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Abstract

Alfvén’s derivation of his current limit is given. It demonstrates that it does not give the maximum possible current of
a beam, but the maximum current that can propagate for an indefinite distance and time, from a source, in a charge
neutral beam. Furthermore, the value Alfvén obtained applies to a uniform current density and to particles initially
moving in the direction of the beam. It is also shown that Alfvén predicted that beams which exceed the limit will
filament as a result of the particles that are turned back by the magnetic field. His work is extended to beams with
particles that have transverse momentum, to beams with non-uniform current densities, to beams that are not charge
neutral and to the time dependent case. These extensions of Alfvén’s work are found to require numerical calculations
in most cases and to give ambiguous results in some cases. A general formula for the current limit is given based on the
conservation of energy. It is calculated for the cases considered previously and found to confirm the accuracy of Alfvén’s
original estimate. The relevance of the current limit to high intensity laser-solid interactions and fast ignition is then

discussed.
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1. THE ALFVEN LIMIT REVISITED

1.1. Introduction

The Alfvén limit is frequently quoted as giving the maxi-
mum current that can be carried by a beam of charged
particles, and its validity as such is questioned almost as
frequently. In this article, I return to Alfvén’s original paper,
and demonstrate that this interpretation of his result is
inaccurate and that a more accurate consideration answers
most of the many questions regarding the limit and reveals
an overlooked aspect of his work: the filamentation of
beams that exceed the limit.

Alfvén (1939) wrote his paper on the motion of cosmic
rays in interstellar space. As a simple model, he considered
identical, charged particles with identical momenta being
emitted from a circular region of an infinite plane, and
forming a beam with a uniform net current density and no
net charge density. He justified the assumption of charge
neutrality by stating that interstellar space is a good conduc-
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tor with a charge density much greater than that of the
cosmic rays. He then calculated the trajectories of the par-
ticles in their steady state, self-generated, azimuthal mag-
netic field, in his words, the situation when all transients
have died down. I will start with a slightly more general
model, calculating the trajectory of a charged particle with
an arbitrary initial momentum in the azimuthal magnetic
field B generated by an arbitrary current J, given by wqJ/
27r, that depends only on radius. I will use cylindrical
coordinates (r, z,0), defining z = 0 to be the source and the
positive z direction to be the direction of beam propagation.
The axial equation of motion can be solved by dividing by
the radial velocity and integrating with respect to radius,
giving

quo ("
pz:p20+_ _dr? (1)

2w Jyy 1

where ¢ is the particle charge and the subscript O indicates
initial values. This can also be expressed as the conservation
of the canonical momentum p, + gA_, where A_ is the axial
vector potential given by B = —0dA_/dr. The azimuthal
momentum is given by the conservation of angular momentum,
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r
The radial momentum can then be determined from
pl=p>—p>—p; 3)

The particle trajectory is then given by integrating the
equation

dz
dr  p,

P

)

For a uniform current density j, and a particle initially
moving in the axial direction, as Alfvén considered, Eq. (4)
gives

" 4p+q,u0jo(r2—r02)
n N2 = 1)@ udjd(rg = r*) — 8qpojop)

== dr, (5)

where the sign is negative as the particle moves from r, the
maximum radius, to 0, the minimum radius, and vice versa.
Eq. (5) can be expressed in terms of elliptic integrals. Alfvén
must have sat down with a table of elliptic integrals and
drawn some sample trajectories by hand (see his Fig. 2).
Nowadays this can be carried out almost instantly on a
computer, which is how Figure 1 was generated. It shows
that all particles beyond a certain radius move backwards,
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so the beam that actually propagates forward, the direct
beam as Alfvén called it, has a maximum radius, which
defines a maximum current. In general, this current is enclosed
within the initial radius of the particle trajectory that satisfies

erax

"min

P

\p?

For Alfvén’s case, Eq. (6) gives a complete elliptic integral,
and he gave the solution as

dr=0. (6)

4T
Jyy=1.65—p=1.65J,.
qMo

(7

I will refer to Eq. (7) as the Alfvén limit for a uniform
current density, hence the subscript.

It can be seen from the derivation of the Alfvén limit that
itdoes not give the maximum possible current of a beam, but
the maximum current that can propagate for an indefinite
distance and time, from a source, in a charge neutral beam,
and that the value Alfvén calculated applies to a beam with
auniform current density where all the particles are initially
moving in the direction of the beam. The Alfvén limit only
applies after a certain distance because particles outside the
direct beam propagate a limited distance. In Figure 1, the
current is only limited to that in the direct beam beyond a
distance of 0.84\p/quqjo, wWhich is about one-third of the
radius of the direct beam. The Alfvén limit only applies after
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Fig. 1. Trajectories of particles with no azimuthal momentum in the magnetic field generated by a uniform axial current density.
Distances in units of \/4p/qu, j,. Trajectories with a net backwards motion are indicated by a dashed line. The trajectory that defines

the Alfvén limit is indicated by a thick line.
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a certain time because the steady state magnetic field was
used. A secondary point is that the Alfvén limit is not
self-consistent, because it indicates that the current profile
used to obtain the magnetic will be modified by the mag-
netic field. Alfvén paid particular attention to this point. He
argued that since the particles outside the direct beam are
moving backward, the magnetic field would actually fall
with radius, allowing particles further out to move forward,
until the magnetic field increased again and the process
repeated itself. The maximum forward current that could
flow would thus be much higher than the current in the
direct beam. This argument basically states that a current
higher than the limit for a single beam can be carried in a
series of separate beams, to which separate limits can be
applied. Here separate means beams whose currents are
isolated from one another by equal return currents that do
not overlap one another. If this were not the case then the
magnetic field from the surrounding beams would have to
be considered in calculating the limit for each beam, a
situation that could be better described as a single beam with
an irregular current profile. The beams would also attract
one another. In the situation Alfvén described, the separate
beams are concentric, hollow cylinders, which is the form
filamentation takes in rotational symmetry. In other words,
what Alfvén suggested is that a beam which exceeds the
limit will filament as a result of particles turned back by the
magnetic field. This could also be considered as a form of
two-stream instability. A notable feature of this Alfvén
filamentation is that it does not require any initial perturba-
tion in the current profile, as is required by other filamenta-
tion instabilities, it merely requires the beam current to
exceed a certain value. This value could be lower than
Eq. (7), since particles start to move back through the beam
at a current of J, and are returned to the source at a current of
1.46J,. Indeed, the current limit may be given by the current
at which particles return to the source, since the assumed
magnetic field may not exist behind the source. Another
feature of Alfvén filamentation that can be predicted from
Figure 1 is that it will be localized near the source of the
beam, since this is where the returning beam particles are
localized. This indicates that it will not actually increase the
Alfvén limit, that is, the current that can propagate for an
indefinite distance.

I will now extend Alfvén’s calculation to include trans-
verse momentum, to other current profiles, to beams that are
not charge neutral and to the time dependent case. Then I
will consider a different current limit based on the conser-
vation of energy and compare this energy limit to the Alfvén
limit. Finally, I will demonstrate the relevance of the Alfvén
limit to high intensity laser-solid interactions and fast ignition.

1.2. Transverse momentum

To illustrate the effect of transverse momentum, I will
calculate the Alfvén limit for particles with identical, abso-
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lute values of either radial or azimuthal momentum for a
uniform, still purely axial, current density.

The calculation for radial momentum is straightforward,
giving

P-o
Jop = (— + 0,65> Jo, (8)
p

which shows that the inclusion of radial momentum lowers
the Alfvén limit by a factor of up to 2.54, justifying its
neglect in estimating an upper limit. A notable feature of
Eq. (8) is that it does not tend to zero as the axial momentum
tend to zero. Of course, if the axial momentum were zero
then there would be no magnetic field so Eq. (8) would not
apply. This occurs because the magnetic field increases the
average axial momentum of particles with sufficient trans-
verse momentum, so it acts to enhance rather than to inhibit
the beam propagation. The magnetic field can be considered
to rapidly impose a certain distribution of radial and axial
momentum within the direct beam, which is why the limit is
relatively insensitive to the radial momentum.

The calculation for azimuthal momentum has to be car-
ried out numerically. However, it is immediately obvious
that azimuthal momentum will increase the Alfvén limit. If
a particle has an azimuthal momentum such that p} =
qmoJp- (note that if g is negative then sois J), then there will
be no net radial force on the particle. It is possible to
construct an equilibrium where no net force acts on any of
the particles, and which has no Alfvén limit. Lai (1980)
discusses such equilibria in more detail. The numerical
solution for particles with a fixed azimuthal momentum,
given in Figure 2, also shows that the Alfvén limit is removed
when pyo = p/2, a condition that can be obtained analyti-
cally. This indicates that Alfvén’s result can be seriously in
error for beams with sufficient azimuthal momentum. The
limit at which particles return to the source, which is also
given in Figure 2, is never removed, but it still greatly
exceeds Alfvén’s result when the azimuthal momentum is
the largest single component of the momentum.

Arelated question is what occurs to the Alfvén limit when
the particles does not have identical momenta. In this case,
a range of values of the Alfvén limit could be calculated
using the results for particles with identical momenta. It is
clear that particles will start to move back at the lowest
value, leading to a fall in the beam current and possibly to
Alfvén filamentation, but the maximum possible current
that can travel an indefinite distance and time will be given
by the highest value.

1.3. Current profile

To illustrate the effect of varying the current profile, I will
calculate the Alfvén limit for different current profiles,
assuming that all particles start with only axial momentum.

A general idea of how the Alfvén limit will vary with
current profile can be obtained by determining lower and
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Fig. 2. The Alfvén limit (solid line) and the limit at which particles return to the source (dashed line) for a beam with a uniform current
density as a function of the initial azimuthal momentum of the particles.

upper values using Eq. (1). If a particle has p, = 0 at r = 0 it
will never move backward, whereas if it has p, = —p it will
continue to move backward along the axis. The Alfvén limit
for a current profile J (r) at aradius r,, and the limit at which
particles return to the source, therefore satisfies

Jy, = (05— I)LJO. )

erj(r)/rdr
0

Another lower value on the Alfvén limit is given by the
current within a radius r, that satisfies

o
f p.dr =0,
0

provided that p, # 0 at r = 0, so that the Alfvén limit is
defined by a particle that forms a closed-loop. If this is not
the case, then the Alfvén limit is defined by the particle that
moves back along the axis and is equal to the upper value
given by Eq. (9). It is clear from Eq. (9), and indirectly from
Eq. (10), that the Alfvén limit will be lower than that for a
uniform current density if the current density peaks on-axis
and higher if it peaks off-axis, since it is determined by the
radially integrated value of J/r. I will now consider some
specific examples.

A calculation of the Alfvén limit for a current density that
peaks on-axis is given by its most commonly quoted deri-

(10)
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vation, which states that it is given by the current at which a
particle at the edge of a beam has a Larmor radius less than
half the beam radius, giving

Jarr = Jo- (11)

At first sight this derivation indicates that the Alfvén limit is
independent of the current profile, which is a common
misconception, but on closer inspection it is clear that it will
only be an accurate calculation if the magnetic field is
uniform, which requires a current density proportional to
1/r, hence the subscript. In this case, the Alfvén limit is
defined by the particle that moves back along the axis, so
equals the upper value given by Eq. (9), and it is equal to the
limit at which particles return to the source. This infinite
peak in the current density on-axis leads to a relatively small
reduction in the Alfvén limit, indicating that it is quite an
accurate estimate.

Although this is not Alfvén’s derivation of the limit,
Eq. (11) is the value he gave as his final result, because he
dropped the factor of 1.65 in Eq. (7) when calculating the
order of magnitude of the current limit. The derivation is
often credited to Lawson (1957) rather than to Alfvén, but
this is also incorrect. Lawson derived a condition for the
radial velocity to be much less than the axial velocity, not an
explicit current limit, using the same assumptions as Alfvén,
but approximating the equation of motion. He then noted
that this condition was reproduced by requiring the Larmor
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radius of a particle at the edge of the beam to be much less
than the beam radius, not less than half the beam radius.
Alfvén’s choice of Eq. (11) as his final result rather than
Eq. (7) has also led to the misconception that the limit is
defined by the particle whose axial momentum goes to zero
(the lower value of Eq. (9)) rather than by the particle whose
average axial momentum is less than or equal to zero.

Another calculation of the Alfvén limit for a current
density that peaks on-axis has been given by Honda (2000),
who calculated the limit for the Bennet profile (Bennett,
1933, 1955)

Jo

T 1+ YR (12)

s

for which the current is given by 7r2j,/(1 + r?/R?). This is
a particular, equilibrium solution for a beam with uniform,
constant transverse temperature k7, and propagation veloc-
ity v, charge neutralized by a similar beam. It differs from
the other cases in that it has a finite total current, given by
7R?j,, so the radius of the direct beam depends on the total
current and it does not define a unique current. Honda
obtained the current in the direct beam as a function of its
radius r, from a numerical solution of Eq. (6), since it cannot
be solved analytically in this case. However, from Egs. (9)
and (10) it is possible to determine that

303

r2/R? r,/R
1+ r2/R? 2(r,/R — tan"'r,/R)

Jo. 7y /R < 3.18

A—B

r2/R? 2
1+ r2/R? In(1 + r2/R?)

Jo.7y/R = 3.18, (13)

because for r,/R = 3.18, a transition that I determined
numerically, the Alfvén limit is determined by the particle
that moves back along the axis. It is also possible to deter-
mine the exact result for r,/R — 0 because Eq. (12) then
tend to a uniform current density, for which the Alfvén limit
is 1.65J,. Eq. (13) then gives a lower value of 1.5Jy, so it is
a good approximation for r,/R < 3.18. This indicates that
the Alfvén limit of a beam can be much lower than the value
he gave. However, if we draw the particle trajectories we
find that all particles at large enough radii move forward and
that when the limit is defined by the particle that moves back
along the axis this is the only particle that moves backward.
This case is illustrated in Figure 3. It could be argued that the
particles moving backward are inconsistent with the assumed
current density profile beyond the radius of the direct beam
so that Eq. (13) does give the current limit, but it could also
be argued that all of the particles that move forward should
be included in the direct beam. In the latter case, when only
one particle moves backward the current in the direct beam
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Fig. 3. Trajectories of particles with no azimuthal momentum in the magnetic field generated by the Bennett profile with a total current
of 0.831J. Distances in units of R. The trajectory that defines the Alfvén limit is indicated by a thick line.
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will equal the total beam current, so the current limit for the
Bennet profile could be defined as

Ju_p = 0.831J,. (14)

It is not clear which interpretation is correct. To further
confuse the issue, it also frequently argued that since this is
a self-consistent, equilibrium solution, the equilibrium cur-
rent must be able to propagate. For a beam charge neutral-
ized by a cold, stationary background of particles the Bennett
current is

87 kT

= TR (15)
0

€q

This equilibrium current exceeds the Alfvén limit given by
Eq. (13), which tend to zero for an infinitely wide beam, and
exceeds that given by Eq. (14) when the mean transverse
velocity exceeds the propagation velocity. There appears to
be a fundamental contradiction here. The resolution to this
paradox is that the Alfvén limit is calculated for a beam
propagating from a source, whereas the equilibrium was
calculated for an infinitely long beam. It can be seen from
Figure 3 that there is no contradiction between the particle
trajectories and the assumed current density if there are
particles starting at every point in space, because every
point is then crossed by particles with a net forward motion.
Indeed, this ambiguity does not arise for the limit at which
particles return to the source, which is slightly lower than
that given by Eq. (13). Nonetheless, this still leaves a choice
of two Alfvén limits.

To give an example of a current density profile that peaks
off-axis, I will consider the extreme case of a uniform ring
situated at a radius r, with a width R < r;,. The equation of
motion of a particle within the ring will then be approxi-
mately the same as that for a uniform current density with
the magnetic field lowered by a factor of r,/R. The Alfvén
limit will be determined by the particle that reaches the
inside of the ring with no axial momentum, since a particle
moving backward inside the ring will travel far further
backward than it can travel forward once it returns to the
ring, giving

.
hﬂmfh%>R (16)

This demonstrates that the Alfvén limit can be much greater
than the value given by Alfvén, if the current is concentrated
at the edge of the beam. Such current profiles do occur
naturally: the ring profile could also be described as a skin
current and filamentation in rotational symmetry leads to
hollow beams. It should be emphasized that this is only a
ring in current, not density. The magnetic field means that
particles will cross the axis, unless they have sufficient
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azimuthal momentum, in which case there is no Alfvén limit
(Section 1.2).

Other authors, such as Hammer and Rostoker (1970) and
Gratreau (1978), have stated that current density profiles
that peak off-axis allow currents higher than Alfvén’s esti-
mate of the current limit to propagate, but these statements
were based on the fact that such current profiles have higher
equilibrium currents, not on calculations of the Alfvén limit.
This has led to the misconception that the Alfvén limit does
not apply to certain current profiles.

1.4. Charge neutrality

If a beam is not charge neutral then its self-generated elec-
tric field must be included when calculating the Alfvén
limit. An Alfvén limit for a beam with a charge neutraliza-
tion factor fz is often quoted, where fz = 1 corresponds to a
charge neutral beam and fz = 0 to a beam with no charge
neutralization. A similar current neutralization factor f;, is
also often included, giving

Jo
= fy = (= f)e?

Jar (17)

which is known as the Alfvén-Lawson limit, where v is both
the particle and beam propagation velocity. For a charge
neutral beam with no current neutralization ( fz = 1, f; = 0)
it agrees with Eq. (11), which is the result generally known
as the Alfvén limit. The effect of current neutralization on
the Alfvén-Lawson limit for a charge neutral beam (fz = 1)
is intuitively obvious, since it is clearly the net current (1 —
Jfu)J that is limited, not the beam current J. As the charge
neutralization factor is lowered, the Alfvén-Lawson limit
increases until fz = 1 — (v/c)?>(1 — fyy), when it tend to
infinity, which implies that there is no limit. For lower
values of the charge neutralization factor, there is current
limitation due to the electric field, which exists even when
there is current neutrality ( f; = 1). This is known as the
space charge limit, which is better expressed as a limit on
the charge per unit length (J/v), since it exists in the absence
of a current. The origin of the Alfvén-Lawson limit is not
clear. Lawson (1958) obtained an approximate solution to
the equation of motion of a particle at the edge of a partially
charge neutral, infinitely long, cylindrical beam by assum-
ing that the particle’s transverse momentum was negligible,
and that it remained at the edge of the beam. He then stated
that for a beam to exist | rd?r/dz?*| < 1, which is basically a
requirement that the beam propagates faster than it contracts
or expands. This condition requires the current to be much
less than half that given by Eq. (17) with f;; = 0. It is not
clear who modified it to agree with Alfvén’s result, nor who
included the current neutralization factor. Unfortunately,
Lawson’s result cannot be extended to the case Alfvén
considered because the transverse momentum exceeds the
axial momentum and particle trajectories cross one another.
However, it is possible to calculate the effect of the self-
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generated electric field of a partially charge neutral, infi-
nitely long beam on the Alfvén limit, if the net charge and
current densities have the same dependence on radius. In
this case the radial electric field £ and the azimuthal mag-
netic field B are related by

1—f; ¢
= fE — = constant. (18)
1—fu v

E
B

This means that we can transform to a frame moving at a
speed E/B in the direction of the beam where there is no
electric field, calculate the Alfvén limit on the net current in
the normal manner, transform back again and divided by 1 —
fu to obtain the limit on the beam current

7o = 1—fo — (1= fr)c?/v? 7
U= h)? = A fp e

(19)

where J, is the conventional Alfvén limit ( fz = 1, f}; = 0) for
the current density profile being considered. On the contrary
to the Alfvén-Lawson limit, lowering the charge neutraliza-
tion factor lowers this limit, until fz =1 — (v/c)?(1 — f),
when there is no limit. The two limits only agree in the exact
point at which the limit is removed. The physical reason for
this change to the Alfvén limit is that the radial electric field
lowers the momentum of the particles that are turned inward
by the magnetic field, lowering the limit, until £ = vB when
the particles move outward under the influence of the elec-
tric field and no particle has a net backward motion, so there
is no limit. Indeed, in the presence of a radial electric field,
all particles that do not cross the axis may have a net forward
motion, which leads to a similar problem in defining the
Alfvén limit to that encountered with the Bennet profile
(Section 1.3). Again, this ambiguity does not arise with the
limit at which particles return to the source.

In general, the net charge density will not be proportional
to the net current density, the charge and current neutraliza-
tion factors will be different functions of space and time,
and we should consider the axial electric field generated by
a beam propagating from a source, so this can only be
considered as a qualitative treatment. As such, it indicates
that the self-generated electric field of a partially charge
neutral beam will not increase the Alfvén limit, unless the
net charge of the beam is sufficient for the force from the
electric field to exceed that from magnetic field, when there
is no Alfvén limit. It is notable that this is always the case for
a non-neutral beam.

1.5. Time dependence

The consideration of the time dependence of the Alfvén
limit before a steady state is achieved amounts to the con-
sideration of current neutralization by the return current that
must be present. The return current can be provided by a
current of charged particles or by the displacement current.
A return current of charged particles could come from the
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conductor that the beam has been assumed to be propagating
in or from the beam itself, as occurs when the Alfvén limit is
exceeded. This problem is clearly a complex one, so I will
only obtain order of magnitude estimates for the time at
which the Alfvén limit will apply for some greatly simpli-
fied cases.

Hammer and Rostoker (1970) considered the degree of
current neutralization that can be provided by a conductor.
They obtained an approximate solution for a cylindrical
electron beam with a constant, uniform charge density mov-
ing at a constant velocity through a cold electron fluid,
charge neutralized by fixed ions, assuming that the charge
density of the beam was much less than that of the conduc-
tor, a situation very similar to that considered by Alfvén. The
solution of even this greatly simplified model is complex,
but its central results can be illustrated with simple physical
arguments. The inertia of the conduction electrons leads to a
delay in them establishing a return current given by the
reciprocal of their plasma frequency w,,. During this time
the conductor behaves like a vacuum and the return current
is provided by the displacement current, which separates
from the beam at the speed of light. Thus, by the time the
return current is provided by the conductor it has separated
from the beam current at a distance ¢/w,,, which is known as
the magnetic or collisionless skin depth /. This means that a
significant degree of current neutralization will only be
provided by the conductor for beams with a radial extent
R > [. This can be expressed in terms of a current neutral-
ization factor (Section 1.4)

2ct
f}wwl—?,ct<<R,ctSl. (20)

Following this initial, rapid decay in the current neutraliza-
tion there will be a subsequent, slower decay arising from
the mutual repulsion of the beam and conduction currents,
and the decay of the conduction current due to collisions.
This was not considered by Hammer and Rostoker. Alfvén
excluded the possibility of current neutralization by the
conductor on the grounds that this situation was unstable as
a result of the mutual repulsion of the currents. Here I will
estimate the subsequent decay time of the conduction cur-
rent due to collisions, which will tend to dominate when the
density of the conductor is much greater than that of the
beam, because the conduction current then consists of elec-
trons drifting slowly through a dense medium. Since the
conduction electrons are now in a quasi-steady state, I will
use the basic Ohm’s law E = 7)j,. for the current density of
the conductor j., where 7 its resistivity. The displacement
current is now negligible, so the evolution of the net current
density j, is given by

e n n
— +VXVX—j,=VXVX—]j, 21)
ot Mo Mo
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where j is the beam current density. In general, Eq. (21)
cannot be solved analytically. However, it is clear that its
steady state solution is indeed j,, = j, and from a dimensional
analysis it can be seen that the time scale for this steady state
to be established is given by

R2
=2 (22)
n

which is known as the magnetic diffusion time, where R is
the appropriate radial scale length. The Alfvén limit will be
valid for times greater than this. The initial decay of the
conduction current can be calculated from Eq. (21) by
assuming that j, < j, provided that the resistivity and the
beam current density are known, well-behaved, functions.
The only current profile that we have considered to which
this approximation can be applied is the Bennett profile
(Eq. (12)), which gives

t 1—2r%R?

- mjo,t<<tD,R>>l, (23)
D

Jn =

for a constant resistivity. The corresponding current neutral-
ization factor is

8t/tp

TRy e

Su=1

This confirms the statement made in Section 1.4 that the
current neutralization factor is, in general, time and space
dependent. Calculating the Alfvén limit for a time depen-
dent current density requires a numerical solution, so I will
estimate it from the lower value given by Eq. (9) at a fixed
time. This gives the time at which the Alfvén limit is
exceeded to be

> JO > (25)

I

.
3.64J/J,

which I have called the magnetic inhibition time (Davies,
2003, 2004), where J is the total beam current. Similar
estimates can be obtained for other current density profiles.
An important exception is the ring profile (Section 1.3),
which was found to increase the Alfvén limit (Eq. (16)). In
this case, the magnetic inhibition time will be increased by a
factor of r,/R, but since it is the width of the ring R that
appears in the magnetic diffusion time, the magnetic inhibi-
tion time will actually be lowered by a factor of r, /R, unless
the Alfvén limit exceeds the beam current. The magnetic
inhibition time is also not increased if the current is divided
up into a series of separate filaments. Furthermore, the
decay of the return current around each filament means that
they will not remain separate, so even if each filament
carries a current less than its Alfvén limit, the magnetic
inhibition time of the beam as a whole will not be signifi-
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cantly increased. The only apparent means of significantly
increasing the time for which a current greater than the
Alfvén limit can propagate, is if it propagates in randomly
fluctuating filaments, in which case a steady state may never
be reached.

This calculation also gives an axial electric field, which
will lower the Alfvén limit since it decelerates the beam
particles. As was seen in Section 1.4, the importance of the
electric field can be quantified by the ratio of the force from
the electric field to that from the magnetic field. Estimating
the initial growth of the magnetic field from 7jz/R gives

E R/v
— ~ —, 1<ty R> 1, (26)
vB t

so the electric field will be negligible after a light transit
time across the beam radius, which is much less than the
magnetic diffusion time. This clearly justifies Alfvén’s neglect
of the electric field when the charge density of the conductor
is much greater than that of the beam.

1.6. Comparison to the energy limit

A limit on the current that can propagate for an indefinite
distance and time from a source can also be obtained by
equating the energy per unit length in the steady state
magnetic field to the kinetic energy per unit length in the
particles that must generate it as they propagate, giving

jo ) Am S

fbjz(r)/rdr aro fhjz(r)/rdr
0 0

where J(r) is the current profile of the beam, (K) is the
mean kinetic energy of the particles, and v is the propagation
velocity (Davies, 2003).

Eq. (27) can be easily evaluated for the current profiles
considered so far, giving

Jy =4J}, (28)
iy =205, (29)
/R 2 )
U+ /R (L + r2/R?) = (2 /R)/(1 + 12 /R?)
(30)
Ty
JRw3EJ(3, r, > R. (31)

To compare these results to the corresponding Alfvén limits
we must make the same assumptions, namely that the par-
ticles have the same momentum and are moving in the same
direction, giving Jj = Jo/(1 + 1/). The value of J| varies
from J,/2 in the non-relativistic limit to J, in the strongly
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relativistic limit. The ratio of the energy limit to the Alfvén
limit is then 1.21-2.42 for a uniform current density, 1-2 for
joc 1/rand 1.5-3 for the ring profile. For the Bennett profile,
it shows that it is correct to assume that a single particle
trajectory with a net backward motion represents a limit on
the current. The ratio of the energy limit to the Alfvén limit
(Eq. (13)) falls with radius, from the result for a uniform
current density of 1.21-2.42 as the radius tend to zero to
0.5-1 as the radius tend to infinity. More generally, it can be
seen from Egs. (9) and (27) that the Alfvén and energy limits
will have a similar dependence on current profile, with the
energy limit showing a slightly stronger dependence, pro-
vided that all of the particles are initially moving in the same
direction.

Transverse momentum, whether radial or azimuthal,
increases the energy limit since it increases the mean energy
without a corresponding increase in the propagation veloc-
ity. This dependence on transverse momentum is quite dif-
ferent to that of the Alfvén limit (Section 1.2). The most
significant difference is that the energy limit is never removed
by azimuthal momentum. However, to achieve this increase
in the energy limit, the transverse momentum must be
converted into axial momentum at a specific rate as the
beam propagates, because the energy in the azimuthal mag-
netic field can only come from the axial momentum. It
would appear to be more accurate to define the energy limit
in terms of the axial energy. The problem with this is that, as
can be seen in Figures 1 and 3, the magnetic field rapidly
dominates the momentum distribution of the particles, so to
give an accurate value of the current limit we cannot take
any given value of (K)/v. Although the energy limit has the
advantage thatitis directly applicable to an arbitrary momen-
tum distribution, it is not self-consistent in its treatment of
the momentum distribution. A reasonable estimate of the
current limit should be given by assuming that all of the
particles start to move along the axis, so that (K)/v is
replaced by (K)/{v).

The self-generated, radial electric field of a beam that is
not charge neutral considered in Section 1.4 would not be
expected to change the energy limit, because the energy in
the electric field would only become available to generate
the magnetic field if the radial separation of the particles
tended to infinity and the radial momentum gained were
converted to axial momentum. The most significant differ-
ence between this behavior and that of the Alfvén limit
(Eq. (19)) is that the energy limit is not removed when E =
vB. This assumes that we start with a beam that is not charge
neutral. If the lack of charge neutrality resulted from the
propagation of the beam then particle energy would be lost
in generating the electric field and the energy limit would be
reduced.

The discussion of the time dependence of the Alfvén limit
(Section 1.5) applies equally to the energy limit. The calcu-
lation of the energy limit for a time dependent current
density such as Eq. (23) is far simpler than that of the Alfvén
limit, the only difficulty arises in defining the kinetic energy
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available to generate the magnetic field. This could be
calculated from the total beam current or from the net
current, and the net current varies with radius, tending to
zero as the radius tend to infinity. The best choice would
appear to be the maximum net current (Davies, 2004). The
magnetic inhibition time for the Bennet profile then becomes

p

~— >, 32
1.35J/J; 0 (32

1

which is similar to Eq. (25).

From this we can conclude that the energy limit is prac-
tically the same as the Alfvén limit. The only exceptions
are the situations in which the Alfvén limit does not exist,
when the energy limit remains. This begs the question as to
what the mechanism of current limitation is if not particles
moving backward. In most cases it can be ascribed to
particles being returned to the source, but not all. What the
energy limit shows is that a beam with given values of J(r)
and (K)/v could not be established by emitting particles
from a source because the induced electric field would stop
the beam propagating.

1.7. Conclusions

The Alfvén limit is the current at which particles start to
have a net backward motion in the self-generated magnetic
field of a beam. It gives the maximum current that can
propagate for an indefinite distance and time, from a source,
in a charge neutral beam. Alfvén estimated the order of
magnitude of this current by calculating it for a beam with a
uniform current density, where all the particles have the
same momentum and are initially moving in the same direc-
tion. This gives Eq. (7), but as Alfvén was only estimating
an order of magnitude, he dropped the factor of 1.65 to give
Eq. (11). Alfvén also predicted that the particles turned back
by the magnetic field would lead to filamentation near the
source of the beam, where the limit is exceeded.

The extension of Alfvén’s work presented here has largely
confirmed this estimate. The only exception occurs when
the current of a beam is concentrated at its edge, when the
limit can be much higher, as shown by Eq. (16). However,
the Alfvén limit cannot be generalized: only an implicit
expression for the limit can be given (Eq. (6)) and it can give
ambiguous, even incorrect, results. A general expression for
the current limit can be obtained from the conservation of
energy, giving Eq. (27). It is this result that confirms the
accuracy of Alfvén’s original estimate. A better definition of
the current limit based on particle trajectories would be the
current at which particles return to the source. The other key
result of this work is the estimate of the time at which the
Alfvén limit applies (Egs. (20) and (25)).

One of the most important conclusions that can be drawn
from this is something that was clearly expressed by Alfvén
at the beginning of his article:
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“Itis clearly understood that there may be some danger in
drawing too far-reaching general conclusions from such a
special case. But on the other hand . . .the treatment of a
special case is very likely to give the right order of
magnitude. ..”.

2. RELEVANCE TO LASER-PLASMA
INTERACTIONS

2.1. Laser-solid interactions

When a laser with a value of intensity times wavelength
squared (IA?) greater than roughly 107 W interacts with a
solid it rapidly forms a plasma, and the interaction of the
laser with this plasma has been found to transfer a signifi-
cant fraction f; of the laser’s energy into electrons entering
the target. The current J of these electrons can be written as

J f.Pv

— -7

I (K)o

(33)

where P is the laser power and J;j has been chosen as a
reference value since the energy limit is more clearly defined
for a beam that is not mono-energetic. Values of the fraction
of the laser energy transferred to the electrons and their
mean energy have been determined by numerous experi-
ments and theoretical models. The mean energy has been
found to scale as (IA%)* with & =~ 0.3 for values of IA? up to
about 10'© W and @ =~ 0.5 at much higher values. This
transition corresponds to the point at which electron motion
in the laser fields starts to become relativistic. This does not
appear to be a coincidence, since @ = 0.5 ensures that the
number density of the electrons will never exceed the rela-
tivistic critical density, and the laser is absorbed at or below
this density since a plasma is rapidly formed on the surface
of the solid. Using the mean energy (K )/e = 100(IA?)!/3 eV
determined by Beg ef al. (1996) for the non-relativistic case
gives

P 2 R
e —) -, 34
7 fL<9.o7><107> A (34

where R is the laser spot radius. The fraction of the laser
energy transferred to the electrons has been found to be from
0.1 to 0.5 and the spot radius must exceed the laser wave-
length, so Eq. (34) will typically be greater than one for all
laser powers of interest. Using the ponderomotive poten-
tial for the mean energy in the strongly relativistic limit
(K)/e ~4.77(IX%)%5 eV, IN2 > 10'° W) gives

CA” <5>2 35
5 i\ T ) (35)

0

This indicates that the ratio J/J} will eventually saturate
with increasing laser power. The most notable point of both
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Egs. (34) and (35) is the strong dependence on the laser
focussing. Indeed, the current limit may not be exceeded
when the laser is tightly focussed (R =~ A). Even when the
current limit is exceeded it may not be a relevant issue for
the electron propagation because of current neutralization
(Section 1.4). The initial decay of the return current described
by Eq. (20) occurs over a time certainly less than the laser
period, so the beam current may exceed the current limit by
a factor of at most R/2/. The skin depth / in the solid will be
much less than the laser wavelength so the current limit will
only be exceeded initially if the spot radius is very much
greater than the laser wavelength. This will be true even in
an insulator because the currents being considered are very
much greater than the breakdown threshold of any insulator.
The magnetic inhibition time given by Eq. (32) for the
strongly relativistic case of Eq. (35) is

/\2
t,=225%10"7 . (36)

For a laser wavelength of 1 um, the maximum resistivity of
asolid of ~2 nQm and the upper value for the fraction of the
laser energy transferred to the electrons of 0.5, Eq. (36)
gives a lower value on the magnetic inhibition time of
225 fs. Current limitation will occur if the laser pulse
duration exceeds this value. The actual value is likely to be
somewhat lower because the magnetic field can focus the
beam, reducing the radius, and hence the magnetic inhibi-
tion time, as described by Bennett (1933, 1955). This will
occur when the net current exceeds the Bennett current
(Eq. (15)), which is typically lower than the current limit.
These estimates apply in the solid, but the electrons are
generated at or below the critical density, where the skin
depth equals the laser wavelength, which would not give
sufficient current neutralization. However, the plasma den-
sity will increase toward the solid, so current limitation will
only occur before the beam enters the solid if the density
gradient scale length beyond the critical density is large
enough. Egs. (34) and (35) indicate that the radius that
contains a current equal to the current limit will be of the
order of the laser wavelength, and this determines the dis-
tance over which current limitation occurs. The exact value,
however, will depend on the current profile, which will be
modified by the magnetic field. Therefore, it can only be
concluded that beyond some undetermined pre-pulse level
or pulse duration the current entering the solid will be limited.
When current limitation occurs it will lead to a significant
fraction of the electrons being trapped within a distance less
than the spot radius, where Alfvén filamentation would be
expected to occur. A certain fraction of the beam will always
be able to propagate, since the current limit only applies
after a certain time, and when current limitation does set in
the high energy component of the typically broad energy
spectra produced in laser-solid interactions will also be able
to propagate. This will have important consequences for
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numerous aspects of interest in laser-solid interactions, such
as target heating, Ka emission, bremsstrahlung emission,
and proton acceleration. Current limitation could also have
important consequences for the laser interaction, since
electrons being returned to the source implies electrons
re-interacting with the laser.

2.2. Fast ignition

The fast ignition proposal of Tabak et al. (1994) requires a
minimum deposited power and a maximum electron energy
so that the electrons stop within the core, so there exists a
minimum ignition current J;,. Atzeni (1999) gives the igni-
tion power to be 2.65 ' PW, where p is the Deuterium-
Tritium (DT) fuel density in units of 100 gem ™3, which is
10° kgm ™3 in SI units. Tabak et al. (1994) estimated the
maximum electron energy to be 1 MeV, so I will define
(K)=(K)/10%. For these values Eq. (33) gives

Jig 1 1v 1
— :7.8X104—j—Tz, (37)
Jo fu b ¢ (K)

where fy; is the fraction of the electron energy that provides
useful heating. From Eq. (37) it can be seen that the ignition
current is certainly much greater than the current limit. The
maximum initial current neutralization provided by the plasma
(Eq. (20)) gives a minimum plasma electron density for the
net current to be less than J of

2
N = 5.0 X 103! Lo L
fi ¢ (K)*

(38)

An electron number density of 5 X 103! m ™3 corresponds to
a DT density of p = 2.1, so the beam cannot propagate
through the corona.

In Davies (2004), I showed that the subsequent, slower,
decay of the current neutralization due to collisions of the
plasma electrons (Eq. (32)) will also be less than the required
pulse duration for fast ignition, and discussed means of
avoiding current limitation. The only practical means appear
to be spherical irradiation or increasing the mean energy at
the cost of a reduction in efficiency (fy). The obvious
solution of raising the current limit by using the ring profile
(Egs. (16) and (31)) is not practical because the width of the
ring would have to be less than 2.25f,,{K }*>c/v nm, which is
much less than practical laser wavelengths. It can also be
seen from Eqs. (34) and (35) that increasing the current limit
by a factor of R/A would be insufficient to avoid the current
limit for any parameters of interest.

Alternatively, current limitation could be used to achieve
ignition, taking advantage of the increase in energy deposi-
tion that will occur in the region where electrons are being
returned to the source. This energy deposition could occur
due to collisions or due to the excitation of any of a wide
variety of plasma instabilities, the exact mechanism is irrel-
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evant. This region will have an extent somewhat less than
the beam radius, so the laser would have to be absorbed at
the edge of the region to be heated. It has been demonstrated
that relying on the laser ponderomotive force to bore a hole
to the core will not work. To give a critical density equal to
that of the core requires a laser wavelength of 655! nm in
the non-relativistic case, which would certainly apply for
the intensities required for fast ignition at this wavelength.
Unfortunately, such a short laser wavelength is not currently
practical. The laser might be brought sufficiently close to
the core in schemes using cones, such as those discussed by
Norreys et al. (2000), depending on the position of the core
after compression and the thickness of the cone required.
However, this may not be necessary, because Hain and
Mulser (2001) found that ignition can be achieved when a
total energy somewhat less than that given by Atzeni is
deposited in the corona, provided that the energy does not go
into an electron beam. It has been concluded that this
scheme would require some form of anomalous electron
stopping, which is precisely what current limitation provides.

I will now try to estimate how efficient the use of current
limitation could be, in other words, the value of fz, which is
the crucial parameter for any ignition scheme. I will ignore
the energy of the electrons that propagate before current
limitation occurs and of those in the direct beam, and
consider only the effect of the electron energy distribution.
In the strongly relativistic case, the energy limit is typically
twice the Alfvén limit (Section 1.6), which indicates that if
the energy limit is reached, electrons with an energy less
than twice the mean energy will be turned back. For an
exponential energy distribution, which in the strongly rela-
tivistic limit is a one-dimensional Maxwellian, this would
be 86% of the total electron energy. For a strongly relativ-
istic, three-dimensional Maxwellian it would be 60%. The
energy deposition would be expected to fall sharply away
from the laser, but ignition requires a minimum volume to
be heated to a minimum temperature, so this will lower the
efficiency. Assuming that this reduction amounts to a factor
of two gives fy ~ 0.4. Combining this with f; = 0.5, Atzeni’s
energy, power and intensity ignition thresholds become
laser values of 0.7p 85 MJ, 135! PW,and 1.2 X 102529
Wm ™2, respectively. The laser wavelength would merely
have to be much less than the spot radius, which is given by
58.7p %97 ym according to Atzeni’s criteria. For the com-
monly quoted fuel density of p = 3 this gives a laser energy
of 92 kJ, a power of 4.3 PW and an intensity of 3.4 X 10
Wm ™2, which corresponds to a pulse duration of 21 ps and a
spot radius of 20 um, so a wavelength of 1 um should be
adequate, although a shorter wavelength would be better.
These values are within reach of current technology.

2.3. Conclusions

The interaction of even relatively low powered lasers with
an over dense plasma, which occurs in laser-solid inter-
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actions and in the proposed fast ignition scheme, generates
an electron beam with a current that greatly exceeds the
Alfvén limit. If the electron beam does not rapidly enter a
plasma with a density much greater than the critical density
or if the pulse duration is long enough then the net current
will exceed the Alfvén limit, and current limitation will
occur. This is certainly the case in the fast ignition proposal,
requiring the scheme to be rethought. One alternative is to
use current limitation to ensure sufficient energy deposition.
In this scheme the laser must be absorbed at the edge of the
region to be heated, which could be achieved by the use of a
cone or simply as a result of coronal ignition.

Laser-solid interactions provide one of the few means of
generating electron beams with currents that greatly exceed
the Alfvén limit, and thus of confirming Alfvén’s predic-
tions. If the interaction is considered in terms of the conver-
sion of photons into electrons then the reason for this is
obvious: there is no limit on the current or density of
photons because they have no charge.
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