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We consider freely decaying, anisotropic, statistically axisymmetric, Saffman
turbulence in which E(k→ 0) ∼ k2, where E is the energy spectrum and k the
wavenumber. We note that such turbulence possesses two statistical invariants which
are related to the form of the spectral tensor Φij(k) at small k. These are M‖ =Φ‖(k‖ =
0, k⊥→ 0) and M⊥ = 2Φ⊥(k‖ = 0, k⊥→ 0), where the subscripts ‖ and ⊥ indicate
quantities parallel and perpendicular to the axis of symmetry. Since M‖ ∼ u2

‖`
2
⊥`‖ and

M⊥ ∼ u2
⊥`

2
⊥`‖, u and ` being integral scales, self-similarity of the large scales (when it

applies) demands u2
‖`

2
⊥`‖ = constant and u2

⊥`
2
⊥`‖ = constant. This, in turn, requires that

u2
‖/u

2
⊥ is constant, contrary to the popular belief that freely decaying turbulence should

exhibit a ‘return to isotropy’. Numerical simulations performed in large periodic
domains, with different types and levels of initial anisotropy, confirm that M‖ and
M⊥ are indeed invariants and that, in the fully developed state, u2

‖/u
2
⊥ = constant.

Somewhat surprisingly, the same simulations also show that `‖/`⊥ is more or less
constant in the fully developed state. Simple theoretical arguments are given which
suggest that, when u2

‖/u
2
⊥ and `‖/`⊥ are both constant, the integral scales should

evolve as u2
⊥ ∼ u2

‖ ∼ t−6/5 and `⊥ ∼ `‖ ∼ t2/5, irrespective of the level of anisotropy and
of the presence of helicity. These decay laws, first proposed by Saffman (Phys. Fluids,
vol. 10, 1967, p. 1349), are verified by the numerical simulations.

Key words: homogeneous turbulence, turbulence simulation, turbulence theory

1. Introduction: Saffman’s analysis and its experimental verification
Saffman established the key properties of freely decaying, homogeneous,

incompressible turbulence in which the energy spectrum, E(k), takes the form
E(k→ 0) ∼ k2, k being the wavenumber (Saffman 1967a). This is important as
E(k→ 0)∼ k2 is thought to be one of two canonical cases in homogeneous turbulence,
the other being E(k→ 0) ∼ k4, as discussed in Batchelor & Proudman (1956). (See
also Krogstad & Davidson 2010; Davidson 2009, 2011, who discuss the properties
of E ∼ k2 versus E ∼ k4 turbulence, as well as why these two particular spectra are
the most likely to be observed in practice.) The early wind tunnel experiments of
Bennett & Corssin (1978), as well as the numerical simulations of Ishida, Davidson
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& Kaneda (2006), show clear evidence of E(k→ 0) ∼ k4 turbulence, while the recent
wind tunnel experiments of Krogstad & Davidson (2010) provide the first clear-cut
experimental evidence of E(k→ 0) ∼ k2 turbulence. These two classes of flow exhibit
quite different energy decay characteristics and which type is observed depends on
the way in which the turbulence is initiated. As noted by Saffman (1967a) (see also
Davidson 2009, 2010; Krogstad & Davidson 2010), if the turbulent eddies possess a
significant amount of linear impulse at t = 0, then the subsequent flow has an E ∼ k2

energy spectrum, whereas a lack of linear impulse in the initial condition leads to
E ∼ k4. In this paper we focus on Saffman turbulence, in which E(k→ 0) ∼ k2 and a
typical eddy possesses a significant amount of linear impulse, (1/2)

∫
x× ω dV , where

ω =∇ × u is the vorticity field.
The case of isotropic Saffman turbulence is well documented. Here we have

E(k→ 0)= Lk2

4π2 + O(k4), L=
∫
〈u ·u′〉 dr, (1.1)

where L is known as Saffman’s integral and 〈u ·u′〉 = 〈u(x) ·u(x+ r)〉. Noting that

〈u ·u′〉 = 1
r2

∂

∂r
(r3u2f ), (1.2)

where u2 = (1/3)〈u2〉 and f (r) is the usual longitudinal correlation function, defined by
u2f (r)= 〈ux(x)ux(x+ rêx〉, we have

L= 4π [r3u2f ]∞, (1.3)

where the subscript ∞ indicates r→∞. Thus f∞ ∼ r−3 in Saffman turbulence.
Saffman also showed that L is an invariant of the motion. This follows directly from

the Kármán–Howarth equation

∂

∂t
〈u ·u′〉 = 1

r2

∂

∂r

1
r

∂

∂r
(r4u3K)+ 2ν∇2〈u ·u′〉 (1.4)

and the observation that the longitudinal triple correlation, u3K(r)= 〈u2
x(x)ux(x+ rêx)〉,

decays with separation as K∞ 6 O(r−4) in isotropic turbulence (Batchelor & Proudman
1956). The invariance of L, combined with self-similarity of the large scales, then
yields

u2`3 = constant, (1.5)

where ` is a suitably defined integral scale. This may be combined with the empirical
but well-established relationship

du2

dt
=−A

u3

`
, A≈ constant, (1.6)

to yield the decay laws

u2

u2
0

=
[

1+ 5A

6

(
u0t

`0

)]−6/5

, (1.7)

`

`0
=
[

1+ 5A

6

(
u0t

`0

)]2/5

, (1.8)

where u0 and `0 are the initial values of u and ` (Saffman 1967b). Expression
(1.5) was confirmed in the grid turbulence experiments of Krogstad & Davidson
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(2010), though the corresponding energy decay exponent in u2 ∼ t−m was found to be
fractionally smaller than m = 6/5, which was traced back to a slow temporal decline
in the coefficient A. The reason for the slow decline of A in these experiments is not
yet understood, though it may be linked to the slight inhomogeneity of the turbulence,
or else to the slow decline in Reynolds number as the turbulence decays. Expressions
(1.5)–(1.8) have yet to be confirmed in direct numerical simulations (though see the
large-eddy simulations of Chasnov 1995), and this constitutes one of the purposes of
this paper, the other being to explore the effects of anisotropy.

The anisotropic case was explored in depth by Saffman (1967a). Here we find that
the spectral tensor (the transform of 〈uiu′j〉 = 〈ui(x)uj(x+ r)〉) takes the form

Φij(k→ 0)=Mαβ

{
δiα − kikα

k2

}{
δjβ − kjkβ

k2

}
+ O(k), (1.9)

where Mαβ is symmetric, independent of k, and related to the second moment of the
two-point vorticity correlation, 〈ωiω

′
j〉, by

(2π)3 Mij = 1
2
Ωij − 1

4
δijΩkk, Ωij =

∫
r2〈ωiω

′
j〉 dr, (1.10)

or equivalently,

Ωij = (2π)3[2Mij − 2δijMkk]. (1.11)

The corresponding energy spectrum is E(k)= (4/3)πMααk2+O(k3), and the long-range
velocity correlations corresponding to (1.9) turn out to be

〈uiu
′
j〉∞ =−Mαβπ

2

{
δiα∇2 − ∂2

∂ri∂rα

}{
δjβ∇2 − ∂2

∂rj∂rβ

}
r, (1.12)

where r = |r| = |x′ − x|. Hence 〈uiu′j〉∞ ∼ O(r−3), which is consistent with (1.3). The
source of these r−3 tails in the two-point velocity correlations is the Biot-Savart
law, in which an eddy with finite linear impulse induces irrotational far-field velocity
fluctuations of order r−3 (see, for example, Davidson 2004, p. 633). This leads directly
to the long-range correlations 〈uiu′j〉∞ ∼ O(r−3) and 〈uiuju′k〉∞ ∼ O(r−3), except in
isotropic turbulence, where symmetry kills the leading-order term in 〈uiuju′k〉∞, leaving
〈uiuju′k〉∞ ∼ O(r−4). These far-field fluctuations are, however, irrotational and so do
not contribute to 〈ωiω

′
j〉∞, which are of order 〈ωiω

′
j〉∞ 6 O(r−6), rather than the

〈ωiω
′
j〉∞ = O(r−5) scaling that (1.12) might imply. It follows that the Ωij defined

by (1.10) are absolutely convergent, and by implication the Mij are well defined. By
contrast, the integrals

Lij = lim
V→∞

∫
V
〈uiu

′
j〉 dr (1.13)

are convergent (i.e. independent of the size of V), but only conditionally convergent,
since their values depend on the shape of the volume whose surface recedes to infinity.
Note that, since u is solenoidal, we may rewrite Lij as a surface integral,

Lij = lim
V→∞

∫
V
〈uiu

′
j〉 dr= lim

S→∞

∮
〈uiu

′
k〉∞rj dSk, (1.14)

dS being the surface element. It follows that the integrals Lij are uniquely determined
by 〈uiu′j〉∞, and hence by Mij. For the particular case of a spherical volume,
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Saffman (1967a) established that

Lij = (2π)3[ 7
15 Mij + 1

15δijMkk] = 7
30Ωij − 2

15δijΩkk. (1.15)

Saffman also suggested that Lij, and by implication Mij and Ωij, are invariants of
the motion. Although his arguments are non-rigorous, because they rely on a loose
application of the central-limit theorem, they are nevertheless highly suggestive, and
indeed Davidson (2010) provides an independent proof of Lij = constant.

In summary, then, there is a well-developed theory of freely decaying Saffman
turbulence, and this is important because it constitutes one of the two canonical
cases in homogeneous turbulence. Some predictions, such as u2 ∼ t−6/5 in isotropic
turbulence, have been verified by experiment. Others, such as Lij = constant in
anisotropic turbulence, have not been verified. The purpose of this paper is to put
the various predictions to the test, and to investigate the influence of anisotropy on
the decay of energy. For simplicity, we restrict ourselves to statistically axisymmetric
turbulence.

2. Statistically axisymmetric Saffman turbulence
In this section we focus on statistically axisymmetric turbulence, expanding on the

discussion in Davidson (2010). We take the axis of symmetry to be the z-axis and use
subscripts ‖ and ⊥ to indicate quantities parallel and perpendicular to the symmetry
axis. Thus, for example,

Φ‖ =Φzz, Φ⊥ =Φxx +Φyy, L‖ = Lzz, L⊥ = Lxx + Lyy,

and so on. Now in axisymmetric turbulence (which includes reflectional symmetry) Φij

takes the form

Φij = (F + G)[k2δij − kikj] − G[k2
‖δij + k2λiλj − k‖(kiλj + kjλi)], (2.1)

where λ is a unit vector parallel to the symmetry axis and F and G are even functions
of k = |k| and k‖. Thus, for example, if i 6= j then

Φij(k‖ = 0)=−(F + G)kikj. (2.2)

Comparing (2.2) with (1.9) we see that Mij = 0 if i 6= j, and its only non-zero
components are M‖ and Mxx =Myy = (1/2)M⊥. Similarly, (1.11) tells us that Ωij = 0 if
i 6= j, and so (1.10) and (1.11) reduce to

(2π)3 M‖ = 1
4 [Ω‖ −Ω⊥], (2π)3 M⊥ =− 1

2Ω‖, (2.3)

and

Ω⊥ =− (2π)3[2M⊥ + 4M‖], (2.4)

where M‖ and M⊥, or equivalently Ω‖ and Ω⊥, are the invariants of axisymmetric
Saffman turbulence. The most general form of Φij(k→ 0) is then

Φ‖ =M‖
k4
⊥

k4
+ 1

2
M⊥

k2
z k2
⊥

k4
+ O(k), (2.5)

Φ⊥ =M‖
k2

z k2
⊥

k4
+ 1

2
M⊥

[
1+ k4

z

k4

]
+ O(k), (2.6)

Φxy =M‖
kxkyk2

z

k4
− 1

2
M⊥

kxky

k2

[
1+ k2

z

k2

]
+ O(k), (2.7)
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Φxz =−M‖
kxkzk2

⊥
k4
− 1

2
M⊥

kxk3
z

k4
+ O(k), (2.8)

Φyz =−M‖
kykzk2

⊥
k4
− 1

2
M⊥

kyk3
z

k4
+ O(k), (2.9)

where k2
⊥ = k2 − k2

z . It follows that (Davidson 2010)

M‖ =Φ‖(kz = 0, k⊥→ 0)= (2π)−3 lim
k⊥→0

∫
e−jk⊥· r⊥〈u‖u′‖〉 dr= constant, (2.10a)

Φ‖(k⊥ = 0, kz→ 0)= (2π)−3 lim
kz→0

∫
e−jkzrz〈u‖u′‖〉 dr= 0, (2.10b)

1
2

M⊥ =Φ⊥(kz = 0, k⊥→ 0)= (2π)−3 lim
k⊥→0

∫
e−jk⊥· r⊥〈u⊥ ·u′⊥〉 dr= constant,(2.11a)

and

M⊥ =Φ⊥(k⊥ = 0, kz→ 0)= (2π)−3 lim
kz→0

∫
e−jkzrz〈u⊥ ·u′⊥〉 dr= constant, (2.11b)

which provide alternative definitions of M‖ and M⊥ to (2.3). Note that these
conservation laws also apply to the less restrictive case of helical axisymmetric
turbulence which lacks reflectional symmetry, as shown in Davidson (2010),
Appendix B. These key conservation laws will be verified in our numerical
simulations.

The far-field correlations corresponding to (2.5)–(2.9) are, from (1.12),

〈uzu
′
z〉∞ =−π2

[
M‖∇4

⊥(r)+ 1
2 M⊥∇2

⊥∇2
‖ (r)

]
, (2.12)

〈u⊥ ·u′⊥〉∞ =−π2
[
M‖∇2

⊥∇2
‖ (r)+ 1

2 M⊥∇4
‖ (r)

]
, (2.13)

〈ur⊥u′z〉∞= π2
[
M‖∇2

⊥ + 1
2 M⊥∇2

‖
] ∂2r

∂rz∂r⊥
, (2.14)

where

∇4
‖ (r)=−

3
r3
+ 3

r2
z

r5
+ 15

r2
z r2
⊥

r7
, ∇4

⊥(r)=
1
r3
− 9

r2
z

r5
+ 15

r2
z r2
⊥

r7
, (2.15)

∇2
‖∇2
⊥(r)=

1
r3
+ 3

r2
z

r5
− 15

r2
z r2
⊥

r7
, (2.16)

and

∇2
‖
∂2r

∂rz∂r⊥
=−6

rzr⊥
r5
+ 15

rzr3
⊥

r7
, ∇2

⊥
∂2r

∂rz∂r⊥
=−3

rzr⊥
r5
+ 15

r3
z r⊥
r7
. (2.17)

(Note that we have used ∇4
‖ (r) + 2∇2

‖∇2
⊥(r) + ∇4

⊥(r) = 0, which follows from
∇4(r)= 0.) Combining (2.12)–(2.17) with (1.14) allows us to calculate the integrals L‖
and L⊥ in terms of the invariants M‖ and M⊥. Of course, the result depends on the
shape of the surface used in (1.14). For a spherical control surface, (1.15) tells us that

L‖ = (2π)3
[

8
15 M‖ + 1

15 M⊥
]
, L⊥ = (2π)3

[
9
15 M⊥ + 2

15 M‖
]
, (2.18)

from which

(2π)3 M‖ = 27
14 L‖ − 3

14 L⊥, (2π)3 M⊥ = 12
7 L⊥ − 3

7 L‖. (2.19)
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The case of a large cylindrical control surface, of radius R and length 2H, is somewhat
more complicated. Here (1.14) yields

L‖ = 4πH
∫ R

0

[
r⊥ 〈uzu

′
z〉∞
]

rz=H
dr⊥ + 4πR

∫ H

0

[
rz 〈ur⊥u′z〉∞

]
r⊥=R

drz, (2.20)

L⊥ = 4π
∫ R

0

[
r2
⊥ 〈ur⊥u′z〉∞

]
rz=H

dr⊥ + 4πR2

∫ H

0

[
〈ur⊥u′r⊥〉∞

]
r⊥=R

drz, (2.21)

and on substituting for 〈uiu′j〉∞ using (2.12)–(2.17) we find, after some algebra,

L‖ = (2π)3 M‖
1+ 1

2 (R/H)
2

[1+ (R/H)2]3/2
+ (2π)3 M⊥

1
4 (R/H)

2

[1+ (R/H)2]3/2
, (2.22)

L⊥ = (2π)3 M⊥

{
1−

1
2 + 3

4 (R/H)
2

[1+ (R/H)2]3/2
}
+ (2π)3 M‖

1
2 (R/H)

2

[1+ (R/H)2]3/2
. (2.23)

These results confirm that L‖ and L⊥ are convergent, in the sense that they are
independent of the size of V , but only conditionally so, since they depend on the ratio
R/H.

Note that for H/R→∞ we obtain L‖ = (2π)3 M‖ and L⊥ = (2π)3(1/2)M⊥, while
the limit R/H→∞ yields L‖ = 0 and L⊥ = (2π)3 M⊥. Comparing these results with
(2.10) and (2.11) we see that our dynamical invariants are

L‖(H/R→∞) = (2π)3 M‖ = lim
k⊥→0

∫
e−jk⊥· r⊥〈u‖u′‖〉 dr= constant, (2.24)

L‖(R/H→∞) = lim
kz→0

∫
e−jkzrz〈u‖u′‖〉 dr= 0, (2.25)

L⊥(H/R→∞)= (2π)3 1
2

M⊥ = lim
k⊥→0

∫
e−jk⊥· r⊥〈u⊥ ·u′⊥〉 dr= constant, (2.26)

and

L⊥(R/H→∞)= (2π)3 M⊥ = lim
kz→0

∫
e−jkzrz〈u⊥ ·u′⊥〉 dr= constant. (2.27)

Note also that, in all cases, L‖ = (2π)3Φ‖(k→ 0) and L⊥ = (2π)3Φ⊥(k→ 0), with
H/R→∞ corresponding to kz = 0 and R/H→∞ to k⊥ = 0.

3. Self-similarity of the large scales and possible decay laws
We now define the integral scales for axisymmetric turbulence. We introduce the

integral-scale velocities in the obvious way, as u‖ = 〈u2
‖〉1/2 and u⊥ = 〈(1/2)u2

⊥〉1/2.
There is, however, more ambiguity in the definition of the integral length scales. Some
authors use

`‖ = 1
〈u2
⊥〉
∫
〈u⊥(x) ·u⊥(x+ rêz)〉 dr, `⊥ = 1

〈u2
⊥〉
∫
〈u⊥(x) ·u⊥(x+ rêx)〉 dr, (3.1)

while others prefer definitions in terms of longitudinal velocity correlation functions:

`‖ = `zz = 1
u2

z

∫
〈uz(x)uz(x+ rêz)〉 dr, `⊥ = 1

2(`xx + `yy), (3.2)
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where

`xx = 1
u2

x

∫
〈ux(x)ux(x+ rêx)〉 dr, `yy = 1

u2
y

∫
〈uy(x)uy(x+ rêy)〉 dr. (3.3)

Both (3.1) and (3.2) are equivalent (differing only by a constant factor) when the large
scales evolve in a self-similar way, and we shall consider both definitions. Definition
(3.2) has the advantage that it corresponds to the usual definition used in isotropic
turbulence.

If the large eddies are self-similar when normalized by these integral scales, which
is often a good approximation in fully developed, freely decaying turbulence, then
(2.24) and (2.26) demand (Davidson 2010)

u2
‖`

2
⊥`‖ = constant, u2

⊥`
2
⊥`‖ = constant (fully developed turbulence), (3.4)

from which

u2
‖/u

2
⊥ = constant (fully developed turbulence). (3.5)

Evidently, when the large scales are self-similar, any anisotropy which is present in
the initial condition will persist throughout the decay, as suggested by Chasnov (1995).
This is an interesting observation as it contradicts the widely held belief that freely
decaying, homogeneous turbulence should exhibit a ‘return to isotropy’. However,
Townsend (1976) notes that any initial anisotropy in grid turbulence is very persistent,
while the grid turbulence experiments of Krogstad & Davidson (2010) and Lavoie,
Djenidi & Antonia (2007) show no return to isotropy. Moreover, persistent anisotropy
of u2

‖/u
2
⊥ in axisymentric turbulence is noted in Kassinos et al. (2001). So (3.5) is not

necessarily inconsistent with the experimental evidence. In any event, perhaps the best
way to probe the validity of (3.5) is through direct numerical simulations.

We now consider the rate of energy decay under the assumption that (3.5) is correct.
Since u2

‖/u
2
⊥ = constant, we need only consider one component of energy and we

choose u2
⊥. Under the usual assumption that the flux of energy to small scales is

controlled by the large scales, the rate of decay of u2
⊥ will be some unknown function

of u‖, u⊥, `‖ and `⊥. Dimensional analysis, plus the fact that u2
‖/u

2
⊥ = constant, then

gives

du2
⊥

dt
=−A(`‖/`⊥)

u3
⊥
`⊥
, (3.6)

where A is a dimensionless function of `‖/`⊥. Now certain, but by no means all,
types of fully developed axisymmetric turbulence satisfy u⊥/`⊥ ∼ u‖/`‖ as a result of
continuity. This is true, for example, of flows in which `‖/`⊥ � 1 and u2

‖/u
2
⊥ � 1,

i.e. layers of almost horizontal turbulence, like the pancake eddies seen in strongly
stratified turbulence. In such cases the constraint u2

‖/u
2
⊥ = constant demands that

`‖/`⊥ = constant (in fully developed turbulence), and so (3.4) and (3.6) simplify to

u2
⊥`

3
⊥ = constant,

du2
⊥

dt
=−A

u3
⊥
`⊥
, A≈ constant, (3.7)

which is reminiscent of isotropic turbulence. Indeed, integration of (3.7) results in the
isotropic-like decay laws

u2
⊥ ∼ u2

‖ ∼ t−6/5, `⊥ ∼ `‖ ∼ t2/5, (3.8)
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at least for fully developed turbulence. However, other types of axisymmetric
turbulence are not constrained by u⊥/`⊥ ∼ u‖/`‖ and in those cases (3.4) and (3.6)
remain unclosed and we have no means of predicting the energy decay exponent m
in u2

‖ ∼ t−m and u2
⊥ ∼ t−m. One of the purposes of our numerical experiments is to

investigate the effect of anisotropy on the exponent m.

4. The numerical evidence
In the numerical experiments which follow we put the key theoretical predictions,

expressions (2.10) and (2.11), to the test. We also seek answers to the following
questions.

(i) Does self-similarity of the large scales hold in fully developed, axisymmetric
Saffman turbulence?

(ii) If the answer to (i) is yes, is the anisotropy persistent throughout the fully
developed stages of decay, as suggested by (3.5)?

(iii) Do we recover the energy decay law (1.7) in the case of fully developed isotropic
turbulence?

(iv) How do the energy decay exponents m‖ and m⊥ in u2
‖ ∼ t−m‖ and u2

⊥ ∼ t−m⊥ vary
with the anisotropy, `‖/`⊥ and u2

‖/u
2
⊥, and do we recover (3.8) in some cases?

(v) How are these results influenced by helicity?

Note that by ‘fully developed turbulence’ we mean turbulence that has largely
forgotten its initial conditions, which in any event are somewhat unphysical (i.e.
random phases of the Fourier modes).

The simulations reported here employ the spectral code described in Ishida et al.
(2006). The boundary conditions are periodic and the random initial conditions were
chosen from a Gaussian ensemble. The prescribed initial energy spectrum has the
form E ∼ k2 exp[−k2/k2

p], where kp is the wavenumber at which E(k, t = 0) peaks. The
phase-shift method was used for de-aliasing, in which the maximum wavenumber, kmax ,
of the retained Fourier modes is ∼21/2N/3. The minimum wavenumber is kmin = 1 and
time is normalized by the initial eddy turnover time, defined as T = 1/ 〈u2〉1/20 kp.

The details of the various simulations are listed in table 1. Here N is the number of
Fourier modes in each direction, η is the Kolmogorov scale, and Re⊥ = u⊥`⊥/ν with
`⊥ based on definition (3.1). Note that Re‖ = u‖`‖/ν at t = 0, also with `‖ based on
definition (3.1), is substantially larger than Re⊥ = u⊥`⊥/ν in most of the runs, lying
in the range Re‖(t = 0) = 130–240 for runs 1–4. Note also that the initial level of
anisotropy is controlled by the value of M‖/M⊥, and the manner in which the initial
anisotropy is imposed is discussed in the Appendix.

The logic of table 1 is as follows. The first five runs are designed to explore the
influence of the initial level of anisotropy. They keep kp constant and Re⊥(t = 0)
roughly constant (except for run 5), while the initial anisotropy is varied from
u2
‖/u

2
⊥ = 1 in run 1 through to u2

‖/u
2
⊥ = 6.2 in run 5. In all five cases `‖/`⊥ > 1.

Next, in run 6, which differs from run 3 only in the value of Re⊥(t = 0), we explore
the possible influence Reynolds number. (In the isotropic decay simulations of Ishida
et al. (2006), it was found that those runs in which the initial value of Re was less
that 100 exhibited some dependence of u2(t) on Re, so we cannot rule out a priori the
possibility of viscous effects acting directly on the large scales.) Similarly, in run 7,
which differs from run 6 only in the value of kp, we consider the possible influence of
the periodic boundary conditions. Next, in runs 8–12, we explore the consequences of
changing the precise form of the initial anisotropy. In particular, in run 8 we impose
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u2
‖/u

2
⊥ = 0.4, whereas u2

‖/u
2
⊥ > 1 in first five cases, while in run 9 we change the shape

of the initial energy spectrum. Run 10 is a variant of run 5, in which the phases
of the Fourier modes are randomized at t/T = 40, and in runs 11 and 12 we try to
mimic the effects of an axisymmetric contraction or expansion on isotropic turbulence
by taking u2

‖/u
2
⊥ < 1 and `‖/`⊥ > 1 at t = 0 in run 11 (corresponding to the effect of

a contraction) and u2
‖/u

2
⊥ > 1 and `‖/`⊥ < 1 at t = 0 in run 12 (corresponding to the

effect of an expansion). Finally, in run 13, we explore the possible influence of helicity
on the decay by repeating run 3 but with a helical initial condition.

Let us start with runs 1–5, the results o which are displayed in figures 1–4. Figure 1
shows the temporal variation of energy, integral length scales, and anisotropy in runs
1–5, with time scaled by the initial eddy turnover time, T . Note that `‖ and `⊥ are
defined by (3.1), except in figure 1(g) where definition (3.2) is used. It is immediately
apparent that there is a rapid transient of around 20 initial turnover times. During
this initial transient the rate of dissipation of energy is modest because the smallest
length scales are not fully excited. Moreover, there is a rapid drop in the level of
anisotropy as measured by u2

‖/u
2
⊥. This is contrary to (3.5) and suggests that the large

scales are not self-similar during the initial transient. However, after this transient we
observe some persistent residual anisotropy in which u2

‖/u
2
⊥ is more or less constant,

as predicted by (3.5), which is consistent with self-similarity of the large scales and
contradicts the notion of a ‘return to isotropy’. More remarkably, `‖/`⊥ is also more
or less constant after the transient (though there is a slight variation with time). This is
true whatever the initial level of anisotropy and whether `‖ and `⊥ are defined by (3.1)
or (3.2). Given that `‖/`⊥ is more or less constant, we might expect (3.7) to apply,
at least approximately, to these runs, so that Saffman’s theory predicts u2

⊥ ∼ u2
‖ ∼ t−6/5

and `∼⊥`‖ ∼ t2/5 (provided A in (3.7) is reasonably constant), irrespective of the level
of anisotropy. Figure 1(a–d) tentatively suggests that these power laws are indeed
good approximations to the decay of fully developed turbulence. To put this to the
test, figure 1(a–d) is replotted in compensated form in figure 2. While there is some
departure from u2

⊥ ∼ t−6/5, presumably because A in (3.7) is not strictly constant, the
`⊥ ∼ `‖ ∼ t2/5 and u2

‖ ∼ t−6/5 laws seems to be a good approximation. The primary
conclusion, then, is that the u2 ∼ t−6/5 decay law has wider application than simple
isotropic turbulence.

Figure 3 shows the temporal evolution of Φ⊥ and Φ‖ for runs 3 and 5. Similar
plots were obtained for runs 1, 2 and 4. Note in particular that (1/2)M⊥ = Φ⊥(kz =
0, k⊥→ 0), M⊥ = Φ⊥(k⊥ = 0, kz→ 0) and M‖ = Φ‖(kz = 0, k⊥→ 0) are all constant
during the decay, as predicted by (2.10) and (2.11). This provides direct confirmation
of Saffman’s theory. Finally figure 4 shows the temporal evolution of Re⊥ = u⊥`⊥/ν,
Re‖ = u‖`‖/ν and A(`‖/`⊥), the latter defined by (3.6), for runs 1–5. During the
initial transient A(`‖/`⊥) is small, reflecting the fact that the small scales are not fully
excited, but after this transient A remains reasonably constant, though there is some
variation which presumably accounts for the small departures from the u2

⊥ ∼ t−6/5

law evident in figure 2. The magnitude of A is reasonably insensitive to the level of
anisotropy.

Let us now turn to runs 6 and 7, which are designed to test the influence of
Re⊥(t = 0) and kp on the decay process. Figure 5 shows the variation of energy,
integral length scales and A(`‖/`⊥) in runs 3 and 6. These runs are identical except
for their initial values of Re⊥. As before, u‖, u⊥, `‖ and `⊥ are defined by (3.1), and
A(`‖/`⊥) by (3.6). It is clear that the value of Re⊥(t = 0) does not unduly influence the
decay process, since the two simulations yield very similar results. Similarly, figure 6
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FIGURE 1. The variation of energy, integral length scales and anisotropy in runs 1–5. `‖ and
`⊥ are defined by (3.1), except in (g) where (3.2) is used.
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FIGURE 2. The variation of energy and integral length scales in runs 1–5 as shown in
figure 1(a–d), but replotted in compensated form. `‖ and `⊥ are defined by (3.1).

compares runs 6 and 7, which are similar except for their values of kp. Once again,
the two runs yield similar results, and so we conclude that the computational domain
is sufficiently large, relative to `, for the effects of periodicity to be minimal. Figure 6
also shows plots of Φ⊥ and Φ‖ for run 7. As before, (1/2)M⊥ = Φ⊥(kz = 0, k⊥→ 0),
M⊥ = Φ⊥(k⊥ = 0, kz → 0) and M‖ = Φ‖(kz = 0, k⊥→ 0) are all constant during the
decay, consistent with Saffman’s theory.

Next we consider runs 8–12, which examine the influence of the precise form of
the initial anisotropy. The results of runs 4, 8 and 9 are compared in figure 7. Recall
that runs 4 and 9 are similar, except for the shape of E(k, t = 0), while run 8 differs
from the other simulations in that u2

‖/u
2
⊥ < 1, so that the excess energy is now in the

horizontal plane. The results for simulations 4 and 9 are very close and so, as might
be expected, the precise shape of the initial energy spectrum is not very important,
except of course that we require E(k→ 0) ∼ k2. Moreover, it is clear that in all three
simulations the underlying behaviour is the same: during an initial transient there is a
rapid drop in anisotropy (as measured by u2

‖/u
2
⊥), after which the residual anisotropy

becomes locked in, with both u2
‖/u

2
⊥ and `‖/`⊥ more or less constant. Evidently

self-similarity does not hold during the transient, since u2
‖/u

2
⊥ is time dependent, but

self-similarity is achieved after ∼15 turnover times. In all cases the energy and integral
scales in the fully developed turbulence follow something close to Saffman’s laws,
u2
⊥ ∼ u2

‖ ∼ t−6/5 and `⊥ ∼ `‖ ∼ t2/5. The fact that the general behaviour is the same
in all three cases suggests that the initial transient is not an artifact of the particular
form of anisotropy that is imposed at t = 0. Rather, the initial transient is likely to
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FIGURE 3. (Colour online) Plots of Φ⊥ and Φ‖ for runs 3 (a–c) and 5 (d–f ). Note that
(1/2)M⊥ = Φ⊥(kz = 0, k⊥→ 0), M⊥ = Φ⊥(k⊥ = 0, kz → 0) and M‖ = Φ‖(kz = 0, k⊥→ 0)
are all constant during the decay.
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FIGURE 4. The temporal evolution of Re⊥ = u⊥`⊥/ν, Re‖ = u‖`‖/ν and A(`‖/`⊥) for runs
1–5. A(`‖/`⊥) is defined by (3.6).

be a consequence of the fact that the initial conditions all have random phases and
so the initial vorticity field has no structure, and it takes time for that structure to
emerge through the action of the Navier–Stokes equation. If this is indeed the reason,
we would not expect to see such a dramatic transient in, say, grid turbulence.

In order to test the hypothesis that randomizing the phases of the Fourier modes
can cause a non-self-similar transient, run 5 was halted at t/T = 40 and the phases
randomized. The result is shown in figure 8, labelled run 10. It can be seen that the
introduction of random phases at t/T = 40 initiates a rapid change in u2

‖/u
2
⊥, which

constitutes a non-self-similar transient. This then settles down after around 15–20
turnover times, at which point approximate self-similarity of the large scales is once
again established. As in the earlier runs, the change in `‖/`⊥ as a result of the
transient is less marked than the change in u2

‖/u
2
⊥. Unlike the earlier runs, however, the

anisotropy increases rather than decreases during the transient. Run 10 confirms that
self-similarity of the large scales is a feature of fully developed turbulence only.

The results of runs 11 and 12 are shown in figure 9. These try to mimic, in some
simplistic way, the effects of an axisymmetric contraction or expansion on isotropic
turbulence by taking u2

‖/u
2
⊥ < 1 and `‖/`⊥ > 1 at t = 0 in run 11 (mimicking a

contraction) and u2
‖/u

2
⊥ > 1 and `‖/`⊥ < 1 at t = 0 in run 12 (mimicking an expansion).

As in all previous cases, there is an initial transient after which the turbulence
settles down more or less to the u2

⊥ ∼ u2
‖ ∼ t−6/5 Saffman decay law. Also, as in

all previous cases, the transient has a pronounced effect on the ratio u2
‖/u

2
⊥, but less so
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FIGURE 5. The variation of energy, integral length scales and A(`‖/`⊥) in runs 3 and 6. `‖
and `⊥ are defined by (3.1) and A by (3.6).

on `‖/`⊥. Indeed the anisotropy, as measured by u2
‖/u

2
⊥, reverses in both cases during

the transient.
Finally, the results of run 13 are shown in figures 10 and 11, and compared with

those of run 3. The initial conditions in runs 3 and 13 are similar (see table 1),
except that helicity is introduced into run 13, as described in the Appendix. It
is clear from figure 10, which shows the evolution of the spectra in run 13, that
(1/2)M⊥ = Φ⊥(kz = 0, k⊥→ 0) and M‖ = Φ‖(kz = 0, k⊥→ 0) are both constant during
the decay, despite the presence of helicity, as predicted in Davidson (2010). Moreover,
figure 11 confirms that the presence of helicity does not fundamentally alter the
general behaviour, with both u2

‖/u
2
⊥ and `‖/`⊥ constant after a short transient, thus

yielding a u2
⊥ ∼ u2

‖ ∼ t−6/5 Saffman decay law.
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Run 6
Run 7
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FIGURE 6. (Colour online) (a–d) Comparison of runs 6 and 7, which are similar except
for their values of kp. (e–g) Plots of Φ⊥ and Φ‖ for run 7. As before, (1/2)M⊥ = Φ⊥(kz =
0, k⊥→ 0), M⊥ = Φ⊥(k⊥ = 0, kz→ 0) and M‖ = Φ‖(kz = 0, k⊥→ 0) are all constant during
the decay, as predicted by theory.
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Run 4
Run 8
Run 9
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FIGURE 7. A comparison of the results of runs 4, 8 and 9. `‖ and `⊥ are defined by (3.1),
except in (g) where the integral length scales are defined by (3.2), rather than (3.1).
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Run 5
Run 10
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FIGURE 8. A comparison of the results of runs 5 and 10. In (c) the integral length scales are
defined in terms of (3.2), rather than by (3.1).

5. Conclusions
We have considered freely decaying, statistically axisymmetric Saffman turbulence

subject to a range of initial levels of anisotropy. Our primary interest is in the fully
developed state which develops after a short transient. The numerical simulations
confirm that:

(i) M‖ and M⊥ are indeed invariants of the decay;

(ii) self-similarity of the large scales holds after the initial transient;

(iii) as a consequence of (i) and (ii), u2
‖`

2
⊥`‖, u2

⊥`
2
⊥`‖ and u2

‖/u
2
⊥ are all constant in the

fully developed state, and so there is no return to isotropy, irrespective of the level
of anisotropy;

(iv) `‖/`⊥ is also approximately constant in the fully developed state;

(v) as a consequence of (iii) and (iv), Saffman’s decay laws, u2
⊥ ∼ u2

‖ ∼ t−6/5 and
`⊥ ∼ `‖ ∼ t2/5, apply to fully developed, anisotropic turbulence.

Our findings appear to be insensitive to the initial level of anisotropy, to kp, to
Re⊥(t = 0), and to the presence of helicity, at least for the range of parameters
explored here.

Perhaps the most surprising finding is that `‖/`⊥ ≈ constant in the fully developed
state. This could not have been predicted in advance and is important since (3.6) then
demands u2

⊥ ∼ u2
‖ ∼ t−6/5, irrespective of the level of anisotropy.
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FIGURE 9. The results of runs 11 and 12. Note the reversal of the ratio u2
‖/u

2
⊥ in both cases

during the initial transient. The integral length scales are defined by (3.2).
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Appendix. The initial conditions used in the numerical simulations

The initial field u in all of the runs except run 13 may be written in the form,

u= u(i) + u(a), (A 1)
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FIGURE 10. (Colour online) Plots of the evolution of Φ⊥ and Φ‖ for run 13. Note that
(1/2)M⊥ = Φ⊥(kz = 0, k⊥→ 0) and M‖ = Φ‖(kz = 0, k⊥→ 0) are both constant during the
decay, despite the presence of helicity, as predicted in Davidson (2010).

where u(i) and u(a) are respectively statistically isotropic and anisotropic components,
whose Fourier transforms are given by

û(i)i (k)= Dij(k)ij(k), û(a)i (k)= Dij(k)aj(k), (A 2)

in which Dij(k) ≡ δij − kikj/k2. Here ij(k) and aj(k)(j = 1, 2, 3) are Gaussian random
numbers with zero mean and independent from each other. They satisfy

〈ii(k)ij(p)〉 = δijI(k)δ(k+ p), (A 3a)
〈a1(k)a1(p)〉 = 〈a2(k)a2(p)〉 = A(k)δ(k+ p), 〈a3(k)a3(p)〉 = B(k)δ(k+ p), (A 3b)

〈ai(k)aj(p)〉 = 0 if i 6= j, (A 3c)

as well as the reality conditions ii(k) = i∗i (−k), b(k) = b∗(−k). In these expressions
δ(k+ p)= 1 if k+ p= 0, and δ(k+ p)= 0 otherwise, * denotes the complex conjugate,
and I(k) is a function of only k = |k|, whereas A(k) and B(k) are functions of only k
and cos θ = k3/k.

The initial velocity correlation spectrum Φij(k)≡ 〈ûi(k)ûj(−k)〉 is then given by

Φij(k)≡ Dij(k)I(k)+ [Di1(k)Dj1(k)+ Di2(k)Dj2(k)]A(k)+ Di3(k)Dj3(k)B(k). (A 4)

If we put

I + A− (B− A)cos2θ = [F + G]k2, B− A=−Gk2, (A 5)
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FIGURE 11. A comparison of the results of run 3 (which has no helicity) with those of run 13
(which has finite helicity). The integral length scales are defined by (3.2).

or equivalently,

G= (A− B)/k2, F = [(I + A)− (B− A)cos2θ)]/k2 + (B− A)/k2, (A 6)

then (A 4) is shown to be equivalent to (2.1).
Suppose that an impulsive force parallel to the z-axis (x3-axis) is applied at t = 0

to a statistically isotropic field u(i). Then the velocity field u at t = 0+ is given by
(A 1)–(A 3) with A(k) = 0, provided that the force is statistically homogeneous and
axisymmetric with respect to the symmetry axis.

In runs 1–9, we put

I(k)= CIc(k, 1), A(k)= CAc(k, 1), B(k)= CBc(k, 1), (A 7)
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Run 1 Run 2 Run 3, 6, 7 Run 4, 9 Run 8 Run 5

CI 1 1 1 0.5 0.5 0.1
CA 0 0 0 0 1.5 0
CB 0 1.5 3 3 0 3

TABLE 2. Choice of CI , CA and CB for runs 1–9.

where

c(k, α)= 1

2π3/2k3
p

exp(−αk2/k2
p), (A 8)

for runs 1–8, whereas c(k, 1) in (A 7) is replaced by

c(k)=
{
γ 2 (k 6 kp)

γ 2k11/3
p k−11/3 (k > kp)

(A 9)

in run 9, in which γ is a normalization constant so chosen that the total fluctuating
kinetic energy is 0.5. The ratios of the three constants CI , CA and CB in (A 8)
determine the degree of the initial anisotropy, and were chosen as in table 2.

In runs 11–12, we put

I(k)= 0, A(k)= CAc(k, α), B(k)= CBc(k, β), (A 10)

where c(k, α) is given by (A 8), and

CA = 1/2, CB = 3/2, α = (2/9)2/3, β = 1, (A 11)

for run 11, and

CA = 3, CB = 3/2, α = 42/3, β = 1, (A 12)

for run 12. The initial fields of runs 11 and 12 satisfy u2
‖/u

2
⊥〈1, `‖/`⊥〉1, and

u2
‖/u

2
⊥ > 1, `‖/`⊥ < 1, respectively.

The initial velocity field of run 13 is generated by taking the vector product of the
initial velocity field of run 3:

û(k)× ik/k (A 13)

in the wave vector space, where i is the imaginary unit.
Note that (A 4) with (A 7) gives

Φii(k)=
[

2CI + CA

(
2− k2

1 + k2
2

k2

)
+ CB

(
1− k2

3

k2

)]
c(k, 1). (A 14)

The invariants Mij, M‖ and M⊥ in (1.9) and (2.3) are then given by

Mij/c(0, 1)= (CI + CB)δi3δj3 + (CI + CA)(δi1δj1 + δi2δj2), (A 15)
M‖/c(0, 1)= CI + CB, M⊥/c(0, 1)= 2CA + 2CI, (A 16)

at t = 0.
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