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SUMMARY
This paper proposes a new technique based on a Parameter-Optimal Iterative Learning Control
(POILC) to track a command pitch rate of a high-speed supercavitating vehicle (HSSV). The pitch
rate of a supercavitating vehicle has non-minimum phase behavior. Thus, tracking is fundamentally
limited to poor performance. To solve this problem, a feed-forward control can be used while
using the cavitator as a control input in the feed-forward path to modify the slow response caused
by non-minimum phase behavior. The main idea of this paper is to apply the cavitator input with
high precision as a feed-forward control to improve tracking performance. The exact value of
the feed-forward control is achieved using POILC. However, in the presence of uncertainty, zero
convergence of POILC algorithms is threatened. It will be shown that applying adaptive weight in
the performance index, the convergence is guaranteed in the presence of uncertainty and also when
the system is sign-indefinite. The proposed technique includes an optimal planning to make the error
norm monotonically convergent to zero. The convergence and perfect tracking will be guaranteed
through a Lyapunov candidate. Performance and significance of the proposed supercavitating vehicle
control will be verified by simulation.

KEYWORDS: Supercavitating robot; Iterative learning control (ILC); Monotonic convergence;
Parametric optimization; Uncertainty; Robustness.

1. Introduction
In recent years, achieving higher speeds in underwater vehicles has become an important issue.
Typical designed underwater vehicles are limited to a speed of about 40 m/s.1 This restriction is
due to the drag forces of skin friction in a fluid. Interaction between skin friction and surrounding
water always leads to a drag opposing the direction of movement. For several years, researches have
conducted to increase the speed of underwater vehicles. However, in order to reach higher speeds,
researches have usually focused on increasing propulsion and improving body form. Although these
methods improve the speed, less significant improvements have been made in skin friction drag. Later,
scientists succeeded in accessing speeds of over 80 m/s by using supercavitating technique, which
revolutionized the underwater vehicle industry.2 The idea is based on creating a gas that surrounds the
moving vehicle and therefore makes the least contact between the body and the surrounding water.
This indeed leads to considerable reduction in drag force, and subsequently higher speeds. This new
approach of supercavitating can be applied for making extremely fast and even supersonic underwater
vehicles as seen in Fig. 1.

Although supercavitating is an effective phenomenon to achieve higher speed, it introduces
important challenges in modeling and control. The main part of the challenges is governed by
cavity, control, navigation and stability of the vehicle that must be dealt with a narrow region located
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Fig. 1. A supercavitating robot.

in the front and behind the vehicle. Some of the important challenges of supercavitating vehicles can
be summarized as follows2,3:

� Producing and preserving cavity.
� Mass balance of vehicle.
� Control and navigation.
� High-performance tracking.
� Stability.
� Non-minimum phase dynamics.

One of the deals of a supercavitating vehicle for high-performance tracking is non-minimum phase
behavior of such systems in pitch channel for depth control.4 Control surfaces are needed for lift
forces. However, there is non-minimum phase behavior by using these fin inputs. The non-minimum
phase behavior reduces the tracking performance of the system with respect to control surfaces. It is
shown that a feed-forward control of a cavitator can be used to compensate the slow behavior of the
system.5 Determination of a feed-forward control is a great deal for researchers, especially when high
accuracy is desired, and it is the main issue. The exact value of a feed-forward control can be achieved
using an iterative learning control (ILC). This is an effective method for determining a feed-forward
control that can achieve high-performance tracking in the presence of uncertainty at the parameters of
the system and also non-minimum phase behavior of a vehicle with respect to conventional controllers
(such as predictive control, robust, PID etc.). The main characteristic of an ILC is using recorded
data from the previous operations. These data improve control performance from trial to trial such
that tracking error is significantly reduced during consecutive tasks. Some important applications
of an ILC include robotic (mobile,6,7 welding,8 underwater robots9 etc.), rotating systems,10 batch
chemical processes11 et al.

The idea of an ILC algorithm for academic community was first introduced by Arimoto et al.
in 1984.12 Convergence properties (especially convergence to a zero tracking error) of the proposed
Arimoto-type ILC algorithms have been completely analyzed. However, it is not always clear how
to determine the learning gain of the algorithms to achieve monotonic or fast convergence.13 In
addition, it has been shown that if the learning gain is not chosen optimally, then the algorithms may
preserve poor transient performance.14 An effective improvement approach of these controllers is
its combination with optimization problems to iteratively correct the learning gain. This so-called
Parameter-Optimal Iterative Learning Control (POILC) algorithm is based on applying an appropriate
optimization problem at any iteration, solving the problem and rerunning the algorithm with optimal
input. This controller has attractive characteristics (such as simple structure, which is effective to
implement in practice) as mentioned in different papers.14 This algorithm was first proposed by
Owens and Feng.13 At the end of any iteration, the technique produces an optimal learning gain to
provide a monotonic convergence. The main shortcoming of the POILC algorithm is high dependence
of zero convergence (perfect tracking) upon positivity (or negativity) of a plant matrix description. In
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other words, if system fails to comply sign-definite (positivity or negativity) condition, convergence
to a zero tracking error (as the main purpose of any ILC algorithm) cannot be achieved.15 Ownes
and Feng13 showed that the algorithm is not convergent to a zero tracking error when the plant
is sign-indefinite. The original system can be sign-definite by either using slow sampling rate or
substituting all signals by exponentially weighted signals.13 In ref. [15], a new high-order POILC
algorithm was proposed to improve the work of Owens and Feng.13 The zero convergence was
ensured by adding an appropriate set of basic functions into the updating rule. In order to guarantee
the zero convergence, a large number of parameters are needed. Another approach can be using
inverse of the plant to make system sign-definite.16 However, the inverse algorithm can be degraded
at a high frequency of signals.17 An approximate polynomial representation of the inverse plant can
reduce the effect of high frequency.17 The behavior of a POLIC algorithm in the vicinity of limit sets
can have undesirable convergence properties. To eliminate such limiting behaviors, Owens et al.18

proposed a switching-based approach. In essence the model was assumed to be a perfect one. It was
also claimed that further work is needed to consider robustness with respect to uncertainty in model
parameters18 and requires other algorithms for improvement. The efficiency of POILC algorithms is
still an arising issue in the presence of model uncertainty and disturbances.17 These conditions are
hard to meet as several systems fail to provide the zero convergence. The Markov parameters are
affected by state space matrix parameters. The matrix size is relatively large. Besides, a small variation
(e.g. the sampling rate) changes the matrix completely different from the previous one. Therefore,
altering some conditions will be a serious problem even for a small change in matrix that violates the
assumptions of perfect convergence. These facts necessitate an alternative approach with the aim of
finding solutions to control supercavitating vehicle via modifying the conventional POILC. This is
achieved through the modification of performance index to obtain zero convergence. Authors try to
develop and extend the POILC algorithm to consider such plants that led to the current proposal, i.e.
using adaptive weight (ρj ) in POILC. This convergence will be monotonic such that at any iteration
the error is gradually reduced. The proposed modification for a POILC is analytically proved using
the Lyapunov theory for the first time. Meanwhile, this approach is shown coping with the lumped
uncertainty. The quality of the approach will be shown when pitch rate of the vehicle is properly
controlled. The performance will also be improved in the presence of bounded model uncertainty.

The rest of the manuscript is organized as follows.
In Section 2, the dynamic of a supercavitating vehicle is investigated. Also, the tracking problem

and convergence of POLIC are studied in this section. In Section 3, a new performance index in
terms of the error is developed to generate a desired control signal. Convergence of the closed-loop
error at iterations is investigated in Section 4. To evaluate the performance of the proposed method,
numerical simulations are presented in Section 5 for a supercavitating vehicle. Finally, conclusions
close the work in Section 6.

2. Supercavitating System and Problem Description
In this section, supercavitating vehicle model will be stated. The goal is to maintain a perfect tracking
of pitch rate in a prescribed path by deflection of cavitator. Due to the challenges in producing and
preserving cavities, mass balance of the vehicle and control of this system are also important issues.19

One of the most recent researches in this field is conducted by Mokhtarzadeh et al.20

2.1. Supercavitating vehicle dynamics
The proposed method is based on pitch rate controller (rotation around y-axis), which uses the
following two-state longitudinal model based on angle of attack (α) and pitch rate (q) given in
ref. [21]:

{
α̇ = 1

u m
(Fcz

+ FTz
+ Fgz

) + q,

q̇ = 1
Iyy

(Mcy
+ MTy

),
(1)

where Fcz
, FTz

and Fgz
are applied forces to body due to cavitator, thrust and gravitation in the

z-direction, respectively, and Mcy
and MTy

are cavitator and thrust moment acting rotation about the
y-axis, respectively. Furthermore, Iyy , u and m are moment of inertia in the y-direction, axial velocity
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in the x-direction and vehicle mass, respectively. Indeed, the idea was the linearization of equations
of motion and then using the linear controllers.

Generally, applied forces to this robot are much more complicated than airplane. However, since
robot quickly reaches to a steady speed (u0), equations of motion of this robot are essentially similar
to an airplane.1 These equations are linearized about the axial velocity (as u) whereas other small
variations are neglected. Therefore, control is basically designed at this velocity.1 Linearization about
u0 makes it possible to use linear controllers effectively.2 Finally, the following relation is obtained
between the linearized input and output about u0 using (1),

q = Geδe + GT uT + Gcδc, (2)

where δe, uT and δc are Elevator deflection angle, thrust and cavitator deflection angle, respectively.
Also,Ge, GT and Gc denote the transfer function of pitch rate with respect to Elevator deflection
angle, thrust and cavitator deflection angle, respectively. Here the goal is to determine δc in order to
minimize output tracking error.

Controller should be designed such that during each test, cavitator profile changes properly.
Performance of pitch rate should be improved in order to track the desired path (other rotations are
considered to be zero). Dynamical equations are divided into two mutually independent longitudinal
and lateral equations. These equations are separately defined in the body coordinate system. In this
paper, robot is considered to be rigid and symmetrical. As a result, robot has no initial undesired
deflection. Usually, mechanical parts are considered such that rotation in lateral equations becomes
negligible. Otherwise, a separate control for lateral system has to be designed. In the present
study, the goal is to control pitch rate in a predefined path in order to satisfy the performance
requirements.

The path and initial conditions are assumed constant in each trial while sampling is performed in
time domain during the test procedure. Due to practical restrictions, such as elapsed time (speed),
limited amount of fuel and desired paths, it is necessary to make high-performance tracking. To reach
these goals and solve the perfect tracking problem, new POILC technique is proposed.

2.2. Problem statement
Consider the following linear discrete-time iterative system:

{
xj (t + 1) = Axj (t) + B uj (t)

,
t = 0, 1, . . . , M, j = 0, 1, . . .

yj (t) = C xj (t) + D uj (t) xj (0) = x0

(3)

where j is iteration number and t is time in each iteration. x ∈ �n is the state vector, and u ∈ �
and y ∈ � are system input and output, respectively. Moreover, x0 is the initial condition vector of
the system, and M is the number of sampling in time domain. Matrices A, B, C and D are real with
appropriate dimensions. Without loss of generality, lifted plant can be used for system description
(see ref. [15]). In general, the ILC problem is to design control law for system (3) such that by
increasing the number of iterations, the following error between yj (t) and yd (t) converges to zero:

lim
j→∞

(yd (t) − yj (t)) = 0, for t = l, l + 1, . . . , M. (4)

Vectors yd and yj are defined as follows:

Yd = [yd (l), yd (l + 1), . . . , yd (M)]T ,

Yj = [
yj (l), yj (l + 1), . . . , yj (M)

]T
.

(5)

where T is transpose. The number l indicates the relative degree as in the following:

l =
{

0 D �= 0
min

s

{
s ∈ ℵ+ : CAs−1B �= 0

}
D = 0 . (6)
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It should be mentioned that the pitch rate is considered as system output and the cavitator deflection
angle is assumed as system input that is determined using the proposed POILC. Also, the state space
model in (3) is for transfer function Gc. The main goal of iterative learning control is to satisfy the
following relation:

lim
j→∞

∥∥Ej

∥∥ = 0, (7)

where ‖ . ‖ denotes the 2-norm (the Euclidean) and Ej = [ej (l)ej (l + 1)...ej (M)]T stands for the
error vector (ej (i) = yd (i) − yj (i), i = { l, l + 1, . . . M } ). Thus, the high-performance tracking is
achieved. The following describes non-convergence problem of Eq. (7).

2.3. ILC problem formulation
It is the aim to provide a proper control law to modify previously achieved convergence. This control
has to be generated by the error. Consider the following control law proposed by Owens and Feng13:

uj+1 = uj + βj+1 ej , (8)

where βj+1 (learning gain) is an optimal parameter and must be tuned in an optimal approach. Error
will be defined as a discrepancy of the desired trajectory from the current path in jth iteration as in
the following form:

ej (t) = yd (t) − yj (t). (9)

As soon as ej is formed in the jth iteration, learning coefficients can be determined for j + 1
iteration such that the following performance index is minimized:

JOld(βj+1) = ∥∥Ej+1

∥∥2 + wβ2
j+1. (10)

The closed-loop error must be achieved at any iteration to determine the learning gain. First, by
applying system (3) it can be written that

xj (t) = Atx0 +
t−1∑
k=0

At−1−kBuj (k). (11)

By using (11) and also system output in state space (3), the following equation is concluded:

Yj = GUj + d, (12)

where:

Uj = [
uj (0), uj (1), . . . uj (N − 1)

]T
, Yj = [

yj (l), yj (l + 1), . . . yj (M)
]T

. (13)

with the following Markov parameters:

G =

⎡
⎢⎢⎢⎢⎢⎣

gl 0 0 · · · 0
gl+1 gl 0 · · · 0

g3 g2 gl · · · ...
...

...
...

. . . 0
gM gM−1 gM−2 · · · gl

⎤
⎥⎥⎥⎥⎥⎦. (14)

Matrix d in (12) indicates the role of initial condition, kept constant during each iteration. gi ,
i = l, l + 1, . . . , M by (N = M − l + 1), and gl �= 0 are the Markov parameters of system (3).
Similarly, for a model with a relative degree of l �= 0, the Markov coefficients will be gi = CAi−1B.
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Using (12) results in

Yj+1 − Yj = GUj+1 + d − GUj − d. (15)

In other words:

Yj+1 = Yj + GVj, (16)

where:

Vj = Uj+1 − Uj . (17)

It can be seen from (16) that

Yd − Yj+1 = Yd − Yj − GVj . (18)

Actually, Eq. (18) constructs the error vector as in the following form:

Ej+1 = Ej − GVj . (19)

According to the definitions of vectors Ej and Yj , (17) can be rewritten as:

Vj = βj+1 Ej . (20)

Substitution of Vj from (21) into (19) yields the following closed-loop error:

Ej+1 = Gc(j + 1)Ej, (21)

where:

Gc(j + 1) = I − βj+1G . (22)

Equation (22) is the matrix of closed-loop system at iterations, and I is the identity matrix with
appropriate dimensions.

The learning gain is updated such that the performance index is minimized at any iteration. The
learning gain for minimizing the performance index (10) is as follows:

βj+1 = ET
j GEj

w + ET
j GT G Ej

. (23)

By substituting the learning gain into performance index and applying induction, the following
relation is finally achieved:

lim
j→∞

(
ET

j GEj

)2

w + ET
j GT G Ej

= 0 . (24)

However, the important goal of any ILC algorithm is high-performance tracking, i.e.
limj→∞ ‖Ej‖ = 0. The denominator of (24) is strictly positive, and as a result the following limit is
held,

lim
j→∞

ET
j GEj = 0. (25)

From (25) cannot be concluded that limj→∞ ‖Ej‖ = 0, where ‖Ej‖ denotes the 2-norm (the
Euclidean norm) of the error vector. The error norm converges to zero when G + GT is sign-definite
(G + GT > 0 or G + GT < 0).13 The proposed idea is that if limj→∞ ρ2

j+1 ‖Ej‖2 = 0 is satisfied
instead of Eq. (25) such that limj→∞ ρ2

j+1 �= 0, then it can be concluded that limj→∞ ‖Ej‖ = 0.

https://doi.org/10.1017/S0263574714000629 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000629


Parameter optimal iterative learning control, convergence to zero 1659

The goal is to define an adaptive weight ρj+1 in the performance index to provide zero convergence.
The proposed index is defined to guarantee monotonic convergence to a zero tracking error.

3. Proposed POILC Design
Index JOld fails to guarantee perfect convergence of the error norm to zero for sign-indefinite systems.13

Therefore, another technique must be introduced to create high-performance tracking. The idea is
to define an alternative performance index. This is based on using an adaptive weight (ρj ) in the
performance index to guarantee the convergence for sign-indefinite systems. The performance index
is proposed as follows:

JNew(βj+1) = ρ2
j+1‖Ej‖2 + wβ2

j+1, (26)

where w is the scalar weight to limit the amplitude of the control effort. It should be noted that required
control signal would be generated from this criteria when the error is optimized. Furthermore, the
criteria provide a monotonic convergent and an update law for the learning gain.

The main goal of the proposed POILC is to provide convergence to a zero tracking error for systems
in which conventional algorithms were not able to guarantee the convergence. It is also the aim to
show shortcoming of the conventional POILC13 in the supercavitating problem due to irregularity
in the Markov coefficient matrix of G + GT . Here ‖Ej‖2 = ET

j Ej and w is a positive parameter.
Coefficient ρj+1 is updated from the following equation:

ρ2
j+1 = 1 + S2β2

j+1 + Fjβj+1, (27)

where coefficients S and Fj are calculated from the following relations:

S2 = λmax(GT G),
Fj+1 = sign(−�j )λmax{− (G + GT ) sign(−�j )} �= 0.

(28)

λmax ( . ) is the largest Eigenvalue and sign ( . ) denotes the sign function. βj+1is a stationary point of
function (26), which is obtained by

∂JNew(βj+1)

∂βj+1
= 2{w + 	j }βj+1 + �j = 0 ⇒ β∗

j+1 = −1

2
(w + 	j )−1�j, (29)

where denominator terms, i.e. 	j and �j are as follows:

	j = ‖Ej‖2S2,

�j = ‖Ej‖2Fj .
(30)

Furthermore, S denotes maximum of singular values G, whilst Fj , 	j and �j are some auxiliary
variables to shorten the length of equations.

This proposed index solves the problem of convergence to a zero tracking error using adaptive
weight. In the following, it will be shown that the performance index finally converges to zero to
ensure perfect tracking. Using the above preliminaries, the convergence of the proposed POILC will
be investigated in the next section.

4. Convergence of the Proposed POILC
As expressed in Section 1, perfect tracking is a challenging issue in POILC. Therefore, the convergence
requirement(s) should be satisfied for such systems. In this section, it will be shown that by using
criterion (26), monotonic convergence to a zero tracking error can be achieved. Primarily consider
the following Lemma.

Lemma. The following inequality for an upper bound of the error holds in all iterations.

‖Ej+1‖ ≤ ρj+1‖Ej‖. (31)
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Proof. Refer to Eq. (21), the following relation holds for norm relations:

‖Ej+1‖ = ‖Gc(j + 1)‖‖Ej‖, ∀j ≥ 0. (32)

It is known that:

‖Gc(j )‖2 = λmax(GT
c (j ) Gc(j )). (33)

Accordingly, inequality in (22) provides:

GT
c (j + 1) Gc(j + 1) = (I − βj+1G)T (I − βj+1G) = I + β2

j+1(GT G) − βj+1(GT + G).

(34)

Regarding the relations of maximum and minimum amount of Eigenvalues in ref. [22], substitution
of Eq. (34) into (33) yields:

λmax
(
I + β2

j+1(GT G) − βj+1(GT + G)
) ≤ 1 + β2

j+1S
2 + βj+1Fj = ρ2

j+1 . (35)

In the meantime, by using (32) and (22) in (35), the following inequality is yielded:

‖Ej+1‖ = ‖Gc(j + 1)‖‖Ej‖ ≤ ρj+1‖Ej‖. (36)

Note that the equality still holds. This means that error does not increase. However, in the next
section, it will be proved that equality holds when the error norm becomes zero (i.e. only in infinity).

The above-mentioned Lemma confirms that the tracking error converges to zero monotonically by
applying the controller in (8) together with the optimal learning gain in (29). The following theorem
proves the perfect convergence. �

Theorem 1. Consider system (3). The updating control law (8) with optimal learning gain (29)
guarantees monotonic convergence of the closed-loop error norm at iterations. In other words, the
following two relations are held:

‖Ej+1‖ < ‖Ej‖, (37)

lim
j→∞

‖Ej‖ = 0. (38)

Indeed, inequality (37) shows a monotonic convergence, while Eq. (38) is an alternative expression
of Eq. (4) to confirm convergence to zero.

Proof. In order to prove the convergence of the system, let the Lyapunov candidate function be:


j = ∥∥Ej

∥∥2
. (39)

It is a positive function. Therefore, it has the necessary condition of the Lyapunov function. Using
Lemma in the next iteration, the Lyapunov candidate function is stated as:


j+1 = ∥∥Ej+1

∥∥2 ≤ ρ2
j+1

∥∥Ej

∥∥2
. (40)

If a Lyapunov candidate is strictly decreasing, then it will be a Lyapunov function. It is therefore
necessary to prove the decreasing feature. Replacement of the optimal learning gain of (29) in (35)
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obtains: ∥∥Ej

∥∥2 (
1 + β2

j+1S
2 + βj+1Fj

)

= ∥∥Ej

∥∥2

⎛
⎜⎝1 + 1

4

F 2
j

∥∥Ej

∥∥2
(
w + ∥∥Ej

∥∥2
S2 − w

)
(
w + ∥∥Ej

∥∥2
S2

)2 − 1

2

F 2
j

∥∥Ej

∥∥2

w + ∥∥Ej

∥∥2
S2

⎞
⎟⎠

= ∥∥Ej

∥∥2

⎛
⎜⎝1 − 1

4

F 2
j

∥∥Ej

∥∥4

w + ∥∥Ej

∥∥2
S2

− 1

4

wF 2
j

∥∥Ej

∥∥2

(
w + ∥∥Ej

∥∥2
S2

)2

⎞
⎟⎠ <

∥∥Ej

∥∥2
. (41)

Equation (41) shows that the error norm is strictly decreasing. In other words, the following relation
always holds:


j+1 < 
j ⇒ 
j+1 − 
j < 0 . (42)

On the other hand, a Lyapunov candidate possesses all the conditions of a Lyapunov function.
Consequently, the error dynamic is convergent, i.e. error in each iteration is less than the previous
one until it converges to zero.

To prove Eq. (38), necessary condition to maintain a perfect tracking will be assessed. Consider
again the index in (26) when (28) is substituted in (27):

JNew(β∗
j+1) = ‖Ej‖2ρ2

j+1 + wβ2
j+1 = ‖Ej‖2 − 1

4

F 2
j ‖Ej‖4

w + ‖Ej‖2S2
. (43)

Through mathematical induction, the following inequality is concluded:

‖E0‖2 > ‖E0‖2 − 1

4

F 2
0 ‖E0‖4

w + ‖E0‖2 S2

> ‖E0‖2 − 1

4

F 2
0 ‖E0‖4

w + ‖E0‖2 S2
− 1

4

F 2
1 ‖E1‖4

w + ‖E1‖2 S2

> ‖E0‖2 − 1

4

F 2
0 ‖E0‖4

w + ‖E0‖2 S2
− 1

4

F 2
1 ‖E1‖4

w + ‖E1‖2 S2
− 1

4

F 2
2 ‖E2‖4

w + ‖E2‖2 S2

> . . .

> ‖E0‖2 − 1

4

j∑
k=0

F 2
k ‖Ek‖4

w + ‖Ek‖2 S2
⇒

0 < lim
j→∞

JNew(β∗
j+1) ≤ ‖E0‖2 − lim

j→∞

j∑
k=0

1

4

F 2
k ‖Ek‖4

w + ‖Ek‖2 S2
< ‖E0‖2 < ∞. (44)

Given that the error norm is finite initially (it is not infinite), by converging the iterations to infinity
in this infinite series, the term in the series of (44) must converges to zero (otherwise, the value of
series will be infinite). Thus, the following limit is always held:

lim
j→∞

F 2
j ‖Ej‖4

w + ‖Ej‖2S2
= 0 . (45)

Denominator in Eq. (45) is always seen positive and nonzero. Since Fj �= 0, this equation holds
as long as limj→∞ ‖Ej‖ = 0 and this completes the proof. �
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The above theorem states that the error converges monotonically to zero. The following results are
also valid. Although the result 1 and 2 are valid in ref. [13], the same results are achieved here when
the weight is adaptively updated, which can be seen in (26)–(30).

Result 1. The following expression always holds for an optimal learning gain (29):

lim
j→∞

βj = 0. (46)

Proof. Denominator in Eq. (29), i.e. (w + 	) term, is strictly positive whereas its numerator is
an error norm function. Since the error norm converges to zero, it can be concluded that the optimal
learning gain also converges to zero. �

Result 2. The error norm converges monotonically to zero. The following inequality always holds
for index (26) and the error norm using optimal parameter (29):

‖Ej+1‖2 < JNew(β∗
j+1) < ‖Ej‖2 . (47)

Proof. According to (26) and (31), the first part of inequality in (47) holds (‖Ej+1‖2 <

JNew(β∗
j+1)). The performance index is greater than error at any iteration. Since the performance

index is the summation of a positive term with error, now it must be proved that this value of the error
is less than the error in the previous section. Thus, the error will be convergent. Since the second side
of index ‖Ej‖2ρ2

j+1 + wβ2
j+1 is positive, as a result it is always greater than ‖Ej+1‖2. On the other

hand, Eq. (43), J (β∗
j+1) = ‖Ej‖2 − 1

4 F 2
j ‖Ej‖4(w + ‖Ej‖2S2)−1, shows that the second part of (47)

can be clearly concluded (JNew(β∗
j+1) < ‖Ej‖2). �

Note. Fj and S2 in (28) indicate an upper bound of error. In order to converge the error norm
monotonically to zero other amounts may be assigned. It can be therefore concluded that Fj and S

are treated as design parameters (even the same for �j and 	j ) by which the error norm converges
to zero (parameter S2 may vary at each iteration). An appropriate tuning of these parameters, which
determines a lower value for upper bound, ensures a fast convergence. In this regard, the following
relation can also be used instead of (30):

	j = ET
j GT G Ej , �j = Fj‖Ej‖2. (48)

4.1. Convergence analysis in presence of uncertainty in the model
Due to model simplification, uncertainty is usually involved in its structure. This uncertainty can
be due to assumptions made during modeling process, system aging, change in working conditions,
linearization etc. Consider system (3) in presence of an uncertainty, which can be rewritten in the
following form:{

xj (t + 1) = (A + �A)xj (t) + (B + �B)uj (t), yj (t) = (C + �C)xj (t) + (D + �D)uj (t),

(49)

where matrices �A, �B, �Cand �D denote uncertain system dynamics. In this case, according to
(3), a standard linear form of closed-loop error at iterations with uncertainty in the system can be
represented in the following form23:

Ej+1 = G′
c(j + 1) Ej . (50)

for

G′
c(j + 1) = 1 − βj+1G

′ , (51)

where G′ stands for the same as G except that A, B, C and D are replaced with A + �A, B + �B,
C + �C and D + �D, respectively. Existence of such uncertainty can be shown as G′ = G + �G.
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Therefore, (21) is rewritten in the following form as a lumped uncertainty:

G′
c(j + 1) = 1 − βj+1 (G + �G), (52)

where:

�G =

⎡
⎢⎢⎢⎢⎢⎣

δlgl 0 0 · · · 0
δl+1gl+1 δlgl 0 · · · 0

δ3g3 δ2g2 δlgl · · · ...
...

...
...

. . . 0
δMgM δM−1gM−1 δM−2gM−2 · · · δlgl

⎤
⎥⎥⎥⎥⎥⎦ = P × G, (53)

where matrix P is a lower triangular and is as follows:

P =

⎡
⎢⎢⎢⎢⎢⎣

δ′
l 0 0 · · · 0

δ′
l+1 δ′

l 0 · · · 0

δ′
l+2 δ′

l+1 δ′
l · · · ...

...
...

...
. . . 0

δ′
M δ′

M−1 δ′
M−2 · · · δ′

l

⎤
⎥⎥⎥⎥⎥⎦. (54)

It is also supposed that matrix P is an upper bounded by

‖P‖2 ≤ μ . (55)

The goal is to present convergence conditions in presence of uncertainty.

Theorem 2. System in (50) is monotonically convergent to zero if matrix P (in (54) as a bound of
uncertainty) is upper-bounded by:

μ ≤ 1

4
. (56)

Proof. Parameter βj+1 is again assessed in the same way as in (29). Taking the norm of (51) gives:∥∥G′
c (j + 1)

∥∥ = ∥∥I − βj+1 (G + �G)
∥∥ ≤ ∥∥I − βj+1G

∥∥ + ∥∥βj+1�G
∥∥ . (57)

Substituting (34) into (57) gives:

∥∥I − βj+1G
∥∥ + ∥∥βj+1�G

∥∥ ≤ ρ2
j ‖G‖2 + ∥∥βj+1G

∥∥2
μ = 1 + βj+1Fj + β2

j+1S
2 + μ β2

j+1S
2.

(58)

Similarly for the same Lyapunov candidate as in (39), Eq. (32), i.e. ‖Gc(j + 1)‖ ∥∥Ej

∥∥gives:


j+1 = ∥∥Ej+1

∥∥2 ≤ ∥∥G′
c (j )

∥∥2 ∥∥Ej

∥∥2

≤ (
1 + βj+1Fj + β2

j+1S
2 + μ β2

j+1S
2) ∥∥Ej

∥∥2

≤

⎛
⎜⎝1 − 1

4

∥∥Ej

∥∥2
.F 2

j

w + ∥∥Ej

∥∥2
.S2

+ μ

∥∥Ej

∥∥4
.F 2

j(
w + ∥∥Ej

∥∥2
.S2

)2 S2

⎞
⎟⎠ ∥∥Ej

∥∥2

≤ ∥∥Ej

∥∥2 − μ
w

∥∥Ej

∥∥4
.F 2

j(
w + ∥∥Ej

∥∥2
.S2

)2 −
∥∥Ej

∥∥4
.F 2

j (0.25 − μ)

w + ∥∥Ej

∥∥2
.S2

. (59)
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According to the last part, if condition (58) holds, then closed-loop error is converging. This
means the error norm is monotonically decreasing. However, to prove zero convergence, resorting to
mathematical induction, (58) gives:

0 < lim
j→∞

∥∥Ej+1

∥∥ ≤ ‖E0‖ − lim
j→∞

j∑
k=0

μ
w ‖Ek‖4 .F 2

k(
w + ‖Ek‖2 .S2

)2 < ‖E0‖ < ∞ . (60)

Similar to (44), a series with infinite terms can be finite as long as the argument of the summation
converges to zero. Since μ and Fk are nonzero, it is necessary that the error norm converges to zero,
limj→∞ ‖Ej‖ = 0. This confirms that (38) is satisfied and error norm monotonically converge to
zero. �

The above theorem shows that if uncertainty is upper-bounded by (55), i.e. μ ≤ 0.25, then the
system is convergent to zero. The unity means the norm of the plant. Thus, 1/4 means the lumped
uncertainty is as big as up to 25% of the plant norm (which seems big!). The proposed controller copes
with such a big uncertainty. On the other hand, this relation denotes that by adding μ, convergence
to a zero tracking error will be more slow since a positive term is added to the decreasing error norm.
It causes convergence to zero with smaller acceleration. However, this bound is conservative.

4.2. Convergence analysis with measurement noise
In this section, a measurement noise Qj is added to the output of system (3) by the following form:

yj (t) = G uj (t) + Qj (t), (61)

where Qj (t) is a realization of stochastic process.24 This makes Eq. (21) to become:

Ej+1 = G′
c (j + 1) Ej + Dj, (62)

where Dj+1 = Qj − Qj+1. In order to assess capability of the proposed algorithm against noise,
three different kinds of noise are considered.

Situation 1: In case Qj is the same at any iteration (for example, noise is a sinusoidal function in
time axis), Dj = 0 and a monotonic convergence to a zero tracking error is achieved. This means that
the measurement noise at the system output does not affect zero convergence. This can be originated
due to environment effects, i.e. Dj = 0. This means that there is no such undesired effect on the
convergence, and a zero monotonic convergence is attained.

Situation 2: A deterministic and predictable noise occurs differently in any iteration. This situation
is similar to the case where an uncertainty exists in the model. Therefore, the negligibility of this kind
of noise will be shown in appropriate section in presence of such an uncertainty.

Situation 3: Finally, a random and stochastic noise will be filtered by such a relevant active
processing.

5. Simulation
Consider the dynamics of a supercavitating vehicle in state space format. The system parameters are
Iyy = 5.1847 kg m2, m = 22 kg and u0 = 77 m/s. The model is digitized using the sample time of
0.001 sec. The relative degree of the system is 1 (l = 1).4 The goal is that the system output tracks the
following command for pitch rate. Therefore, a slow pitch rate control is of interest. From practical
points of view, a typical desired pitch rate is as follows:

qcom =
⎧⎨
⎩0.2

(
1 + sin

(
2π

T
t − π

2

))
, 0 ≤ t ≤ T

0, t > T

. (63)
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Fig. 2. A desired pitch rate command.
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Fig. 3. The system pitch rate using two conventional and the adaptive weight POILC.

Figure 2 shows the desired output of the system in 5 sec (T = 5). For longer times, according to
Eq. (63), desired output is kept constant at zero (the unit for the pitch rate in all the figures is rad/sec).

The Markov parameters of the system are obtained using Eq. (14). Eigenvalue of G + GT consists
of both positive and negative ones. This declares that G + GT is sign-indefinite which fails to satisfy
the definite requirements in ref. [13]. Thus, the closed-loop error fails to converge as seen in Fig. 3 if
the conventional POILC13 is used.

It can be seen from Fig. 3 that the system output could track the desired output (command pitch
rate) after 300 iterations. In contrast, the proposed ILC technique offers a perfect tracking. In this
section, three different cases are investigated while simulations are performed in the MATLABT M

environment.

Case 1. A perfect model is of use: The model is considered perfect (with no uncertainty and
noise). Figure 4 represents a simulation result of the error norm and the desired pitch rates in 300
iterations. Term Fj �= 0 denotes that the maximum Eigenvalue of G + GT is nonzero. Consequently,
necessary condition to use the proposed technique to provide a perfect convergence is satisfied. Initial
conditions are x0 = [ 0, 0.1 ]T and w = 1 whereas index (26) is also considered as in the following:

J (βj+1) = ‖Ej‖2ρ2
j+1 + β2

j+1. (64)

As this figure shows, pitch rate controller has provided a suitable command signal. It is seen that
command tracking was satisfactory and a perfect tracking is achieved.

Figure 5 also shows a 3D view per time and iteration. When the number of trials is increased,
tracking is improved. Similar conclusions are achieved when other design parameters are tuned.
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Fig. 4. (a) Error norm and (b) pitch rate and command pitch rate in a perfect model.
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Fig. 5. 3D view of pitch rate per number of iterations and time.

Eventually at the beginning the tracking is not perfect yet. This is because the controller coefficient
for an output at zero time consists of D, which shows that the relative degree is 1. This signifies that
the control plays no effective role in the output.

Case 2. Perturbed by uncertainty: In this case, the model is perturbed by uncertainty. The
perturbation may be involved by a Taylor expansion-based linearization about constant axial velocity
or depth change and unexpected forces. A small deviation from the operating point certainly influences
system parameters and changes model parameters. In this case consider the system with the following
uncertainty:

�A = δaA, �B = δbB, �C = δcC , (65)

where |δa| ≤ δ̄a , |δb| ≤ δ̄b and |δc| ≤ δ̄c,
23 in which the upper bar stands for the maximum amount

of δ̄a = 0.21, δ̄b = 0.13 and δ̄c = 0.11. Using Eqs. (51) and (52) helps to find P (uncertainty matrix).
A 2-norm immediately gives an upper bound of the Markov metric coefficients:

μ = 0.2397 ≤ 0.25. (66)

Therefore, necessary condition to achieve monotonic convergence to a zero tracking error is met.
Relevant simulation result in Fig. 6 confirms the findings.

By comparing the error norm in Figs. 6 and 7, it can be concluded that the system converges more
slowly in the presence of uncertainty. It can be seen from (59) that if μ is added, then the error will
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Fig. 6. (a) Error norm and (b) pitch rate and command pitch rate in the system with the uncertainty limit
μ = 0.2397.
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Fig. 7. (a) The error norm and (b) pitch rate and command pitch rate in presence of the uncertainty limit
μ= 1.0274.

decrease with a smaller value at next iteration. In other words, the rate of error decreasing is inversely
dependent on μ such that if its value exceeds a certain limit, then the system will not be convergent.
Figure 6(a) shows the error norm when such a larger uncertainty as in (66) perturbs the system,

δ̄a = 0.21, δ̄b = 0.23, δ̄c = 0.2 . (67)

It is seen that convergence rate is yet lower than the previous case. This is because the upper bound
is as μ = 1.0274. Therefore, the error is going to deviate from its nominal value as shown in Fig. 7(b).

Case 3. In presence of measurement noise: The effect of uncertainty was investigated by means
of theoretical study and, of course, by simulation in the previous section. In this section, the system
is contaminated by some unknown measurement noise. Several resources produce noise on output
sensors and gyroscopes. Although the noise characteristics are usually unknown, the Probability
Spectral Density (PSD) is known. In this case, a noise with a normal distribution variance of 0.005
and zero mean25 has perturbed the system output.

A simulation is carried out using noisy data. The error norm can be seen in Fig. 8. It is the aim to
investigate the effect of external noise on the supercavitation system when it is under the control of an
ILC. According to the closed-loop error equation for a bounded random noise, the convergence to zero
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Fig. 8. (a) The error norm and (b) system and the command pitch rate in a noisy environment.
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Fig. 9. The system (y) and the command pitch rate (yd ) in presence of the uncertainty limit μ= 1.0274.

has failed. However, the output error is kept bounded even for bounded random noise. Meanwhile,
when noise happens with the same dynamics at any iteration, the proposed algorithm is still capable
to cope with. Simulation results confirm a perfect convergence with a satisfactory accuracy.

1. At the beginning of the result: System with nonzero relative degree is not controllable at initial
time. Consider a system in the state space representation format using A, B, C and D. The output in
the j th iteration and t = 0 can be written as follows:

yj = C X0 + D uj , (68)

where X0 is a vector of initial state. Since at any iteration D = 0, the system with relative degree
1 is not initially controllable (yj = C X0). That is why at the beginning the output of the system is
deviated from zero.

2. At the end of the graph: At t = 5, there is uncertainty in the system, Figs. 6–8, which reduces
convergence with respect to an ideal case. Wider bound of uncertainty reduces the convergence rate,
which can be seen in Figs. 6 and 7. Therefore, more iteration is needed to learn from this. For example,
in Fig. 7 for j = 350, the system reaches the desired output at t = 5.

It is possible to reduce the number of iterations using the weight w. It is because w restricts
amplitude of the control effort.13 Figure 10 shows the effect of different values of w. This means
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Fig. 10. The effect of weight in the convergence rate.

reduction in w increases the rate of convergence. However, the choice of w = 0 gives JNew =
ρ2

j ‖ Ej ‖2, which is non-optimal.

6. Conclusions
In the present paper, a new approach is proposed to achieve perfect tracking in the POILC technique.
In this approach, a feed-forward control signal is produced by the error of the output from the desired
one. The required control signal is then manipulated in a law such that a new developed performance
index for POILC is achieved. Necessity of a monotonic convergence to a zero tracking error is proved
by some relevant theorems. These theorems guarantee that convergence to a zero tracking error can
successfully be achieved by the recent development in the performance index. In accordance with
the theorems, when the system is free from uncertainty and noise, a perfect convergence of tracking
error to zero is provided. In case the model contains uncertainty, a required bound of uncertainty is
assessed to achieve convergence. Simulations on a supercavitating vehicle have shown that larger
bounds of uncertainty may endanger the monotonic convergence or even the zero convergence. This
signifies that the limit of uncertainty must be precisely determined in advance. In the meantime,
when the system is perturbed by a (measurement) noise, the zero convergence is achieved. However,
the ultimate error is located in a bounded region dependent on the variance of noise. The proposed
technique is performed when a pitch rate control of a supercavitating system is of interest. The
simulation results signify the performance of the proposed technique and the developed performance
index to provide desired feed-forward control signal. Nonetheless, the quality of the technique in a
noisy environment needs a far more knowledge of noise to guarantee a perfect tracking of command
pitch rate.
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