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We propose a variational approach to the identification of an optimal nonlinear eddy
viscosity as a subscale turbulence representation for proper orthogonal decomposition
(POD) models. The ansatz for the eddy viscosity is given in terms of an arbitrary
function of the resolved fluctuation energy. This function is found as a minimizer
of a cost functional measuring the difference between the target data coming from
a resolved direct or large-eddy simulation of the flow and its reconstruction based
on the POD model. The optimization is performed with a data-assimilation approach
generalizing the 4D-VAR method. POD models with optimal eddy viscosities are
presented for a 2D incompressible mixing layer at Re = 500 (based on the initial
vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed
body wake at Re= 300 000 (based on the body height and the free-stream velocity).
The variational optimization formulation elucidates a number of interesting physical
insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of
the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels
which improves the transient times towards the attractor. The 100-dimensional wake
model yields more accurate energy distributions as compared to the nonlinear modal
eddy-viscosity benchmark proposed recently by Östh et al. (J. Fluid Mech., vol. 747,
2014, pp. 518–544). Our methodology can be applied to construct quite arbitrary
closure relations and, more generally, constitutive relations optimizing statistical
properties of a broad class of reduced-order models.
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1. Introduction
In this study we present an optimal nonlinear eddy-viscosity closure for flow models

based on the proper orthogonal decomposition (POD). We will focus on flows in
unbounded domains which will be referred to here as ‘open flows’. A reduced-order
model (ROM) may serve as a testbed for physical understanding of actual flow
phenomena, as a computationally inexpensive surrogate model for optimization and
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as a low-order plant for control design. The oldest quantitative ROMs are vortex
models which are over 100 years old (see, e.g., Lamb 1945). Most low-order vortex
models of open flows are hybrid systems with a heuristic account of the creation,
merging and annihilation of vorticity, and are thus not amenable to most approaches
of system reduction, stability analysis and control design. Many current ROMs of
fluid flows are based on the traditional Galerkin method (see, e.g., Fletcher 1984).
In the kinematical step of this method, the flow variables are expanded in terms of
N orthogonal basis functions ui, i= 1, . . . , N, as u(x, t)=∑N

i=1 ai(t)ui(x). Thus, the
mode coefficients a(t) = [a1(t), . . . , aN(t)]T ∈ RN parameterize the fluid flow. The
dynamical step consists in representing the dependent variables in the Navier–Stokes
system in terms of such expansions and then projecting on the individual modes
which leads to the Galerkin system in the general form

da
dt
= f (a), t> 0 (1.1)

with propagator f :RN→RN . Many ROMs originate via post-processing of flow data
obtained from simulations or experiments and rely on the POD (see, e.g., Noack,
Morzyński & Tadmor 2011; Holmes et al. 2012). In the following, we focus on such
POD models.

The error of the Galerkin model is expected to vanish for increasing dimension
N. Since only a finite, and typically small, number of modes is retained, this
procedure results in a loss of information. Hence, the ROM (1.1) must be amended
to restore some physical features. Which features can be eliminated and which
can be retained tends to depend on the nature of the particular problem. In general,
however, the large-scale coherent structures with the associated production of turbulent
kinetic energy (TKE) are approximately resolved, while the small-scale fluctuations
responsible for most of the dissipation are ignored. The resulting excess production
of the fluctuation energy requires an additional stabilization in order to ensure the
long-term boundedness of solutions of system (1.1). The need to introduce a suitable
subscale turbulence representation gives rise to a ‘closure problem’ analogous to the
problem encountered when modelling turbulent flows based on the Reynolds-averaged
Navier–Stokes (RANS) equations and large-eddy simulations (LES), despite the fact
that the latter two approaches rely on flow descriptions in terms of partial differential
equations (PDEs), while system (1.1) is finite-dimensional. In particular, additional
terms involving an ‘eddy viscosity’ have been used in ROMs starting with the
pioneering work of Aubry et al. (1988). These closure terms have been refined in
numerous studies leading to, e.g. the modal eddy viscosities proposed by Rempfer
& Fasel (1994b), calibration of an auxiliary linear term investigated by Galletti et al.
(2004), a nonlinear term introduced by Cordier et al. (2013), combinations thereof
studied by Östh et al. (2014) and projections of the filtered Navier–Stokes equation
(Wang et al. 2011), just to name only a few approaches. In addition, projections onto
more dissipative subspaces were considered by Balajewicz, Dowell & Noack (2013).
We refer the reader to Wang et al. (2012) for some new proposals and a critical
assessment of several earlier approaches.

The discussed ROMs are all based on the Navier–Stokes equation. In principle,
also the subscale closures can be approximately modelled based on first-principle
considerations by means of structure and parameter identification. However, the
availability of highly resolved numerical and experimental data sets makes data-driven
modelling an appealing approach (see, e.g., Cacuci, Navon & Ionescu-Bujor 2013;
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Kutz 2013). For example, in the context of POD-based models, parameters of
Galerkin systems and the required closure relations can be accurately identified using
variational techniques of data assimilation (Cordier et al. 2013), collectively known
in the geosciences as ‘4D-VAR’ (Kalnay 2003). A relatively recent development is
the construction of subscale turbulence models based on optimization problems in
which the closure model is adapted using available measurements. In the context
of LES, this approach has been pioneered by Moser et al. leading to the concept
of an ‘optimal LES’ (Langford & Moser 1999). Optimization-based formulations of
the closure problem for Galerkin ROMs were recently pursued by D’Adamo et al.
(2007), Artana et al. (2012) and Cordier et al. (2013). In these studies the authors
obtained time-dependent eddy viscosities νT = νT(t) as minimizers of cost functionals
representing the misfit between the measured and reconstructed data. However, the
eddy viscosity obtained in this way is a function of time and the ROM (1.1) is no
longer autonomous. Since flow models with such time-dependent closures cannot be
used to make predictions outside the time window on which the closure νT(t) was
defined, this limits the practical applicability of such approaches. In this context, we
also mention the recent study by Hemati, Eldredge & Speyer (2014) in which an
analogous time-dependent closure was obtained for a vortex-based flow model.

In the present investigation we follow an optimization approach which is
fundamentally different: the optimal eddy viscosity is sought as a function of the state
a, more precisely, its (turbulent) fluctuation energy E(t) := ‖a(t)‖2

2 = (
∑N

i=1 ai(t)2)/2,
so that the resulting ROM (1.1) will then be autonomous. Consequently, flow models
with such closures can be used to make predictions also outside the time window
on which the data assimilation was performed. The proposed reconstruction approach
is ‘non-parametric’, in the sense that no assumptions are made concerning the form
of the dependence νT = νT(E) other than smoothness and the limiting behaviour
for small and large values of E. Relying on the concepts of data assimilation, the
proposed approach allows one to use measurement data in order to systematically
refine nonlinear eddy viscosity models obtained theoretically. Therefore, it may be
applicable to study the performance limitations of a given ansatz for the eddy viscosity.
The method builds on the approach to the optimal reconstruction of constitutive
relations in complex multiphysics PDE problems developed by Bukshtynov, Volkov
& Protas (2011) and Bukshtynov & Protas (2013). An application of this method to
finite-dimensional Galerkin models was carefully validated using a three-state ROM
of laminar vortex shedding in the cylinder wake by Protas, Noack & Morzynski
(2014). In the present study, we employ this approach to identify optimal turbulence
closures in two medium and high-Re flows, namely, a 2D incompressible mixing
layer and a 3D wake flow behind a blunt-back Ahmed body. The dimensions of the
corresponding Galerkin models are N = 20 for the mixing layer and N = 100 for
the Ahmed body wake. As will be evident from the discussion below, these two
flows exhibit distinct properties from the point of view of subgrid modelling and bear
characteristics of, respectively, laminar and turbulent flows. In addition to offering
predictability improvements over existing approaches (Östh et al. 2014), the optimal
turbulence closures also reveal a number of unexpected yet physically plausible
features, such as negative values of the eddy viscosity in some ranges of the TKE
E. We note that in fact the concept of a negative eddy viscosity has already been
invoked in the studies of turbulent flows (see, e.g., Liberzon et al. 2007).

The structure of the paper is as follows. In § 2 we briefly recapitulate POD
Galerkin models and highlight some properties of the eddy viscosity in such models.
Our computational approach is outlined in § 3. Optimal eddy viscosities and the
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properties of the resulting ROMs of the mixing layer and the Ahmed body flow are
presented and analysed in § 4. Summary and future directions are provided in § 5,
whereas some technical material concerning the optimization approach is collected in
appendix A.

2. POD modelling
In this section, POD models for turbulent flows are briefly reviewed. First

(§ 2.1), the assumed flow configurations are specified. The POD expansion and
the corresponding Galerkin projection of the Navier–Stokes equation are described in
§§ 2.2 and 2.3, respectively. In § 2.4, a nonlinear eddy viscosity ansatz is introduced
against which the optimal relations of the next section will be benchmarked. Finally
(§ 2.5), conditions for the appearance of negative values of eddy viscosity are
identified thus setting the stage for the optimization formulation of § 3 and the
initially somewhat surprising results reported in § 4.

2.1. Flow configurations
We assume an incompressible flow of a Newtonian fluid in a stationary domain Ω .
The fluid is described by the density ρ and kinematic viscosity ν̃. The position and
time are denoted by x and t, respectively. The flow field is described by the velocity
u and pressure p. The fluid motion is characterized by a velocity scale U and a
length scale L, which will take different numerical values in the problems studied
here, and define the Reynolds number as Re :=UL/ν̃. In the following, all quantities
are assumed to be non-dimensionalized by U, L and ρ, and ν := 1/Re represents
the reciprocal Reynolds number (‘:=’ means that the left-hand side of the equation
is defined by the right-hand side). The fluid motion is governed by the continuity
equation and the momentum balance

∇ · u = 0, (2.1a)
∂u
∂t
+ u · ∇u = −∇p+ ν1u (2.1b)

subject to suitable initial and boundary conditions.
While the proposed methodology is fairly general, to fix attention, in this study

we investigate two shear flows, a 2D spatially evolving mixing layer with a narrow
frequency bandwidth and a 3D wake behind an Ahmed body with a broad frequency
bandwidth including a slow drift of the base flow. In both flows, the origin of the
Cartesian coordinate system is at the centre of the inlet of the observation domain,
i.e. is located at the maximum shear position in the case of the mixing layer and at
the centre of the rear face of the Ahmed body (figure 1). The x-axis points in the
direction of the flow, the y-axis is aligned with the shear and the z-axis is orthogonal
to the x- and y-coordinates.

2.2. Proper orthogonal decomposition
We perform a POD expansion (Lumley 1970) of M velocity snapshots um := u(x, tm)
sampled at equispaced time instances tm=m1t, m= 1, . . . ,M, with the time step 1t.
The averaging operation of any velocity-dependent function F(u) over this ensemble
is denoted by an overbar, i.e.

F(u) := 1
M

M∑
m=1

F(um). (2.2)
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Ahmed body

Ground
(Ahmed body configuration)

Velocity profile
(Ahmed body)

y

x

Velocity profile
(Mixing layer)

FIGURE 1. (Colour online) Schematic of the coordinate system used in the example
problems studied here. The velocity profile in the mixing-layer problem is indicated
with (blue online) solid lines, whereas the Ahmed body configuration together with the
corresponding mean velocity profiles are marked with (dark red online) dashed lines.

The inner product for two velocity fields z1, z2 ∈ L2(Ω) is defined as

〈
z1, z2

〉
L2(Ω)
:=
∫
Ω

z1 · z2 dx. (2.3)

This inner product defines the energy norm ‖u‖L2(Ω) =
√〈u, u〉L2(Ω).

The averaging operation and the inner product uniquely define the corresponding
snapshot POD (Sirovich 1987; Holmes et al. 2012). First, following the Reynolds
decomposition, the velocity field is decomposed into a mean field u0 and a fluctuating
contribution u′ defined as

u0 := u, u′ := u− u. (2.4a,b)

Then, the fluctuating part is approximated by a Galerkin expansion with space-
dependent modes ui(x), i = 1, 2, . . . , N, used as the basis functions and the
corresponding mode coefficients ai(t)

u(x, t)= u0(x)+
N∑

i=1

ai(t)ui(x)+ ures(x, t), (2.5)

where ures represents the residual. POD yields a Galerkin expansion with the minimal
average squared residual ‖ures‖2

L2(Ω)
as compared with any other Galerkin expansion

with N modes (Lumley 1970). We note that the snapshot POD method limits the
number of POD modes to N 6 M − 1.

To facilitate subsequent developments, we rewrite the POD expansion more
compactly following the convention of Rempfer & Fasel (1994a,b):

u(x, t)=
N∑

i=0

ai(t)ui(x), (2.6)
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where a0(t) ≡ 1 (because of this property we will refer to the phase space as N-
dimensional, even though the state vector a(t) has formally the dimension N + 1).
For later reference, we recapitulate the first and second moments of the POD mode
coefficients:

ai = 0, aiaj = λiδij, i, j= 1, . . . ,N, (2.7a,b)

where λi are the POD eigenvalues. The energy content in each mode is given by
Ei(t) := a2

i (t)/2 and the TKE resolved by the Galerkin expansion E(t) is

E(t)=
N∑

i=1

Ei(t). (2.8)

At any fixed time t, the limit limN→∞ E(t) for POD yields the total TKE K(t) of the
original velocity field. We note that, by (2.7), the average modal energy and POD
eigenvalues are synonymous: Ei = λi/2.

2.3. Galerkin projection
The Galerkin expansion (2.6) satisfies the incompressibility condition and the
boundary conditions by construction. The evolution equation for the mode coefficients
ai is derived by a Galerkin projection of the Navier–Stokes equation (2.1), written in
the operator form as R(u)= 0, onto individual POD modes, i.e. via 〈ui,R(u)〉L2(Ω)= 0,
i = 1, . . . , N. Details are provided in the monographs by Noack et al. (2011) and
Holmes et al. (2012). For internal flows, the Galerkin representation of the pressure
term vanishes. For open flows with large domains and three-dimensional fluctuations,
the pressure term can generally be neglected as discussed by Deane et al. (1991), Ma
& Karniadakis (2002) and Noack, Papas & Monkewitz (2005). Here, the Galerkin
projection of the pressure term was found to be negligible and it is therefore omitted
from the model. Thus, the Galerkin system describing the temporal evolution of the
modal coefficients, ai(t), reads

dai

dt
= fi(a)= ν

N∑
j=0

lνijaj +
N∑

j,k=0

qc
ijkajak, i= 1, . . . ,N. (2.9)

The coefficients lνij and qc
ijk, i, j, k= 0, . . . ,N, are the Galerkin coefficients describing,

respectively, the viscous and convective effects in the Navier–Stokes system (2.1). For
internal flows with the Dirichlet or periodic boundary conditions, the quadratic term
can be shown to be exactly energy-preserving

qc
ijk + qc

ikj + qc
kij + qc

kji + qc
ikj + qc

jik = 0, i, j, k= 1, . . . ,N. (2.10)

Energy preservation (2.10) can be also be proven for flows past obstacles in
unbounded domains under the condition that the velocity fluctuations decay at infinity.
For finite domains, relation (2.10) is still a good approximation assuming that the
fluctuations have significantly decreased at the downstream boundary, as is the
case for the cylinder wake example discussed below. Even when more significant
fluctuation levels are present at the downstream boundary as in the mixing layer flow,
the enforced antisymmetry of qijk is numerically found not to noticeably change the
behaviour of the POD model in the examples considered.
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2.4. Post-transient fluctuation levels
For turbulent flows, POD models face one well-known challenge addressed already
in the pioneering work of Aubry et al. (1988): the finite POD expansion often
contains a fraction of the total fluctuation energy. While a significant portion of
the TKE production may be resolved by the large-scale structures contained in the
POD expansion, most of the dissipation in the small-scale eddies is ignored in the
Galerkin system. The resulting over-production of TKE in the POD model leads to
over-prediction of the fluctuation level, including possible divergence to infinity in
finite time. A common cure is the inclusion of an ‘eddy viscosity’ term absorbing
the excess energy,

dai

dt
= fi(a)+ νT

N∑
j=0

lνijaj, i= 1, . . . ,N. (2.11)

In general, off-diagonal elements lνij, i 6= j, are small and therefore negligible.
In early studies eddy viscosity νT was assumed to be a constant parameter. Yet,

the non-physical implication is that the POD-resolved part of the turbulent flow
effectively behaves like a laminar flow with reciprocal Reynolds number νeff = ν + νT .
Another non-physical implication is that a linear Galerkin term is to represent the
nonlinear energy cascade. Numerous refinements of this eddy viscosity term have been
suggested as discussed by Östh et al. (2014). To simplify the notation, hereafter we
will use the convention that the superscript symbol ‘◦’ will denote quantities related
to closure models obtained based on theoretical arguments, whereas the superscript
symbol ‘•’ will denote the corresponding quantities related to closure models derived
from actual data. In this study, our point of departure is a nonlinear modal eddy
viscosity

ν◦T := νa
T

√
E(t)

E
κi (2.12)

with the mode-dependent factor κi, i= 1, . . . ,N. This factor is equal to unity, κi ≡ 1,
for the global eddy-viscosity ansatz and is derived from the modal power balance of
the flow (Noack et al. 2005) for the modal eddy viscosity. The quantity νa

T represents
a constant reference value of the eddy viscosity obtained from a long-time average
of energy dissipation in the flow on the attractor, where the latter is defined as
usual in dynamical systems as a subset of the phase space to which all trajectories
converge regardless of the initial positions. Thus, the eddy viscosity ν◦T defined in
(2.12) becomes larger than the reference value νa

T when the instantaneous resolved
fluctuation energy E(t) exceeds E and vice versa. The square-root dependency of ν◦T
on E(t) is motivated by a scaling argument (Noack et al. 2011) and we add that this
nonlinear eddy viscosity term guarantees the boundedness of any Galerkin solution
(Cordier et al. 2013). Hereafter we will refer to relation (2.12) as the ‘reference eddy
viscosity’.

2.5. Transient dynamics
The nonlinear eddy viscosity term effectively has the ability to prevent non-physically
large fluctuation levels. Another frequently observed shortcoming of POD systems are
significantly over-predicted transient times, even for laminar flows. To shed light on
this issue and show how it can be remedied through a suitable choice of a nonlinear
eddy viscosity, in the following we consider one of the simplest POD Galerkin models
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exhibiting non-physical transient times and non-physical fluctuation levels. The starting
point is the 2D laminar cylinder wake at Re= 100 in an unbounded domain truncated
for computational purposes to a finite box (Noack et al. 2003). The first two POD
modes resolve already 95 % of the fluctuation energy and we chose N=2 as the model
order. The POD system is effectively phase-invariant and is well approximated by a
linear oscillator:

da1

dt
= f1(a1, a2)= σ ◦a1 −ω◦a2, (2.13a)

da2

dt
= f2(a1, a2)= σ ◦a2 +ω◦a1, (2.13b)

σ ◦ = 0.0073, (2.13c)
ω◦ = 1.0763, (2.13d)

which is obtained through a standard Galerkin projection procedure (see Noack et al.
(2003) for details and validation). The quadratic term vanishes by (2.10) and the
observed phase invariance. Evidently, (2.13) describes an oscillatory behaviour with
a slow exponential growth, i.e. growth without bound.

The mode coefficients a•i , i = 1, 2, obtained from a direct numerical simulation
(DNS) starting from the steady solution quickly converge to a limit cycle. This
transient is far better approximated by the following mean-field model exhibiting a
stable limit cycle at r∞ ≈ 2.3 (Protas et al. 2014):

da1

dt
= σ •a1 −ω•a2, (2.14a)

da2

dt
= σ •a2 +ω•a1, (2.14b)

σ • = σ1[1− r2/r2
∞], (2.14c)

ω• =ω1 + 0.150 r2/r2
∞, (2.14d)

with r := √
a2

1 + a2
2, and σ1 = 0.151 and ω1 = 0.886 representing the initial

(i.e. evaluated at the unstable fixed point) growth rate and frequency of the transient
solution (these values are obtained via calibration against the DNS data).

The growth rate (2.13c) of the POD model is thus initially under-predicted by more
than a factor of 20 while it is increasingly over-predicted near and beyond the limit
cycle. We aim to correct this growth rate using the eddy viscosity ansatz of the form
(2.11) which results in

da1

dt
= f1(a1, a2)+ νT lν11a1, (2.15a)

da2

dt
= f2(a1, a2)+ νT lν22a2. (2.15b)

Here, lν11 = lν22 < 0 by the assumed phase invariance and the dissipativity property of
the viscous term. Matching the growth rate of (2.15) with the DNS-inferred mean-field
model (2.14) yields

σ ◦ + νT lν11 = σ • H⇒ νT lν11 = σ • − σ ◦ = σ1
[
1− r2/r2

∞
]− σ ◦. (2.16)
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FIGURE 2. (Colour online) Results obtained for the two-dimensional cylinder wake flow
at Re= 100: (a) the growth rates σ in ROMs (2.13) and (2.14) and (b) the corresponding
optimal eddy viscosity ν•T in system (2.15) as functions of the fluctuation energy E;
optimal reconstructions σ • and ν•T computed by Protas et al. (2014) (dashed lines, red
online), prediction from Galerkin model (2.13) (dotted line, blue online) and the quantity
r−1 (dr/dt)|r(t) computed based on the solution of the Navier–Stokes problem (black solid
line).

Evidently, the eddy viscosity is an affine function of the fluctuation energy E(t) =
r(t)2/2, i.e.

νT(E)= a+ bE (2.17)

with a negative intercept a= (σ1 − σ ◦)/lν11 and a positive slope b=−σ1/(E∞ lν11), in
which E∞ = (a2

1 + a2
2)/2 = r2

∞/2, so that νT = −σ1/lν11 > 0 at E = Ea, where Ea is
the fluctuating energy level corresponding to the attractor. Different aspects of these
observations are illustrated in figure 2. In addition to the growth rate predicted by
the standard POD model (2.13c) and the growth rate r−1 (dr/dt)|r(t) characterizing
the DNS of the actual Navier–Stokes flow, in figure 2(a) we also show the optimal
growth rate σ •(E) reconstructed by Protas et al. (2014) using a similar methodology
as employed in the present study. It is clear from this figure that the optimal growth
rate depending on the fluctuating energy provides a much better representation of the
actual data than does the constant growth rate produced by the Galerkin procedure.
The eddy viscosity ν•T corresponding to the optimal growth rate σ • is shown as a
function of E in figure 2(b) (this data is not shown for system (2.14), because it does
not explicitly involve a term with eddy viscosity, hence ν•T is not defined in that case).
The key message from this figure is that the form of the optimally reconstructed eddy
viscosity is quite similar to (2.17) and features both positive and negative values. We
also remark here that the form of (2.17) as an affine function of E is different from
(2.12) which involves a square-root expression. There is, however, no contradiction,
since (2.12) is obtained for the flow energy cascade with triadic mode interactions,
while the mean-field model (2.14) describes the change of the growth rate due to
base-flow variations with the associated Reynolds stresses proportional to E.

Summarizing, a negative eddy viscosity at low fluctuation values and positive at
large fluctuation values can cure non-physically long transient times to the attractor. In
the following we thus allow the eddy viscosity to be an essentially arbitrary function
of E

ν•T := ν•T(E). (2.18)
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In light of the cylinder wake example, one may therefore expect small or negative
values of the eddy viscosity to arise for E< E and positive values for E> Ea.

The marginal growth rates of POD models may be also related to unresolved
base flow variations (Aubry et al. 1988; Noack et al. 2003; Podvin 2009) and mode
deformation during transients (Noack et al. 2003; Sapsis & Majda 2013). While it is
possible to address these issues in our framework, it would significantly complicate
the exposition, hence they will not be considered in the present study.

3. Optimal eddy viscosity
In this section we describe a variational approach for determination of an optimal

dependence of the nonlinear eddy viscosity νT in the Galerkin system (2.11) on the
TKE E. Here, ‘optimality’ means that the eddy viscosity minimizes a performance
criterion quantifying how well the evolution described by ROM (2.11) matches the
actual evolution governed by Navier–Stokes system (2.1). We consider a time window
[0, T] whose length T is a parameter and assume that over this time window the flow
is characterized by the resolved TKE Ẽ(t) representing the energy content of its first
N POD modes, i.e.

Ẽ(t) := 1
2

N∑
i=1

〈u′(·, t), ui〉2L2(Ω)
, (3.1)

where u′, ui and the inner product 〈·, ·〉L2(Ω) were defined in § 2.2. This fluctuation
energy is determined from the solution (here, DNS or LES) of the Navier–Stokes
problem. Then, we can define the following cost functional

J (νT)= 1
2T

∫ T

0
[E(t; νT)− Ẽ(t)]2 dt, (3.2)

where E(t; νT) is the TKE characterizing system (2.11) which depends on eddy
viscosity νT . Since the length T of the time window on which measurements
Ẽ(t) are available can be quite long compared to the times over which the ROM
(2.11) is capable of reproducing accurately the actual trajectory, in evaluating
E(t; νT) we will periodically restart system (2.11) using projections of the actual
flow evolution on the POD modes as the initial data a0. More precisely, we will
subdivide the interval [0, T] into M subintervals of length 1T = T/M, so that
[0, T] = [0, 1T] ∪ [1T, 21T] ∪ · · · ∪ [(M − 1)1T, M1T], see figure 3. On each of
the subintervals [(m− 1)1T,m1T], m= 1, . . . ,M, the Galerkin system will therefore
take the form

dai

dt
=

N∑
j,k=0

qc
ijkajak + [ν + νT(E(t))]

N∑
j=0

lνijaj, t ∈ ((m− 1)1T,m1T], (3.3a)

ai((m− 1)1T)= a0,m
i , i= 1, . . . ,N, (3.3b)

where a0,m
i = 〈u′(·, (m − 1)1T), ui〉L2(Ω) and m = 1, . . . , M. Periodic restarts of

Galerkin system (3.3) ensure that its trajectory never departs too far from the
projected trajectory of the actual flow, which is important given the form of the
cost functional adopted in (3.2).

The nonlinear eddy viscosity ν◦T introduced in § 2.4, cf. (2.12), will serve as a
reference and point of departure for the present optimization approach. As regards
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mth interval

Reinitialization with
a new initial condition

0 T

FIGURE 3. Schematic showing the partition of the time window [0, T] into subintervals
[(m− 1)1T,m1T], m= 1, . . . ,M.

the functional form of the optimal eddy viscosity ν•T , we will make the following
rather non-restrictive assumptions (hereafter we will use the symbol e as the variable
corresponding to the TKE E).

Assumption 1. We assume that:

(a) ν•T(e) is defined for e ∈ I := [0, Emax], where Emax is chosen such that Emax >

maxt∈[0,T] E(t);
(b) ν•T(e) is a continuous function of e with square-integrable derivatives on I; this

implies that ν•T ∈H1(I), where H1(I) is the Sobolev function space equipped with
the inner product (Adams & Fournier 2005)

∀z1,z2∈H1(I)
〈
z1, z2

〉
H1(I) =

∫ Emax

0
z1z2 + `2 ∂z1

∂e
∂z2

∂e
de, (3.4)

where ` > 0;
(c)

ν•T(0)= ν◦T(0)= 0; (3.5)

(d)
dν•T
de

∣∣∣∣
e=Emax

= dν◦T
de

∣∣∣∣
e=Emax

=:G. (3.6)

Some comments are in place as regards the physical interpretation of the above
assumptions. Assumption 1(a) guarantees that the optimal eddy viscosity ν•T(e) is
defined over a range of e relevant for the given flow. Our experience shows that the
specific value of Emax does not noticeably influence the results, provided it is slightly
larger than maxt∈[0,T] E(t), typically by a factor in the range 1.1–3.0. Assumption 1(b)
concerns the minimal smoothness of the optimal eddy viscosity as a function of e. We
emphasize that, as shown by Bukshtynov et al. (2011), omitting the differentiability
requirement and assuming that ν•T is only square-integrable (ν•T ∈ L2(I)) could in fact
produce discontinuous eddy viscosities which are unphysical. Assumptions 1(c,d)
imply that for limiting values of e the behaviour of the optimal eddy viscosity ν•T is
the same as in the reference relation (2.12). More specifically, at e = 0 the optimal
eddy viscosity ν•T will vanish, whereas at e= Emax it will have the same slope (with
respect to e) as the reference relation ν◦T . The latter assumption is justified by the
fact, shown by Noack et al. (2011), that the reference relation (2.12) is accurate in
the limit of large e. Thus, Assumption 1 ensures that for small and large values of
the fluctuation energy, for which no sensitivity information can be extracted from the
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model, the optimal reconstruction smoothly falls back to the reference eddy viscosity
(2.12), or any other relation chosen in its place. We add that from the practical point
of view this is not a problem, because in any given flow the fluctuation energy will
not exceed maxt∈[0,T] E(t) by a significant fraction and, hence, the values of ν•T(e) for
e>maxt∈[0,T] E(t) are not very important for the accuracy of the ROM (the optimal
eddy viscosity is defined for such e for technical reasons only). It should be also
emphasized that the optimal eddy viscosity ν•T(e) is allowed to become negative for
some values of the TKE e.

The optimization problem for finding ν•T can therefore be stated as follows

ν•T = argmin
νT∈H1(I),

νT (0)=0, dνT
de

∣∣∣
e=Emax

=G

J (νT) (3.7)

with cost functional J (νT) given in (3.2) together with (3.3). While problem (3.7)
is of the ‘parameter identification’ type, it is in fact quite different from the related
problems already studied in the literature on reduced-order modelling (D’Adamo et al.
2007; Artana et al. 2012; Cordier et al. 2013), in which the optimal eddy viscosity
νT was sought as a function of time (i.e. an independent variable in the problem).
The ROM resulting from such formulation is non-autonomous and therefore restricted
to the time window and the initial condition used in the determination of the optimal
eddy viscosity. Consequently, such time-dependent optimal eddy viscosity cannot
be considered a proper ‘closure model’. On the other hand, our formulation (3.7)
is fundamentally different and leads to an optimal eddy viscosity as a constitutive
relation of the form ν•T = ν•T(‖a‖2

2/2), so that the corresponding ROM is autonomous.
In order to ensure that optimal eddy viscosity ν•T satisfies Assumption 1, we will

adopt the ‘optimize-then-discretize’ paradigm (Gunzburger 2003) in solving problem
(3.7). While the solution of this problem relies on a standard gradient-based approach,
it requires a specialized technique for the evaluation of gradients. Its mathematical
and computational foundations were established by Bukshtynov et al. (2011) and
Bukshtynov & Protas (2013), and here we use an adaptation of this approach to the
identification of ROMs recently developed by Protas et al. (2014). Below we present
the main elements of the algorithm deferring technical details to appendix A.

The (local) minimizer ν•T of (3.2) is characterized by the first-order optimality
condition (Luenberger 1969) requiring the vanishing of the Gâteaux differential
J ′(νT; ν ′T) := limε→0 ε

−1[J (νT + εν ′T)−J (νT)], i.e.

∀
ν′T∈H1(I),ν′T (0)=0,

dν′T
de

∣∣∣∣
e=Emax

=0
J ′(ν•T; ν ′T)= 0, (3.8)

where ν ′T is an arbitrary perturbation direction. This minimizer can be computed as
ν•T = limn→∞ ν

(n)
T using the following iterative procedure

ν
(n+1)
T = ν(n)T − τ (n)∇J (ν

(n)
T ), n= 1, . . . ,

ν
(1)
T = ν◦T

(3.9)

where the reference eddy viscosity ν◦T from § 2.4 is taken as the initial guess, n
denotes the iteration count and ∇J : I → R is the gradient of cost functional J .
The length τ (n) of the step along the descent direction is determined by solving line
minimization problem

τ (n) = argmin
τ>0

J
(
ν
(n)
T − τ∇J1(ν

(n)
T )
)

(3.10)
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which can be done efficiently using standard techniques such as Brent’s method (Press
et al. 1986). For the sake of clarity, formulation (3.9) represents the steepest-descent
method, however, in practice one typically uses more advanced minimization
techniques, such as the conjugate gradient method, or one of the quasi-Newton
techniques (Nocedal & Wright 2002). Evidently, the key element of minimization
algorithm (3.9) is the computation of the cost functional gradient ∇J . It ought
to be emphasized that, while the governing system (3.3) is finite-dimensional, the
gradient ∇J is a function of the TKE e and as such represents a continuous
(infinite-dimensional) sensitivity of cost functional J (νT) to the perturbations
ν ′T = ν ′T(e). As shown in appendix A, the L2 gradient of cost functional (3.2) can for
e ∈ [0, Emax] be evaluated as

∇L2J (e)=
∑

t
E(a(t))=e

N∑
i,j=0

lνijaj(t)a∗i (t)

N∑
i=1

ai(t)

[
fi(a(t))+ νT(‖a(t)‖2

2/2)
N∑

j=0

lνijaj(t)

] (3.11)

in which fi(a(t)) is defined in (2.9), whereas a∗(t) = [0, a∗1(t), . . . , a∗N(t)]T ∈ RN+1 is
the solution of adjoint system

−da∗i
dt
=

N∑
j=0

Ajia∗j +
ai

T

[
E(t)− Ẽ(t)

]
, t ∈ ((m− 1)1T,m1T], (3.12a)

a∗i (m1T)= 0, i= 1, . . . ,N, m= 1, . . . ,M, (3.12b)

where A is the linearized operator defined in appendix A. So that it has the same
dimension (N + 1) as the state vector a(t), cf. § 2.2, the adjoint state a∗(t) is
defined to have an extra (zero) element in the first position. In order to ensure that
the optimal eddy viscosity ν•T possesses the smoothness and boundary behaviour
required by Assumption 1, in iterations (3.9) we need to use the H1 Sobolev
gradient ∇J = ∇H1

J defined with respect to inner product (3.4), rather than
the L2 gradient given in (3.11). The two gradients are related through the following
elliptic boundary-value problem (Protas, Bewley & Hagen 2004)(

1− `2 d2

de2

)
∇H1

J = ∇L2J in (0, Emax), (3.13a)

∇H1
J = 0 at e= 0, (3.13b)

d
de
∇H1

J = 0 at e= Emax, (3.13c)

where `∈R is a parameter with the meaning of a ‘length scale’. Protas et al. (2004)
showed that extraction of cost functional gradients in the space H1 with the inner
product defined as in (3.4) can be regarded as low-pass filtering the L2 gradients
with the cut-off wavenumber given by `−1. As regards the behaviour of the gradients
∇H1

J at the endpoints of the interval I, boundary conditions (3.13b,c) ensure that all
iterates ν(n)T have the same behaviour as the initial guess ν◦T , cf. Assumption 1(c,d). At
every iteration (3.9) of the computational algorithm one first evaluates the L2 gradient
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FIGURE 4. (Colour online) An instantaneous vorticity field (with red and blue
representing, respectively, positive and negative values) in the 2D mixing layer flow
studied in § 4.1.

(3.11), which requires integration along the system trajectory in the phase space RN

(Protas et al. 2014), and then solves problem (3.13) as a ‘post-processing’ step to
obtain the Sobolev gradient ∇H1

J . Application of this approach to identification of
the optimal eddy viscosity in ROMs of two complex flow problems is discussed in
the next section.

4. Results
In this section we present the results obtained applying the procedure from § 3

to determine the optimal eddy viscosity ν•T for two realistic flow problems with
distinct properties from the point of view of reduced-order modelling. The first,
discussed in § 4.1, concerns a 2D mixing layer at a medium Reynolds number. It
features a small number of dominating frequencies and most of the flow energy is
resolved by a 20-dimensional Galerkin model. The second problem, discussed in § 4.2,
concerns a high-Reynolds-number wake flow past an Ahmed body. This flow problem
is characterized by a broadband frequency spectrum such that a 100-dimensional
Galerkin model resolves less than half of the total energy only.

4.1. Mixing layer model
The 2D mixing layer has a Reynolds number of 500 based on the initial vorticity
thickness L= δv and the maximum velocity of the upper stream U=U1. The inflow is
described by a tanh profile with stochastic perturbations and the velocity ratio between
the upper and lower stream is equal to U1/U2=3. The observation region for the POD
analysis coincides with the computational domain and is given by

Ω := {(x, y) : 0 6 x 6 140,−28 6 y 6 28}. (4.1)

The DNS is based on the sixth-order accurate compact finite-difference approximations
for the derivatives in space and a third-order accurate approximation for the derivatives
with respect to time. The post-transient flow is computed over 2000 convective time
units and sampled with the uniform time step 1t= 1. Further details concerning the
numerical approach are described by Kaiser et al. (2014) and Kasten et al. (2014),
and figure 4 shows a snapshot of the vorticity field in the flow. The numerical
data is used to construct the Galerkin system (2.11) with dimension N = 20 using
the procedure discussed in § 2 and setting κi = 1, i = 1, . . . , N, in (2.12). The
dimension N = 20 ensures that the Galerkin system captures 80 % of the flow
energy. Optimization problem (3.7) is solved for a broad range of time intervals
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FIGURE 5. (Colour online) Mixing layer: decrease of the cost functional (3.2) with
iterations n for optimization over (a) over short windows (1T = 10) and (b) over long
windows (1T = 200). The two sets of data are plotted on separate graphs because of the
widely different values of J (ν

(n)
T ).

4 61T 6 2000 (500 > M > 1) at which the governing system (3.3) is restarted with
new initial conditions. In general, optimal eddy viscosities with two distinct sets of
properties are recovered and in order to illustrate these reconstructions below we will
present the results for two representative cases with 1T = 10 and 1T = 200 which
will be referred to as optimization over, respectively, short and long windows.

We begin by presenting in figure 5 the decrease of cost functional (3.2) with
iterations (3.9). We see that in the case of the short window (1T = 10) not only are
the values of functional (3.2) smaller, but also the relative decrease achieved during
iterations is less significant (approximately 8 % in figure 5a). This implies that over
such short time windows the reference ansatz (2.12) for eddy viscosity performs
satisfactorily and the improvement obtained with optimization is marginal only. On
the other hand, in the case with longer time windows (1T = 200, see figure 5b), the
values of the cost functional are much larger as is its relative reduction (approximately
74 %) achieved with optimization. The corresponding optimal eddy viscosities ν•T are
presented in figure 6 together with the reference relation (2.12). We see that the
optimal relation ν•T deviates from the reference eddy viscosity ν◦T for E ∈ [0, 100],
which is the range of values spanned by the DNS solution, see figure 7(a). On
the other hand, for values of E outside that range the sensitivity information is
not available and therefore by construction, cf. Assumption 1(d), the optimal eddy
viscosity ν•T exhibits the same behaviour as the reference relation ν◦T . Two distinct
behaviours are observed, with the optimal eddy viscosity ν•T becoming negative for
E ∈ [0, 40] in the case with optimization over long windows (1T = 200). We remark
that this feature of the eddy viscosity was already discussed in § 2.5 where it was
found to arise in a two-dimensional Galerkin model of laminar vortex shedding in the
cylinder wake. The bimodal form of the optimal eddy viscosity shown in figure 6 for
the short optimization window helps stabilize multiple energy levels in the flow. On
the other hand, the negative eddy viscosity obtained with long optimization windows
creates an excitation mechanism for the coherent structures. The physical aspects of
the optimal eddy viscosities are further discussed and compared among different flow
problems in § 5.

The histories of the resolved total kinetic energy E(t), which is the quantity used
as the performance criterion in our optimization problem, cf. (3.2), are presented in
figure 7(a), whereas in figure 7(b) we show the corresponding average modal energies
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FIGURE 6. (Colour online) Mixing layer: optimal eddy viscosity ν•T(E) obtained with
optimization over long windows (1T=200; solid line, red online) and over short windows
(1T = 10; dashed line, purple online); reference eddy viscosity ν◦T(E) is marked with a
thick (blue online) dotted line.
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FIGURE 7. (Colour online) Mixing layer: (a) TKE E(t) as a function of time t and
(b) time-averaged modal energy Ei as a function of mode index i for DNS projected
on N = 20 POD modes (thick black solid line), ROM with the reference eddy viscosity
ν◦T(E) (thick dotted line, blue online) and the optimal eddy viscosity ν•T(E) obtained with
optimization over long windows (1T=200; solid line, red online) and over short windows
(1T = 10; dashed line, purple online).

Ei, i = 1, . . . , 20. The mean values of the total kinetic energy E and their standard
deviations are summarized in table 1. An interesting observation one can make about
this data is that the standard deviation of the TKE is quite high and equal to about
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Original DNS
(N=20)

System (2.11)
with ν◦T

System (2.11) with ν•T
short windows (1T=10)

System (2.11) with ν•T
long windows (1T=200)

E 61.73 58.43 80.84 51.27
std(E) 20.12 24.79 23.77 13.41

TABLE 1. Mixing layer: mean resolved TKE E and its standard deviation std(E) in the
different cases considered in § 4.1.

a third of its mean value E. The reason is that the mixing-layer flow is dominated
by a relatively small number of large coherent structures (cf. figure 4). Although this
may not be evident from the data in table 1, figure 7(a) shows that the optimal eddy
viscosity ν•T obtained with optimization over long windows (1T = 200) allows the
Galerkin system (2.11) to track the total kinetic energy Ẽ(t) of the original DNS
simulation better than when the reference ansatz ν◦T is used. This improvement is
quantified by a 74 % decrease of the cost functional, representing the least-squares
reconstruction error, cf. (3.2), starting from the initial guess given by the reference
relation ν◦T and the final iteration producing the optimal reconstruction ν•T (figure 5b).
Figure 7(b) indicates that this improvement is achieved with the optimal eddy viscosity
ν•T by a more accurate reconstruction of the average modal energy of the first two
modes which comes at the price of a somewhat poorer reconstruction of Ei when i>2.
On the other hand, when the optimal eddy viscosity is obtained with optimization over
short windows (1T=10), only a modest improvement is observed. The reason for that
is that, as will be discussed in more detail in § 5, the optimization horizon 1T = 10 is
shorter than the time scale of the characteristic events in the flow. These observations
are also corroborated by the results presented in figure 8, where we show the time-
histories of selected Galerkin coefficients ai(t), i= 1, 5, 10, 20. In that figure we see
that the optimal eddy viscosity ν•T obtained with long optimization windows allows
one to capture the amplitude a1 of the first POD mode with a higher accuracy than
when the reference relation ν◦T is used. On the other hand, this optimal eddy viscosity
tends to underestimate the amplitudes of the higher modes with i = 5, 10, 20. Such
trade-offs, which are typical of solutions obtained with optimization approaches, are
a consequence of our choice of the cost functional (3.2) based on energy, a quantity
which in the present flow is captured by the first few POD modes (figure 7b). In
other words, POD modes with i > 3 contribute much less to the cost functional than
the first two modes, and therefore their behaviour is to a lesser extent improved by
optimization. In figure 9 we present the ‘unbiased’ correlation function (Orfanidis
1996)

C(τ ) := 1
T − τ

∫ T

τ

〈u′(·, t− τ) · u′(·, t)〉L2(Ω) dt, τ ∈ [0, T) (4.2)

after normalization with respect to C(0). We note that using ansatz (2.5) and the
orthogonality property of the POD modes, it can be conveniently evaluated in terms
of the autocorrelations of the individual Galerkin coefficients, i.e.

C(τ )= 1
T − τ

N∑
i=1

∫ T

τ

ai(t− τ)ai(t) dt. (4.3)

In figure 9 illustrating this correlation function the oscillatory behaviour at levels
around 0.3 reveals a dominant periodicity in the mixing layer. This rather low level
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FIGURE 8. (Colour online) Mixing layer: Galerkin expansion coefficients ak(t), k =
1, 5, 10, 20, as a function of time t for DNS projected on N= 20 POD modes (thick black
solid line), ROM with the reference eddy viscosity ν◦T(E) (thick dotted line, blue online)
and the optimal eddy viscosity ν•T(E) obtained with optimization over long windows
(1T = 200; solid line, red online) and over short windows (1T = 10; dashed line, purple
online).

comes from the fact that any vortex configuration is a new realization and is never
exactly reproduced at any other time. The increasing correlation level as τ → 2000
indicates that the final state is close to the initial one. The large numerical values
result from the narrowing of the integration window in (4.3) and the corresponding
normalization. Due to this effect, there is hardly any averaging possible for large
values of the correlation time τ .

Finally, in figure 10 we compare our results concerning the history of the total
kinetic energy E(t) with the results obtained by Cordier et al. (2013) who used an
optimization approach to determine eddy viscosities as functions of time νT = νT(t)
with different cost functionals. We see that the optimization formulation proposed here,
in which the optimal eddy viscosity is sought as a function of the instantaneous TKE
ν•T = ν•T(E), leads to a more accurate tracking of the energy Ẽ(t) characterizing the
DNS than any of the time-dependent eddy viscosities νT(t), especially at later times
(t> 800).

4.2. Ahmed body wake model
The 3D flow over the blunt Ahmed body has the Reynolds number Re = 300 000
based on the height L = H of the body and the oncoming velocity U = U∞. The
computational domain has dimensions 28H × 8.05H × 5.35H (length × width ×
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FIGURE 9. (Colour online) Mixing layer: normalized unbiased two-time correlation
function C(τ )/C(0) for DNS projected on N = 20 POD modes (thick black solid line),
ROM with the reference eddy viscosity ν◦T(E) (thick dotted line, blue online) and the
optimal eddy viscosity ν•T(E) obtained with optimization over long windows (1T = 200;
solid line, red online) and over short windows (1T = 10; dashed line, purple online).
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FIGURE 10. (Colour online) Mixing layer: comparison of TKE E(t) as a function of time
t for DNS (thick black solid line), optimal reconstruction on long windows (1T = 200;
thin solid line, red online) and the results from Cordier et al. (2013) corresponding to
three different objective functionals (dotted lines, green online).

height), whereas the observation domain is a small wake-centred subset of the
computational domain:

Ω0 := {(x, y, z) ∈Ω : 0 6 x 6 5H,−0.67H 6 y 6 1.12H, |z|6 1.21H}. (4.4)

This domain is large enough to resolve the recirculation region and the absolutely
unstable wake dynamics, but at the same time small enough to keep the model
dimension affordable. The LES equations are discretized in space using a hybrid
of central differencing and upwind schemes applied to the convective fluxes and
second-order central differences applied to the viscous and subgrid terms. The
time-discretization is performed with a second-order accurate implicit method. A
computational grid consisting of approximately 34 million mesh points ensures that
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FIGURE 11. (Colour online) Illustration of a typical flow pattern in the turbulent wake
behind an Ahmed body (Östh et al. 2014). The flow is visualized using the quantity
Q(x, t) := ω · ω − S : S where ω := ∇ × u is the vorticity and S := [∇u+ (∇u)T

]
/2 is

the symmetric part of the velocity gradient tensor.

the LES is well resolved. The post-transient flow is computed over 250 convective
time units, which is half of the time window analysed by Östh et al. (2014), and
sampled with the uniform time step 1t = 1. The reason for taking a shorter time
window is that the optimization problem (3.7) becomes hard to solve for very large
T . Further details of the LES are described by Östh et al. (2014) and a typical flow
pattern is illustrated in figure 11. As expected from a flow at this Reynolds number,
this flow pattern exhibits highly complex multiscale vortex structures, which makes
it quite different from the mixing-layer flow illustrated in figure 4. The numerical
data is used to construct Galerkin system (2.11) with dimension N = 100 using
the procedure discussed in § 2. In contrast to the example studied in § 4.1, in the
present problem with the chosen dimension N= 100 the Galerkin model captures only
approximately 35 % of the TKE of the entire flow. We emphasize that the ‘target’
TKE Ẽ(t) is computed based on the projection of the actual flow evolution on the
first N = 100 modes, rather than based on the entire flow field. As in the case of the
mixing layer, we performed optimization calculations for a range of different 1T and
below we will show the results corresponding to two representative time intervals,
namely, 1T = 20 and 1T = 200, which will be referred to as the short and long
window, respectively.

Decrease of cost functional (3.2) with iterations is shown in figure 12 in which a
significant reduction can be observed in both cases. This implies that the reference
eddy viscosity (2.12) can be improved by performing optimization on either short
or long time intervals. The values of the cost functional corresponding to long
optimization intervals are again larger which is due to the fact that, with fewer
restarts, the trajectory of (3.3) diverges further away from the projected trajectory of
the actual flow. The resulting optimal eddy viscosities ν•T are presented in figure 13,
together with the reference relation (2.12). We see that the obtained profile of the
optimal eddy viscosity has a similar general form for both values of 1T , except
that it is smoother for the case of the longer window. This suggests that allowing
for a longer assimilation interval before the constraint system (3.3) is restarted with
a new initial condition may have a regularizing effect (i.e. may produce smoother
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FIGURE 12. (Colour online) Ahmed body: decrease of the cost functional (3.2) with
iterations n for optimization over short windows (1T = 20; small symbols, purple online)
and over long windows (1T = 200; big symbols, red online).
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FIGURE 13. (Colour online) Ahmed body: optimal eddy viscosity ν•T(E) obtained with
optimization over long windows (1T=200; solid line, red online) and over short windows
(1T = 20; dashed line, purple online); reference eddy viscosity ν◦T(E) is marked with a
thick dotted line (blue online).

optimal eddy viscosity relations). We also note that, in contrast to the findings of
§ 4.1, in the present case the optimal eddy viscosity ν•T is uniformly increased with
respect to the reference relation ν◦T . While the function ν•T(E) is defined for E ∈ [0, 2],
cf. Assumption 1(a), deviations from the reference relation ν◦T(E) are confined to
the range [0, 0.7] which is approximately the range of energy values visited by the
system trajectory (more precisely, maxt∈[0,T] E(t)≈ 0.6 as can be seen from figure 14a).
Outside that range the sensitivity information is not available and the optimal eddy
viscosity ν•T essentially coincides with the reference relation ν◦T , cf. Assumption 1(d).
Discussion of the physical aspects of the optimal eddy viscosities obtained for the
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FIGURE 14. (Colour online) Ahmed body: (a) TKE E(t) as a function of time t and
(b) time-averaged modal energy Ei as a function of mode index i for LES projected on
N = 100 POD modes (thick black solid line), ROM with the reference eddy viscosity
ν◦T(E) (thick dotted line, blue online) and the optimal eddy viscosity ν•T(E) obtained with
optimization over long windows (1T=200; solid line, red online) and over short windows
(1T = 20; dashed line, purple online).

Ahmed body wake is deferred to § 5. Figure 14(a) shows the improvement in the
tracking of the instantaneous TKE Ẽ(t) achieved by Galerkin system (2.11) with the
optimal eddy viscosity ν•T with respect to the use of the reference relation ν◦T . We see
that the optimal eddy viscosities ν•T obtained both with short and long optimization
windows allow the Galerkin model to track the target energy Ẽ(t) more accurately than
with the reference relation, although in fairness to the latter it has to be recognized
that the choice of νa

T in (2.12) was not optimal resulting in overestimated TKE. In
fact, the present approach may be considered a systematic way of using data to refine
closures proposed based on theoretical or empirical arguments. The above observations
are confirmed by the values of the mean TKE and its standard deviation collected
for the different cases in table 2. We note, in particular, that with optimization
performed over long time windows the proposed approach captures the mean energy
of the flow with the accuracy of two significant digits. The average modal energies
Ei, i = 1, . . . , 100, are presented in figure 14(b) and we see that the optimal eddy
viscosity ν•T yields an improved reconstruction essentially across the entire mode
spectrum. This should be contrasted with figure 7(b), where an improvement was
observed only for the first energy-containing modes. This difference is attributed to
the spectral properties of the two flows and our choice of the cost functional (3.2):
while in the mixing-layer flow most of the flow energy is contained in the first few
modes, in the Ahmed body wake this energy is spread over a very large number of
modes. These findings are corroborated by the plots of the time histories of selected
Galerkin coefficients ai(t), i = 1, 5, 25, 100, shown in figure 15. In those plots we
note that, unlike the case of the mixing layer, some improvement is also obtained
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FIGURE 15. (Colour online) Ahmed body: Galerkin expansion coefficients ak(t), k =
1, 5, 25, 100, as a function of time t for LES projected on N = 100 POD modes
(thick black solid line), ROM with the reference eddy viscosity ν◦T(E) (thick dotted line,
blue online) and the optimal eddy viscosity ν•T(E) obtained with optimization over long
windows (1T = 200; solid line, red online) and over short windows (1T = 20; dashed
line, purple online).

for higher modes. Finally, the correlation functions (4.2) and (4.3) for the POD
projections of the original flow data and the solutions of the ROM (2.11) with the
reference and optimal eddy viscosities are shown in figure 16. All curves reveal a
small oscillatory component corresponding to the von Kármán vortex shedding at the
Strouhal number StH ≈ 0.2. These oscillations are not very pronounced in the velocity
fields, but show up more clearly in the pressure field and the aerodynamic forces as
reported by Östh et al. (2014). The curve corresponding to the LES data shows an
anticorrelation after roughly 100 convection times. This behaviour can be traced back
to the asymmetric base flow drift from a state with positive to a state with negative
transverse forces. This base flow drift is resolved by the shift mode (a1 in figure 15).
From the same plot of the POD mode coefficients, the ROMs are seen to display a
smaller base flow variation than exhibited by the actual LES data. This explains the
decreased variation of the correlation function of the POD models. We emphasize
that it is very difficult for POD models to resolve multiscale phenomena, such as
vortex shedding combined with base flow drifts, the time scales of which are two
orders of magnitude apart. For further details concerning the reduced-order modelling
of the Ahmed body wake, we refer the reader to the original publication by Östh
et al. (2014).
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FIGURE 16. (Colour online) Ahmed body: normalized unbiased two-time correlation
function C(τ )/C(0) for LES projected on N = 100 POD modes (thick black solid line),
ROM with the reference eddy viscosity ν◦T(E) (thick dotted line, blue online) and the
optimal eddy viscosity ν•T(E) obtained with optimization over long windows (1T = 200;
solid line, red online) and over short windows (1T = 20; dashed line, purple online).

Original LES
(N=100)

System (2.11)
with ν◦T

System (2.11) with ν•T
short windows (1T=20)

System (2.11) with ν•T
long windows (1T=200)

E 0.2739 0.4514 0.3315 0.2759
std(E) 0.0820 0.0562 0.0504 0.0570

TABLE 2. Ahmed body: mean resolved TKE E and its standard deviation std(E) in the
different cases considered in § 4.2.

5. Conclusions and future directions
We have proposed an optimal nonlinear eddy viscosity relation for a large class

of ROMs which improves on the results from a number of earlier studies. In the
pioneering investigation concerning POD-based ROMs by Aubry et al. (1988), a
single constant eddy viscosity parameter was assumed. Rempfer & Fasel (1994b)
proposed a mode-dependent refinement of the constant eddy viscosity ansatz which
significantly improves the accuracy of ROMs. Later, Noack et al. (2011) derived a
nonlinear eddy viscosity as a function of the square root of the resolved fluctuation
energy in which constant ratios between the modal energies were assumed. This
nonlinearity guarantees the boundedness of the Galerkin solution (Cordier et al.
2013). As shown by Östh et al. (2014), combinations of modal and nonlinear eddy
viscosities may improve the accuracy and robustness of POD-based ROMs. The key
new aspect of the approach proposed here is that the eddy viscosity relations are
defined to be optimal in a mathematically precise sense. As such, these relations can
be viewed as systematic, data-based refinements of closures obtained from theoretical
or empirical considerations.

The current study addresses the limitations of earlier approaches by considering
the eddy viscosity as an arbitrary function of the resolved TKE which is optimized
by matching the fluctuation level of the ROM to the corresponding quantity of the
reference data. This optimization is performed with a generalization of the 4D-VAR
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data assimilation method adopted for the reconstruction of constitutive equations by
Bukshtynov et al. (2011), Bukshtynov & Protas (2013).

POD models with the optimal eddy viscosity are constructed for three shear flows
with progressively richer dynamics spanning the laminar and turbulent regimes. First,
the 2D POD model for the transient behaviour in the 2D cylinder wake is recalled
from an earlier study (Protas et al. 2014). Here, a negative eddy viscosity is derived
at low fluctuation levels to compensate for the significantly under-predicted growth
rate of the POD model (figure 2b). On the other hand, on the limit cycle and beyond,
a positive eddy viscosity models the energy transfer to the higher-order modes. In this
example, the eddy viscosity not only assures correct amplitudes on the limit cycle, but
also yields more accurate transient times (figure 2a).

Second, a 20-dimensional POD model of the 2D mixing layer at Re = 500 with
velocity ratio three is investigated. The starting point was a ROM with a single
nonlinear eddy viscosity calibrated against a DNS of the Navier–Stokes system by
Cordier et al. (2013). Good agreement between the POD model and the DNS was
observed with respect to the frequency content and the modal fluctuation levels for the
energy-containing modes (figures 7b and 8). Surprisingly, the optimal eddy viscosity
significantly deviates from the square-root ansatz (2.12) and attains negative values
for a range of low fluctuation levels, thus accelerating the slow transients of the
ROM (Noack et al. 2005). However, the optimal eddy viscosity ν•T is larger than the
square-root ansatz ν◦T at larger fluctuation levels thus limiting more energetic events
(figure 6).

Third, a 100-dimensional POD model of the 3D Ahmed body wake at Reynolds
number 300 000 is constructed. The starting point is a LES and the best one from
the Galerkin POD models developed and analysed by Östh et al. (2014, model
‘GS-D’) is used as a benchmark. The subscale turbulence representation in this model
includes the modal eddy viscosities proportional to the square-root of the resolved
TKE (cf. § 2.4). The optimal eddy viscosity respects the ratio between the modal
viscosities while allowing for an arbitrary scaling with the resolved TKE. As regards
the comparison between the optimal and reference eddy viscosity (figure 13), for all
values of the fluctuation energy the optimal eddy viscosity ν•T exhibits larger values
than the reference relation ν◦T , consistently with the over-prediction of the energy
fluctuation level in the latter case (figure 14a).

A key advantage of variational optimization formulations such as that proposed here
is that they reveal certain performance trade-offs inherent in the solution of complex
flow problems which can hardly be identified based on the physical intuition alone.
This is evident when one compares the results obtained in the mixing-layer flow,
which can be considered ‘laminar’, and the Ahmed body wake, which is ‘turbulent’
in all respects. Since in the first case most of the TKE was associated with the first
two POD modes, these were also the components of the ROM mostly affected by the
optimization process (figure 7b). On the other hand, in the second case, in which the
energy was distributed more evenly among different modes, optimization affected the
entire spectrum (cf. figure 14b). This comparison demonstrates that the optimal eddy
viscosities do indeed adapt to situations characterized by essentially different flow
physics. At the same time, these results also reveal certain fundamental performance
limitations inherent in the ansatz νT = νT(E) commonly used for the eddy viscosity.
Needless to say, this process can be modified by using a different cost functional
and/or a different ansatz for νT . For example, adopting a cost functional penalizing
deviations of, say, enstrophy rather than energy, would have certainly yielded different
results. We emphasize that such decisions are a part of the problem formulation and
can be handled by the proposed solution approach in a straightforward manner.
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The observed features of the optimal eddy viscosity identified as a function of the
fluctuation energy deserve additional discussion. From the results we conjecture that
the optimal eddy viscosity ν•T does not strongly depend on the chosen time window
[0, T], provided that it is equal to or longer than the characteristic time scale of
the dominant coherent structures. This was the case for both of the time windows
used for the Ahmed body wake (figure 14a), but not for the short time window used
for the mixing layer (figure 7a). Second, the eddy viscosity obtained for the mixing
layer shows two minima helping stabilize two different energy levels (figure 6). This
bimodal behaviour is consistent with the cluster-based analysis of the same data
performed by Kaiser et al. (2014). It is shown there that the mixing layer flow has
two quasi-attractors: one which is dominated by the Kelvin–Helmholtz instability
at a lower energy level and another one dominated by period-doubling at a higher
energy level. Third, the mixing layer model exhibits a negative eddy viscosity while
the model of the Ahmed body flow does not. We conjecture that this difference has
two reasons: the first is that the fluctuation levels of the mixing layer have relatively
larger variations (figure 7a), hence we can estimate transient times for this 2D flow
better than for the 3D wake; the second is that a negative eddy viscosity excites
coherent structures with similar scales in the POD model of the mixing layer flow.
On the other hand, for the Ahmed body wake, a negative eddy viscosity would
imply that the strongly damped high-order modes would suddenly become excited
which would in turn lead to an unphysical inverse energy cascade. Summarizing, the
different features of the optimal eddy viscosity found for the 2D and 3D shear flows
are consistent with our expectations based on the behaviour of POD models.

Concerning the choice of the parameters in the optimization formulation, we
note that the cost functional tracking the error of the fluctuation energy gives quite
comparable results over different time windows (cf. figure 3), provided that the
windows cover at minimum several characteristic flow periods. This was the case for
the Ahmed body flow in which the shedding period was 5–10 time units, whereas
optimization was performed over intervals with 1T = 20 and 1T = 200 (figure 14a).
On the other hand, for the mixing layer the shorter window with 1T = 10 covered
only about half of the Kelvin–Helmholtz shedding period (figure 7a) and the resulting
optimal eddy viscosity was significantly different from the relations found by solving
optimization problem (3.7) with subintervals 10 times longer (figure 6). As regards
Assumption 1 and its validity, we remark that statements (a) and (b) are mathematical
in nature and ensure that model (2.11) is well-posed. Statements (c) and (d) stipulate
that for values of E for which the sensitivity information is not available the optimal
eddy viscosity ν•T(E) should revert to some chosen reference relation, in our case
relation (2.12).

In providing a closure relation for unresolved fluctuations based on solution
data, the proposed approach to identifying the optimal eddy viscosity bears some
resemblance to the ‘optimal LES’ methodology which originated with Langford &
Moser (1999). However, it differs from the optimal LES in that our optimal eddy
viscosity ν•T is reconstructed in a non-parametric manner. The proposed closure
strategy can be employed in a straightforward manner to identify closure relations
depending on one variable for a large class of ROMs both for laminar and turbulent
flows. A highly relevant problem complementary to the problem solved in this
study is optimization of the dependence of the eddy viscosity on the mode index
i while keeping the dependence on the TKE fixed. The approach developed here
can be adapted to solve such problems by treating the discrete mode index i as a
continuous variable, i.e. an effective wavenumber of the mode. It will be interesting
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to see whether such a formulation can lead to improved performance with respect
to the ansatz νT = νT(E) used in the present investigation. This problem will be
studied in the near future. Another related problem concerns determination of optimal
turbulence closure strategies for simplified flow models defined in the PDE setting
such as the RANS and LES approaches (in fact, these are the type of problems the
reconstruction method we used was initially developed for, see Bukshtynov et al.
(2011) and Bukshtynov & Protas (2013)). As regards LES models, an interesting
open problem is determination of optimal wall damping functions (Van Driest 1956).
Problems of such type also arise in fundamental turbulence research, for example, in
the context of the Kármán–Howarth equation. Other, possibly less obvious, extensions
of this methodology include optimal identification of inertial manifolds and feedback
control laws, and the authors are already pursuing these applications in the context
of closed-loop turbulence control.
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Appendix A. Derivation of gradient expression

In this appendix we derive expression (3.11) for the L2 gradient of cost functional
(3.2). The key observation is that, since the Gâteaux differential of J (νT) appearing
in (3.8) is a bounded linear functional with respect to its second argument ν ′T ∈X (I),
X (I) being an appropriate Hilbert function space, by the Riesz representation theorem
(Berger 1977) we have

∀ν′T∈X (I) J ′(νT; ν ′T)= 〈∇X J , ν ′T〉X (I), (A 1)

where 〈·, ·〉X (I) denotes the inner product in the space X (I). We identify the Riesz
representer ∇X J as the gradient of J with respect to the topology of the space
X (I) (in the present problem, we have either X (I) = L2(I) or X (I) = H1(I)). We
begin by computing the Gâteaux differential of (3.2) which yields

J ′(νT; ν ′T)=
1
T

∫ T

0
[E(t)− Ẽ(t)]E′(t) dt= 1

T

∫ T

0
[E(t)− Ẽ(t)]

N∑
i=1

ai(t)a′i(t) dt, (A 2)

where E′ :=∑N
i=1 aia′i and a′i(t), i= 1, . . . , N, solve the linearization of system (3.3).

Following the approach described by Protas et al. (2014), this linearization can be
shown to have the form
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da′i
dt
=

N∑
j=0

[
N∑

k=0

(qijk + qikj)ak + lνij

(
ν + νT(E(t))+ dνT

de
aiaj

)]
a′j

+ ν ′T(E(t))
N∑

j=0

lνijaj,

=:
N∑

j=0

Aija′j + ν ′T(E(t))
N∑

j=0

lνijaj, t ∈ ((m− 1)1T,m1T], (A 3a)

a′0(t) = 0, (A 3b)
a′i((m− 1)1T) = 0, i= 1, . . . ,N, m= 1, . . . ,M, (A 3c)

where the second line in (A 3a) defines the linear operator A. We note that differential
(A 2) is not yet in a form consistent with Riesz representation (A 1), because the
perturbation variable ν ′T does not enter as a linear factor in (A 2), but is instead hidden
in a source term in (A 3a). In order to transform (A 2) into Riesz form (A 1), we
introduce the adjoint state a∗(t)= [0, a∗1(t), . . . , a∗N(t)]T ∈ RN+1, so that integrating it
against the perturbation equation (A 3a) and applying integration by parts we obtain

N∑
i=1

∫ T

0

(
da′i
dt
−

N∑
j=0

Aija′j − ν ′T(E(t))
N∑

j=0

lνijaj

)
a∗i dt

=
N∑

i=1

a′ia
∗
i

∣∣t=T

t=0 +
N∑

i=1

∫ T

0
a′i

(
−da∗i

dt
−

N∑
j=0

Ajia∗j

)
dt

−
∫ T

0
ν ′T(E(t))

N∑
i=1,j=0

lνijaja∗i dt= 0. (A 4)

Since a∗0(t) ≡ 0, summation over index i in (A 4) starts at 1. Defining the adjoint
system as in (3.12), and using it together with (A 2) and (A 3), we obtain from (A 4)

J ′(νT; ν ′T)=
∫ T

0
ν ′T(E(t))

N∑
i,j=0

lνijaja∗i dt. (A 5)

In order to transform this expression to the Riesz form induced by X (I) = L2(I),
i.e.

J ′(νT; ν ′T)=
∫ Emax

0
∇L2J ν ′T de, (A 6)

we need to change the integration variable in (A 5) from time t to TKE e

de
dt
=

N∑
i=1

ai
dai

dt
=

N∑
i=1

ai

(
fi(a)+ νT(E(t))

N∑
j=0

lνijaj

)

H⇒ dt= de
N∑

i=1

ai

[
fi(a)+ νT(E(t))

N∑
j=0

lνijaj

] , (A 7)
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so that Gâteaux differential (A 5) becomes

J ′(νT; ν ′T) =
∫

C

N∑
i,j=0

lνijaja∗i

N∑
i=1

ai

[
fi(a)+ νT(E(t))

N∑
j=0

lνijaj

] ν ′T(e) de

=
∫ Emax

0

∑
t

E(a(t))=e

N∑
i,j=0

lνijaja∗i

N∑
i=1

∣∣aifi(a)+ νT(E(t))
N∑

j=0

lνijaiaj

∣∣ ν ′T(e) de, (A 8)

where the first expression on the right-hand side in (A 8) is an integral over the system
trajectory C in the phase space Rn (i.e. a line integral in which de can be either
positive or negative), whereas the second expression is a definite integral consistent
with Riesz form (A 6). Thus, identifying (A 8) with (A 6), we finally obtain gradient
expression (3.11).
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ÖSTH, J., NOACK, B. R., KRAJNOVIĆ, S., BARROS, D. & BORÉE, J. 2014 On the need for a

nonlinear subscale turbulence term in pod models as exemplified for a high Reynolds number
flow over an ahmed body. J. Fluid Mech. 747, 518–544.

PODVIN, B. 2009 A proper-orthogonal-decomposition based model for the wall layer of a turbulent
channel flow. Phys. Fluids 21, 015111.

PRESS, W. H., FLANNER, B. P., TEUKOLSKY, S. A. & VETTERLING, W. T. 1986 Numerical Recipes:
the Art of Scientific Computations. Cambridge University Press.

PROTAS, B., BEWLEY, T. & HAGEN, G. 2004 A comprehensive framework for the regularization of
adjoint analysis in multiscale PDE systems. J. Comput. Phys. 195, 49–89.

PROTAS, B., NOACK, B. R. & MORZYNSKI, M. 2014 An optimal model identification for oscillatory
dynamics with a stable limit cycle. J. Nonlinear Sci. 24, 245–275.

REMPFER, D. & FASEL, F. H. 1994a Evolution of three-dimensional coherent structures in a flat-plate
boundary-layer. J. Fluid Mech. 260, 351–375.

REMPFER, D. & FASEL, F. H. 1994b Dynamics of three-dimensional coherent structures in a flat-plate
boundary-layer. J. Fluid Mech. 275, 257–283.

SAPSIS, T. P. & MAJDA, A. J. 2013 Statistically accurate low-order models for uncertainty
quantification in turbulent dynamical systems. Proc. Natl Acad. Sci. USA 110, 13705–13710.

SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures, Part I: coherent structures.
Q. Appl. Maths 45, 561–571.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://www.arxiv.org/abs/1401.2462
https://doi.org/10.1017/jfm.2015.14


Optimal eddy viscosity 367

VAN DRIEST, E. R. 1956 On turbulent flow near a wall. J. Aero. Sci. 23, 1007.
WANG, Z., AKHTAR, I., BORGGAARD, J. & ILIESCU, T. 2011 Two-level discretizations of nonlinear

closure models for proper orthogonal decomposition. J. Comput. Phys. 230, 126–146.
WANG, Z., AKHTAR, I., BORGGAARD, J. & ILIESCU, T. 2012 Proper orthogonal decomposition

closure models for turbulent flows: a numerical comparison. Comput. Meth. Appl. Mech.
Engng 237–240, 10–26.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.14

	Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows
	Introduction
	POD modelling
	Flow configurations
	Proper orthogonal decomposition
	Galerkin projection
	Post-transient fluctuation levels
	Transient dynamics

	Optimal eddy viscosity
	Results
	Mixing layer model
	Ahmed body wake model

	Conclusions and future directions
	Acknowledgements
	Appendix A. Derivation of gradient expression
	References




