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Abstract
A transverse ledge climbing robot inspired by athletic locomotion is a customized robot aiming to travel through
horizontal ledges in vertical walls. Due to the safety issue and complex configurations in graspable ledges such as
horizontal, inclined ledges, and gaps between ledges, existing well-known vision-based navigation methods suf-
fering from occlusion problems may not be applicable to this special kind of application. This study develops a
force feedback-based motion planning strategy for the robot to explore and make feasible grasping actions as it
continuously travels through reachable ledges. A contact force detection algorithm developed using a momentum
observer approach is implemented to estimate the contact force between the robot’s exploring hand and the ledge.
Then, to minimize the detection errors due to dynamic model uncertainties and noises, a time-varying threshold is
integrated. When the estimated contact force exceeds the threshold value, the robot control system feeds the esti-
mated force into the admittance controller to revise the joint motion trajectories for a smooth transition. To handle
the scenario of gaps between ledges, several ledge-searching algorithms are developed to allow the robot to grasp
the next target ledge and safely overcome the gap transition. The effectiveness of the proposed motion planning
and searching strategy has been justified by simulation, where the four-link transverse climbing robot successfully
navigates through a set of obstacle scenarios modeled to approximate the actual environment. The performance of
the developed grasping ledge searching methods for various obstacle characteristics has been evaluated.

1. Introduction
A transverse climbing robot refers to a specialized climbing robot that moves transversely along ledges
[1], which are commonly part of the architectural features of high-rise residential buildings on the exte-
rior of walls [2]. Based on the movement mechanism inspired by climbing athletes [3], such a robot is
developed to perform rhythmic transverse movements by alternately grasping and releasing its grip on
ledge features [4]. As improper worker safety in high-rise buildings may increase the number of fatal-
ities [5], this robot can replace humans to perform important and potentially hazardous tasks such as
monitoring [6], cleaning [7], maintenance, inspection [8], and rescue [9].

Feature ledges in buildings have various shapes that are often found, such as rain shelters, outside
window trims, roofs, balconies, etc. [2]. Some climbing robots treat them as obstacles to be avoided,
so they try to find an alternative path to move [10]. Instead of treating ledges as obstacles, transverse
climbing robots treat them as a gripping medium and move transversely through the complex layout of
features along the building. To accomplish autonomous and safe mobility functions, the robot’s climbing
strategy requires the ability to recognize and adapt to ledge feature changes, such as horizontal position,
slope, and gaps at different elevations. To facilitate comprehension of building ledge features, an example
of a high-rise building suitable for transverse climbing robot grasping characteristics can be found in
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Figure 1. Ledge features as an architectural part on high-rise buildings; (a) ledges slope change.
(b) gap with the elevation difference.

Fig. 1. The robot sensing system recognizing unknown environments consists of two types, i.e., contact-
based (e.g., sensing) and non-contact-based (e.g., vision) [11]. One possible navigation solution is to
install vision sensors and develop an algorithm to identify target grasping objects while the robot is
moving [12].

Lin et al. [2] developed a transverse ledge climbing robot using a four-link planar mechanism. They
integrated two infrared sensors for the navigation system at the top and bottom of the gripper. These
infrared sensors measured the distance to the targeted ledge surface in real time. The robot can detect a
change in slope between the two connected ledges when there is a difference in the distance measured by
both sensors. Subsequently, the robot adjusted its posture to the slope of the ledge using a motion control
algorithm based on the Central Pattern Generator. However, the static viewing angle of an infrared sensor
limits its sensing area, making it difficult for the robot to recognize more complex ledge features, such as
gaps with different heights or slopes. Additionally, the installation of these sensors increases the robot’s
volume, reducing its agility and movement space. Surface conditions such as scattering, reflection, and
infrared (IR) light absorption can affect the effectiveness of infrared sensors [13]. As a result, the robot
could not operate in an unknown environment without first identifying the surface properties of the ledge
to ensure accurate measurements [14]. Furthermore, sensors that rely on emitted light waves suffer from
decreased performance in smoky [15] and foggy [16] conditions.

In another robot application, Kim et al. [17] installed a camera sensor and a laser emitter on a cylinder
grasp climbing robot. However, there were several failed attempts caused by the inability of the camera
to capture objects with poor surface reflection. The experiment results of Lu et al. [18] indicate that light
intensity also affects the error of the camera on the robot sensor in identifying objects. Similarly, Veiga
et al. [19] had a blind spot problem with the LIDAR sensor on their climbing robot, so they installed
multiple LIDAR sensors to perform navigation. Almost all navigation methods developed using visual
sensors suffer from various problems, which makes it difficult to obtain reliable information from the
working environment and derive movement decisions.

This study adopted a navigation method based on contact force feedback as an effective solution
to overcome the limitations of visual sensor-based methods, which was inspired by a blind person
who uses his cane to detect obstacles in front of him. This method is effective in recognizing environ-
ments that are partially unknown to the robot in advance, such as certain kinds of obstacles or sudden
environment changes [20]. Some researchers have proven its effectiveness, such as Saund et al. [21],
who developed a motion planning strategy on a robot manipulator by implementing a contact force
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feedback method to relocate the object by avoiding various obstacles without utilizing a visual sensor.
Similarly, Khedekar et al. [22] also justified the effectiveness of the contact force navigation method on
aerial robots.

Kuffner et al. [23] implemented footstep locomotion planning, which is integrated into an algorithm
to enable autonomous navigation through complex obstacles. Multi-contact interactions with the envi-
ronment can improve the robot’s ability to identify and adapt to various environment conditions while
guided by a motion planning strategy [24]. However, to avoid severe failures during navigation, it is cru-
cial to use a compliance controller to limit the torque load on the robot’s joints caused by disturbances
[25]. Ding et al. [26] introduced admittance control as a method for motion/force compliance, utilizing a
general momentum observer to estimate the contact interaction with the environment. When the robot’s
dynamic model is available, the contact force can be estimated with the momentum observer without a
force sensor device [27]. A time-varying threshold (TVT) can be set to manage the joint torque limits
due to disturbances [28]. The combination of TVT and momentum observers provides a robust solution
for compensating uncertainties in dynamic disturbances [29].

This paper proposes motion planning and environment-searching strategies for transverse climbing
robots. Initially, the robot performs exploratory movements with one hand extended to the target position
while the other hand grasps the ledge. When reaching the target position, the exploring hand will grasp
the ledge, and the other hand will release the grip to return to the same initial position (hand-returning).
When contact with the environment occurs, the robot must be able to adapt to changes in the environ-
ment. For this reason, the technique of a momentum observer is implemented to obtain contact force
information. TVT is integrated into the robot sensing system to avoid detection errors due to dynamic
uncertainties [30] and noises [31]. In addition, it can minimize collision effects [28]. When the esti-
mated contact force exceeds the tolerance threshold, the robot will detect it as a collision, and then an
admittance control will revise the motion planning to achieve a smooth and safe transition [32]. When
the robot encounters a change in partially unknown environments (i.e., through a gap with different ele-
vations), a couple of environment-searching methods adopted from search and rescue applications [33]
will be implemented to investigate the navigation performance [34]. In numerical simulations, the robot
has demonstrated its effectiveness in implementing this proposed contact force-based motion planning
scheme.

The remainder of this paper is organized as follows: Section 2 presents the problem statement.
Section 3 details the robot model, including inverse kinematic and dynamic equations. Section 4 details
the contact force estimator using a momentum observer and the detection system based on TVT.
Section 5 introduces motion planning and strategy. Section 6 details locomotion control, including com-
puted torque control (CTC), environment impedance, and admittance control. Section 7 discusses the
simulation results of the momentum observer, the effectiveness of the proposed motion planning and
searching methods within the obstacle model, and a comparison with the vision-based method. Section 8
concludes the paper with remarks on the research contributions.

2. Problem statement
Figure 2 illustrates the problem formulation under investigation in this research. Basically, the climb-
ing robot is designed to grasp and move along the transverse ledges. The main concern is how the
robot can perform navigation and adaptation through a wide variety of ledge positions, which creates
challenges in its path. With the proposed contact force-based method, the robot can recognize more com-
plex ledge variations, overcoming the limitations of the visual-based method. The momentum observer
approach is employed to estimate the contact force between the robot and the environment, utilizing
the robot’s dynamic information to calculate external disturbances without a force sensor. Instead, the
momentum observer relies on motor encoders, which must be installed on each robot joint actuator [35].
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Figure 2. Conceptual illustration of a transverse climbing robot when exploring the environment.

When the robot detects contact with an unknown environment during exploration, admittance control
is implemented to generate a new trajectory reference for the robot’s posture adaptation based on the
contact force information obtained from the momentum observer.

In a dynamic state, the robot generates several internal disturbance forces due to dynamic model
uncertainty or sensor noise [36]. In certain situations, the robot mistakenly identifies internal distur-
bance forces as external disturbances, even when no contact with the environment has occurred. To
overcome the problem of contact force misdetection, which may cause navigation or grasping failures,
we developed a contact detection system by integrating the TVT with the momentum observer. Indeed,
climbing robots cannot return to their previous position and continue moving if they fall due to improper
movement or grasping failure.

To coordinate each step of the robot’s movement and ensure successful environment exploration,
we developed several locomotion templates integrated into a motion planning and search strategy. This
strategy enables the robot to independently make proper locomotion decisions when encountering envi-
ronment change. Since the robot’s dynamic model is nonlinear, one of the most suitable approaches for
maintaining the robot’s dynamic stability is CTC [37].

As a mobile robot that relies on collision force feedback, we developed a locomotion template specifi-
cally designed for graspable ledge searching, inspired by rescue and maritime searching operations [33].
We analyzed several search methods, aiming to get a reasonable balance between energy efficiency and
effective navigation.

To address the problem statements, this paper focuses on the following components: Momentum
Observer, TVT, Motion Planning Strategy, Computed Torque Control, Admittance Control, and Position
Graspable Ledge Searching.

3. Robot model
In this section, we introduce the robot design concept, dynamic model, and kinematic analysis which
will be applied to the robot control system.
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Figure 3. Conceptual design model of a transverse ledge climbing robot; (a) isometric view
(b) side view.

Figure 4. The locomotion of a transverse climbing robot.

3.1 Robot design concept
The concept of robot design and motion planning mechanisms is inspired by the actions of wall-climbing
athletes [38]. While athletes perform a climbing movement, the limbs that contribute include the joints
of the arms, shoulders, and palms. Based on these considerations, we designed a transverse climbing
robot with a four-link planar mechanism that offers three degrees of freedom (3 DOF) motion while
holding onto the ledge with a single hand. In this study, the conceptual design model of the transverse
climbing robot is shown in Fig. 3. The main components of this robot are two upper arms, two lower
arms, and two grippers at each end of the upper arms. Both grippers are actuated by a motor servo. The
other rotational joints are actuated by brushed DC motors to perform motion control.

Previous generations of transverse ledge brachiation robots developed by Lin et al. [1, 3, 39] per-
formed movements by swinging the lower limb for energy accumulation. Different from this type of
locomotion, our robot mechanism performs an exploratory movement by extending one of its hands
towards the target position while the other hand grasps tightly to hold the robot on the ledge. Figure 4
illustrates a four-link robot moving through a gap transition between two ledges at different elevations.
Compared to robots using a swing-like movement style, our robot does not need to go through the energy
storage phase to initiate the whole motion and thus can directly extend the exploring arm for ledge grasp-
ing. However, while extending the arm, our robot requires higher joint torques and gripping forces to
hold it on the ledge.

The robot model used in this study was specifically designed for movement within a single plane
aligned with the orientation and movement along a transverse ledge. We optimized the navigation to
traverse horizontal ledges and climb within the plane of a high-rise building’s outer wall. Consequently,
the robot is limited in its ability to adapt to changes in ledge orientation that are perpendicular to its
plane of motion.
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Table I. DH parameter of the transverse ledge climbing robot.

Link li αi di qi

0 l0 0 0 −90◦

1 l1 0 0 q1

2 l2 0 0 q2

3 l3 0 0 q3

Figure 5. Schematic diagram of the transverse ledge climbing robot.

3.2. Robot dynamics
3.2.1. Lagrange-based dynamic model
The robot dynamic model is essential for joint motion control [40] and motion planning analysis.
According to the Lagrange method [41], a dynamic model of the transverse climbing robot could be
written in the following standard form:

M(q)q̈ + C (q, q̇) + G(q) + Ff (q̇) = τ + τext (1)

Where q, q̇, q̈ ∈ R3 represent the angular position, angular velocity, and angular acceleration, respec-
tively; M(q)q̈ ∈ R3x3 is the moment of inertia, C(q, q̇) ∈ R3x3 is the centrifugal or Coriolis force; G(q)
∈ R3x1 is the gravity force, Ff (q̇)∈ R3x1 is the joint friction force, τ ∈ R3x1 is the joint torque; and τext ∈ R3x1

is the external torque caused by external disturbances, especially the contact force between the robot
end-effector and environment.

Figure 5 shows the schematic diagram of the four-link climbing robot, which has three degrees of
freedom. Each link motion is joined by a revolving joint. The robot’s hands are each a returning hand
in the grasp of a ledge (fixed joint) and an exploring hand in the release of its grasp (end-effector). To
identify the robot’s kinematic link, we provide the Denavit–Hartenberg (DH) parameters in Table I [42],
where l is the link length, α is the twist link, d is the link offset, and q is the joint angle. The robot’s
desired movement is in the right direction, according to a single plane. Table II summarizes the robot
parameters’ symbols and approximated values obtained from the CAD software.

3.2.2. Uncertain dynamic model
In practice, there are several changes in the parameters of the dynamic system when a robot performs
the desired movements. This issue arises because of changes in the robot’s physical uncertainty, such
as the center of gravity, moment of inertia, centrifugal or Coriolis, and joint friction [30]. Besides that,
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Table II. Robot model parameter.

Symbol Meaning Design value Unit
m0 Mass of returning-hand arm 0.471 kg
m1 Mass of arm 1 0.377 kg
m2 Mass of arm 2 0.14 kg
m3 Mass of arm 3 0.471 kg
l0 Length of returning-hand arm 100 mm
l1 Length of arm 1 200 mm
l2 Length of arm 2 200 mm
l3 Length of arm 3 100 mm
lc0 Gravity center distance of returning hand arm 61.058 mm
lc1 Gravity center distance of arm 1 160.9 mm
lc2 Gravity center distance of arm 2 94.8 mm
lc3 Gravity center distance of arm 3 37.528 mm
θ1 Joint angle 1 (returning hand arm to arm 1) 0∼360 degree
θ2 Joint angle 2 (arm 1 to arm 2) 30∼270 degree
θ3 Joint angle 3 (arm 2 to arm 3) 0∼360 degree

several other reasons may also cause dynamic uncertainty, such as noise in the sensor [31], measure-
ment inaccuracies, and a slight fault in calculating the dynamic system when using model-based control
methods. The existence of dynamic uncertainty is the primary issue with robot control stability [43, 44].
Even a slight consideration of this uncertainty is important to improving the stability and accuracy of
robot movement. However, this uncertainty is difficult to predict and model, but it can still be modeled
as an additional deviation from each parameter of the dynamic model, defined as follows [28]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

M(q)q̈ = M0(q)q̈ + �M(q)q̈

C(q, q̇) = C0(q, q̇) + �C(q, q̇)

G(q) = G0(q) + �G(q)

Ff (q̇) = Ff 0(q̇) + �Ff (q̇)

(2)

where M0(q)q̈; C0(q,q̇); G0(q) and Ff 0(q) are dynamic terms that can be modeled; while
�M(q)q̈; �C(q,q̇); �G(q) and �Ff (q) represent the unmodeled dynamics. The uncertain dynamic
deviation ρ can be written as follows:

ρ = �M(q) + �C(q, q̇) + �G(q) + �Ff (q̇) (3)

With the uncertain dynamic deviations, the robot model can be rewritten as follows:

M0(q)q̈ + C0(q, q̇) + G0(q) + Ff 0(q̇) = τ + f (τext, ρ, t) (4)

where f (τext, ρ, t) represent the lumped disturbance to the robot dynamic system.

3.3. Robot inverse kinematic
In a transverse climbing robot, the trajectory reference is based on the end-effector’s desired position.
However, the robot’s motion is controlled by joint control. The inverse kinematics method [42] is used
to determine the angular position of each robot joint based on the position of the grasping and extended
hands.

To facilitate the discussion, in Fig. 6, we present a simple illustrative diagram of the four-link trans-
verse climbing robot for kinematic analysis. When the robot grasps the ledge, the grasping hand position
causes the upper arm position to become perpendicular to the grasped ledge. Therefore, if there is a
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Figure 6. Kinematic diagram of a four-link climbing robot with a slope environment.

known inclination difference between the ledge grasped by each gripper, the robot’s geometry could be
identified as follows:

q1 + q2 + q3 = 180◦ + β (5)

Using the concept of forward kinematic analysis of the robot, the position of the gripper (Q) at the
slope angle can be written as follows:{

Qx = l1 cosq1 + l2 cos(q1 + q2) + l3 cos(180◦ + β)

Qy = l1 sinq1 + l2 sin(q1 + q2) + l3 sin(180◦ + β)
(6)

The angular position at joint 2 is written as follows:

q2 = cos−1

(
(Qx + l3 cos(β))

2 + (
Qy + l3 sin(β)

)2 − l1
2 − l2

2

2l1l2

)
(7)

The angular position at joint 1 is written as follows:

A = − (Qx3 cosβ) (l2 sinq2) + (
Qy + l3 sinβ

)
(l1 + l2 cosq2)

l1
2 + l2

2 + 2l1l2 cosq2

(8)

B = (Qx3 cosβ) (l1 + l2 cosq2) + (
Qy + l3 sinβ

)
(l2 sinq2)

l1
2 + l2

2 + 2l1l2 cosq2

(9)

q1 = tan−1

(
A

B

)
(10)

If the angular position at joints 2 and 1 is known, the angular position at joint 3 can be obtained
from Eq. (5).

4. A contact force estimator between robot and environment
Depending on the observer state level, the momentum observer response has different characteristics
[28, 29]. In this section, we discuss the first-order (FOMO) and second-order (SOMO) momentum
observers. FOMO uses a first-order transfer function that considers only changes in contact velocity,
while SOMO uses an extended state with a second-order transfer function that considers both accelera-
tion and velocity. Each state results in different output performance and computational load. Therefore,
further investigation through simulation results (in Section 7.3) is necessary to determine which char-
acteristics are most suitable for implementation in the climbing robot. Additionally, we discuss the use
of a TVT as a contact force detector.
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4.1. First-order momentum observer (FOMO)
According to Leunberger’s observer definition [45], the observer consists of a state variable vector x̂ and
an output vector ŷ. The state of the system to be estimated is momentum P, where the equation can be
expressed as follows:

P(t) = M0(q)q̇(t) (11)

Then, the change in momentum per unit time Ṗ is defined as follow:

Ṗ = Ṁ0(q)q̇(t) + M0(q)q̈(t) (12)

Substitute the equations (4) and (12) as follows:

Ṗ(t) = (
Ṁ0(q) − C0(q, q̇)

)
q̇(t) − (

G0(q) + Ff 0(q̇)
)+ (τ + f (τext, ρ, t)) (13)

The matrix (Ṁ(q) − 2C(q, q̇)) is skew-symmetric [46], and the differentiation of the inertial matrix
M(q) could be written as:

Ṁ(q) = C (q, q̇) + CT (q, q̇) (14)

Substitute equations (1) and (14) into Eq. (11), and the following is obtained:

Ṗ(t)=CT (q, q̇) q̇(t) + τ + τext − G(q) − τf (15)

The equation of FOMO can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = P = M0(q)q̇(t)

ẋ1(t) = Ṗ = τ ∗
p (t) + f (ρ, τext, t) = (

τ − G0(q) − Ff 0(q̇)
)+ (τext − ρ)

x̂1(t) = P̂̂̇x1(t) = ̂̇P = τ + KIe − G0(q) − Ff 0(q̇)

ŷ(t) = KI

(
P − P̂

)
(16)

where τ ∗
p (t) is the internal disturbance force of the system, ŷ(t) is the observer output as an estimator

of the external disturbance force on the system, e=(P − Ṗ) is the state estimation error, and KI is the
observer gain constant for tuning the observer convergence. If the KI is set too high, it can amplify
the noise, leading to increase in the estimation errors. Therefore, adjusting the observer gain requires
consideration of observer’s bandwidth and noise level [58].

4.2. 4.2. Second-order momentum observer (SOMO)
Because of the sensor limitations in the system, when a robot makes contact with its environment,
the physical state cannot be measured directly, making it difficult to model accurately. Therefore, the
extended state observer (ESO) is a solution to estimate the unmeasured physical state of a dynamic
system [47]. We extend a state observer to SOMO by introducing additional state variables in FOMO.
Making it could enhance the response’s performance in estimating the contact force. In this system, the
equation for ESO variables is expressed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1(t) = P(t) = M0(q)q̇(t)

ẋ1(t) = τ ∗ (t) + x2(t)

ẋ2(t) = φ(t)

y(t) = x1(t)

(17)
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Where x2 is the new variable state of the SOMO, and φ is the unknown (unmeasured) disturbance.
Thus, the SOMO equation can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂1(t) = P̂(t)
˙̂x1(t) = τ (t) + τext(t) − τf 0 (q̈) − G0(q) + x̂2(t) + β1e1

x̂2(t) = τext(t) − ρ(t) = f̂ (ρ, τext, t)
˙̂x2(t) = β2e1

y(t) = x̂2(t)

e1 = x̂1 − x1

(18)

Where e1=x̂1 − x1 is the estimation error, β1 and β2 are the matrix observer gains for tuning the
estimator convergence. The transfer function of the Laplace transforms from Eq. (18) can be written as
follows:

x̂1 = x̂2 + β1p + τ∗
s + β1

(19)

x̂2 = β2p (s + β1 − β1) − β2τ
∗
p

s2 + β1s + β2

(20)

where x̂1 and x̂2 represent lumped disturbance estimators. The Eq. (20) follows the characteristic of the
second-order standard equation s2+2ξωns+ωn

2=0. So,β1 and β2 can be obtained as follows:{
β2 = ω0

2

β1 = 2ξω0

(21)

where ω0 and ξ represent the natural frequency and damping ratio of the system respectively, which
determines the performance of the momentum observer.

4.3. Time-varying threshold (TVT)
The principle of TVT is to determine the tolerable force limit of an internal disturbance to avoid the
possibility of misdetection [28]. According to Eq. (3), the bounded model uncertainty can be expressed
as a polynomial equation consisting of angular acceleration, angular velocity, angular position, and other
disturbances that cannot be modeled.∣∣ρ̂i

∣∣≤ δi = b0 |q̈i| + b1 |q̇i| + b2 |qi| + b3sgn (q̇i) (22)

Where ρ̂ is the model uncertainty that could be estimated while no external disturbance force is
encountered by the robot, δi (1 ≤ 1 ≤ n) is a model uncertainty bound, and b0, b1, b2, and b3 is a polyno-
mial coefficient. To determine the polynomial coefficient, the parameters of TVT can be identified by
expressing the equation of TVT in the linear regression model as follows:

δ̂ = W (qd, q̇d, q̈d) · �̂ (23)

where W is the regression matrix, while �̂ is the matrix coefficient. Each is defined as follows:

W (q, q̇, q̈) = [ |q̈di| |q̇di| |qdi| sgn (q̇di)
]

(24)

�̂ = [
b0 b1 b2 b3

]T (25)

When the robot moves along its trajectory, it must reidentify the �̂ to minimize the error in model
uncertainty estimation by the parameter composition that consists of desired angular acceleration,
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desired angular velocity, desired angular position, and estimated model uncertainty. Thus, it can be
written as follows:

�̂ = (
WT · W

)−1
WT · δ̂ (26)

According to the TVT model, the upper threshold δUi and lower threshold δLi can be expressed as
follows: {

δUi = W (qd, q̇d, q̈d) · �̂ + λ1

δLi = W (qd, q̇d, q̈d) · �̂ − λ2

(27)

where λ1 and λ2 are phase offset coefficients that can be adjusted depending on the intensity of model
uncertainty estimation. The principle of the TVT is that when the value of the force disturbance estima-
tion received by the robot exceeds the thresholds, the system will detect that force disturbance estimation
comes from external sources or contact with the environment.

5. Motion planning and searching strategy
Figure 7 provides the locomotion templates for the transverse climbing robot, which consist of four types
that will be implemented in the motion planning and searching strategies. Type A motion planning
is responsible for the hand-exploring task. Type B is responsible for hand-returning once the hand-
exploring action has been done. Furthermore, Type C also does hand-returning, but with a different
grasping hand position. Type C is responsible for achieving the proper position for executing the grasping
position search procedure and stopping the robot when it finishes exploring the environment. Type D is
tasked with executing the grasping position search operation. In type D, its searching path is designed
inside the workspace. When the robot detects contact with the ledge, the admittance control will revise
motion planning to adjust to the environment’s direction change.

In this study, a motion planning and searching strategy algorithm is developed for the robot’s navi-
gation capabilities when exploring the environment, as the details of the pseudocodes are illustrated in
Figure 8 below. This algorithm applies the four types of locomotion templates declared in Fig. 7 and
utilizes the contact force feedback approach, which is then built into a single entity system that will be
controlled when the robot encounters an environment change. Figure 8(a) demonstrates that this strategy
is primarily designed to keep the robot moving continuously. When the robot recognizes an environment
change, such as a slope change, a slope recognition algorithm is constructed in Fig. 8(c) with the aim of
establishing a smooth transition motion for the robot. Then, when the robot needs to execute an attempt
to transition through the gap between graspable ledges, a grasping position search algorithm is con-
structed in Fig. 8(b) with the aim of finding the graspable ledge with the robot’s maximum reachable
range capability.

Figure 9 demonstrates the algorithms for motion planning and searching strategies in a flow chart
diagram designed for simplicity of comprehension. It is illustrated based on the three pseudocode algo-
rithms in Fig. 8. This algorithm is designed to allow the robot to keep moving forward continuously, no
matter the condition of the environment. As shown in Fig. 9, the robot is instructed to execute every step
of exploration in the environment, then continue to begin a new step of exploration that may be different
from the previous step, which it conducts repeatedly. The steps of exploration are variably dependent
on the environment that the robot is confronting, such as ledge slope change, gap between the ledges, or
no environment change.

The algorithmic strategy for grasping position search is designed to address two potential unintended
situations that could lead to failure or limitations in environment exploration.

1. The first situation occurs when the robot grasps a ledge, but the position is identical to a previ-
ously grasped ledge. This can be detected by checking the tracking trajectory. The solution is to
command the robot to search for a new graspable ledge position.
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Figure 7. Locomotion templates of transverse climbing robot.

2. The second situation occurs when the front hand successfully grasps the ledge (by motion Type
D), but the ledge is too short to support the next step (by motion Type B). As a result, the rear
hand would be unable to grasp the ledge. The solution involves two steps: first, abort motion Type
B, and second, command the robot to search for another graspable ledge. Exploration should end
if no new ledge position can be reached during the grasping position search process.

6. Locomotion control
The transverse climbing robot is designed to move continuously by using the contact force sense to
recognize the environment’s conditions. So, in this study, we need to develop a locomotion control
strategy, as illustrated in Fig. 10, which aims to identify the environment and control the movement of
the robot in each step of exploration.

The control process begins with the motion planning block, where the input reference is the desired
end-effector trajectory xd. The robot system is designed to control each joint angle between arms. Using
inverse kinematics, xd is converted to the desired angle trajectory qd. Computed torque control com-
putes the input torque τd based on the difference between qd and the actual output of joint angle q.
In addition, we include the disturbance torque feedback τd, which we modeled based on the environ-
ment’s impedance, in order to maintain the robot’s stability. The robot dynamics compute q based on
the total joint torque τ . After obtaining the q, the following stage is essential to get the current end-
effector location x using forward kinematics. The momentum observer is tasked with estimating the
contact force Fext, which then integrates with TVT to identify the contact force between the robot and
the environment. If |τ̂ext| is still below the tolerance threshold |δi|, which indicates that the robot does
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Figure 8. Pseudocode algorithm of motion planning and searching strategy; (a) Continuous transverse
climbing; (b) grasping position search; (c) slope change transitioning.
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Figure 9. Flow chart of motion planning and searching strategy.

Figure 10. Control block diagram for transverse climbing robot.

not detect a contact, when no contact is detected, the admittance switch still preserves the motion plan-
ning reference x0. Therefore, if |τ̂ext| > |δi|, which indicates that the robot has detected a contact, then
the admittance adjustment will compute the robot trajectory change reference xr based on information
of Fext and x. Immediately after a contact is detected, the admittance switch will spontaneously switch
the reference from x0 to xr, allowing the robot’s motion planning to adjust to direction changes in the
environment.
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6.1. Computed torque control (CTC)
Computed torque control is able to compensate for some limited disturbance forces to be able to maintain
robot stability [48]. The fundament architecture of CTC involves an outer and an inner loop control
system [49]. The outer loop system employs a proportional derivative to control the desired trajectory
parameters, which include the desired joint position, desired velocity, and desired acceleration; and its
feedback signal is the actual output trajectory. In the inner loop system, the real-time precise trajectory
output is achieved by computing it based on the actual joint torque information (including disturbance
torque) and the robot dynamic parameters.

According to Eq. (1), the dynamic model equation without lumped disturbance can be expressed as
follows:

M(q)q̈ + C (q, q̇) + G(q) = τ (28)

The robot error dynamic can be expressed as follows:

(q̈d − q̈) + Kd (q̇ − q̇d) + Kp (q − qd) = 0 (29)

Then Eq. (29) can be substituted into Eq. (28) to get the joint torque input τu:

M(q)
[
q̈d − Kd (q̇ − q̇d) − Kp (q − qd)

]+ C (q, q̇) + G(q) = τu (30)

If e = q − qd can be defined as the system error, Eq. (30) can be written as:

ë + Kdė + Kpe = 0 (31)

To stabilize the system, the proportional gain Kp and derivative gain Kd need to be determined.
The results show that the system output can converge following the reference input. The characteristic
Eq. (31) can be written as follows:

|sI − A| = s2 + Kds + Kp = 0 (32)

The characteristics of Eq. (32) are similar to those of the standard second-order system. So, Kp and
Kd can be written as follows: {

Kp = ωn
2

Kd = 2ξωn

(33)

where ξ is the damping ratio, and ωn is the natural frequency of the system.

6.2. Environment impedance
An essential element of robot navigation in this research is direct physical contact with its environment.
We apply the mechanical impedance principle [50] to calculate the contact force interaction based on
the impedance coefficient parameter and the tracking position error. Figure 11 illustrates the contact
force interaction between the climbing robot and the environment, based on the mechanical impedance
principle [51]. The impedance force function equation of the robot system is then expressed as follows:

Fd = me (ẍr − ẍe) + be (ẋr − ẋe) + ke (xr − xe) (34)

where me, be, and ke represent the impedance parameters (mass, damping, and stiffness) that interacted
with the ledge environments; xe is the environment contact position (ledge), xr is the reference posi-
tion (end-effector), and Fd is the impedance interaction force between the robot and the environment.
Figure 11 shows the position of the ledge environment is modeled by a mass-spring-damper system. xe

is obtained based on the xr when contact occurred, which can be written as the following:

xe = yr−ye1
h

+ xe1

ye = h (xr − xe1) + ye1

}
(35)
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Figure 11. Illustration of the environment impedance with the three joint climbing robots.

Figure 12. Illustration of a robot’s trajectory adjustment by admittance control in response to the
environment change.

where [xe1 ye1]T and [xe2 ye2]T are the end tip positions of the ledge, while h is the slope of the ledges
and can be written as follows:

h = (ye2 − ye1)

(xe2 − xe1)
(36)

6.3. Admittance control
Admittance control is a type of position-based impedance control that aims to establish a dynamic rela-
tionship between an external force and the robot’s position [52]. The admittance control as illustrated
in Fig. 12, allows the robot to make adjustments to changes in its environment.

When the robot receives an external disturbance force τd �= 0, the dynamic equation can be expressed
as follows:

M0(q)q̈ + C0(q, q̇)q̇ + G0(q) = τ + f (τext, ρ, t) (37)

The admittance control mechanism relates the force feedback to the system’s position control [32].
As a result, the system with input Fext (s) and output xr (s) can be described as follows:(

Mas
2 + Bas + Ka

)
xr (s) = Fext (s) (38)

where xr (s) is the revised trajectory of the robot after the system obtains the contact force feedback
information with the environment Fext (s); therefore Ma, Ba, and Ka are the parameters of inertia, damp-
ing, and stiffness between the robot and the environment, respectively. In Eq. (38), the dynamic model is
expressed in a joint space. So, to apply the admittance control function, it must be expressed in Cartesian
space, like in Eq. (39). So, it can be written as follows:
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Figure 13. The grasping position search method for a transverse climbing robot: (a) sector search;
(b); creeping line; (c) A∗ algorithm; (d) expanded square.

M (x) ẍ + C (x, ẋ) ẋ + G (x) = F − Fext (39)

To obtain a position revision based on contact force feedback information, we need to design the
controller input F using equations (39) and (40), which are expressed as follows:

F = C (x, ẋ) ẋ + G (x) + M (x)
{
ẍd − M−1

a [Ba (ẋ − ẋd) + Ka (x − xd) + Fext]
}

(40)

By applying Eq. (41), the admittance control approach can be achieved, allowing the robot to navigate
through a direction change of graspable ledge in a safe and smooth transition.

7. Simulation results and discussion
The effectiveness of transverse climbing robots is evaluated using numerical simulation methods. The
robots conducted performance assessments on an obstacle model using four proposed grasp position
search methods. The simulation results included evaluating the momentum observer’s ability to detect
and estimate contact force, evaluating the robot’s capability to autonomously perform an exploration
through the obstacle model using proposed motion planning and search strategies and then evaluating
the effectiveness of the proposed search methods.

7.1. Searching method
The effectiveness of the searching method inspired by search and maritime rescue has been proven in
cases where information is provided only in the search zone [33]. We adopt searching methods such as
sector search, creeping line, A∗ algorithm, and expanded square. These searching methods are proposed
to be modeled in the robot’s workspace, as seen in Fig. 13.

The proposed methods have been studied for several reasons, such as being simple in the searching
region confined to the robot’s workspace [34], having a low computation cost [53], and being acceptable
for the specific position of the graspable ledge. Since d is the minimum distance of both hands and α

is the span of the searching path line, to preserve the robot’s chance of finding a ledge, the α can be
expressed as:

2α ≤ d (41)

In this simulation, we systematically assess the performance of each grasping position search method.
The assessment criteria are based on the robot’s hand-exploration distance [54], the total energy con-
sumption [55], and the time duration necessary for executing the grasping position search operation.
The total energy consumption of the transverse climbing robot is expressed as follows [3].

E =
∫

|τ | dθ (42)
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Figure 14. Obstacle model (environment map), including position coordinates for environment
impedance function.

where E is the total energy consumption, which depends on the joint torque and the angular angle
displacement of the robot arm.

7.2. Obstacle model
Figure 14 illustrates an obstacle model that closely represents the actual environment conditions found
on a building’s exterior. For the challenge, this obstacle model has a complex arrangement of graspable
ledge features. In this testing scenario, the robot begins at a designated start point, after which the motion
planning and searching methods are activated to explore and navigate toward the endpoint. The ledge
coordinate written in the obstacle model is used by the environment impedance function to calculate
the contact force. It is important to note that the robot does not have information about the obstacle path
during exploration. Instead, using its own navigation strategies, the robot can identify the environment
information at each step of its journey.

This scenario in Figure 14 is designed to evaluate the robot’s capability to travel by performing
transverse climbing, slope change transitioning, and grasping position search procedures with a variety
of obstacles. While the robot has traveled through every position on this obstacle, it is important for the
robot to estimate the robot’s cost of transport (COT) [56]. Each of the robot’s searching strategies will
result in unique COT results. While COT is defined as the cost of energy consumption necessary per
given unit of weight and unit of moving distance [57], it is expressed as follows [3].

COT = E

mgd
(43)

where m is the robot mass, g is the gravity acceleration, and d is the robot work-done distance.

7.3. Investigation of the momentum observer
Figure 15(a) shows the two observers deployed at the robot joint to detect changes in external torque
disturbances. In this scenario, the robot does not generate any dynamic force (no internal force distur-
bance), but an external torque disturbance is applied with a sinusoidal wave reference. The comparison
in Fig. 15(b) shows that SOMO is faster to estimate the actual disturbance response than FOMO.
Furthermore, Fig. 15(c) shows that SOMO achieves higher estimation accuracy.
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Figure 15. The performance of first-order momentum observer and second-order momentum observer
with sinusoidal wave reference; (a) estimation of external torque; (b) details of the graph; (c) external
torque estimation error.

When using the force feedback approach, dynamic uncertainty is one of the internal disturbances that
cause the robot to misdetect contact with the environment during navigation. Since the dynamic uncer-
tainty value cannot be predicted or measured [43], without loss of generality, we assume the dynamic
uncertainty deviation is 20% of the modeled dynamic value. Figure 16 demonstrates the robot’s dynamic
simulation results, where each joint torque observer is integrated using TVT. In this scenario, the robot
generates dynamic forces and uncertainty. The sudden external disturbances simultaneously apply to its
dynamic system from 2 s to 2.5 s and 6.5 s to 7 s, indicating collision forces. We set the phase shift coef-
ficient and TVT’s upper and lower bounds at 1 Nm and −1 Nm, respectively. These findings indicate
that when no external disturbance is applied, the robot can tolerate the influence of the uncertainty of
the dynamic model. Therefore, the system does not detect it as an external disturbance.

When the estimated external torque applied exceeds the TVT’s upper or lower tolerance bounds, the
robot detects an external disturbance. In contrast, Fig. 16(b) shows that SOMO detects sudden external
torque with a faster response time and faster convergence than FOMO. Another feature noted in Fig. 17 is
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Figure 16. The performance of first-order momentum observer and second-order momentum observer
with step function reference; (a) estimation of external torque integrated with TVT; (b) details of the
graph.

Figure 17. The performance of first-order momentum observer and second-order momentum observer
with step function reference; (a) external torque estimation error; (b) details of the graph.

that SOMO’s estimation error for external joint torque is smaller. Figures 15 and 16 demonstrate that the
performance of SOMO is consistently outstanding. A faster and more accurate response for disturbance
estimation may increase the robot’s safety during navigation [28]. Therefore, based on this evaluation,
SOMO is an appropriate alternative to be implemented for the robot as a detector and estimator of the
contact force with the environment. However, SOMO is an extended state of FOMO, which requires
more computational power.
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Figure 18. The performance of second-order momentum observer using a sector search method for
exploration. (a) external torque estimation; (b) the estimation errors.

7.4. Simulation in the model obstacle
In this simulation, motion planning and grasping position search strategies are assessed by allowing a
transverse climbing robot to perform exploration through an obstacle model. In a preliminary discussion,
we analyze the robot’s performance using the sector search approach. Figure 18(a) shows the estimated
external joint torque using SOMO, indicating that the robot completed its exploration of the obstacle
model in 53.39 s. These spikes indicate a disturbance received by the robot, which should be integrated
with the TVT to establish the categorization of the external or internal disturbance. Figure 18(b) shows
that the estimated error is obtained based on the difference between the external joint torque estimation
and the actual disturbance force. When the robot is in a condition without disturbance, the error is rela-
tively low (nearly 0 Nm), but when the robot gets disturbed, the system suffers a slight inaccuracy when
estimating the disturbance force. This suggests that SOMO is operating without difficulties. The simu-
lation video demo can be obtained by visiting this web link: https://youtu.be/9jyP6XNLWps (Accessed
on January 12, 2025).

A technique for detecting an external disturbance or contact force between the robot and the environ-
ment is developed by integrating the SOMO and TVT, as presented in Fig. 19. When the joint torque
estimation exceeds the TVT tolerance threshold, the system will detect it as an external disturbance.
The results show that the robot has identified a number of contact forces during the obstacle model
exploration, each of which is designated by the symbols “a” to “m,” and its explanation of denotation is
provided in Table III.

Figure 20 illustrates the movement and locomotion trace of a transverse climbing robot during explo-
ration through the obstacle model. The robot moved forward from the beginning point to the end
destination point with a work-done distance of 3.451 m by navigating autonomously without detecting
the current condition of the environment in advance. According to Table III, the robot has completed the
environment transition through a six-time grasping position search and a one-time ledge slope change. A
proposed motion planning and searching strategy has worked properly according to its desired function.
As proven during the searching procedure, the robot detects two contact forces: firstly, to determine the
ideal position for executing the searching procedure, and secondly, when it finds the unknown graspable
position during the searching procedure.

Following Fig. 20, the robot completed a search procedure across three different ledge gap character-
istics. The first characteristic is the upper-ledge gap position, as demonstrated by the 1st and 2nd searches.
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Table III. Identification of recognized external disturbances.

Notation Time (s) Description Notation Time (s) Description
a 1.52 Get 1st searching position h 27.81 Get 4th searching position
b 4.38 1st grasping ledge found i 30.00 4th grasping ledge found
c 9.42 slope change detected j 35.07 Get 5th searching position
d 16.03 Get 2nd searching position k 39.50 5th grasping ledge found
e 19.97 2nd grasping ledge found l 43.49 Get 6th searching position
f 21.39 Get 3rd searching position m 50.39 6th grasping ledge found
g 26.21 3rd grasping ledge found

Figure 19. TVT integrated with second-order momentum observer external joint torque estimation and
admittance switch.

If it’s linked to the actual environment, the robot can climb upward to a horizontal ledge where the posi-
tion is higher than the robot. The second one is the short-ledge feature gap position characteristics, as
demonstrated by the 3rd and 4th searches. The last one is the lower-ledge gap position characteristics, as
demonstrated in the 5th and 6th searches. Where the robot may climb downwards to the ledge where its
position is lower than the robot. In addition to executing these searching procedures, the robot is capable
of making transitions across a slope change on the connected ledge. For example, a ledge is designed
like a roof.
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Figure 20. A transverse movement trace illustrations of a transverse climbing robot’s, including work–
done distance, slope change, and grasping position search. It can be demonstrated in the simulation
video by accessing this web link: https://youtu.be/9jyP6XNLWps (Accessed on January 12, 2025).

Immediately after the robot detects the contact force with the environment, an automatic admit-
tance switch will respond spontaneously to switch the trajectory reference to the admittance control.
Admittance control computes a revised trajectory due to the ledge direction shift based on the estimated
contact force given by the observer, resulting in a new motion planning reference. In Fig. 21, it can
be noted that when the system detects a contact force (for example, when the grasping ledge was rec-
ognized during the searching procedure), the admittance control revises the robot joint angle to adjust
it to the change in environment. As a result, the spike in robot joint torque caused by contact sponta-
neously declines within the TVT tolerance limit. Returning to Fig. 19, it is suggested that an automated
admittance system has an essential contribution in assisting in minimizing the amount of collision force
acquired by the robot, which may reduce the risk of serious damage to the robot. Based on the algorithm
of motion planning and searching strategy, an admittance switch will revert to a disabled state once the
admittance adjustment action has been completed.

7.5. Performance of grasping position search method
The present study assesses four different methods of grasping position search. Figure 22 shows the
transverse climbing robot’s hand-exploration and hand-returning trace using a variety of searching
methods. All of the methods have successfully made the robot travel through the obstacle model for
the identical total work-done distance of 3.45 m, but each of them has various performance character-
istics. Figure 23(a) illustrates the performance of the exploration time relative to the total work-done
distance, where the sector search method completes the task in the fastest time, which is 53.39 s.
All of the other methods have significant delays in the 2nd and 3rd searches (short-ledge feature posi-
tions), whereas the sector search method only has slight delays in the 5th and 6th searches (lower-ledge
positions).

Figure 23(b) illustrates the hand-exploration distance relative to the work-done distance, revealing
that the sector search method requires the shortest exploration path distance, which is 10.13 m. All of
the other methods require a considerably increased exploration path distance for the 2nd and 3rd searches,
which causes the exploring time to get longer. If we observe the exploration path of the sector search
method in Fig. 22(a), its searching path is not simply focused on one specified location that must be
finished early on. As a result, the sector search method is getting faster to reach the workspace’s center
region, which makes it easier to execute searching procedures in the short-ledge feature position.
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Figure 21. Robot joint control results.

Figure 22. An exploration trace of a transverse climbing robot by using its grasping position search
method; (a) sector search; (b) creeping line; (c) A∗ algorithm; (d) expanded square.
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Figure 23. Performance of grasping position search method; (a) exploration time; (b) hand-exploring
distance; (c) energy consumption; (d) cost of transport.

Figure 23(d) illustrates that the A∗ algorithm consumes the least amount of total energy. Although
the A∗ algorithm also has difficulties in the 2nd and 3rd searches, it just spends the least amount of
energy compared to the creeping line and extended square. This is because the searching path of the A∗
algorithm focuses on tracking the workspace boundary line. Therefore, after reaching the upper bound-
ary location, it will track to the lower boundary, or vice versa. This is distinct from the creeping line
method, which has spent the largest amount of energy in the 2nd and 3rd searches due to its searching
path line focusing on tracing the higher and lower parts of the workspace practically at the same time by
following the horizontal centerline of the workspace. However, because of its searching path character-
istics, the creeping line method is the most successful for finding the lower ledge position. Figure 23(c)
illustrates the cost of transport (COT), with the A∗ algorithm being the least costly compared to the
other methods. The cost of transport is related to the amount of energy consumed per unit of work-done
distance.

The next assessment is to identify the most effective grasping position search method for each gap
characteristic between graspable ledges. Table IV(a) presents the searching performance on the upper-
ledge position (at the 1st and 4th searches), where the sector search method is the most effective in terms of
searching time, hand-exploration distance, and energy consumption. Next is Table IV(b), which presents
its searching performance on the short-edge features position (at the 2nd and 3rd searches), where the
sector search method still has outstanding performance in the same criteria. Finally, Table IV(c) presents
the search performance on the lower-ledge position (at the 5th and 6th searches), where the creeping
line method is the most effective in terms of searching time, hand-exploration distance, and energy
consumption. Meanwhile, sector search is ranked third.

The four types of grasping position search methods that have been assessed in this study have vary-
ing performances in each aspect of the gaps between grasping ledges. So, in practice, it is difficult
to integrate more than one grasping position search method during a single environment exploration.
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Table IV. Performance of the grasping position search method based on characteristics of the
obstacle; (a) upper-ledge position; (b) short-ledge features; (c) lower-ledge position.

(a)
1st Search 4th Search

Searching Time Searching Energy Time Searching Energy
Rank method (s) dist. (m) (J) (s) dist. (m) (J)
1st Sector search 2.36 0.46 8.02 2.69 0.36 14.62
2nd A∗ algorithm 2.21 0.61 11.18 2.85 0.47 17.83
3rd Creeping line 4.34 1.52 25.61 2.92 0.47 18.44
4th Expanded square 5.74 1.54 25.02 7.50 1.62 35.57

(b)
1st Search 4th Search

Searching Time Searching Energy Time Searching Energy
Rank method (s) dist. (m) (J) (s) dist. (m) (J)
1st Sector search 2.36 0.46 8.02 2.69 0.36 14.62
2nd A∗ algorithm 2.21 0.61 11.18 2.85 0.47 17.83
3rd Expanded square 4.34 1.52 25.61 2.92 0.47 18.44
4th Creeping line 5.74 1.54 25.02 7.50 1.62 35.57

(c)
5th Search 6th Search

Searching Time Searching Energy Time Searching Energy
Rank method (s) dist. (m) (J) (s) dist. (m) (J)
1st Creeping line 2.85 0.93 14.52 3.29 0.94 14.25
2nd A∗ algorithm 5.87 1.78 21.31 6.19 1.75 21.14
3rd Sector search 3.93 1.49 35.73 6.90 2.31 53.85
4th Expanded square 20.7 5.64 93.89 8.7 2.34 39.97

Because, in fact, the robot does not have any information about what’s occurring in front of it when
exploring the environment. A future study focusing on developing an optimization of its searching
method could be a solution to this challenge. However, based on the discussion of this present study, we
make a decision on how to determine the compatibility of the grasping position search method by con-
sidering the following desires: First, for faster exploration time, we recommend using the sector search
method. This can be examined in Fig. 21(a), where the rise in exploration time is substantially more sta-
ble during the searching and travel climbing procedures. The sector search method is also recommended
for a shorter exploration path length, as can be noticed in Fig. 21(b). Furthermore, to reduce energy con-
sumption and COT, we recommend using the A∗ algorithm. This can be observed in Fig. 21(d), where the
increase in consumption of energy seems remarkably consistent. In addition, if assessed on the searching
performance of all gap characteristics between the grasping ledges, which is presented in Table IV(a),
(b), and (c), the A∗ algorithm is consistently in the second rank in terms of energy consumption.

7.6. Comparative review of visual-based and contact force-based navigation
This Section presents a comparative review of the four-link transverse ledge climbing robot, comparing
the contact force-based navigation method developed in this research with the visual-based naviga-
tion method introduced by Lin et al. [2]. This comparison highlights how the contact-force-based
approach addresses the limitations of the visual-based method. The results of this comparison analysis
are summarized in Table V.
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Table V. Comparison of visual-based and force-based navigation methods for a four-link ledge
transverse climbing robot.

Description Visual sensor-based Contact force-based
Range of sensing Limited due to the static view

angle
Greater range with continuous
dynamic contact sensing

Obstacle capability
(ledges arrangement)

Connected slope Connected slope; gap with: same
altitude, different altitude, and
different slope

Sensitivity of sensing Affected by ledge surface
properties [13]

Influenced by the properties of
environment impedance

Environment
conditions

Smoky [14], foggy [15], and
lighting intensity [18] affect an
accuracy

No affects are reported in this
finding

Agility Disrupted by the installation of
sensors

No robot’s agility disruption
reported in this finding

The climbing robot developed in this research can perform exploratory movements across its
workspace by dynamically and repeatedly attempting contact with the environment, resulting in a wider
sensing range for a variety of obstacles. If the robot interacts with a rigid environment, it can acquire
an optimal contact impedance force for admittance control references to accurately calculate the robot’s
position as the environment changes. So, the environment’s surface reflection does not affect the contact
impedance force. By utilizing momentum observers, the robot’s space requirements for the installation
of additional sensor devices that may limit the robot’s movement can be eliminated, allowing for more
agile movement and enhanced adaptation to complex environments.

8. Conclusion
This paper presents the development of an autonomous navigation system that utilizes contact force
feedback to realize the proposed motion planning and searching strategies for a transverse ledge climb-
ing robot. Through simulation verification, our approach has successfully enabled the robot to perform
real-time posture adjustments based on force interactions with the environment. This capability facili-
tates smooth transitions and stability, ensuring effective and safe navigation across various environment
conditions. The main contributions from this research are as follows:

1. The motion planning strategy coordinates the locomotion templates to provide trajectory
references based on the robot’s current posture and environment situation.

2. Admittance control calculates trajectory corrections in response to environment changes. The
automatic admittance switch provides a spontaneous response to trigger the control admittance
when the SOMO exceeds the TVT limit. This combination contributes to the robot’s safety.

3. We suggest using the sector search method to minimize exploration time and search distance.
However, to minimize energy consumption and COT, we suggest switching to the A∗ algorithm
method.

Additionally, several approaches have been integrated to support the robot’s function and avoid poten-
tial failures. The CTC aligns the output trajectory with the input reference, ensuring stability against
uncertain dynamics and limited external disturbances. As a contact force estimator, SOMO improves
response time, convergence, and accuracy, making it ideal for robust control systems in climbing robots.
The integration of TVT into SOMO creates an effective contact detection system that characterizes
disturbances caused by both internal and external forces.
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By combining these contributions and approaches, the system enhances the robot’s performance in
complex environments, as validated by our results compared to previous methods using visual sensors
[9]. Based on these findings, future research could focus on further optimizing the searching methods.
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