xy) = 1 and this
contradicts the fact that the ideal (1 + y2, 1 + xy) is not the whole ring. So the claim
follows. �

We know from Propositions 4.1 and 4.2 that two twisted Alexander ideals of Gi′,j′ are
I1i′,j′ = (f2(d′−1))(1 + y2, 1 + xy) and I2i′,j′ = (f2(d′−1))(1 + y2, 1 + x). So, by the claim
above, they are proper ideals. By the same reasoning as in the previous case, we obtain
Gi,j �∼= Gi′,j′ .
Consider the last case where (i, j) ∈ B and (i′, j′) ∈ C. By Propositions 4.1 and 4.2,

the twisted Alexander ideals I1i,j and I2i,j of Gi,j are both principal. On the other hand,

by the claim, the twisted Alexander ideals I1i′,j′ and I
2
i′,j′ of Gi′,j′ are both non-principal.

So we deduce that Gi,j �∼= Gi′,j′ . �

We could not distinguish all the groups Gi,j for (i, j) belonging to the same set B or
C. However, we can find a necessary condition for two groups to be isomorphic. Before
doing so, we prove a necessary condition for the existence of a monomial automorphism
which maps one ideal to another.

Lemma 5.2. Suppose that f = 1 + ya1 + · · ·+ yam and g = 1 + yb1 + · · ·+ ybn are
non-constant Laurent polynomials in L such that they both consist of only non-negative
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powers of y and have constant terms equal to 1. If there exists a monomial automor-
phism of L which maps the ideal (f) to the ideal (g) then am = bn and either f = g or
f(y−1)yam = g.

Proof. Suppose that the monomial automorphism is of the form ϕ(x) = xayb and
ϕ(y) = xuyv. From the hypothesis, we get ϕ(f) = f(xayb, xuyv), and g must generate
the same ideal. This means that two polynomials only differ by a unit factor of the form
xkyl :

f(xayb, xuyv) = 1 + xa1uya1v + · · ·+ xamuyamv = xkylg = xkyl(1 + yb1 + · · ·+ ybn).

However, for the right-hand side containing 1, we find that k must be 0. Then the right-
hand side does not depend on x. Therefore, the same must hold for the left-hand side and
we get u = 0. From the condition of the monomial automorphism that | a b

u v | = av − bu =
±1, we obtain v = ±1.
In the case where v = 1, l must be 0. So it follows that f = g. In the case where

v = −1, l must be −am and we also have am = bn. So we deduce that f(y−1)yam = g as
required. �

Proposition 5.3. If i, j, i′, j′ are positive odd integers then

Gi,j
∼= Gi′,j′ implies gcd(i, j) = gcd(i′, j′).

Proof. We put d := gcd(i, j) and d′ := gcd(i′, j′). AsGi,j
∼= Gi′,j′ , there exists a mono-

mial automorphism ϕ of L which maps each twisted Alexander ideal of Gi,j to a twisted
Alexander ideal of Gi′,j′ . By Proposition 5.1, one of the following cases must happen.

Case 1: both (i, j) and (i′, j′) belong to A. As i, j, i′, j′ are positive odd integers, from
the definition of A, we have d = d′ = 1.

Case 2: both (i, j) and (i′, j′) belong to B. By Propositions 4.1 and 4.2, the first two
twisted Alexander ideals of Gi,j and Gi′,j′ are I1i,j = I2i,j = (f2(d−1)) and I1i′,j′ = I2i′,j′ =
(f2(d′−1)), respectively. As Gi,j

∼= Gi′,j′ , there must be a monomial automorphism ϕ of
L which maps (f2(d−1)) to (f2(d′−1)). It follows from Lemma 5.2 that d = d′.

Case 3: both (i, j) and (i′, j′) belong to C. In this case, the first two
twisted Alexander ideals of Gi,j and Gi′,j′ are I1i,j = (1 + y2d, (1 + xy)f2(d−1)), I

2
i,j =

(1 + y2d, (1 + x)f2(d−1)) and I1i′,j′ = (1 + y2d
′
, (1 + xy)f2(d′−1)), I2i′,j′ = (1 + y2d

′
, (1 +

x)f2(d′−1)), respectively. It is obvious that one of the ideals ϕ(I1i,j), ϕ(I
2
i,j) must belong

to the set {I1i′,j′ , I2i′,j′}. We may assume, for example, that ϕ(I1i,j) = I2i′,j′ ; the other case

can be treated in the same way. Since the gcd of all elements of I1i,j is f2(d−1) and that

of I2i′,j′ is f2(d′−1), the automorphism ϕ must map (f2(d−1)) to (f2(d′−1)). Therefore, by
Lemma 5.2, we get d = d′. �

Using the twisted Alexander ideal of a type 3 representation, we prove the following.

Proposition 5.4. Let i, j, i′, j′ be positive integers such that 3|(i+ j), 3|(i′ + j′) and
3� | j, j′. Assume that gcd(i, j) > 1 and gcd(i′, j′) > 1. Then, the following holds:

Gi,j
∼= Gi′,j′ implies gcd(i, j) = gcd(i′, j′).
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Proof. We put i = kd, j = ld, i′ = k′d′, j′ = l′d′, where d := gcd(i, j), d′ := gcd(i′, j′).
As Gi,j

∼= Gi′,j′ , there exists a monomial automorphism ϕ of L which maps each twisted
Alexander ideal of Gi,j to a twisted Alexander ideal of Gi′,j′ .

We first show that l and l′ must have the same parity. Suppose, for contradiction, that
l is even and l′ is odd. Then, by Propositions 4.1–4.3, the twisted Alexander ideals of
Gi,j are I1i,j = I2i,j = L and I3i,j = (1 + yd + y2d).

As 3|(i′ + j′), 3� | j′ and l′ is odd, by Proposition 4.3 we have I3i′,j′ =

((1 + yd
′
+ y2d

′
)/(1 + y + y2)). Note that as d′ > 1, I3i′,j′ �= L. Since Gi,j

∼= Gi′,j′ , two
of the twisted Alexander ideals of Gi′,j′ must coincide with L. For this to happen, we
must have I1i′,j′ = I2i′,j′ = L.

Since the automorphism ϕ must map a non-trivial ideal to a Since the automor-
phism ϕ must map a non-trivial ideal to a non-trivial one, we get ϕ(I3i,j) = I3i′,j′ .

As (1 + yd
′
+ y2d

′
)/(1 + y + y2) is a Laurent polynomial satisfying the hypothesis of

Lemma 5.2, we get 1 + yd + y2d = (1 + yd
′
+ y2d

′
)/(1 + y + y2) or, equivalently,

1 + yd
′
+ y2d

′
= (1 + yd + y2d)(1 + y + y2)

= 1 + y + y2 + yd + yd+1 + yd+2 + y2d + y2d+1 + y2d+2.

As d > 1, the right-hand side contains more than three non-zero monomials and is
different from the left-hand side. So we arrive at a contradiction.
So l and l′ have the same parity. Consider the first case where l and l′ are both even. By

Proposition 4.3, the twisted Alexander ideals of Gi,j and Gi′,j′ are I
1
i,j = I2i,j = L, I3i,j =

(1 + yd + y2d) and I1i′,j′ = I2i′,j′ = L, I3i′,j′ = (1 + yd
′
+ y2d

′
), respectively. Therefore, the

monomial automorphism ϕ maps I3i,j to I3i′,j′ . By Lemma 5.2, we deduce that d = d′.
In the case where l and l′ are both odd, we know that ϕ maps one of the twisted

Alexander ideals of Gi,j to I3i′,j′ = ((1 + yd
′
+ y2d

′
)/(1 + y + y2)). By Propositions 4.1–

4.3, I3i,j = ((1 + yd + y2d)/(1 + y + y2)) and I1i,j = I2i,j are one of the following forms:

L, (f2(d−1)), (1 + y2d, f2(d−1) + xyf2(d−1)), (1 + y2d, f2(d−1) + xf2(d−1)). Note that by the
claim in Proposition 5.1, the last two ideals in this list are not principal.
Since d′ > 1, I3i′,j′ is a proper principal ideal, so the twisted Alexander ideal of Gi,j

which is mapped to I3i′,j′ is either (f2(d−1)) or ((1 + yd + y2d)/(1 + y + y2)). In either case,
by Lemma 5.2, we arrive at the conclusion that d = d′. So the Proposition follows. �

Proof of Theorem 1.1.

(i) As gcd(p(2d− 1), q(2d− 1)) = 2d− 1 and gcd(p(2d′ − 1), q(2d′ − 1)) = 2d′ − 1,
part (i) is an immediate corollary of Proposition 5.3.

(ii) As gcd(p, q) = 1 and 3 | (p+ q), we deduce that 3� | p and 3� | q, otherwise both p and
q would be divisible by 3. So all conditions of Proposition 5.4 hold, and we obtain
d = gcd(pd, qd) = gcd(pd′, qd′) = d′ as required.

�
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