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In this paper, we consider the straining flow of a weakly interacting polymer–surfactant

solution below a free surface, with the bulk surfactant concentration above the critical

micelle concentration. We formulate a set of coupled differential equations describing the

concentration of monomers, micelles, polymer, and polymer–micelle aggregates in the flow.

We analyse the model in several asymptotic limits, and make predictions about the distribution

of each of the species. In particular, in the large-reaction-rate limit we find that the model

predicts a region near the free surface where no micelles or aggregates are present, and

beneath this a region where the concentration of surfactant is constant, across which the

concentration of aggregates increases until all the free polymer is consumed. For certain

parameter regimes, a maximum in the concentration of the polymer–micelle complex occurs

within the bulk fluid. In the finite-reaction-rate limit, micelles, and aggregates are present

right up to the free surface, and the plateau in the concentration of surfactant in the bulk is

no longer present. Results from the asymptotic theory compare favorably with full numerical

solutions.

Key words: Surfactants; boundary layers; asymptotic analysis; advection-diffusion-reaction

equations

1 Introduction

Surfactants are widely used in industry where they reduce surface tension, enhance

spreading, and enable cleansing. Surfactants are amphiphilic molecules containing both

oil-soluble and water-soluble components. Near air–liquid interfaces, it is energetically

favourable for them to adsorb at the interface, expel their oil-soluble tails and, in doing

so, reduce the surface tension. At sufficiently high concentrations, it is also possible for

surfactants to shield their oil-soluble tails from water by forming aggregates called micelles,

which are often spherical for moderate surfactant concentrations. The concentration

of surfactant at which these micelles start to form is known as the Critical Micelle

Concentration (CMC).

Polymers are often added to surfactant solutions [17] to control the rheology and

stability of the system, for example, in fabric and hair conditioners. The presence of neutral

or charged polymers in an aqueous solution of ionic surfactant causes a marked change

in the surface tension profile [2]. In the case where the polymer is neutral, the interactions
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Figure 1. Schematic diagram of a weakly interacting polymer-surfactant system.

between polymer and surfactant are mainly driven by weak hydrophobic forces and the

system is called “weakly interacting” [5]. In the case where the polymer is charged, the

interactions are mainly driven by electrostatic forces and the system is called “strongly

interacting” [6]. We focus our attention in this paper on weakly interacting systems, as

shown in the schematic in Figure 1. In these systems, surfactant molecules adsorb at any

air-liquid interfaces but if the concentration is increased it is also energetically favourable

for the surfactant monomers to form complexes with the polymers in the bulk. These

complexes comprise single polymer chains with small micelles attached to them, and they

are commonly known as polymer–micelle aggregates. The number of monomers that

form the micelles incorporated into a polymer–micelle aggregate is normally lower than

the number of monomers that make up a “free” micelle. The surfactant concentration

at which the aggregates start to form in the bulk is known as the Critical Aggregation

Concentration (CAC) [5], and this is usually below the CMC.

A comprehensive summary of the experimental and theoretical work on polymer–

surfactant mixtures is presented in the articles by Goddard [10–12] and the books [13,15].

Recent studies have focused on explaining the effects of polymer–surfactant systems on

interfacial tension [2] as well as the improved stability offered by such mixtures over

copolymers in the resulting foam structures that form at interfaces [16].

The overflowing cylinder experiment (see Bain [4]) provides a controlled environment

for studying the dynamic surface properties of surfactant solutions in a non-invasive

way. In the experiment, water is pumped up the inside of a cylinder, forms a flat free

surface and flows over the rim of the cylinder and down the outside, where it is collected

and recirculated. Liquid at the free surface flows radially outwards from a stagnation

point at the centre (see Breward et al. [7], Howell and Breward [14]). The cylinder is

carefully levelled so that it overflows uniformly on all sides and once a stable flow has

been established the free surface away from the rim is indistinguishable from a horizontal

plane.

We use this set-up to motivate our current study, and it builds on previous work on

shearing flow of surfactant-only systems as described in Breward and Howell [8]. Breward

and Howell [8] consider a surfactant solution which is above the CMC far away from

a free surface, and assume that a monolayer of surfactant adsorbs at the free surface.
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Since the free surface is expanding, the concentration of adsorbed surfactant decreases

and must be replenished from the bulk. They found that the subsequent decrease in bulk

surfactant concentration locally near the free surface results in micelle dissociation, and

matched the model with experimental data to determine whether or not the reaction

between monomer and micelles was in equilibrium.

In this paper, we will extend the results in [8] to include polymer and polymer–micelle

aggregates. In Section 2, we will formulate our model, while in Section 3, we will consider

the asymptotic limit in which the reaction rates are large. In Section 4, we will consider

the case of finite reaction rates. Finally, in Section 5, we will draw conclusions. We are

unaware of any existing experimental results on the shearing flow of polymer–surfactant

solutions; we hope the development of this theory will stimulate future experiments and

enable validation.

2 Model

We consider the flow of an aqueous polymer–surfactant solution above the CMC (and

hence also above the CAC). We denote the concentrations of surfactant monomers,

micelles, polymers, and polymer–micelle aggregates by S , Sm, P , and Pm respectively, each

measured in mol m−3. We follow [8] and assume that the reactions forming micelles and

aggregates are single-step reactions, and invoking the law of mass action we find that the

rate, j0, at which surfactant changes phase from monomer to micelle is given by

j0 = k+
0 S

N − k−
0 Sm, (2.1)

where k±
0 are the corresponding rate coefficients and N is the number of surfactant

monomers in a free micelle. Similarly the rate, j1, at which surfactant monomers combine

with polymers to form aggregates is given by

j1 = k+
1 PSM − k−

1 Pm, (2.2)

where k±
1 are the corresponding rate coefficients and M = nm where n is the number

of surfactant monomers in a polymer-bound micelle and m is the number of micelles in

a polymer–micelle aggregate. We refer to N and M as the aggregation numbers for a

micelle and a polymer–micelle aggregate respectively. Typical values for the aggregation

numbers are N ∼ 80 and M ∼ 200 [9, 18].

We suppose that z is the distance into the fluid measured from the free surface and

that r is the radial distance from the centre of the cylinder. If all phases are advected with

fluid velocity u while also diffusing, after an initial set-up phase the four concentrations

satisfy the steady reaction-advection-diffusion equations

u · ∇S = DS∇2S − Nj0 − Mj1, u · ∇Sm = DSm∇2Sm + j0, (2.3a)

u · ∇P = DP∇2P − j1, u · ∇Pm = DPm
∇2Pm + j1, (2.3b)

where DS , DSm , DP , and DPm
are the diffusion coefficients for each phase. At the free

surface, located at z = 0, we assume that only surfactant monomers can adsorb and

denote the concentration of adsorbed surfactant molecules by Γ . If we neglect surface
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diffusion (for justification, see [7]) then Γ evolves through advection along the interface,

with surface velocity us(r) = u(r, 0), and replenishment by monomer from the bulk and it

satisfies, after the initial set up phase,

DS

∂S

∂z
= ∇ · (usΓ ) at z = 0. (2.4)

We also assume that the adsorbed phase is in thermodynamic equilibrium with the free

surfactant monomers just below the surface so we can use the Langmuir isotherm [1] to

determine Γ in terms of S ,

Γ =
ΓsatS

k + S
at z = 0, (2.5)

where k is a constant measuring the ability of the surfactant monomers to adsorb at the

interface and Γsat is the maximum concentration that the adsorbed surfactant monomers

can attain.

In weakly interacting systems, free polymers are not surface active and hence do not

adsorb at the interface. Further, micelles and polymer–micelle aggregates do not directly

adsorb without first breaking up into monomers. Thus, the fluxes of Sm, P , and Pm must

be zero at the interface:

DSm

∂Sm
∂z

= DP

∂P

∂z
= DPm

∂Pm

∂z
= 0 at z = 0. (2.6)

Far away from the interface we assume that the surfactant and micelle concentrations are

in equilibrium and that the free polymer and aggregate concentrations are in equilibrium,

i.e.

Sm ∼ k+
0

k−
0

SN, and Pm ∼ k+
1

k−
1

PSM as z → ∞. (2.7)

We also assume that, far away from the interface, the total bulk concentrations of

surfactant and polymer, Sb and Pb respectively, are known, so that

S + NSm + MPm → Sb, and P + Pm → Pb as z → ∞. (2.8)

In principle, the velocity u is coupled to the concentration through the surface tension

gradient, and the solution to the coupled surfactant-fluid mechanics problem is presented

in Howell and Breward [14]. However, near the axis of the overflowing cylinder, there is

a stagnation point flow whose strength may be measured experimentally [3]. Therefore,

we assume in this paper that the fluid velocity u is a known function of r and z, given by

u =
αr

2
er − αzez , (2.9)

where er and ez are the unit vectors in the r and z directions respectively, and α is the

strength of the flow. We suppose that α is a known parameter (in principle it is determined

by global conditions on the flow, as shown in [14]). Then (2.3)–(2.9) form a closed system

of equations for S , Sm, P , and Pm.
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2.1 Nondimensionalisation

We nondimensionalise (2.3a)–(2.9) using the following scalings:

S = SCMCS̄ , Sm =
SCMC

N
S̄m, P = PbP̄ , Pm = PbP̄m,

Γ = ΓsatΓ̄ , u =
√

αDS ū, r =

√
Ds

α
r̄, z =

√
Ds

α
z̄, (2.10)

where SCMC is the CMC for the surfactant. We define the CMC and the CAC for the

surfactant as in Bell et al. [5] by the expressions,

SCMC =

(
k−

0

Nk+
0

) 1
N−1

and SCAC =

(
k−

1

k+
1

) 1
M

, (2.11)

respectively. For ease of notation we drop the bars on the dimensionless variables and

the resulting dimensionless system of equations is

u · ∇S = ∇2S − K0

(
SN − Sm

)
− K1P

∗
(
P
(
S/δ

)M − Pm

)
, (2.12a)

u · ∇Sm = D1∇2Sm + K0

(
SN − Sm

)
, (2.12b)

u · ∇P = D2∇2P − K1

(
P
(
S/δ

)M − Pm

)
, (2.12c)

u · ∇Pm = D3∇2Pm + K1

(
P
(
S/δ

)M − Pm

)
, (2.12d )

with boundary conditions

Sm → SN, Pm → P
(
S/δ

)M
, P + Pm → 1, S + Sm + P ∗Pm → S∗, as z → ∞,

(2.12e)

1

Γ ∗
∂S

∂z
= ∇ · (usΓ ),

∂Sm
∂z

=
∂P

∂z
=

∂Pm

∂z
= 0, Γ =

S

S + β
on z = 0. (2.12f )

The dimensionless parameters of the model are

S∗ =
Sb

SCMC

, P ∗ =
MPb

SCMC

, Γ ∗ =
Γsat

SCMC

√
α

Ds

, δ =
SCAC

SCMC

, β =
k

SCMC

,

K0 =
k−

0

α
, K1 =

k−
1

α
, D1 =

DSm

DS

, D2 =
DP

DS

, D3 =
DPm

DS

. (2.13)

We seek a solution in which the concentrations only depend on z and this reduces the

model to:

S ′′ + zS ′ = K0

(
SN − Sm

)
+ K1P

∗
(
P
(
S/δ

)M − Pm

)
, (2.14a)

D1Sm
′′ + zS ′

m = −K0

(
SN − Sm

)
, (2.14b)

D2P
′′ + zP ′ = K1

(
P
(
S/δ

)M − Pm

)
, (2.14c)

D3P
′′
m + zP ′

m = −K1

(
P
(
S/δ

)M − Pm

)
, (2.14d )
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where primes denote differentiation with respect to z. The boundary conditions become

Sm → SN, Pm → P
(
S/δ

)M
, P +Pm → 1, S+Sm+P ∗Pm → S∗ as z → ∞, (2.14e)

S ′ = Γ ∗Γ =
Γ ∗S

β + S
and P ′ = S ′

m = P ′
m = 0 on z = 0. (2.14f )

2.2 Parameter values

The dimensionless parameters N, M, S∗, P ∗, δ, β, D1, D2, and D3 depend only on the

surfactant and polymer under consideration. Of these, N and M are large, O(10 − 200),

and β is usually small, about O(10−2). The CAC is assumed to be less than the CMC

but not by more than an order of magnitude so typically δ = O(10−1). We suppose that,

in situations of practical interest, the bulk surfactant concentration is a few times the

CMC and that P ∗ is also O(1). The diffusivities of the larger species Sm, P , and Pm are

typically less than the diffusivity of the free monomers but not by more than an order of

magnitude, so that Di = O(10−1) for i = 1, 2, 3.

The parameters Γ ∗, K0, and K1 all depend on the flow rate α. We assume that Γ ∗

is O(1), but K0 and K1 are proportional to the micelle and polymer–micelle aggregate

dissociation rates respectively, which in general are not known. However, these processes

are widely believed to be nearly instantaneous in the polymer–surfactant systems we are

concerned with, which implies that K0 and K1 are large. Thus, in the analysis that follows

in the next section, we take the limit K0, K1 → ∞ with K0/K1 fixed, which corresponds

to both the monomer/micellar phases and the polymer/polymer–micelle aggregate phases

being in equilibrium everywhere.

3 The large K0 and K1 limit

The system given in (2.14) reduces considerably when the reaction rates are much faster

than the flow strength. In this limit, K0 and K1 are both large (with ratio K0/K1 ∼ O(1))

and so we formally let K0, K1 → ∞ with K0/K1 = κ fixed. We find that the monomer

and micellar phases are in equilibrium, as are the polymer and aggregates, so that

Sm = SN, Pm = P
(
S/δ

)M
. (3.1a)

We are then able to simplify the model to a system of two coupled ordinary differential

equations for the surfactant and polymer concentrations, namely

(
S + D1S

N + D3P
∗P
(
S/δ

)M)′′
+ z

(
S + SN + P ∗P

(
S/δ

)M)′
= 0, (3.1b)

(
D2P + D3P

(
S/δ

)M)′′
+ z

(
P + P

(
S/δ

)M)′
= 0, (3.1c)

with

P + P
(
S/δ

)M → 1, S + SN + P ∗P
(
S/δ

)M → S∗ as z → ∞, (3.1d )
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S ′ =
Γ ∗S

β + S
and S ′

m = P ′ = P ′
m = 0 on z = 0. (3.1e)

We can immediately see that, with the forms for Sm and Pm given by (3.1a), we will not be

able to satisfy the corresponding boundary conditions for Sm and Pm in (2.14f) and hence

we expect there to be a boundary layer at the free surface across which the flux of each

species adjusts.

3.1 All diffusivities are the same

We illustrate the structure of the problem in the particularly simple case when all the

diffusivities are the same, i.e. D1 = D2 = D3 = 1. In this case, we can integrate (3.1b)–(3.1c)

directly and use the boundary conditions at infinity to obtain:

S + SN + P ∗P
(
S/δ

)M
= S∗ + a erfc

(
z√
2

)
, (3.2)

P + P
(
S/δ

)M
= 1 + b erfc

(
z√
2

)
, (3.3)

where a and b are constants of integration. We rearrange (3.3) and use (3.1a) to find that

P =
δM

δM + SM

(
1 + b erfc

(
z√
2

))
, Pm =

SM

δM + SM

(
1 + b erfc

(
z√
2

))
, (3.4)

while S and Sm are given by

S + SN + P ∗ SM

δM + SM

(
1 + b erfc

(
z√
2

))
= S∗ + a erfc

(
z√
2

)
, Sm = SN, (3.5)

using (3.1a) and (3.2). At z = 0,

S ′ =

√
2
π

(
P ∗SM

δM+SM b − a
)

1 + NSN−1 + P ∗MδMSM−1(1+b)

(δM+SM)
2

, (3.6)

S ′
m = NSN−1S ′, (3.7)

P ′ = − δM

δM + SM

√
2

π
b − MδMSM−1(1 + b)

(δM + SM)2
S ′, (3.8)

P ′
m = − SM

δM + SM

√
2

π
b +

MδMSM−1(1 + b)

(δM + SM)2
S ′. (3.9)

As noted earlier, (3.6) and (3.9) cannot satisfy all the boundary conditions at z = 0 and

thus there is a boundary layer near z = 0 in which the reactions are out of equilibrium.

We illustrate the boundary layer calculation, in the case where the bulk concentration is

such that there are no micelles present, in Appendix A. The boundary layer calculation in

other cases follows the same recipe. The boundary layer has the obvious width O(1/
√
K1)

and we find that each of the concentrations is constant across the layer to leading order
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in 1/
√
K1. To match with the outer solution we solve the O(1/

√
K1) equations in the

boundary layer, and we find that

b = 0, a = −
√

π

2

Γ ∗Si
β + Si

, (3.10)

where Si is the leading-order (constant) concentration of surfactant in the boundary layer.

We thus find that the outer solution is:

Sm = SN, P =
δM

δM + SM
, Pm =

SM

δM + SM
, (3.11a)

S + SN + P ∗ SM

δM + SM
= S∗ −

√
π

2

Γ ∗Si
β + Si

erfc

(
z√
2

)
, (3.11b)

with Si given by

Si + SN
i +

P ∗SM
i

δM + SM
i

= S∗ −
√

π

2

Γ ∗Si
β + Si

. (3.11c)

We note that Breward and Howell [8] do not consider the boundary layer and comparison

between (3.11c) in the case P ∗ = 0 and equation (3.3) in [8] highlights an erroneous factor

of nCn
0 (C0 = Si, n = N in the notation of [8]). The consequence is that, as the subsurface

concentration approaches the CMC, Breward and Howell [8] significantly underpredict

the subsurface surfactant concentration and the resulting micellar concentration. For

example, Figure 3(b) in [8] should have Sm(0) ≈ 0.76, rather than Sm(0) ≈ 0 as shown

there.

We show in Figure 2(a) the variation of the subsurface concentration Si with bulk

surfactant concentration S∗, given by (3.11c) for several values of P ∗. We see that, as

P ∗ increases, a plateau-like structure forms at around Si = δ, where the subsurface

concentration is nearly constant as S∗ is increased. This is to be expected: near the CAC,

increasing the bulk concentration increases the concentration of complexes rather than

the monomer concentration. In Figure 2(b), we compare the Si versus S∗ graphs given

by solving (3.11c) in the two cases Γ ∗ = 2 and Γ ∗ = 0 (the latter corresponding to the

equilibrium case where there is no flow). We see that the flow dramatically reduces the

amount of surfactant arriving at the free surface for a given bulk concentration. The

effect is especially pronounced for bulk concentrations up to S∗ ∼ 1 + P ∗ + Γ ∗
√

π/2.

In Figure 3 we show how the concentrations vary with depth for various values of

the bulk surfactant concentration S∗. On first glance, these concentration profiles appear

to be non-smooth. However, these plots are well resolved and smooth and the apparent

sharp corners are simply a result of the large values of M and N. In Figure 3(a), we

illustrate the case where the bulk surfactant concentration is above the CAC but below

the CMC, and in which the flow causes the surface concentration to be below the CAC.

Close to the free surface, the surfactant concentration is below the CAC, there are no

complexes and all the polymer is free. The monomer concentration increases with depth

until it reaches the CAC and then plateaus. Below this depth, complexes start to form

and the free polymer becomes depleted. Far away from the free surface, polymer and

complex coexist, and the monomer concentration is constant (and at the CAC). As we

increase the bulk concentration to be above the CMC, we arrive in a situation where the
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Figure 2. (a) Graph showing how the subsurface surfactant concentration Si given by (3.11c) varies

with bulk surfactant concentration S∗ for P ∗ = 0, 0.6, 1.2, 1.8 and Γ ∗ = 2. (b) Graph comparing

Si versus S ∗ (for P ∗ = 1.2) under dynamic conditions, Γ ∗ = 2 (solid line), and static conditions,

Γ ∗ = 0 (dashed line). The other parameters used were δ = 0.4, M = 200, N = 80, β = 0.02.

Figure 3. Graphs showing the variations of the surfactant concentration (blue), micelle concen-

tration (green), polymer concentration (brown), and polymer–micelle complex concentration (red)

with depth into the fluid for (a) S∗ = 1.5, (b) S ∗ = 2.5, (c)S ∗ = 3.5, and (d) S ∗ = 4.5. The other

parameters are: P ∗ = 1.2, δ = 0.4, β = 0.02, N = 80, M = 200, and Γ ∗ = 2. For interpretation of

the references to colour in this figure, the reader is referred to the online version of this article.
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Figure 4. Graphs showing the variations of the surfactant concentration (blue), micelle concen-

tration (green), polymer concentration (brown), and polymer–micelle complex concentration (red)

with depth into the fluid for (a) P ∗ = 0.01, (b) P ∗ = 0.6, (c) P ∗ = 1.2, and (d) P ∗ = 1.8. The other

parameters are: S ∗ = 2.5, δ = 0.4, β = 0.02, N = 80, M = 200, and Γ ∗ = 2. For interpretation of

the references to colour in this figure, the reader is referred to the online version of this article.

surface monomer concentration is below the CAC but the bulk monomer concentration

is above the CAC, see Figure 3(b). Close to the free surface, we have a region devoid of

complexes and the monomer concentration increases. At a certain depth, the monomer

concentration reaches the CAC and beneath this depth plateaus out, complexes form,

and the concentration of free polymer decreases. This continues until no free polymer

remains. Travelling further away from the free surface, the monomer concentration then

starts to rise again until it reaches the CMC, where it plateaus and micelles form. When

the surface concentration is the same order as the CAC (Figure 3(c)), complexes are

present right up to the free surface, but the behaviour of the rest of the system is the same

as previously described. Finally, when the surface concentration is above the CAC, there

are no free polymers anywhere in the solution, and increasing the bulk concentration

increases the surface concentration up to the CMC and reduces the width of the layer

devoid of micelles close to the free surface (Figure 3(d)). At even higher concentrations,

micelles exist all the way up to the free surface.

It is also interesting to keep the bulk surfactant concentration constant and vary the

polymer concentration (through P ∗), as shown in Figure 4, where we have chosen the

parameters so that the surface concentration is below the CAC. For very small values of

https://doi.org/10.1017/S0956792515000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000327


Straining flow of a weakly interacting polymer–surfactant solution 753

P ∗, we see in Figure 4(d) that there is a rapid conversion of free polymer to complex at

the depth where the surfactant concentration crosses the CAC and there is no plateau

in surfactant concentration at the CAC. As the concentration of polymer increases, the

plateau in surfactant concentration at the CAC forms within the bulk liquid, and the

size of this region increases as P ∗ increases. In this plateau region, complexes form as

described previously. Finally, as P ∗ increases, the amount of surfactant available to form

free micelles decreases, as can be seen in the four pictures in Figure 4, and eventually

micelles are eliminated from the system. We note that the depth beneath the surface at

which the surfactant concentration reaches the CAC does not change as P ∗ is varied.

3.1.1 Predicting the layered structure in the concentrations

We now aim to predict the sharp transitions in the concentration profiles seen in Figures

3 and 4, exploiting the fact that N and M are large. We let N,M → ∞ with N/M ∼ O(1),

and obtain explicit formulae for each of the concentrations between these transitions. It

is useful to restate the solution given in (3.11) in the form

Sm = SN, P =
δM

δM + SM
, P + Pm = 1, (3.12)

S + Sm + P ∗Pm = S∗ −
(
S∗ − Si − SN

i − P ∗SM
i

δM + SM
i

)
erfc

(
z√
2

)
, (3.13)

where Si satisfies

Si + SN
i +

P ∗SM
i

δM + SM
= S∗ −

√
π

2

Γ ∗Si
β + Si

. (3.14)

We consider the case where Si < δ, which from the previous section we see has the most

structure, and where the bulk concentration S∗ > 1 + P ∗, for reasons that we will see

later. In this case, close to the interface we have P = 1, Pm = 0, Sm=0, and the surface

concentration can be explicitly determined since (3.14) reduces to a quadratic equation,

yielding

Si =
1

2

⎡
⎣S∗ − β −

√
π

2
Γ ∗ +

√(
S∗ − β −

√
π

2
Γ ∗
)2

+ 4S∗β

⎤
⎦ , (3.15)

while the surfactant concentration satisfies

S = S∗ − (S∗ − Si) erfc

(
z√
2

)
, (3.16)

which holds provided S < δ. Since S increases away from the free surface, it will increase

to S = δ at some distance z = z1 beneath the free surface, given by

erfc

(
z1√
2

)
=

S∗ − δ

S∗ − Si
. (3.17)

As we would anticipate, for there to exist a solution of (3.17) for z1, the bulk surfactant

concentration must exceed the CAC, i.e. we must have S∗ > δ. For z > z1 we have a
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region where the polymer converts to complex. In this region, S = δ, Sm = 0, and

Pm =
1

P ∗

(
S∗ − δ − (S∗ − Si) erfc

(
z√
2

))
, (3.18)

P = 1 − 1

P ∗

(
S∗ − δ − (S∗ − Si) erfc

(
z√
2

))
, (3.19)

which holds until all of the unbound polymer has bound into aggregates. We define z = z2

as the place where P = 0, i.e

erfc

(
z2√
2

)
=

S∗ − P ∗ − δ

S∗ − Si
, (3.20)

which exists providing S∗ > P ∗ +δ. For z > z2, all the polymer is bound and the monomer

concentration increases up to the CMC, reached at z = z3, given by

erfc

(
z3√
2

)
=

S∗ − P ∗ − 1

S∗ − Si
, (3.21)

which exists for S∗ > 1 + P ∗. Between z2 and z3, Sm = 0, P = 0, Pm = 1 and

S = S∗ − P ∗ − (S∗ − Si) erfc

(
z√
2

)
. (3.22)

For z > z3, the monomer concentration is at the CMC and micelles form in the bulk.

Thus S = 1, P = 0, Pm = 0 and

Sm = S∗ − 1 − P ∗ − (S∗ − Si) erfc

(
z√
2

)
. (3.23)

Thus, providing the parameters are such that Si < δ and S∗ > 1 + P ∗, we expect to find

four distinct regions in the fluid, separated by the boundaries z1, z2, and z3. In Figure 5,

we show how the asymptotic solution compares with the exact solution for a particular set

of parameters. We see that there is reasonable agreement between the two solutions and,

in particular, the agreement between the asymptotic and exact solutions for P and Pm is

better than the agreement between the solutions for S and Sm. This is to be expected, since

M > N. The agreement between asymptotic and exact solutions improves as N and M

increase; the agreement is also almost perfect when the O(1/N) corrections are included

(not shown).

In summary, when all the diffusivities are the same we are able to find an explicit

analytic solution for the concentrations of all the components, along with a set of

asymptotic solutions that match the explicit solution well.

3.2 Diffusivities different

We now suppose that the diffusivities of the surfactant, micelles, polymer, and complexes

are different. We utilise the insight given in the previous section to look straight away for

the boundary layer near the interface. We find that the fluxes out of the boundary layer,
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Figure 5. Graph showing the variations of the surfactant concentration (blue), micelle concentra-

tion (green), polymer concentration (brown), and polymer–micelle complex concentration (red) with

depth into the fluid. The asymptotic solutions are overlaid using dashed lines; z1, z2, and z3 are

indicated as vertical dotted lines. The parameters are P ∗ = 1.2, S ∗ = 2.5, δ = 0.4, β = 0.02, N = 80,

M = 200, and Γ ∗ = 2.For interpretation of the references to colour in this figure, the reader is

referred to the online version of this article.

and thus the boundary conditions on the outer problem, are

S ′ =
ΓSi

β + Si

⎛
⎝ 1

1 + D1NSN−1
i +

D2D3P ∗MPiS
M−1
i

D2δM+D3S
M
i

⎞
⎠ , D1S

′
m = D1NSN−1

i S ′, (3.24)

D2P
′ = −D2D3M

(
PiS

M−1
i

D3S
M
i + D2δM

)
S ′, D3P

′
m = D2D3M

(
PiS

M−1
i

D3S
M
i + D2δM

)
S ′, (3.25)

at z = 0, where Pi = P (0). To simplify the calculation of Pm from (3.1a)1 we introduce

Y = P + Pm. In terms of Y ,

P =
δM

δM + SM
Y , Pm =

SM

δM + SM
Y , (3.26)

1 We expect
(
S/δ

)M
to be huge at depth (and of order O(1080) for our parameters). At the same

time, we expect P → 0, and are unlikely to be able to sensibly calculate P from (3.1a) to sufficient

accuracy that we can determine Pm ∼ O(1) with any confidence.
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while the governing equations become

(
1 + D1NSN−1 +

P ∗D3MδMY SM−1

(δM + SM)2

)
S ′′ + D1N(N − 1)SN−2S ′2+

P ∗D3

(
2MδMSM−1

(δM + SM)2
Y ′S ′ +

SM

δM + SM
Y ′′ −

MδMSM−2
(
(1 + M)SM + (1 − M)δM

)
Y

(δM + SM)3
S ′2
)

+ zS ′
(

1 + NSN−1 +
P ∗MδMSM−1Y

(δM + SM)2

)
+ zY ′ P ∗SM

δM + SM
= 0, (3.27)

(
D3 +

(D2 − D3)δ
M

δM + SM

)
Y ′′ + zY ′ + (D2 − D3)

MδMSM−2

(δM + SM)2

×
[
Y S ′2

(
(1 + M)SM + (1 − M)δM

)
δM + SM

− Y SS ′′ − 2Y ′SS ′

]
= 0, (3.28)

with boundary conditions

Y → 1, S → S∞ as z → ∞, (3.29)

S ′(0) =

(
Γ ∗Si
β + Si

)⎛⎜⎜⎝ 1

1 + D1NSN−1
i +

D2D3P
∗MδMSM−1

i Yi

(δM + SM
i )(D2δM + D3S

M
i )

⎞
⎟⎟⎠ , (3.30)

Y ′(0) =

(D2 − D3)MδMSM−1
i Yi

(δM + SM
i )(D2δM + D3S

M
i )

(
Γ ∗Si
β + Si

)

1 + D1NSN−1
i +

D2D3P
∗MδMSM−1

i Yi

(δM + SM
i )(D2δM + D3S

M
i )

, (3.31)

where S∞ satisfies S∞ + SN
∞ + P ∗SM

∞ /(δM + SM
∞ ) = S∗, Yi = Y (0) and Si = S(0). We see

immediately from (3.28), (3.29), and (3.31) that when D2 = D3, Y = 1 everywhere and

(3.27) simplifies considerably.

We solve (3.26)–(3.31) numerically for various different choices of the diffusivities, and

show the resulting concentration profiles in Figure 6. In the Figures 6(a) and (b), D2=D3

and we see that P + Pm = 1. Comparing Figures 6(a) and (b), we also see that reducing

both D2 and D3 by the same amount steepens the polymer and complex profiles and

thus reduces the width of the region over which they adjust. We see that the subsurface

surfactant concentration decreases as D2 = D3 decreases and that the complexes do not

get as close to the free surface. Finally, we see that reducing D1 steepens the micelle

concentration profile. When D2 and D3 are different, P and Pm no longer sum to one

and we see that the concentration of the polymer–micelle complex develops an internal

maximum which increases in magnitude as D = D2 − D3 increases. We also see that

the subsurface concentration of polymer decreases as D increases, while the subsurface

concentration of surfactant remains constant.
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Figure 6. Graphs showing the variations of the surfactant concentration (blue), micelle con-

centration (green), polymer concentration (brown), and polymer–micelle complex concentration

(red) with depth into the fluid for (a) D1 = D2 = D3 = 1, (b) D1 = 0.6, D2 = D3 = 0.4, (c)

D1 = 0.6, D2 = 0.4, D3 = 0.2, and (d) D1 = 0.6, D2 = 0.4, D3 = 0.15. The other parameters

are: S ∗ = 2.5, δ = 0.4, β = 0.02, N = 80, M = 200, Γ ∗ = 2, and Ps = 1.2. For interpreta-

tion of the references to colour in this figure, the reader is referred to the online version of this

article.

3.2.1 Predicting the layered structure in the concentrations

Following the same recipe as in Section 3.1.1, we now predict the sharp transitions in

the concentrations and their shapes between these transitions. We suppose that we are

operating in a situation where S(0) = Si < δ, and we let N,M → ∞ with N/M ∼ O(1).

We find that there are four regions, with the following solutions:

Region 1, 0 � z � z1

Pm = 0, Sm = 0, S = Si +
π

2

(
Γ ∗Si
β + Si

)(
1 − erfc

(
z√
2

))
, (3.32)

P =
1

P ∗

√
π

2D2

(
Γ ∗Si
β + Si

)
e

(1−D2)z21
2D2

(
erfc

(
z1√
2D2

)
− erfc

(
z2√
2D2

))
. (3.33)

Region 2, z1 � z � z2

Sm = 0, S = δ, (3.34)

https://doi.org/10.1017/S0956792515000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000327


758 C. J. W. Breward et al.

P =
1

P ∗

√
π

2D2

(
Γ ∗Si
β + Si

)
e

(1−D2)z21
2D2

(
erfc

(
z√
2D2

)
− erfc

(
z2√
2D2

))
, (3.35)

Pm = − 1

P ∗

√
π

2D3

(
Γ ∗Si
β + Si

)
e

(1−D3)z21
2D3

(
erfc

(
z√
2D3

)
− erfc

(
z1√
2D3

))
. (3.36)

Region 3, z2 � z � z3

P = 0, Sm = 0, S = δ + (1 − δ)
erfc

(
z√
2

)
− erfc

(
z2√
2

)
erfc

(
z3√
2

)
− erfc

(
z2√
2

) , (3.37)

Pm = 1 −

⎛
⎝√ π

2D3

(
Γ ∗Si
β + Si

)
e

(1−D3)z21
2D3 +

(1 − δ)e
(1−D3)z22

2D3

√
D3

(
erfc

(
z3√
2

)
− erfc

(
z2√
2

))
⎞
⎠ erfc

(
z√
2D3

)
P ∗ .

(3.38)

Region 4, z � z3

P = 0, S = 1, Sm =
(
S∗ − P ∗ − 1

)⎛⎝1 −
erfc

(
z√
2D1

)
erfc

(
z3√
2D1

)
⎞
⎠ , (3.39)

and Pm given again by (3.38); we note that there is no sharp transition in Pm at z = z3.

The formulae for determining Si, z1, z2 and z3 are given by

δ = Si +

√
π

2

(
Γ ∗Si
β + Si

)(
1 − erfc

(
z1√
2

))
, (3.40)

1 − δ

erfc
(

z3√
2

)
− erfc

(
z2√
2

) = −
√
D1

(
S∗ − P ∗ − 1

)
erfc

(
z3√
2D1

) e
−(1−D1)z23

2D1 , (3.41)

√
π

2

(
Γ ∗Si
β + Si

)
e

(1−D2)z21
2D2 e

− z22
2D2 = − (1 − δ)e− z22

2

erfc
(

z3√
2

)
− erfc

(
z2√
2

) , (3.42)

1

P ∗

√
π

2D3

(
Γ ∗Si
β + Si

)
e

(1−D3)z21
2D3 erfc

(
z1√
2D3

)
=1− 1 − δ

P ∗√
D3

⎛
⎜⎝ e

(1−D3)z22
2D3 erfc

(
z2√
2D3

)
erfc

(
z3√
2

)
− erfc

(
z2√
2

)
⎞
⎟⎠ . (3.43)

In contrast with the relationships given in Section 3.1.1, here we have to solve coupled

equations for Si, z1, z2, and z3. In Figure 7, we show how the asymptotic solution com-

pares with the numerical solution and we (again) see reasonable agreement between the

two.
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Figure 7. Graph showing the variations of the surfactant concentration (blue), micelle concen-

tration (green), polymer concentration (brown), and polymer–micelle complex concentration (red)

with depth into the fluid. The asymptotic solutions are overlaid using dashed lines; z1, z2, and z3

are indicated as vertical dotted lines. The parameters are: P ∗ = 1.2, S ∗ = 2.5, δ = 0.4, β = 0.02,

N = 80, M = 200, Γ ∗ = 2, D1 = 0.6, D2 = 0.4, and D3 = 0.2.For interpretation of the references to

colour in this figure, the reader is referred to the online version of this article.

4 O(1) reaction rates K0 and K1 and aggregation numbers N and M

In this section, we consider the situation when the reaction rates are O(1). In this case, we

solve the full system (2.14a)–(2.14f) numerically using the Chebfun package for MATLAB

and using numerical continuation to increase the values of N and M. We show the results

as the reaction rates and aggregation numbers are altered in Figure 8. We see that for the

moderate values of the K1 shown, all four species are present right up to the free surface.

As the aggregation numbers are increased, away from the free surface the profiles tend to

the large K0, K1, large N,M limit. However, close to the free surface this is not the case

and this motivates us to consider the asymptotic limit of finite K0 and K1 and infinite

N,M.

4.1 N, M large, aggregation numbers O(1)

As N and M increase, the system (2.14) becomes extremely stiff and numerical solution

is practically impossible for realistic values N,M � 50. To probe the behaviour for

physically relevant values, it is therefore necessary to consider the asymptotic limit where

N,M → ∞. In this asymptotic limit, there are three main regions of interest, where S < δ,

δ < S < 1 and S ∼ 1; the plateau in which S = δ is no longer present. As previously,

we consider the case where Si < δ, and assume (again) that the surfactant concentration

reaches S = δ at some distance z = z1 beneath the surface.
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Figure 8. Graphs showing the variations of the surfactant concentration (blue), micelle concen-

tration (green), polymer concentration (brown), and polymer–micelle complex concentration (red)

with depth into the fluid for N = M = 5, 10, 25 when (a) K0 = K1 = 10 and D1 = D2 = D3 = 1,

(b) K0 = K1 = 10 and D1 = 0.6, D2 = 0.4, D3 = 0.2, (c) K0 = K1 = 20 and D1 = D2 = D3 = 1,

(d) K0 = K1 = 20 and D1 = 0.6, D2 = 0.4, D3 = 0.2. The arrows show the direction of increasing

N,M, and the large N, M, K0 and K1 asymptotic solutions are shown as dashed lines. The other

parameters are: S ∗ = 2.5, δ = 0.4, β = 0.02, Γ ∗ = 2, and Ps = 1.2. The arrows show the direction

of increasing N and M.For interpretation of the references to colour in this figure, the reader is

referred to the online version of this article.

Region 1, 0 � z � z1

In the region 0 � z � z1, S
N and (S/δ)M are both negligible (they are exponentially

small) and the equations reduce to:

S ′′ + zS ′ = −K0Sm − K1P
∗Pm, (4.1a)

D1S
′′
m + zS ′

m = K0Sm, (4.1b)

D2P
′′ + zP ′ = −K1Pm, (4.1c)

D3P
′′
m + zP ′

m = K1Pm, (4.1d )

which we can solve along with the boundary conditions given in (2.14f) to give

Sm(z) = A1Φ
(
K0; z/

√
2D1

)
, (4.2)

Pm(z) = C1Φ
(
K1; z/

√
2D3

)
, (4.3)
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where Φ is shorthand for the function

Φ(K; z) = e−z2

1F1

(
1 + K

2
,
1

2
, z2

)
, (4.4)

(where 1F1 is a hypergeometric function) and

P = Pi − K1

√
π

2D2

∫ z

0

(
erf

(
z√
2D2

)
− erf

(
ζ√
2D2

))
eζ

2/2D2Pm(ζ)dζ, (4.5)

S = Si +

√
π

2

(
Γ ∗Si
β + Si

erf

(
z√
2

)

−
∫ z

0

(
erf

(
z√
2

)
− erf

(
ζ√
2

))
eζ

2/2
(
K0Sm(ζ) + K1P

∗Pm(ζ)
)
dζ

)
. (4.6)

By considering the boundary layer connecting the region S < δ and δ < S < 1 (see

Appendix B), we find that all the concentrations are continuous, the micelle flux is

continuous and the net flux of surfactant and polymer are also continuous. We thus have

at z = z1

[Sm] = [Pm] =
[
S ′
m

]
=
[
S ′ − P ∗D2P

′] =
[
D2P

′ + D3P
′
m

]
= 0, S = δ, P = 0, (4.7)

where [·] denotes the change as we cross z = z1.

Region 2, z1 � z � z3

In the region δ < S < 1, SN is still negligible but (S/δ)M has become exponentially

large. We conclude that P is exponentially small and the concentrations of the other

species satisfy

S ′′ + zS ′ = −K0Sm, (4.8a)

D1S
′′
m + zS ′

m = K0Sm, (4.8b)

D3P
′′
m + zP ′

m = 0. (4.8c)

These equations hold until z = z3, where S = 1. Before solving in this region, let us

consider the third region.

Region 3, z � z3

When z > z3, we still have P = 0 but now S is close to one and so we write S = 1+φ/N.

The resulting equations become

1

N

(
φ′′ + zφ′) = −K0

(
Sm − SN

)
, (4.9a)

D1S
′′
m + zS ′

m = − 1

N

(
φ′′ + zφ′) , (4.9b)

D3P
′′
m + zP ′

m = 0. (4.9c)
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Thus, to leading order in 1/N, the solution in z > z3 is

P = 0, S = 1, Sm = S∗ − P ∗ − 1 + A3 erfc

(
z√
2D1

)
, Pm = 1 + B2 erfc

(
z√
2D3

)
,

(4.10)

where A3 and B2 are integration constants. By considering the boundary layer at z = z3

(see Appendix B), we find that the concentrations of S , Sm, and Pm are all smooth at

z = z3.

Returning to consider the solution in region 2, we note that, since Pm is smooth at

z = z3 and Sm is smooth at z = z1,

Sm = A1Φ

(
K0;

z√
2D1

)
, Pm = 1 + B2 erfc

(
z√
2D3

)
, (4.11)

in region 2. We solve (4.8a) for S , remembering that the continuity of S and S ′ at z = z3

give the conditions S = 1, S ′ = 0 at z = z3, to find that

S(z) = 1 − K0

√
π

2

∫ z3

z

Sm(ξ)eξ
2/2

[
erf

(
ξ√
2

)
− erf

(
z√
2

)]
dξ. (4.12)

We are thus left with determining the remaining eight unknowns A1, A3, B2, C1, z1, z3, Pi,

and Si. From the smoothness of Sm at z = z3 we can solve for A1 and A3:

A1 =
S∗ − 1 − P ∗

Φ

[
K0;

z3√
2D1

]
+

√
π

2
ez

2
3/2D1 erfc

[
z3√
2D1

]
Φ′
[
K0;

z3√
2D1

] , (4.13)

A3 = −A1

√
π

2
ez

2
3/2D1Φ′

[
K0;

z3√
2D1

]
. (4.14)

Similarly, the boundary conditions for Pm and P ′
m at z = z1 provide expressions for C1

and B2, namely:

C1 =

{
√

π erfc

[
z1√
2D3

]
ez

2
1/2D3

(
−K1

√
D2

D3
e−z2

1/2D2I1

[
K1;

√
D2

D3
;

z1√
2D2

]

+
1

2
Φ′
[
K1;

z1√
2D3

])
+ Φ

[
K1;

z1√
2D3

]}−1

, (4.15)

B2 = −C1

√
π ez

2
1/2D3

(
−K1

√
D2

D3
e−z2

1/2D2I1

[
K1;

√
D2

D3
;

z1√
2D2

]
+

1

2
Φ′
[
K1;

z1√
2D3

])
,

(4.16)

where we have introduced shorthand for the following integrals:

I1[K; r; z] =

∫ z

0

Φ(K; rξ)eξ
2

dξ, I2[K; r; z] =

∫ z

0

Φ(K; rξ)erf(ξ)eξ
2

dξ. (4.17)
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We can determine Si and Pi from the conditions S(z1) = δ and P (z1) = 0:

Si +
Γ ∗Si
β + Si

√
π

2
erf

(
z1√
2

)

= δ + K0A1

√
π

(
erf

[
z1√
2

]
I1

[
K0;

1√
D1

;
z1√
2

]
− I2

[
K0;

1√
D1

;
z1√
2

])

+ P ∗K1C1

√
π

(
erf

[
z1√
2

]
I1

[
K1;

1√
D3

;
z1√
2

]
− I2

[
K1;

1√
D3

;
z1√
2

])
, (4.18)

Pi = K1C1

√
π

(
erf

[
z1√
2D2

]
I1

[
K1;

√
D2

D3
;

z1√
2D2

]
− I2

[
K1;

√
D2

D3
;

z1√
2D2

])
. (4.19)

The condition S(z1) = δ also leads to

1 − δ = K0A1

√
π

{
I2

[
K0;

1√
D1

;
z3√
2

]
− I2

[
K0;

1√
D1

;
z1√
2

]

− erf

[
z1√
2

](
I1

[
K0;

1√
D1

;
z3√
2

]
− I1

[
K0;

1√
D1

;
z1√
2

])}
. (4.20)

Finally, the condition [S ′ − P ∗D2P
′] = 0 at z = z1 gives

Γ ∗Si
β + Si

= K0A1

√
2 I1

[
K0;

1√
D1

;
z3√
2

]
+ P ∗K1C1

(√
2 I1

[
K1;

1√
D3

;
z1√
2

]

−
√

2D2 e−(1−D2)z
2
1/2D2I1

[
K1;

√
D2

D3
;

z1√
2D2

])
. (4.21)

Given values of the parameters K0, K1, D1, D2, D3, δ, Γ ∗, β, S∗, and P ∗, we have to solve

the three coupled non-linear algebraic equations (4.18), (4.20) and (4.21) for Si, z1, and z3.

Then Pi is determined a posteriori from the decoupled equation (4.19). In Figure 9, we

compare the asymptotic solution presented in this section with the equivalent numerical

solution. We find from the asymptotics that Si ≈ 0.022, z1 ≈ 0.49 and z3 ≈ 2.06. It is

evident that the main qualitative features of the numerical solutions are well reflected

in these approximate solutions. In particular, we observe the local maximum in the

concentration of the polymer-surfactant complex coincides with a kink in the profile of

the surfactant concentration.

5 Conclusions

In this paper, we have considered the straining flow of a weakly interacting polymer–

surfactant system and have combined and expanded our previous work on static polymer–

surfactant systems presented in Bell et al. [5] and on dynamic surfactant systems presented

in Breward and Howell [8]. We assumed that the surfactant is able to exist as monomer, in

micelles, and in polymer–micelle aggregates. We wrote down a model for the concentration

of each of these species and of free polymer, assuming a straining flow towards a static

free surface.
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Concentration

z

Figure 9. Graph showing concentrations of surfactant (blue), micelles (green), polymer (brown),

and polymer–surfactant complex (red) versus depth for N = M = 5, 10, 15 and 20. The arrows

show the direction of increasing N and M, and the dashed lines show the asymptotic solution as

N,M → ∞. The other parameters are P ∗ = 1.2, S ∗ = 2.5, δ = 0.4, β = 0.02, Γ ∗ = 2, D1 = 0.6,

D2 = 0.4, D3 = 0.2, K0 = K1 = 1.For interpretation of the references to colour in this figure, the

reader is referred to the online version of this article.

In the limit of large reaction rates, we reduced the system of four coupled ODEs for

the concentrations of surfactant, polymer, polymer–micelle aggregates, and micelles to a

pair of ODEs, which are coupled with two algebraic expressions. To simplify the problem

further, we first considered the case where the diffusivities of each of the four species are

the same. In this case, we found that there is a small boundary layer, of thickness 1/
√
K1,

over which the concentration of polymer, micelles and complexes adjusts to ensure no

flux of these species onto the free surface. In considering this boundary layer calculation,

we were able to resolve an outstanding question from the earlier work [8], namely what

happens to the subsurface concentration as it approaches the CMC, and update a formula

given there so that it is correct for all subsurface concentrations. We showed how the

subsurface surfactant concentration varies with the bulk surfactant concentration for

various concentrations of polymer. We further illustrated how the presence of the flow

alters these profiles when compared with the static case. The key observation was that

much less surfactant reaches the interface when the system is dynamic. We looked at the

distribution of each of the species beneath the free surface, and we found that, for bulk

concentrations just above the CMC, a region devoid of micelles and complexes forms

beneath the free surface. This is because the straining flow causes the surface concentration

to be beneath both the CAC and the CMC, and all the micelles and complexes approaching

the free surface have to break down in order to supply the required surface adsorption.

Beneath the surface, the surfactant concentration increases to the CAC and then a plateau

region forms where the concentration does not change but complexes start to form. Once

all the polymer has formed complexes, the surfactant concentration rises to the CMC,

and beyond this depth, micelles start to form. Using asymptotic analysis in the limit

of large aggregation numbers N and M, we were able to decompose the domain into

four regions and derive simple expressions for the concentrations of each of the species;
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these asymptotic expressions matched well with the explicit solutions to this reduced

problem.

When the diffusivities differ, the solution structure remains the same but the equations

are more complicated. We solved these numerically to find how the concentrations vary

with depth from the free surface, and were again able to derive asymptotic solutions in

the limit of large aggregation numbers, which provide a simpler formula for each of the

concentrations. The main difference between the solution with identical diffusivities and

the solution with different diffusivities is that the total polymer concentration (that is,

the sum of the amount of free polymer and polymer bound in aggregates) at any given

depth is not constant. We found that a maximum in the concentration of polymer–micelle

aggregates forms in the bulk fluid, and that the magnitude of this maximum increases

as the diffusivity of the aggregates decreases (with the knock-on effect that less polymer

reaches the interface). Given that polymer is added to the system in order to alter the

viscosity, it is interesting to note that the results suggest it will be least effective at doing

so near the free surface.

Of course, in practice the reaction rates will be finite and so we also solved the full

(1-D) problem numerically with all parameters finite. We found that all species are present

throughout the fluid although, as in the previous case, the micelles and complexes are

depleted near the free surface. We again saw that the overall polymer concentration is

depleted near the free surface when the diffusivity of the complexes is reduced. We looked

for another asymptotic limit in which the aggregation numbers N and M are taken to

infinity but the reaction rates kept finite. We found that the domain decomposes into

three regions rather than four – the plateau found in the infinite reaction rate case is

not present when the rates are finite. The asymptotics predict a kink in the concentration

of surfactant, which occurs at the same depth as the maximum in the concentration of

complex, and these asymptotics agree with numerical simulation.

One key limitation of the work described in this paper is that we limited

ourselves to concentration variations perpendicular to the free surface. In future work,

we intend to investigate whether the 1-D layered structure is stable to transverse

perturbations.

We are unaware of any experimental data on straining flows of polymer–surfactant

systems, and we hope that these results will provide a catalyst to our experimental col-

leagues to investigate these systems under dynamic conditions. In particular, in the future

we hope that we could fit our model to experimental data for the surface concentration

of surfactant (which can be extracted from surface tension or surface excess data) and

then use our model to help determine the rate parameter K1
2. Our key goal for the

future is to use the insight we have gained from this modelling study to help understand

other polymer–surfactant flows where the fluid mechanics is affected by the surfactant

distribution at the surface, and vice versa.

2 The rate parameter K0 can be determined by matching the model with polymer-free data, as

shown in Breward and Howell [8].
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Appendix A Boundary layers near the free surface

In this appendix we look in more detail at the boundary layer structure beneath the

interface that arises when the reaction rates K0 and K1 are large. We illustrate the

calculation in the case where the diffusivities are the same and there are no micelles

present. The calculations when the diffusivities are different and when micelles are present

are simple extensions. The outer solution is given by (3.4) and the micelle-free versions of

(3.5), namely

P =
δM

δM + SM

(
1 + b erfc

(
z√
2

))
, Pm =

SM

δM + SM

(
1 + b erfc

(
z√
2

))
, (A 1)

S + P ∗ SM

δM + SM

(
1 + b erfc

(
z√
2

))
= S∗ + a erfc

(
z√
2

)
. (A 2)

The limit of these outer solutions as z → 0 is:

S ′ =

√
2
π

(
P ∗SM

δM+SM b − a
)

1 + P ∗MδMSM−1(1+b)

(δM+SM)
2

, (A 3)

P ′ = − δM

δM + SM

√
2

π
b − MδMSM−1(1 + b)

(δM + SM)2
S ′, (A 4)

P ′
m = − SM

δM + SM

√
2

π
b +

MδMSM−1(1 + b)

(δM + SM)2
S ′. (A 5)

Equations (A 3)–(A 5) clearly do not satisfy the boundary conditions P ′ = Pm
′ = 0 at

z = 0. We thus seek a boundary layer near to the free surface. Denoting ε = 1/
√
K1, we

set z = εξ and we find that the equations in the inner region become

Sξξ + ε2Sξ = P ∗
(
P
(
S/δ

)M − Pm

)
, (A 6)

Pξξ + ε2Pξ =
(
P
(
S/δ

)M − Pm

)
, (A 7)

Pmξξ + ε2Pmξ = −
(
P
(
S/δ

)M − Pm

)
. (A 8)
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The boundary conditions at ξ = 0 become

Pξ = Pmξ = 0, Sξ = ε
Γ ∗S

β + S
. (A 9)

We can simplify the system of equations (correct to O(ε)) by dropping the O(ε2) terms in

(A 6)–(A 8), combining, integrating and applying the boundary conditions to give

P + Pm = E, S + P ∗Pm = ε
Γ ∗S

β + S
ξ + B, (A 10)

where E and B are constants of integration. We now expand the inner variables as

asymptotic series using S = S0 + εS1 + · · · , P = P0 + εP1 + · · · , and P = Pm0 + εPm1 + · · · ,
where S0 is a constant. We also expand the constants of integration B and E in the same

way. The leading-order problem becomes

P0 + Pm0 = E0, S0 + P ∗Pm0 = B0, P0

(
S0

δ

)M

= Pm0, (A 11)

which has solution

P0 =
E0δ

M

δM + SM
0

, Pm0 =
E0S

M
0

δM + SM
0

, S0 = B0 − P ∗E0S
M
0

δM + SM
0

. (A 12)

The O(ε) problem reads

P1 + Pm1 = E1, S1 + P ∗Pm1 =
Γ ∗S0

β + S0
ξ + B1, (A 13)

S1ξξ = P ∗
(
P1

(
S0/δ

)M
+ M

P0S
M−1
0

δM
S1 − Pm1

)
. (A 14)

The equation for S1 can be written as

S1ξξ = λ2
1S1 + λ2 + λ3ξ, (A 15)

where

λ2
1 = 1 +

Sm
0

δM
+

P ∗E0MSM−1
0

δM + SM
0

, λ2 =
(
P ∗E1 − B1

) SM
0

δM
− B1,

λ3 = − Γ ∗S0

β + S0

(
δM + SM

0

δM

)
. (A 16)

The solution that matches with the outer and satisfies the boundary condition at z = 0 is

S1 = −
(

Γ ∗S0

λ1 (β + S0)
+

λ3

λ3
1

)
e−λ1ξ − λ2 + λ3ξ

λ2
1

, (A 17)

and thus

P1 = E1 − 1

P ∗

[(
Γ ∗S0

λ1 (β + S0)
+

λ3

λ3
1

)
e−λ1ξ − λ2 + λ3ξ

λ2
1

− B1 − Γ ∗S0

β + S0
ξ

]
, (A 18)
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Pm1 =
1

P ∗

[
Γ ∗S0

β + S0
ξ + B1 +

(
Γ ∗S0

λ1 (β + S0)
+

λ3

λ3
1

)
e−λ1ξ +

λ2 + λ3ξ

λ2
1

]
. (A 19)

We now match with the outer solution. Matching the leading-order terms, we find that

S0 = Si, P0 =
δM(1 + b)

δM + SM
i

, Pm0 =
SM
i (1 + b)

δM + SM
i

, (A 20)

where (as before) Si is the “outer” S(0), and thus we must have E0 = 1 + b. Matching

the two-term inner expansions of the one-term outer solutions with the one-term outer

expansions of the two-term inner solutions, gives

S ′(0) =
Γ ∗S0

β + S0

⎛
⎝ δM + SM

0

δM + SM
0 +

ME0P ∗δMSM−1
0

δM+SM
0

⎞
⎠ , P ′(0) = −S ′(0)

ME0δ
MSM−1

0

(δM + SM
0 )2

, (A 21)

and thus comparing (A 3) and (A 4) with (A 21) we find that

b = 0, a = −
√

π

2

(
Γ ∗Si
β + Si

)
. (A 22)

Thus the leading-order outer solution is

P =
δM

δM + SM
, Pm =

SM

δM + SM
, S +

P ∗SM

δM + SM
= S∗ −

√
π

2

(
Γ ∗Si
β + Si

)
erfc

(
z√
2

)
,

(A 23)

where Si is given by

Si +
P ∗SM

i

δM + SM
i

= S∗ −
√

π

2

(
Γ ∗Si
β + Si

)
. (A 24)

Appendix B Boundary layers with O(1) reaction rates

Now we look for a boundary layer model that applies in a neighbourhood of z = z1 and

can match with the solutions in regions 1 and 2. We rescale the variables as follows:

z = z1 + M−1ζ, (B 1a)

S(z) = δ
(
1 + 2M−1 logM + M−1S̃(ζ)

)
, (B 1b)

Sm(z) = Sm(z1) + M−1ζS ′
m(z1) + M−2S̃m(ζ), (B 1c)

P (z) = M−1P̃ (ζ), (B 1d )

Pm(z) = Pm(z1) + M−1P̃m(ζ), (B 1e)

where, for simplicity of presentation, we have anticipated the result that the outer solutions

for Sm, S ′
m, and Pm are continuous at z = z1. At leading order, the governing equations
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(2.14) are transformed to

S̃ ′′ − K1P
∗P̃ eS̃ = 0, (B 2a)

D1S̃
′′
m + z1S

′
m(z1) − K0Sm(z1) = 0, (B 2b)

D2P̃
′′ − K1P̃ eS̃ = 0, (B 2c)

D3P̃
′′
m + K1P̃ eS̃ = 0, (B 2d )

with errors of order M−1 log2 M. We denote the solutions in each of the three outer

regions by using the appropriate subscript. The matching conditions are

S̃ ′ → S ′
1(z1)

P̃ ′ → P ′
1(z1)

P̃ ′
m → P ′

m1(z1)

⎫⎪⎬
⎪⎭ as ζ → −∞,

S̃ ′ → S ′
2(z1)

P̃ → 0

P̃ ′
m → P ′

m2(z1)

⎫⎪⎬
⎪⎭ as ζ → +∞. (B 3)

Hence, we find that

S̃ ′ − P ∗D2P̃
′ = constant and D2P̃

′ + D3P̃
′
m = constant, (B 4)

which lead to the flux conditions (4.7d,e). A further integration yields

S̃ = P ∗D2P̃ + S ′
2(z1)ζ, (B 5)

where the additional integration constant may be set to zero without loss of generality by

exploiting the translation invariance in ζ. The resulting problem may be normalized by

defining

ζ =
1

S ′
2(z1)

[
log

(
D2s

′
2(z1)

2

K1

)
+ ξ

]
, P̃ (ζ) =

1

P ∗D2
f(ξ), (B 6)

so that f(ξ) satisfies the ODE

d2f

dξ2
= fef+ξ, (B 7)

subject to

df

dξ
→ −λ as ξ → −∞, f(ξ) → 0 as ξ → +∞, (B 8)

where λ = 1 − s′
1(z1)/s

′
2(z1) ∈ (0, 1). There is a one-parameter family of solutions of (B 7)

with permissible far-field behaviour of the form

f(ξ) ∼ cK0

(
2eξ/2

)
as ξ → ∞, (B 9)

where K0 denotes a modified Bessel function and c is an arbitrary constant which may

be used to shoot for a particular value of the slope λ at −∞. Typical solutions are shown

in Figure B 1 with different values of λ between 0 and 1.

https://doi.org/10.1017/S0956792515000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000327


770 C. J. W. Breward et al.

λ = 0.1

λ = 0.2

λ = 0.3

λ = 0.4

λ = 0.5

λ = 0.6

λ = 0.7

λ = 0.8

λ = 0.9

−10 −8 −6 −4 −2 0 2 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ξ

f

Figure B 1. The function f(ξ) satisfying the ODE (B 7) and far-field conditions (B 8) with various

values of λ ∈ (0, 1).For interpretation of the references to colour in this figure, the reader is referred

to the online version of this article.

To analyse the boundary layer at z = z3, we perform the rescalings

z = z2 + N−1/2η, Sm(z) = Sm(z3) + N−1/2ηS ′
m(z3) + N−1S̄m(η), (B 10a)

S(z) = 1 + N−1S̄(η), Pm(z) = Pm(z3) + N−1/2ηP ′
m(z3) + N−1P̄m(η). (B 10b)

We recall that P (z) is exponentially small here and hence is neglected. The resulting

leading-order equations read

S̄ ′′ = K0

(
eS̄ − Sm(z3)

)
, (B 11a)

D1S̄
′′
m = −z3S

′
m(z3) − K0

(
eS̄ − Sm(z3)

)
, (B 11b)

D3P̄
′′
m = −z3P

′
m(z3). (B 11c)

These are consistent with our assertion that Sm and Pm are continuously differentiable at

z = z3. We infer from (B 11c) that P ′′
m is also continuous, which is to be expected since

the leading-order solutions for Pm in regions 2 and 3 are identical. However, equation

(B 11b) implies that Sm suffers a jump in its second derivative across z = z3; again this

is consistent with the solutions obtained in regions 2 and 3. It just remains to solve for

S̄(η). The governing ODE (B 11a) may be normalized by the rescaling:

η =
ξ√

K0Sm(z3)
, S̄(η) = log

(
Sm(z3)

)
+ g(ξ). (B 12)

This results in

d2g

dξ2
= eg − 1, (B 13)
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Figure B 2. The function g(ξ) defined by equation (B 16). The dashed curves show the far-field

asymptotic approximations (B 15) and (B 17)

which is to be solved subject to the far-field conditions

g(ξ) ∼ −ξ2

2
as ξ → −∞, g(ξ) → 0 as ξ → −∞. (B 14)

These are consistent with the outer solution S3(z) ∼ 1 and with S ′′
2 (z3) = −K0Sm(z3), as

implied by equation (4.8a). We choose to fix the arbitrary translation such that

g(ξ) ∼ −ξ2

2
− 1 + o(1/ξ) as ξ → −∞, (B 15)

and the resulting solution takes the implicit form

ξ = −
√

−2g +
1√
2

∫ ∞

−g

(
1√

v + e−v − 1
− 1√

v

)
dv. (B 16)

The function g(ξ) so defined is plotted in Figure B 2, along with the far-field behaviours

(B 15) as ξ → −∞ and

g(ξ) ∼ −Ce−ξ as ξ → +∞, (B 17)

where

C = exp

[
1√
2

∫ ∞

1

(
1√

v + e−v − 1
− 1√

v

)
dv

+
1√
2

∫ 1

0

(
1√

v + e−v − 1
− 1√

v
−

√
2

v

)
dv

]
≈ 0.66297. (B 18)
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