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Abstract

Polling systems are queueing systems consisting of multiple queues served by a single
server. In this paper we analyze two types of preemptive time-limited polling systems,
the so-called pure and exhaustive time-limited disciplines. In particular, we derive a
direct relation for the evolution of the joint queue length during the course of a server
visit. The analysis of the pure time-limited discipline builds on and extends several
known results for the transient analysis of an M/G/1 queue. For the analysis of the
exhaustive discipline we derive several new results for the transient analysis of the M/G/1
queue during a busy period. The final expressions for both types of polling systems that
we obtain generalize previous results by incorporating customer routeing, generalized
service times, batch arrivals, and Markovian polling of the server.
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1. Introduction

Polling systems are queueing systems consisting of multiple queues served by a single
server. There are many applications of polling models. For instance, traffic light systems,
multiple-access protocols for communication networks (e.g. IEEE 802.11), and product
assembly systems can be modeled as a polling model. A more recent application field of
polling systems is the area of wireless communication systems with mobile stations; see [8,
Section 1.3]. The autonomous movements of such stations, hereby dynamically changing the
network, create a specific need for studying time-limited polling models in which the visit
time to a queue can be bounded by the server’s mobility and not necessarily by its queue
length. Another consequence of this mobility is that data packet transmissions may be pre-
empted and must be repeated once connections are re-established. In wireless communications
the transmission rate of data packets depends on the level of interference in the channel, which
is typically changing with time [21]. Therefore, every time a connection is re-established the
transmission rate of the data packets can be different. This makes a preemptive-repeat-random
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Exponential time-limited polling models 33

policy more appropriate in this context. According to this latter policy, if a service is inter-
rupted, then at the next server visit a new service time will be drawn from the original service
time distribution. Well-known surveys of a broad class of polling models include [19], [20],
and [24], for example. For more recent surveys, we refer to [3], [4], and [23].

A key relation in the analysis of polling systems relates the joint queue length at the end of
a server visit to queue i, denoted by Qi, to the joint queue length at the start of the server visit
to Qi. This relation can be written in the following general form:

β i(z) =F(αi)(z), (1)

where β i(z) is the probability generating function (p.g.f.) of the joint queue length at the end
of a server visit to Qi, αi(z) is the p.g.f. of the joint queue length at the start of a server visit to
Qi, and F is an operator representing the mapping between the queue lengths at these epochs
and depends on the assumed service discipline.

In the analysis of polling systems a fundamental role is played by the so-called branching
property; see [14] and [18]. Polling systems which operate under service disciplines satis-
fying this branching property (e.g. the exhaustive and gated disciplines) are amenable to a
tractable analysis. De Haan, Boucherie, and van Ommeren [9] established the key relation, (1),
for the pure exponential time-limited discipline with preemptive service in an indirect, recur-
sive manner. According to the pure exponential time-limited discipline, the server visiting a
queue continues to service this queue for a period of time that is exponentially distributed.
Under the assumption of phase-type service times, a direct relation between β i(z) and αi(z)
is derived for this discipline using a matrix analytical approach in [2]. De Haan et al. [9] also
rederived a result of [11] for the exhaustive exponential time-limited discipline for the special
case of phase-type service times. According to the exhaustive exponential time-limited service
discipline, the server visiting a queue continues to service a queue for an exponentially dis-
tributed period of time or until the queue becomes empty, whichever occurs first. Eliazar and
Yechiali [11] studied the exhaustive exponential time-limited discipline for preemptive service;
see also [12]. Observing that upon successful service completion at a queue the busy period in
fact regenerates, Eliazar and Yechiali obtained a closed-form relation between the joint queue
length at the end and the start of a server visit. Leung [16] analyzed the key relation, (1), for
the exhaustive exponential time-limited discipline with non-preemptive service.This was done
in a recursive manner by conditioning on specific intermediate events during a server visit.
De Souza e Silva, Gail, and Muntz [10] studied the key relation for the exhaustive deterministic
time-limited discipline for both preemptive and non-preemptive service. Under the assumption
of exponential service times, they analyzed the transient behavior of the system by applying
uniformization techniques to find the joint queue-length distribution β i(z). Note that for the
special case of a two-queue polling model with exponential service times, Coffman, Fayolle,
and Mitrani [6] found a closed-form solution of the generating function of the joint queue
length by solving a boundary value problem. Unfortunately, this solution method appears to be
inapplicable for more than two queues with general service time distribution.

In the present paper we derive a direct relation for the evolution of the joint queue length
during the course of a server visit, that is, we relate β i(z) and αi(z) in a direct manner. This
is done for both the pure and the exhaustive exponential time-limited discipline with general
service time requirements and preemptive service. More specifically, the service of individ-
ual customers is according to the preemptive-repeat-random policy. Moreover, we incorporate
customer routeing into our analysis, such that it may be applied to a large variety of queue-
ing networks with a single server operating under one of the above-mentioned time-limited
service disciplines. We further extend our model by considering batch Poisson arrivals and
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Markovian polling of the server. The analysis of the pure time-limited discipline builds on
Cohen’s derivation in [7, Section II.4.3] and extends several of his results for the transient
analysis of the M/G/1 queue. In addition, for the analysis of the exhaustive discipline we will
derive several new results for the transient analysis of the M/G/1 queue during a busy period.
The final expressions (for both the exhaustive and pure case) that we obtain for the key relations
are of the form

β i(z) = d1(z) · (αi(z) − αi(z∗
i )) + d2(z) · αi(z∗

i ),

where

αi(z∗
i ) := αi(z1, . . . , zi−1, li(z), zi+1, . . . , zM),

d1(z), and d2(z) are functions of z = (z1, . . . , zM) which are largely determined by the Laplace–
Stieltjes transform (LST) of the service-time distribution, and li(z) is related to the length of
the busy period of a customer at Qi. These relations generalize the results in [2] by relaxing the
phase-type distribution assumption on the service times and by incorporating customer route-
ing and Markovian polling of the server. Compared to [11], our results include the following
model extensions for the pure time-limited discipline: batch arrivals, customer routeing, and
Markovian polling of the server. This is done by extending several results of the transient
analysis of the M/G/1 queue.

Note that complementary to these key relations, there exists a relation between the p.g.f.s
β i(z) and αj(z) which couples the queue length at the start of a server visit to Qj to the queue
length at the end of a server visit to Qi. Together, these relations for all queues in the system
give rise to a system of equations which may be solved numerically in an iterative fashion
to derive the joint queue-length distributions. In this respect, the key relation for the time-
limited disciplines derived in this paper not only presents a more elegant counterpart of the
recursive relation obtained in [9] but also offers a computationally more attractive alternative.
For more details of the incorporation of our relation into a computational scheme we refer to [2,
Section 5]. Moreover, in [2, Sections 6 and 7], this scheme was evaluated from a computational
point of view and compared to an existing numerical algorithm to show its benefits.

In summary, our contributions in this paper are as follows.

• We enrich the existing results on exponential time-limited models by incorporating batch
Poisson arrivals, generalized service times, customer routeing, and Markovian polling of
the server.

• We derive new results for the transient probabilities of the M/G/1 queue and of the batch
Poisson arrivals M/G/1 queue.

• Our derived key relations allow a computationally attractive procedure to find the joint
queue-length distribution.

The rest of this paper is organized as follows. We describe the model and the notation in
Section 2. The key relations for the pure and the exhaustive exponential time-limited disci-
pline are presented in Sections 3 and 4, respectively. For clarity of exposition, in these latter
sections we shall restrict ourselves to Poisson arrivals and fixed cyclic routeing of the server,
that is, upon visit completion to a queue the server switches to another queue according to a
predetermined routeing table. The model extensions to batch Poisson arrivals and Markovian
polling of the server are separately analyzed in Section 5. We wrap up with a discussion of the
final results for the key relations in Section 6. In Appendix A we give the transient analysis for
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the M/G/1 queue during a busy period. The complete proofs of the key relations are given in
Appendices B and C.

2. Model and notation

Consider a polling system with cyclic routeing of the server and with M queues, M ≥ 1.
Each queue has Poisson arrivals, and independent and identically distributed service times.
The model extension with batch Poisson arrivals or Markovian polling of the server is deferred
to Section 5. In this paper we consider two service disciplines, that is,

• pure exponential time-limited discipline (P-TL),

• exhaustive exponential time-limited discipline (E-TL).

According to both disciplines, the server will visit a queue for at most an amount of time Yi,
which is exponentially distributed with rate ξi and independent of other visit times and of the
service times. Under the E-TL discipline the server will move to the next queue as soon as the
(currently visited) queue becomes empty or when the timer Yi expires, whichever occurs first.
Under the P-TL discipline the server remains at the queue until the timer expires. Under both
disciplines, the customer receiving service will be preempted at the expiration of the timer and
in such a case a new service time will be drawn from the original distribution at the start of the
next visit; that is, we assume the preemptive-repeat with resampling strategy.

Customers who have completed their service at Qi, i = 1, . . . ,M, will join Qj, j = 1, . . . ,M,
with probability rij ≥ 0, and with probability ri0 ≥ 0 they will leave the system. Clearly, these
routeing probabilities rij must satisfy

∑M
j=0 rij = 1, i = 1, . . . ,M. We assume henceforth that

rii = 0 and let ri(z) denote the p.g.f. of the number of arrivals to all queues generated by a single
departing customer at Qi, i.e. ri(z) = ri0 + ∑

j rijzj. Note that rii �= 0 may be incorporated if we
redefine the service time at Qi as the sum of a geometric number (with expectation 1/(1 − rii))
of independent original service times, and adjust the routeing probabilities as follows: r′

ij =
rij/(1 − rii) and r′

ii = 0.
The random variables Ii and Xi, i = 1, . . . ,M, refer to the interarrival time of new customers

and the service time of customers at Qi. The three families of interarrival times, service times,
and visit times are assumed to be independent.

The switch-over times are not considered in this paper. The only exceptions are in Lemmas 1
and 2, and in Section 5.2. This is because we focus purely on the key relation, equation (1).
We refer to [2] and [9] for the incorporation of this relation into the framework for the compu-
tation of the joint queue-length probabilities. Namely, in [2 Section 5–7] an iterative algorithm
was proposed. In this latter paper the performance of this algorithm was evaluated from a
computational point of view, and compared with an existing algorithm.

It is assumed that the queues of the polling system are stable. In the following lemmas we
shall state the stability condition for both the pure time-limited and the exhaustive time-limited
systems. The proofs of these lemmas are straightforward extensions of those of Theorems 3.1
and 3.2 in [8]. Note that the stability proof in [8] relied largely on the stability proof of Fricker
and Jaibi [13] for a class of polling systems with non-preemptive and work-conserving service
disciplines.

Lemma 1. (Stability of the pure time-limited discipline.) Let ct denote the total expected
switch-over time during a polling cycle. The stability of the pure time-limited discipline is
as follows:

System is stable ⇐⇒ ρi < κi, i = 1, . . . ,M,
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where

ρi = λ∗
i · 1 − X̃i(ξi)

ct + ξiX̃i(ξi)
, κi = 1/ξi

ct + ∑M
j=1 1/ξj

, λ∗
i = λi +

M∑
j=1

λ∗
j rji.

Note that X̃i(s) is the LST of the service time and (1 − X̃i(ξi))/(ξiX̃i(ξi)) is the expected
value of the effective service time of a job in Qi which includes the work lost due to service
preemptions; κi is the availability fraction of the server at Qi.

Lemma 2. (Stability of the exhaustive time-limited discipline.) Let ct denote the total expected
switch-over time during a polling cycle. The stability of the exhaustive time-limited discipline
is as follows:

System is stable ⇐⇒ ρ + max
i=1,...,M

(
λ∗

i
1 − X̃i(ξi)

X̃i(ξi)

)
· ct < 1,

where

ρ =
M∑

j=1

λ∗
i (1 − X̃i(ξi))

ξiX̃i(ξi)
, λ∗

i = λi +
M∑

j=1

λ∗
j rji.

Observe that ρ represents the total offered load to the system and X̃i(ξi)/(1 − X̃i(ξi)) is the
mean number of served jobs at Qi during a cycle when Qi is saturated, that is, Qi has infinitely
many jobs waiting for service.

Here we introduce the notation that will be used below.

• Q: an arbitrary queue in the system.

• xt: number of customers at time t at Q.

• z(n): number of customers left behind by the nth departing customer from Q.

• r′
n: time of the nth departure from Q.

• D(t): number of departures from Q in [0, t).

• A(t): number of arrivals to Q in [0, t).

• I: exponentially distributed random variable with parameter λ denoting the interarrival
time to Q.

• X: generally distributed random variable denoting the service time at Q.

• 1A: indicator function of event A.

• X̃( · ): LST of random variable X.

• μ̂(s, y): root x with the smallest absolute value less than one of x = y · X̃(s + λ(1 − x)).

• Ns
i : number of customers at all queues at the start of a server visit to Qi.

• Ne
i : number of customers at all queues at the end of a server visit to Qi.

• Ni,j(t): number of customers at Qj at time t during a server visit to Qi.

• αi(z): p.g.f. of Ns
i .
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• β i(z): p.g.f. of Ne
i .

• ri(z): p.g.f. of the number of arrivals to all queues generated by a single departing
customer at Qi.

3. Analysis of the pure time-limited service discipline

In this section we analyze the P-TL discipline. Under this discipline, the server will only
depart from the queue when the time limit is reached. It should be stressed that the server will
not leave the queue when it becomes empty. We will derive an expression for β i(z), the p.g.f.
of the number of customers at all queues at the instant that the server leaves Qi, in terms of the
number of customers present at the start of the visit, αi(z). Here, we present only the essential
analytical steps and the main result. The detailed proofs are given in Appendix B.

Consider a visit of the server to an arbitrary queue Q. During this visit, the queue-length
process at Q is a birth-and-death process, while the queue-length process at the other queues
is a pure birth process. Note also that arrivals to these other queues may be both exogenous
and endogenous (from Q). Our interest is in the number of customers at time t given an initial
number of customers at the queues at the start of the server visit to Q. Moreover, to include
customer routeing in the analysis, we need to keep track of the number of departures during a
visit. To record this number of departures, it is not sufficient to know the number of customers
at Q at the beginning and end of a visit. To keep track of the number of departures, we will
focus on the transient probabilities p(n)

hk (t), which are defined as follows:

p(n)
hk (t) :=

{
P(xt = k, D(t) = n | x0 = h) h, k, n = 0, 1, . . . ,

0 otherwise,

where xt refers to the number of customers at Q at time t and D(t) refers to the number of
departures from Q until time t. We relate these probabilities to the transient probabilities for
the standard M/G/1 queue, which we denote by P(n)

hj (t). These time-dependent conditional
probabilities, which also incorporate the number of departures until time t, are defined for
n = 1, 2, . . . , h, j = 0, 1, . . . , and t> 0 as [7, page 239]

P(n)
hj (t) := P(z(n) = j, r′

n ≤ t | z(0) = h),

where z(n) refers to the number of customers left behind by the nth departure, and r′
n refers to

the epoch of the nth departure. Further, it is assumed that at time t = 0 the 0th customer left the
queue. We consider the function πh(r, s, y), which is defined in terms of P(n)

hj (t) as follows:

πh(r, s, y) :=
∞∑

n=1

yn
∞∑

j=0

rj
∫ ∞

0
e−st dP(n)

hj (t), h = 0, 1, . . . ,

and which is explicitly provided in [7, page 240] for h = 0, 1, . . . , as

πh(r, s, y) = y · X̃(s + λ(1 − r))

r − y · X̃(s + λ(1 − r))
·
{

rh − λ(1 − r) + s

λ(1 − μ̂(s, y)) + s
· μ̂h(s, y)

}
, (2)

where μ̂(s, y) is the root x with the smallest absolute value less than one of x = y · X̃(s +
λ(1 − x)). Note that μ̂(s, y) is the joint generating function of the busy period and the number
of customers served during this period; see e.g. [7, page 250].

https://doi.org/10.1017/apr.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.51


38 R. DE HAAN ET AL.

To take advantage of this explicit result, we will first present an explicit expression for the
transient probabilities p(n)

hk (t) in terms of P(n)
hj (t). For convenience, we define

F(0)
k (t) = 1{k=0}P(A(t) = 0, I > t) + 1{k≥1}P(A(t) = k, I + X > t), k = 0, 1, . . . ,

Fk(t) = P(A(t) = k, X > t), k = 0, 1, . . . .

That is, Fk(t) refers to k exogenous arrivals to Q during period [0, t] which is shorter than the
service time X of the job that started service at time t = 0, that is, assuming a non-empty queue
at t = 0 and the job under service is not yet finished. In the special case of an empty queue at
t = 0 (see F(0)

k (t)), we need to account for the fact that first an arrival should occur before any

service may start. Then, we can relate p(n)
hk (t) to P(n)

hj (t) for n = 1, 2, . . . , h, k = 0, 1, . . . , and
t> 0 as follows.

Lemma 3. We have

p(n)
hk (t) =

∫ t

u=0
F(0)

k (t − u) dP(n)
h0 (u) +

k∑
j=1

∫ t

u=0
Fk−j(t − u) dP(n)

hj (u).

To retrieve the terms πh(r, s, y), we first take the LST of p(n)
hk (t) (see Remark 2 below). Next,

we take the generating function of this expression with respect to the number of customers at
the end of a server visit. Note that our interest here is specifically in this number rather than in
the number at the time of the nth departure, since the server only leaves upon expiration of the
timer. In a final step, we take the generating function with respect to the number of departures
until time t to obtain an expression for p(n)

hk (t) in terms of πh(r, s, y). These consecutive steps
provide us with the following result for h = 0, 1, . . . .

Lemma 4. We have

∞∑
n=1

yn
∞∑

k=0

rk
∫ ∞

t=0
e−st dp(n)

hk (t)

= s

λ(1 − r) + s
· λ(1 − r · X̃(λ(1 − r) + s)) + s

λ+ s
· πh0(s, y)

+ s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)) · (πh(r, s, y) − πh0(s, y)), (3)

where the terms πh0(s, y) are given by (see [7, page 240])

π00(s, y) = λ

λ(1 − μ̂(s, y)) + s
· μ̂(s, y), (4)

πh0(s, y) = λ+ s

λ(1 − μ̂(s, y)) + s
· μ̂h(s, y), h = 1, 2, . . . . (5)

The right-hand side of (3) can be interpreted as follows. The first part refers to the case that
upon the nth departure zero customers are left behind, while the second part refers to a strictly
positive number left behind by the nth departing customer. Moreover, the second part can be
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decomposed into two independent components: πh(r, s, y) − πh0(s, y) accounts for the queue-
length evolution until the nth departure and the other component accounts for the queue-length
evolution during the final, interrupted service. A similar reasoning holds for the first part.

Thus, we have related the transient probabilities of our interest to known results for the
M/G/1 queue. To incorporate these results into the polling model, we refer to a specific queue
Qi by adding an index i to the generic variables. Next, by unconditioning on the system state
at the start of a visit and incorporating the expressions above into the definition of β i(z), we
obtain the main result of this section for the p.g.f. of the joint queue length at the end of a
server visit under the P-TL discipline.

Theorem 1. (Pure exponential time-limited discipline.) We have

β i(z) = dP
1 (z) · (αi(z) − αi(z∗

i )) + dP
2 (z) · αi(z∗

i ),

where

dP
1 (z) = ξi

zi − ri(z) · X̃i(λi(1 − zi) + ξ∗
i )

· zi · (1 − X̃i(λi(1 − zi) + ξ∗
i ))

λi(1 − zi) + ξ∗
i

,

dP
2 (z) = dP

1 (z) + ξi

zi − ri(z) · X̃i(λi(1 − zi) + ξ∗
i )

· (zi − ri(z)) · X̃i(λi(1 − zi) + ξ∗
i )

λi(1 − μ̂i(ξ∗
i , ri(z))) + ξ∗

i
,

ξ∗
i = ξi +

∑
j �=i

λj(1 − zj),

αi(z∗
i ) := αi(z1, . . . , zi−1, μ̂i(ξ

∗
i , ri(z)), zi+1, . . . , zM). (6)

We refer to Section 6 for a detailed interpretation of the results shown in Theorem 1.

Remark 1. (Phase-type service times.) We note that Theorem 1 generalizes the result for the
special case ri(z) = 1 (i.e. no customer routeing) given in [2] for the case of phase-type service
times and in [1] for the exponential service times.

Remark 2. (Exponential time limit.) The step of taking the LST of p(n)
hk (t) in fact corresponds

to unconditioning over the exponentially distributed visit time. This shows that our assumption
on the visit time plays a crucial role in the analysis.

Remark 3. The results of Theorem 1 can be used in a numerical framework to compute the
joint queue-length distribution. We refer the reader to [2, Section 5] for details of this compu-
tational algorithm which uses an iterative method. Moreover, in [2, Section 6] the algorithm’s
implementation is described in detail and a test of its performance from a computational point
of view is presented. Finally, in [2, Section 7] a comparison of the algorithm with the numerical
approach proposed in [22] is shown and the method’s benefits are reported.

4. Analysis of the exhaustive time-limited service discipline

Let us next consider the E-TL discipline. Under this discipline the server will depart from a
queue not only when the time limit is reached but also when the queue becomes empty. Again,
we will derive an expression for β i(z), the p.g.f. of the number of customers at all queues at
the instant that the server leaves Qi. This will be done in terms of the number of customers
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present at the start of the visit, αi(z). As in the previous section, we present here only the main
analytical steps and the final result. The proofs are given in Appendix C.

Under the E-TL discipline, the server may leave a queue for two reasons, namely, the server
departs due to the queue being empty or due to the timer expiring. Let {empty} and {timer}
denote the corresponding server events. Recall that Ns

i and Ne
i denote the multi-dimensional

random variable of the number of customers at all queues at the start and the end of a server
visit to Qi, respectively. The p.g.f. of Ne

i , β i(z), can be decomposed into two parts depending on
the reason for a server departure, as the server departs only if the queue is empty or if the timer
expires. Moreover, these events are readily seen to be mutually exclusive (the service-time
distribution and timer distribution are both continuous distributions, so that the probability of
the given events occurring simultaneously is zero). Hence, the p.g.f. of the number of customers
at the end of a server visit period to Qi satisfies

β i(z) =E[zNe
i ] =E[zNe

i 1{empty}] +E[zNe
i 1{timer}].

Next, in Sections 4.1 and 4.2, we will derive the conditional p.g.f.s

E[zNe
i 1{empty} | Ns

i = n], E[zNe
i 1{empty} | Ns

i = n],

where n denotes the vector (n1, . . . , nM). Finally, we will uncondition these expressions to get
our main result in Section 4.3.

4.1 E[zNe
i 1{empty} | Ns

i = n]

If the {empty} event occurs, the queue may be empty upon arrival of the server or become
empty upon departure of a customer. If the server finds an empty queue upon arrival, then
clearly Ne

i = Ns
i . Else, if the queue is non-empty upon server arrival, then the evolution of

queue-length process during the visit is closely related to the length of a busy period in a
standard M/G/1 queue. This is formalized in the following lemma.

Lemma 5. The joint conditional p.g.f. of the number of customers at the end of a visit period
to Qi and the server departure due to the queue being empty satisfies

E[zNe
i 1{empty} | Ns

i = n] = μ̂
ni
i (ξ∗

i , ri(z)) ·
∏
j �=i

z
nj
j , (7)

where
ξ∗

i = ξi +
∑
j �=i

λj(1 − zj).

For the case when the server departs due to an empty Qi, Lemma 5 shows that every cus-
tomer waiting in Qi at the beginning of server visit is replaced in an independent and identically
distributed manner. These replacement jobs do not only concern Qi but all other queues as well.
This latter is captured via the term ri(z), which is defined as the p.g.f. of the number of arrivals
to all queues generated by a single departing customer at Qi.

4.2 E[zNe
i 1{timer} | Ns

i = n]

If the {timer} event occurs, the queue must be non-empty upon arrival of the server, and it
remains non-empty during the course of the visit and is still non-empty at the expiration of the
timer. The analysis of this case builds on the work of Cohen for the transient analysis of the
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M/G/1 queue. However, contrary to the analysis for the P-TL discipline, we cannot directly
apply the formulae derived in [7]. This is due to the fact that we need specifically to account
for not entering the state with zero customers at Qi during the course of a server visit. Below,
we state the transient probabilities of interest and several related expressions. Next, using these
expressions, we will derive E[zNe

i 1{timer} | Ns
i = n].

We first consider the conditional joint queue-length distribution at time t> 0 given an initial
number of customers at time t = 0 and given that the server is at an arbitrary queue Q. It is good
to note that during a server visit to Q the queue-length process at the other queues is simply a
pure-birth process. Hence, we neglect the other queues for the moment and concentrate on the
marginal queue-length probabilities for Q, denoted by q(n)

hk (t), which we define as

q(n)
hk (t) :=

{
P(xt = k, D(t) = n, xv > 0, 0< v< t | x0 = h) n = 0, 1, . . . , h, k = 1, 2, . . . ,

0 otherwise.

For convenience, let us recall the definition of the probabilities P(n)
hj (t), for n =

1, 2, . . . , h, j = 0, 1, . . . and t> 0,

P(n)
hj (t) := P(z(n) = j, r′

n ≤ t | z(0) = h).

Analogously, we define R(n)
hj (t), for h, j, n = 1, 2, . . . , and t> 0,

R(n)
hj (t) := P(z(n) = j, r′

n ≤ t, z(k) > 0, 0< k< n | z(0) = h),

where it is assumed that at time t = 0 a new service starts. We note that R(n)
hj (t) is only defined

for h, j = 1, 2, . . . . This is due to the fact that the event of a server arriving at an empty queue
(i.e. h = 0) and the event of the nth customer leaving an empty queue behind (i.e. j = 0) are not
considered as {timer} events, but always as {empty} events.

We consider the function γh(r, s, y), which is defined in terms of R(n)
hj (t) as

γh(r, s, y) :=
∞∑

n=1

yn
∞∑

j=1

rj
∫ ∞

0
e−st dR(n)

hj (t), h = 1, 2, . . . ,

and which is explicitly given (see Appendix A for the derivation) for h = 1, 2, . . . , as

γh(r, s, y) = r( − μ̂h(s, y) + y · X̃(λ(1 − r) + s) · rh−1)

r − y · X̃(λ(1 − r) + s)
.

Analogous to the approach in the previous section, we intend to utilize the explicit expressions
for γh(r, s, y). To this end, we will start by relating the transient probabilities q(n)

hk (t) to the time-

dependent probabilities R(n)
hj (t) at embedded epochs of service completion. For convenience, we

recall that
Fk(t) = P(A(t) = k, X > t), k = 0, 1, . . . ,

that is, Fk(t) refers to the number of arrivals to Q during a period which is shorter than a service
time X. The specific relation between q(n)

hk (t) and R(n)
hj (t) is then given in the following lemma.

Lemma 6. We have

q(n)
hk (t) =

∫ t

u=0

k∑
j=1

Fk−j(t − u) dR(n)
hj (u), n = 1, 2, . . . , h, k = 1, 2, . . . .

https://doi.org/10.1017/apr.2019.51 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.51


42 R. DE HAAN ET AL.

Again, to obtain the terms γh(r, s, y), we take the LST of q(n)
hk (t) (see Remark 2). Next, we

take the generating function with respect to the number of customers at the end of the server
visit of the resulting expression, and finally we take the generating function with respect to the
number of departures. Hence, we obtain the following result.

Lemma 7. We have
∞∑

n=1

yn
∞∑

k=1

rk
∫ ∞

t=0
e−st dq(n)

hk (t)

= γh(r, s, y) · s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)), h = 1, 2, . . . . (8)

The right-hand side of (8) can be recognized as a convolution of two independent parts. The
first part, γh(r, s, y), refers to the queue length at the instant of the final (successful) service
completion during the visit, while the other part refers to the number of arrivals during an
interrupted service.

Next, we present the explicit expression for the joint conditional p.g.f. of the number of
customers at all queues at the end of a visit to a specific queue Qi when the server departure is
due to the timer expiration. The condition is on the number of customers present at the start of
the visit.

Lemma 8. We have

E[zNe
i 1{timer} | Ns

i = n] = ξi · zi · (1 − X̃i(λi(1 − zi) + ξ∗
i ))(zni

i − μ̂
ni
i (ξ∗

i , ri(z)))

[λi(1 − zi) + ξ∗
i ] · [zi − ri(z) · X̃i(λi(1 − zi) + ξ∗

i )]
·
∏
j �=i

z
nj
j , (9)

where
ξ∗

i = ξi +
∑
j �=i

λj(1 − zj).

Compared to Lemma 5, expression (9) is much more complex, which is due to the fact
that when the timer expires the remaining jobs at Qi are not replaced in an independent and
identical manner.

4-3 E[zNe
i ]

Combining the two conditional results of (7) and (9), we obtain our main result of this
section for the E-TL service discipline.

Theorem 2. (Exhaustive exponential time-limited discipline). We have

β i(z) = dE
1 (z) · (αi(z) − αi(z∗

i )) + dE
2 (z) · αi(z∗

i ), (10)

where

dE
1 (z) = dP

1 (z),

dE
2 (z) = 1,

αi(z∗
i ) = αi(z1, . . . , zi−1, μ̂i(ξ

∗
i , ri(z)), zi+1, . . . , zM),

ξ∗
i = ξi +

∑
j �=i

λj(1 − zj).
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Observe that (10) generalizes the result for the special case ri(z) = 1 (i.e. no customer route-
ing) given in [11]. We refer to Section 6 for a detailed interpretation of the results shown in
Theorem 2. To find the p.g.f.s of joint queue-length distribution based on results in Theorem 2,
we refer to Remark 3.

Remark 4. (Phase-type service times.) Theorem 2 generalizes the result for the special case
ri(z) = 1 (i.e. no customer routeing) given in [2] for the case of phase-type service times and
in [1] for the exponential service times.

Remark 5. (Exhaustive service discipline.) In the limit case of ξi ↓ 0 the time limit is of infinite
length. Hence, in this case (assuming a stable queue), the server will always depart due to Qi

being empty. It can readily be found that for ξi ↓ 0 and ri(z) = 1 the following expression for
β i(z) is obtained:

β i(z) = αi(z∗
i ),

where

αi(z∗
i ) := αi

(
z1, . . . , zi−1, μ̂i

( ∑
j �=i

λj(1 − zj), 1

)
, zi+1, . . . , zM

)
.

This result matches the well-known result for the exhaustive service discipline [14,18].

5. Model extensions

The analysis of the basic polling model may be extended in various directions. Extending
the basic model increases the range of applications that can be modeled. Moreover, such exten-
sions are also interesting from a theoretical point of view. The specific extensions that we
discuss here are the following: batch Poisson arrivals of customers and Markovian polling of
the server.

5.1 Batch Poisson arrivals

In this subsection we concentrate on the time-limited polling systems with batch Poisson
arrivals. The analysis of these batch arrival systems closely follows the analysis of single arrival
systems. Therefore we will only present the main steps and the final results.

The analysis of the time-limited polling system is based on the transient analysis of the
M/G/1 queue, for which closed-form expressions for the joint LST for the queue length and
number of departures at time t is available; see e.g. [7, pages 239–240]. In the case of batch
arrivals, we need the transient analysis for the MX /G/1 queue, that is a single server queue with
compound Poisson arrivals. The transient analysis was partially done in [7, pages 239–240].
Below, we shall derive the required expressions for our analysis.

The batch sizes are assumed to be mutually independent and independent of the arrival and
service processes. Let λ denote the arrival rate of batches and ψ̂( · ) the generating function of
the batch size. Recall that the generating function of the service time of an individual customer
is denoted by X̃( · )

Let z(n) denote the number of customers left behind by the nth departing customer after time

0 and let r′
n be its departure time. We assume that at time t = 0 customer 0 departs. Let R(n)

hj (t)
denote the following probability:

R(n)
hj (t) := P(z(n) = j, r′

n ≤ t, z(k) > 0, 0< k< n | z(0) = h) for h = 1, 2, . . . , j = max (0, h − n).
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Lemma 9. The generating function of R(n)
hj (t) is

γh(r, s, y) = r( − μ̂h(s, y) + yX̃(s + λ(1 − ψ̂(r))) · rh−1)

r − yX̃(s + λ(1 − ψ̂(r)))
,

for h = 1, 2, . . . .

The result in Lemma 9 can be seen as an extension of Theorem 5 in Appendix A for the
M/G/1 queue. Now we have the ingredients to relate β i(z) and αi(z) for batch Poisson arrivals.
For the system with a P-TL service discipline with batch arrivals, after a similar analysis to
Section 3 and Appendix B, we obtain the following result (cf. Theorem 1).

Theorem 3. (Pure exponential time-limited discipline with batch arrivals.) We have

β i(z) = dP
B1(z) · (αi(z) − αi(z∗

i )) + dP
B2(z) · αi(z∗

i ),

where

dP
B1(z) = ξi

zi − ri(z) · X̃i(λi(1 − ψ̂i(zi)) + ξ∗
i )

· zi · (1 − X̃i(λi(1 − ψ̂i(zi)) + ξ∗
i ))

λi(1 − ψ̂i(zi)) + ξ∗
i

,

dP
B2(z) = dP

B1(z) + ξi

zi − ri(z) · X̃i(λi(1 − ψ̂i(zi)) + ξ∗
i )

· (zi − ri(z)) · X̃i(λi(1 − ψ̂i(zi)) + ξ∗
i )

λi(1 − μ̂i(ξ∗
i , ri(z))) + ξ∗

i
,

αi(z∗
i ) = αi(z1, . . . , zi−1, μ̂i(ξ

∗
i , ri(z)), zi+1, . . . , zM),

ξ∗
i = ξi +

∑
j �=i

λj(1 − ψ̂j(zj)).

For the system with an E-TL service discipline with batch Poisson arrivals, after a similar
analysis to Section 4 and Appendix C, we obtain the following result (cf. Theorem 2).

Theorem 4. (Exhaustive exponential time-limited discipline with batch arrivals.) We have

β i(z) = dP
B1(z) · (αi(z) − αi(z∗

i )) + αi(z∗
i ),

where dP
B1(z) is given in Theorem 3.

5.2 Markovian polling of the server

We have assumed until now that the server polls the queues according to a fixed cyclic
schedule. To allow for more general polling schedules, the routeing (or polling) of the server
is taken to follow a Markovian pattern (see [5] and [17]). Let si,j ≥ 0, j = 1, . . . ,M, denote
the probability upon departure from queue i that the next queue that will be visited is j. This
next queue could also be i again. This feature is particularly meaningful in the case of non-zero
switch-over times, whereas in the case of zero switch-over times we may simply set si,i = 0,
i = 1, . . . ,M.

Let us describe the embedded process of visits to the queues (thus neglecting switch-over
times for the moment) by a discrete-time Markov chain Xn ∈ {1, . . . ,M}, n ≥ 0, driven by
the transition probability matrix S = {si,j}i,j=1,...,M . We assume that this Markov chain has an
equilibrium distribution which we denote by τi, i = 1, . . . ,M. Our interest is in the fraction
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of time that the Markov chain is in a state i (denoted by κi) and also in the fraction of times
that the process is switching from state i to state j (denoted by �i,j). To enrich the analysis
here we include the switch-over time from Qi to Qj and assume it is independent of all other
variables, for example arrival times, service times, and server visit times. Let us define the
cycle time of Qi by Ci as the time between two consecutive polling instants of the server at Qi.
This means that a cycle Ci comprises exactly one visit time to Qi. The mean cycle time can
then be expressed as a weighted sum of mean visit and mean switch-over times as follows:

E[Ci] =
∑

k

τk

τi

(
E[Yk] +

∑
j

sk,j · ck,j

)
, i = 1, . . . ,M,

where E[Yk] denotes the mean visit time to queue k and ck,j the mean switch-over time from Qk

to Qj. Note that the ratio τk/τi equals the mean number of visits to queue k per visit to i. There
exists a simple relation between the mean cycle times of the different queues in the sense that
the product E[Ci] · τi is constant for all queues. This relation immediately explains why, under
Markovian polling, in contrast to the cyclic polling case (for which τi = 1/M, i = 1, . . . ,M),
the mean cycle times per queue are not necessarily equal for all queues.

It readily follows for κi, i = 1, . . . ,M, which is in fact the long-term fraction of time the
server is available at Qi, that

κi = E[Yi]

E[Ci]
= E[Yi]∑

k (τk/τi)(E[Yk] + ∑
j sk,j · ck,j)

= τiE[Yi]∑
k τk(E[Yk] + ∑

j sk,j · ck,j)
, (11)

where it should be noted that the denominator in the last part of (11) does not depend on i.
Similarly, for �i,j we find that

�i,j = τi · si,j · ci,j∑
k τk(E[Yk] + ∑

j sk,j · ck,j)
.

Again, the adjustments in our modeling framework for the joint queue-length probabilities
are relatively simple. We note that routeing of the server solely plays a role in the relation
between the queue length at a visit start instant and the queue length at the preceding visit
completion instant. Since the preceding queue that was served is now random, the expression
for αi(z) becomes

αi(z) =
∑

j

qj,iĈj,i(z)β j(z),

where Ĉj,i(z) is the joint generating function of the total number of Poisson arrivals to all the
queues during Cj,i, the switch-over time from Qj to Qi. Here qj,i is the probability that the
preceding queue was Qj, given that the server is at Qi, and is given by the transition probability
of the time reversed Markov chain (see e.g. [15])

qj,i = τj · sj,i

τi
.

Finally, we conclude that for the P-TL discipline the p.g.f. of the steady-state joint queue-length
probabilities is

P(z) =
M∑

i=1

(
β i(z) · κi +

M∑
j=1

ĈR
i,j(z) ·�i,j

)
,
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where

ĈR
i,j(z) = β i(z) · 1 − C̃i,j(

∑
k λk(1 − zk))

ci,j · ∑k λk(1 − zk)
.

Note that for the E-TL discipline we can just derive the expressions of the p.g.f. of the steady-
state joint queue-length process at polling instances. Based on these results, it is possible to
find the p.g.f. of the marginal queue-length distribution in Qi at an arbitrary time; see e.g. [11].

6. Concluding remarks

The final results for the P-TL discipline and the E-TL discipline have a similar form. More
specifically, these results can be written as follows:

P-TL: β i(z) = dP
1 (z) · (αi(z) − αi(z∗

i )) + dP
2 (z) · αi(z∗

i ), (12)

E-TL: β i(z) = dE
1 (z) · (αi(z) − αi(z∗

i )) + dE
2 (z) · αi(z∗

i ), (13)

where dE
1 (z) = dP

1 (z) is given in (6), dE
2 (z) = 1 and dP

2 (z) is given in (6).
Equations (12) and (13) may be interpreted as follows. Consider a visit of the server to

Qi. Regarding the timer, it may occur that (i) the timer expires before Qi becomes empty for
the first time, or (ii) the timer expires only after Qi becomes empty for the first time. It is
readily seen that the queue-length process is identical for both service disciplines in the case
(i). This is reflected in the similarity of the terms dP

1 (z) · (αi(z) − αi(z∗
i )) and dE

1 (z) · (αi(z) −
αi(z∗

i )). However, in case (ii), the queue-length process is different for the disciplines. Under
the exhaustive time-limited discipline, the server immediately leaves upon the queue becoming
empty; say this occurs at time t0. Under the pure time-limited discipline, at time t0 the server
will remain at the queue and a sequence of idle and busy periods will follow until eventually
the timer expires. This latter contribution (after t0) to the queue-length process is represented
in the term dP

2 (z).
The function dP

2 (z) reflects the p.g.f. of the number of customers at all queues at the end
of a server visit process, which runs for an exponential amount of time and which starts from
an empty queue. This function can be analyzed as follows. First, observe that the timer will
interrupt the visit process during either an idle or a busy period. Second, observe that this
process is regenerative in the sense that if the timer does not expire before the end of the first
busy period, then the process starts like new at that specific time instant. Recall that Ii denotes
the length of an idle period at Qi and Yi denotes the exponential visit time of the server to Qi.
Further, let Ui denote the length of a busy period at Qi starting with a single customer. Then
we may write the following relation for dP

2 (z):

dP
2 (z) =E[zNi(Yi)1{Ii>Yi} | Ni(0) = n, Ni,i(0) = 0]

+E[zNi(Yi)1{Ii≤Yi,Ii+Ui>Yi} | Ni(0) = n, Ni,i(0) = 0]

+E[zNi(Ii+Ui)1{Ii+Ui≤Yi} | Ni(0) = n, Ni,i(0) = 0] · dP
2 (z)

= ξi

λi + ξ∗
i

+ λi

λi + ξ∗
i

×E[zNi(Yi)1{timer} | Ni(0) = (n1, . . . , ni−1, 1, ni+1, . . . , nM)]

+ λi

λi + ξ∗
i

· μ̂i(ξ
∗
i , ri(z)) · dP

2 (z),
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where E[zNi(Yi)1{timer} | Ni(0) = n] is provided in the analysis of the exhaustive time-limited
discipline (see Lemma 8). Then, inserting this result of Lemma 8 and reorganizing the terms
appropriately, we obtain dP

2 (z) as in (6).
This result indeed confirms the interpretation given above. We remarked that for the com-

mon exhaustive discipline (E), i.e. the time-limited version with the time limit set to infinity,
the term dE

1 (z) vanishes, that is,
E: β i(z) = αi(z∗

i ),

In this paper we have studied two time-limited service disciplines for polling systems,
namely, the pure and the exhaustive exponential time-limited discipline with preemptive ser-
vice. Specifically, we have obtained relations between the p.g.f.s of the joint queue-length
distribution at visit beginning and visit completion epochs. To this end, we have used both
known (see Section 3) and novel results (see Section 4) for the transient behavior of the M/G/1
queue. Our final expressions for the key relation, (1), extend earlier results for the pure limited
[2] and the exhaustive time-limited discipline [11] by incorporating new model features such
as customers routeing among queues; see Section 5 for the other model features. These rela-
tions can be used to obtain the joint queue-length distribution at these embedded epochs, for
example using the framework presented in [2]. These key relations not only provide us with a
more elegant result but have also been shown to significantly alleviate the computational efforts
required to compute the joint queue-length distribution of the polling system along the frame-
work of [9]. Finally, we have been able to give a clear interpretation of the final expressions
for the key relations, the discussion after (12) and (13).

Appendix A: Transient analysis of the M/G/1 queue during a busy period

In this section we analyze the transient behavior of the M/G/1 queue during a busy period.
We follow an approach similar to that used by Cohen [7] to study the transient behavior of the
full queue-length process of the M/G/1 queue. To this end, we consider a single queue served
by a single server. Customers arrive at the queue according to a Poisson process with rate λ.
The service requirement X of a customer is generally distributed.

Our interest is in the queue-length process during a busy period with some initial number
of customers. Moreover, we keep track of the number of departures until time t. Therefore,
as in the transient transition probabilities P(n)

hj (t) that were defined in [7, page 239], we define

the transient probabilities R(n)
hj (t) which specifically account for the fact that the system is non-

empty from time 0 up to time t. More precisely, the transient probabilities R(n)
hj (t) are defined

for h, j, n = 1, 2, . . . , and t> 0 as

R(n)
hj (t) := P(z(n) = j, r′

n ≤ t, z(k) > 0, 0< k< n | z(0) = h),

where it is assumed that at time t = 0 a new service starts. Note that R(n)
hj (t) is only defined for

h, j ≥ 1. Our objective is to find an explicit expression for γh(r, s, y) which is defined as

γh(r, s, y) :=
∞∑

n=1

yn
E(rz(n) e−sr′

n 1(z(k) > 0, 0< k< n)),

=
∞∑

n=1

yn
∞∑

j=1

rj
∫ ∞

0
e−st dR(n)

hj (t), h = 1, 2, . . . .
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From the definition of R(n)
hj (t) it follows immediately that

R(1)
1j (t) =

∫ t

τ=0
e−λτ (λτ )j

j! dX(τ ), j = 1, 2, . . . ,

R(1)
hj (t) =

∫ t

τ=0
e−λτ (λτ )j+1−h

(j + 1 − h)! dX(τ ), j = h − 1, h, . . . , h = 2, 3, . . . ,

R(1)
hj (t) = 0, otherwise.

Also, analogously to (4.20) of [7, page 239], we have the following recursive relation for R(n)
hj (t)

for t> 0, h, j = 1, 2, . . . , n = 2, 3, . . .:

R(n)
hj (t) =

∞∑
l=1

∫ t

u=0
R(n−1)

hl (t − u)duR(1)
lj (u). (14)

The following definitions will be used below:

γ
(n)
hj (s) :=

∫ ∞

0
e−st dR(n)

hj (t), h, j, n = 1, 2, . . . ,

γ
(n)
h (r, s) :=

∞∑
j=1

rjγ
(n)
hj (s), h, n = 1, 2, . . . ,

γhj(s, y) :=
∞∑

n=1

ynγ
(n)
hj (s), h, j = 1, 2, . . . ,

γh(r, s, y) :=
∞∑

n=1

ynγ
(n)
h (r, s), h = 1, 2, . . . .

As an immediate consequence of (14), we obtain the following result.

Lemma 10. We have

γ
(n)
h (r, s) =

∞∑
l=1

γ
(n−1)
hl (s) · γ (1)

l (r, s), h = 1, 2, . . . , n = 2, 3, . . . . (15)

The final term of the right-hand side of (15), γ (1)
l (r, s), refers to the number of arrivals

during a service time starting with l customers. We have to distinguish between starting with
one or with two or more customers, since in the former case the queue might be empty upon
service completion and this situation should be excluded as we restrict the analysis to the
evolution within a busy period. A closed-form expression for this term is then given in the
following lemma.

Lemma 11. We have
γ

(1)
1 (r, s) = X̃(λ(1 − r) + s) − X̃(λ+ s),

and for h ≥ 2,
γ

(1)
h (r, s) = rh−1 · X̃(λ(1 − r) + s).
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Proof. Let us first consider the case h ≥ 2:

γ
(1)
h (r, s) =

∞∑
j=1

rjγ
(1)
hj (s)

=
∞∑

j=h−1

rjγ
(1)
hj (s)

=
∞∑

j=h−1

rj
∫ ∞

t=0
e−st dR(1)

hj (t)

=
∫ ∞

t=0
s e−st

∞∑
j=h−1

rjR(1)
hj (t) dt

=
∫ ∞

t=0
s e−st

∫ t

τ=0
e−λτ

∞∑
j=h−1

rh−1 · (rλτ )j+1−h

(j + 1 − h)! dX(τ ) dt

= rh−1
∫ ∞

τ=0
e−λτ (1−r)

∫ ∞

t=τ
s · e−st dt dX(τ )

= rh−1 · X̃(λ(1 − r) + s).

For h = 1, we should have at least one arrival before the first departure, otherwise the queue
would become empty. Hence, in the derivation of γ (1)

1 (r, s), we do not encounter the complete
power series representation of the exponential function, so that the final expression will consist
of two parts. More precisely,

γ
(1)
1 (r, s) =

∞∑
j=1

rjγ
(n)
hj (s)

=
∫ ∞

t=0
s e−st

∫ t

τ=0
e−λτ

∞∑
j=1

(rλτ )j

j! dX(τ ) dt

=
∫ ∞

τ=0
e−λτ · (e−λτ r − 1)

∫ ∞

t=τ
s e−st dt dX(τ )

= X̃(λ(1 − r) + s) − X̃(λ+ s). �

Next, we are ready to present our main result of this section, i.e. a closed-form expression
for γh(r, s, y).

Theorem 5. We have

γh(r, s, y) = r

r − y · X̃(λ(1 − r) + s)
( − μ̂h(s, y) + y · X̃(λ(1 − r) + s) · rh−1),

where h = 1, 2, . . . , and μ̂(s, y) is the smallest root in x with absolute value smaller than one
of the function x = y · X̃(λ(1 − x) + s).
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Proof. Starting from the definition of γh(r, s, y) and applying Lemmas 10 and 11, we obtain
the following relations after some manipulations:

γ1(r, s, y) ·
(

1 − y

r
· X̃(λ(1 − r) + s)

)
= y · (X̃(λ(1 − r) + s) − X̃(λ+ s) · (1 + γ11(s, y))),

(16)

and for h = 2, 3, . . . ,

γh(r, s, y) ·
(

1 − y

r
· X̃(λ(1 − r) + s)

)
= y · (X̃(λ(1 − r) + s) · rh−1 − X̃(λ+ s) · γh1(s, y))).

(17)

Let μ̂(s, y) denote the smallest root of the function x = y · X̃(λ(1 − x) + s) in x with absolute
value smaller than one. Since the functions γh(r, s, y) should be analytic for |r| ≤ 1, it follows
that μ̂(s, y) is a zero of the right-hand side of the expressions above. Thus, we immediately
obtain for γh1(s, y)

γ11(s, y) = μ̂(s, y) − y · X̃(λ+ s)

y · X̃(λ+ s)
, γh1(s, y) = μ̂h(s, y)

y · X̃(λ+ s)
, h = 2, 3, . . . .

Note that inserting h = 1 in the latter expression, which we denote by (γh1(s, y))|h=1, shows that
γ11(s, y) + 1 = (γh1(s, y))|h=1. Finally, inserting these expressions into (16) and (17) completes
the proof. �

Appendix B: Proofs of results in Section 3

For convenience, let us recall the following definitions for t> 0:

p(n)
hk (t) :=

{
P(xt = k, D(t) = n | x0 = h) h, k, n = 0, 1, . . . ,

0 otherwise,

P(n)
hj (t) := P(z(n) = j, r′

n ≤ t | z(0) = h), n = 1, 2, . . . , h, j = 0, 1, . . . ,

F(0)
k (t) := 1{k=0}P(A(t) = 0, I > t) + 1{k≥1}P(A(t) = k, I + X > t), k = 0, 1, . . . ,

Fk(t) := P(A(t) = k, X > t), k = 0, 1, . . . .

Proof of Lemma 3
Proof. The proof of Lemma 3 is carried out as follows:

p(n)
hk (t) := P(xt = k,D(t) = n | x0 = h)

= P(xt = k, r′
n ≤ t, r′

n+1 > t | z(0) = h) (18)

=
∫ t

u=0

k∑
j=0

P(xt = k, r′
n+1 > t | r′

n = u, z(0) = h, z(n) = j)

× duP(r′
n ≤ u, z(n) = j | z(0) = h) (19)

=
∫ t

u=0
F(0)

k (t − u) dP(n)
h0 (u) +

k∑
j=1

∫ t

u=0
Fk−j(t − u) dP(n)

hj (u). (20)

That is, first we rewrite the event D(t) = n and use the assumption that at time 0 the 0th cus-
tomer departed from the queue, so that we obtain (18). Next, we condition on the number of
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customers present at the nth departure, z(n), and on the time this departure occurs, r′
n, which

leads to (19). Finally, observing that rn+1, n = 0, 1, . . . , depends in fact only on rn and z(n),

using that the arrival process is stationaryand applying the definitions of F(0)
k (t), Fk(t), and

P(n)
hj (t) provides us with (20).

Let us define the following LSTs:

F̃(0)
k (s) :=

∫ ∞

0−
e−st dF(0)

k (t), k = 0, 1, . . . ,

F̃k(s) :=
∫ ∞

0−
e−st dFk(t), k = 0, 1, . . . ,

π
(n)
hj (s) :=

∫ ∞

0−
e−st dP(n)

hj (t), n = 1, 2, . . . , h, j = 0, 1, . . . .

Then, we may present the following result as an immediate consequence of Lemma 3.

Corollary 1. We have∫ ∞

t=0−
e−stdp(n)

hk (t) = F̃(0)
k (s)π (n)

h0 (s) +
k∑

j=1

F̃k−j(s)π (n)
hj (s). �

Proof of Lemma 4
Before we get to the actual proof of Lemma 4, we present another lemma. Let us introduce

the auxiliary functions G(0)(r, s) and G(r, s). These functions refer to the number of customers
that arrive in the system during a period which starts at a service completion instant at an arbi-
trary queue Q and ends at a timer expiration which occurs before the next service is completed.
More specifically, the function G(0)(r, s) refers to the case with zero customers present after a
service completion, while G(r, s) refers to the case with a strictly positive number of customers
present at a service completion instant.

Lemma 12. We have

G(0)(r, s) :=
∞∑

k=0

rkF̃(0)
k (s) = s

λ(1 − r) + s
· λ(1 − r · X̃(λ(1 − r) + s)) + s

λ+ s
,

G(r, s) :=
∞∑

k=0

rkF̃k(s) = s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)).

Proof. First we will prove the expression for G(0)(r, s) as follows:

G(0)(r, s) :=
∞∑

k=0

rkF̃(0)
k (s)

= s ·
∫ ∞

t=0
e−st

P(A(t) = 0) dt + r ·
∞∑

k=1

rk−1 · s ·
∫ ∞

t=0
e−st

P(A(t) = k, I + X > t) dt

(21)

= s

λ(1 − r) + s
· λ(1 − r · X̃(λ(1 − r) + s)) + s

λ+ s
. (22)
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That is, we separate the terms for k = 0 and k ≥ 1, insert the expression for F̃(0)
k (s) and perform

some simple calculations, yielding (21). Next, we condition on the interarrival time (for the
case k ≥ 1) and use the fact that for a given time t the events {A(t) = k} and {X > t} are inde-
pendent. The final expression, (22), then readily follows from the Poisson arrival assumption
and some simple manipulations. Analogously, we find for G(r, s) that

G(r, s) :=
∞∑

k=0

rkF̃k(s) =
∞∑

k=0

rk · s
∫ ∞

t=0
e−st

P(A(t) = k, X > t) dt

= s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)). �

Let us give several definitions which will be used in the proof of Lemma 4:

π
(n)
h (r, s) :=

∞∑
j=0

rjπ
(n)
hj (s), h = 0, 1, . . . , n = 1, 2, . . . ,

πh0(s, y) :=
∞∑

n=1

ynπ
(n)
h0 (s), h = 0, 1, . . . ,

πh(r, s, y) :=
∞∑

n=1

ynπ
(n)
h (r, s), h = 0, 1, . . . .

Proof of Lemma 4. The proof of Lemma 4 in fact consists of the following three main steps:

∞∑
n=1

yn
∞∑

k=0

rk
∫ ∞

t=0
e−st dp(n)

hk (t) (23)

=
∞∑

n=1

yn
∞∑

k=0

rk
(

F̃(0)
k (s)π (n)

h0 (s) +
k∑

j=1

F̃k−j(s)π (n)
hj (s)

)
(24)

=
∞∑

n=1

yn(G(0)(r, s) · π (n)
h0 (s) + G(r, s)(π (n)

h (r, s) − π
(n)
h0 (s))) (25)

= s

λ(1 − r) + s
· λ(1 − r · X̃(λ(1 − r) + s)) + s

λ+ s
· πh0(s, y)

+ s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)) · (πh(r, s, y) − πh0(s, y)).

In the first step, we substitute the result of Corollary 1 into (23) leading to (24). Next, we
derive the generating function with respect to the number of customers at the end of a visit.
After some manipulations and using the definitions of G(0)(r, s), G(r, s), π (n)

h0 (s), and π (n)
h (r, s),

we arrive at (25). In the final step, we use the definitions of πh(r, s, y) and πh0(s, y) and insert
the explicit expressions for G(0)(r, s) and G(r, s) which were derived in Lemma 12. �

Proof of Theorem 1
We prove the expression for β i(z) for a specific queue Qi as given in Theorem 1 by first

deriving the conditional p.g.f. β i
n(z) :=E[zNe

i | Ns
i = n] and then unconditioning on Ns

i , the
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number of customers present at the start of a visit to Qi. For convenience, let us define ξ∗
i as

follows:
ξ∗

i := ξi +
∑
j �=i

λj(1 − zj).

We recall that we refer to a specific queue Qi by adding an index i to a generic variable. Next,
β i

n(z) can be expressed as follows.

Lemma 13. We have

β i
n(z) = ξi

ξ∗
i

· (G(0)
i (zi, ξ

∗
i ) · (πni,0(ξ∗

i , ri(z)) + 1{ni=0}) + Gi(zi, ξ
∗
i ) · (πni(zi, ξ

∗
i , ri(z)) + zni

i

− πni,0(ξ∗
i , ri(z)) − 1{ni=0})

) ·
∏
j �=i

z
nj
j . (26)

Proof. Let Ai,j(t) denote the number of arrivals to Qj (both external and internal arrivals)
during a visit to Qi. Recall further that Di(t) denotes the number of departures at Qi from time
0 to t. Starting from the definition of the p.g.f., we condition on the timer Yi and introduce the
number of departures from Qi until time t:

β i
n(z) =

∞∑
m1=0

· · ·
∞∑

mM=0

zm1
1 · · · zmM

M P(Ne
i = m | Ns

i = n)

=
∫ ∞

0
ξi e−ξit

∞∑
m1=0

· · ·
∞∑

mM=0

zm1
1 · · · zmM

M

∑
n

P(Ni(t) = m, Di(t) = n | Ni(0) = n) dt.

After some simple rearrangements and using that, given t and Di(t), the queue-length process at
Qi is independent of the aggregate arrival process to the other queues, we obtain the following:

∫ ∞

0
ξi e−ξit

∑
n

∞∑
m1=0

· · ·
∞∑

mM=0

zm1−n1
1 · · · zmM−nM

M

× P({Ai,j(t) = mj − nj, for j �= i} | Di(t) = n, Ni(0) = n)

×
∑
mi

zmi
i P(Ni,i(t) = mi | Di(t) = n, Ni(0) = n)

× P(Di(t) = n | Ni(0) = n) dt ·
∏
j �=i

z
nj
j .

These aggregate arrivals to Qj, j �= i, can be decomposed into two independent parts, namely a
first part referring to external arrivals at each queue and a second part referring to customers
that were served at Qi and routed to some other queue. The latter is represented by the term
(ri(z))n. Also noting that Ni,i(t) depends only on Ni(0) through Ni,i(0), we retrieve p(n)

nimi(t) and
eventually find that

β i
n(z) =

∫ ∞

0
ξi e−ξ∗

i t
∞∑

n=0

∞∑
mi=0

zmi
i (ri(z))np(n)

nimi
(t) dt ·

∏
j �=i

z
nj
j . (27)
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Then, we can apply Lemma 4 for n ≥ 1, while for n = 0 we use

∞∑
mi=0

zmi
i

∫ ∞

0
ξi e−ξ∗

i tp(0)
nimi

(t) dt

= 1{ni=0} ·
∞∑

mi=0

zmi
i

∫ ∞

0
ξi e−ξ∗

i t
P(Ai(t) = mi, Ii + Xi > t) dt

+ 1{ni≥1} ·
∞∑

mi=0

zmi
i

∫ ∞

0
ξi e−ξ∗

i t
P(Ai(t) = mi − ni, Xi > t) dt

= ξi

ξ∗
i

· (1{ni=0} · G(0)
i (zi, ξ

∗
i ) + 1{ni≥1} · zni

i · Gi(zi, ξ
∗
i )).

The final expression for β i
n(z) follows from inserting this result together with the result from

Lemma 4 into (27) and some simple manipulations. �
Proof of Theorem 1. The proof follows immediately by unconditioning β i

n(z) on the
state n = (n1, . . . , nM) at the start of the visit. The result of this operation is shown below.
Equation (28) follows by substitution of (26) into the definition of β i(z). We note that the final
expression, (29), follows from inserting the explicit expressions for G(0)

i (r, s) and Gi(r, s) (see
Lemma 12), inserting the expressions for πh(zi, ξ

∗
i , ri(z)) and πh0(ξ∗

i , ri(z)), h ≥ 0, which are
given in (2), (4), and (5), and some simple manipulations. That is,

β i(z) =
∞∑

n1=0

· · ·
∞∑

nM=0

β i
n(z)P(Ns

i = n)

=
∞∑

n1=0

· · ·
∞∑

nM=0

P(Ns
i = n) ·

∏
j �=i

z
nj
j · ξi

ξ∗
i

× (
Gi(zi, ξ

∗
i ) · (πni(zi, ξ

∗
i , ri(z)) + zni

i − πni,0(ξ∗
i , ri(z)) − 1{ni=0})

+ G(0)
i (zi, ξ

∗
i ) · (πni,0(ξ∗

i , ri(z)) + 1{ni=0})
)

(28)

= ξi

zi − ri(z) · X̃i(ξi + ∑
j λj(1 − zj))

×
( X̃i(ξi + ∑

j λj(1 − zj)) · (zi − ri(z))

λi(1 − μ̂i(ξi, ri(z))) + ξ∗
i

· αi(z∗
i )

+ (1 − X̃i(ξi + ∑
j λj(1 − zj))) · zi

λi(1 − zi) + ξ∗
i

· αi(z)

)
, (29)

where
αi(z∗

i ) :=E
[
z

Ns
1

1 · · · μ̂i(ξ
∗
i , ri(z))Ns

i · · · z
Ns

M
M

]
and μ̂i(ξ∗

i , ri(z)) is the root x with the smallest absolute value less than one of x = ri(z) ·
X̃i(ξ∗

i + λi(1 − x)). �
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Appendix C: Proofs of results in Section 4

For convenience, let us recall the following definitions for t> 0:

q(n)
hk (t) :=

{
P(xt = k, D(t) = n, xv > 0, 0< v< t | x0 = h) n = 0, 1, . . . , h, k = 1, 2, . . .

0 otherwise,

R(n)
hj (t) := P(z(n) = j, r′

n ≤ t, z(k) > 0, 0< k< n | z(0) = h), h, j, n = 1, 2, . . . ,

Fk(t) := P(A(t) = k, X > t), k = 0, 1, . . . .

Proof of Lemma 5
Proof. The first observation is that each customer at Qj, j �= i, will still be present at the

end of the visit, which is accounted for in the term
∏

j �=i z
nj
j . Second, each customer present

at the start of the visit at Qi will effectively be replaced by a random population during the
course of the visit in anidentical fashion. In particular, the size of this population is given by
μ̂i(ξ∗

i , ri(z)). To see this, recall that μ̂i(s, y) refers to the joint generating function of the busy
period and the number of customers served during this period. The term ξ∗

i in μ̂i(ξ∗
i , ri(z))

accounts for the exogenous arrivals to the other queues in the system during a busy period that
endsbefore the timer expires. Similarly, the term ri(z) in μ̂i(ξ∗

i , ri(z)) accounts for the internal
arrivals to the other queues (from Qi) during this period. As initially there are ni identical
customers present at Qi, this leads to ni independent contributions which are recognized in the
power of μ̂i(ξ∗

i , ri(z)). �

Proof of Lemma 6
Proof. Lemma 6 is readily proved by using arguments similar to those in the proof of

Lemma 3:

q(n)
hk (t) = P(xt = k, D(t) = n, xv > 0, 0< v< t | x0 = h)

= P(xt = k, r′
n ≤ t, r′

n+1 > t, xv > 0, 0< v< t | z(0) = h)

=
∫ t

u=0

k∑
j=1

P(xt = k, r′
n+1 > t | r′

n = u, z(0) = h, z(m) > 0, 0 ≤ m ≤ n, z(n) = j)

× duP(r′
n ≤ u, z(n) = j, z(m) > 0, 0<m< n | z(0) = h)

=
∫ t

u=0

k∑
j=1

Fk−j(t − u) dR(n)
hj (u).

Let us define the following LSTs:

F̃k(s) :=
∫ ∞

0−
e−st dFk(t), k = 0, 1, . . . ,

γ
(n)
hj (s) :=

∫ ∞

0−
e−st dR(n)

hj (t), h, j, n = 1, 2, . . . . �

Note that a direct consequence of Lemma 6 is the following.
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Corollary 2. We have∫ ∞

t=0
e−st dq(n)

hk (t) =
k∑

j=1

γ
(n)
hj (s)F̃k(s), h, k, n = 1, 2, . . . . (30)

Proof of Lemma 7
Let us give several definitions which will be used in the proof of Lemma 7:

γ
(n)
h (r, s) :=

∞∑
j=0

rjγ
(n)
hj (s), h, n = 1, 2, . . . ,

γh(r, s, y) :=
∞∑

n=1

ynγ
(n)
h (r, s), h = 1, 2, . . . .

Proof of Lemma 7. The proof consists of three consecutive steps similar to the proof of
Lemma 4:

∞∑
n=1

yn
∞∑

k=1

rk
∫ ∞

t=0
e−st dq(n)

hk (t)

=
∞∑

n=1

yn
∞∑

k=1

rk
k∑

j=1

γ
(n)
hj (s)F̃k−j(s). (31)

=
∞∑

n=1

ynγ
(n)
h (r, s)G(r, s)

= γh(r, s, y) · s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)). (32)

First we substitute (30) into (31). Next, using the definitions of γ (n)
h (r, s) and G(r, s) (see

Lemma 12) immediately yields (32). The final step follows from the definition of γh(r, s, y)
and the substitution of the explicit expression for G(r, s). �

Proof of Lemma 8
As a preliminary to proving Lemma 8, we present the following result for h = 1, 2, . . . ,

for the special case of D(t) = 0, that is, no departures occur before the timer expires.

Lemma 14. We have
∞∑

k=1

rk
∫ ∞

t=0
e−st dq(0)

hk (t) = rh · s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)).

Proof.
∞∑

k=1

rk
∫ ∞

t=0
e−st dq(0)

hk (t)

= rh ·
∫ ∞

t=0
s e−st

∞∑
k=h

rk−h
P(A(t) = k − h, X > t) dt (33)
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= rh · s

λ(1 − r) + s
· (1 − X̃(λ(1 − r) + s)). (34)

Elaborating on the definition of q(0)
hk (t), we may obtain (33) after some simple manipulations.

Equation (34) then follows directly from the earlier derivation of G(r, s) (see Lemma 12). �

Proof of Lemma 8. To consider a specific queue Qi, we will again add an index i to the
generic variables. Let Ai,j(t) denote the number of arrivals to Qj (both external and internal
arrivals) during a visit to Qi. Recall further that Di(t) denotes the number of departures at Qi

from time 0 to t. Starting from the definition of the p.g.f., we condition on the timer Yi and
introduce the number of departures from Qi until time t:

E[zNe
i 1{timer} | Ns

i = n]

=
∞∑

m1=0

· · ·
∞∑

mM=0

zm1
1 · · · zmM

M P(Ne
i = m, {timer} | Ns

i = n)

=
∫ ∞

0
ξi e−ξit

∞∑
m1=0

· · ·
∞∑

mM=0

zm1
1 · · · zmM

M

×
∑

n

P(Ni(t) = m, {timer}, Di(t) = n | Ni(0) = n) dt.

Using that given t and Di(t) the queue-length process at Qi is independent of the aggregate
arrival process to the other queues and working out the event {timer}, we obtain

∫ ∞

0
ξi e−ξit

∑
n

∞∑
m1=0

· · ·
∞∑

mM=0

zm1−n1
1 · · · zmM−nM

M

× P({Ai,j(t) = mj − nj, for j �= i} | Di(t) = n, Ni(0) = n)

×
∑
mi

zmi
i P(Ni,i(t) = mi, Ni,i(v)> 0, 0< v< t | Di(t) = n, Ni(0) = n)

× P(Di(t) = n | Ni(0) = n) dt ·
∏
j �=i

z
nj
j .

Exactly following the same reasoning that led to (27), we obtain

E[zNe
i 1{timer} | Ns

i = n] =
∫ ∞

t=0
ξi e−ξ∗

i t
∞∑

n=0

∞∑
mi=1

zmi
i (ri(z))nq(n)

nimi
(t) dt ·

∏
j �=i

z
nj
j .

Then, we may apply Lemma 7 for n ≥ 1 and Lemma 14 for n = 0. This yields the desired result
in (9) after substituting the explicit expressions for Gi(r, s) (see Lemma 12) and γh(r, s, y) (see
(2)) and performing some simple manipulations. �

Proof of Theorem 2
The final result for β i(z) is obtained by first unconditioning the conditional p.g.f.s of the

previous lemmas and then merging these outcomes. Let us define β i
e(z) :=E[zNe

i 1{empty}] and
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β i
t (z) :=E[zNe

i 1{timer}]. Recall that αi(z∗
i ) = αi(z1, . . . , zi−1, μ̂i(ξ∗

i , ri(z)), zi+1, . . . , zM). By
unconditioning the expressions in Lemmas 5 and 8, it follows immediately that

β i
e(z) = αi(z∗

i )

and

β i
t (z) = ξi · zi · (1 − X̃i(λi(1 − zi) + ξ∗

i ))

(λi(1 − zi) + ξ∗
i )(zi − ri(z) · X̃i(λi(1 − zi) + ξ∗

i ))
· (αi(z) − αi(z∗

i )).

Proof of Theorem 2. The proof follows directly from β i(z) = β i
e(z) + β i

t (z), where the last
two terms are given in the latter two equations. �

Proofs of results in Section 5.1

For convenience, let us recall that the batch sizes are assumed to be mutually independent
and independent of the arrival and the service processes. Let λ denote the arrival rate of batches
and ψ̂( · ) the generating function of the batch size. Recall that the generating function of the
service time of an individual customer is denoted by X̃( · )

Let z(n) denote the number of customers left behind by the nth departing customer after time

0 and let r′
n be its departure time. We assume that at time t = 0 customer 0 departs. Let R(n)

hj (t)
denote the probability

R(n)
hj (t) := P(z(n) = j, r′

n ≤ t, z(k) > 0, 0< k< n | z(0) = h),

for h = 1, 2, . . . .

Proof of Lemma 9. Let us denote

P(n)
hk (t) := P(z(n) = k, r′

n ≤ t | z(0) = h).

Our objective is to find the joint generating function

πh(r, s, y) :=
∞∑

n=1

yn
E[rz(n) e−sr′

n ].

Define

πhk(s, y) :=
∞∑

n=1

yn
∫ ∞

0
e−st dP(n)

hk (t).

Following [7, pages 239–240, 386–387], we find that

πh(r, s, y)(r − yX̃(s + λ(1 − ψ̂(r))))

= yX̃(s + λ(1 − ψ̂(r)))

λ+ s
(λπh0(s, y)(ψ̂(r) − λ− s) + (λ+ s)δh(r, s)), (35)

where h = 0, 1, 2, . . . , and

δh(r, s) =

⎧⎪⎨
⎪⎩
λψ̂(r)

λ+ s
h = 0,

rh h = 1, 2, . . . .
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For Re(s) ≥ 0 and |y|< 1, the equation r = yX̃(s + λ(1 − ψ̂(r))) has a unique root r = μ̂(s, y)
with |r|< 1 which can be seen by applying Takács’ lemma. Since for Re(s) ≥ 0 and |y|< 1 the
functions πh(r, s, y), h = 0, 1, . . . are analytic in |r| ≤ 1, it follows that μ̂(s, y) should also be
a zero of the right-hand side of (35). After some algebra we find that

π00(s, y) = λ

λ− ψ̂(μ̂(s, y)) + s
μ̂(s, y),

πh0(s, y) = λ+ s

λ− ψ̂(μ̂(s, y)) + s
μ̂h(s, y), h = 1, 2, . . . .

The latter yields that

πh(r, s, y)

=
(
yX̃(s + λ(1 − ψ̂(r)))

(
rh − s + λ(1 − ψ̂(r))

s + λ(1 − ψ̂(μ̂(s, y)))
μ̂h(s, y)

))/(
r − yX̃(s + λ(1− ψ̂(r)))

)
,

for h = 0, 1, . . . .
An analysis similar to that in Appendix A gives the joint generating function γh(r, s, y) of

the probability R(n)
hj (t), which completes the proof. �
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