
Robotica (2010) volume 28, pp. 759–763. © Cambridge University Press 2009
doi:10.1017/S0263574709990452

Globally exponential continuous controller/observer for position
tracking in robot manipulators with hysteretic joint friction
Srinivasulu Malagari and Brian J. Driessen∗

Wichita State University, 1845 Fairmount St. Wichita, KS 67260, USA

(Received in Final Form: July 29, 2009. First published online: August 28, 2009)

SUMMARY
In this work, we present a continuous observer and
continuous controller for a multiple degree of freedom
robot manipulator with hysteretic joint friction. The fictitious
hysteresis state is of course unknown to the controller and
must be estimated. The joint velocities are assumed measured
here. For this considered plant, we propose and present a
continuous observer/controller that estimates or observes the
hysteresis state and drives the position tracking error to zero.
We prove that the combined tracking error and observer error
converges to zero globally exponentially.
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1. Introduction
This work is concerned with the problem of position tracking
for a multiple degree of freedom (DOF) robot with hysteretic
friction in its joints. It is the same plant as considered in ref.
[10]. Such plants contain a fictitious hysteresis state which
must be observed to achieve position tracking. For such a
plant, we present an observer and a controller, both of which
are continuous. We prove globally exponential convergence
of the combined tracking/observation error for the proposed
continuous observer/controller.

Canudas de Wit et al.1 considered friction models which
include hysteresis states for single DOF plants. With velocity
measurement assumed available, they provide an observer
and controller for globally driving a tracking error to
zero. Panteley et al.10 extended the work of Canudas de
Wit et al.1 to adaptive global tracking of multiple DOF
robot manipulators with hysteretic joint friction and velocity
measurement. It is worth mentioning, in the adaptive controls
context, that the model in Canudas de Wit et al.1 and Panteley
et al.10 is not fully linear in the parameters (see Eqs. (1)–(3)
of the present paper, specifically), thus making the adaptive
control problem more challenging. In the adaptive controls
context, Lin et al.9 use neural networks in an adaptive
approach for estimating and compensating hysteresis in
piezo-electric actuators, with one objective being to reduce
the requirement of a detailed model that is known a priori.
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The present paper also has the same hysteresis model as
Canudas de Wit et al.1 However, as in Panteley et al.,10 the
present paper is concerned with the full nonlinear model of
a multiple DOF robotic manipulator while Canudas de Wit
et al.1 were considering a single DOF plant. It is hard to
make a one to one comparison of the present paper with
Panteley et al.10 partly because the latter is adaptive and
the former not. However, one contribution of the present
paper as compared to Panteley et al.10 can be viewed as
being the fact that the controller and observer are both
continuous in the present paper whereas the control torque
in Panteley et al.10 is a discontinuous function of time (see
Eqs. (3.11), (3.12), (3.4), and (3.6) in Panteley et al.10). Both
are globally exponential in their nonadaptive versions. It is
worth mentioning that their (and our) plant (and the plant in
Chen and Lin2 and Canudas de Wit et al.1) surprisingly does
not satisfy the complete uniform observability condition in
Teel and Praly;13 this is due to the fact that the coefficient of
the hysteresis state, in the equation of motion (acceleration
equation), can be zero at a specific value of the joint
velocity.

Friction has long been known to be one of the primary
disturbances in robotic positioning systems. Peng and Chen11

consider the problem of biaxial contouring control in the
presence of friction disturbances. Later, these same authors,
in Chen and Lin,2 consider the same hysteretic friction model
as in Panteley et al.,10 Canudas de Wit et al.,1 and the present
paper. The robotic plant is a 2 DOF one with two orthogonal
prismatic joints. Velocity is not measured. Observers are
designed for estimating both the hysteresis state and the
velocity. The authors prove the closed loop system’s signals
are ultimately bounded, and good experimental results are
obtained.

There have been other papers concerned with hysteresis
observers for actuators such as piezo-electric ones obeying
hysteresis models such as those in Dominguez et al.,4 Heine,7

Lin and Yang,8 Driessen and Duggirala,5 and Driessen and
Kondreddi.6 All of these were concerned with a single DOF
plant unlike the present paper and unlike Panteley et al.10

In the present paper, we give a precise statement of
the problem in Section 2. In Section 3, we define the
observer and controller. In Section 4, we give the theorems
and proofs of the globally exponential convergence under
the proposed continuous observer/controller system. In
Section 5 we provide numerical results and in Section 6
conclusions.
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2. Problem Statement
We have a robotic plant with hysteretic friction (same plant
as Panteley et al.10):

M(q)q̈ + f (q, q̇) = u − σ0z − σ1ż − σ2q̇, (1)

ż = −σ0γ
−1(q̇)diag (|q̇|) z + q̇, (2)

where q ∈ Rn is the vector of measured joint angles of the
robot, q̇ ∈ Rn is the vector of measured joint velocities,
u ∈ Rn is the control torque, and where M(q) = M(q)T > 0
is a smooth function of q; f (q, q̇) is a smooth function
of q and q̇. The state z ∈ Rn is the fictitious hysteresis
state that is unknown to the controller, and σ0 > 0, σ1 > 0
and σ2 > 0 are diagonal constant matrices with σ0 > σ1.
The factor diag (|q̇|) is the diagonal matrix whose ith
diagonal entry is |q̇i |, and γ −1(q̇) is the matrix inverse of
the diagonal matrix, γ (q̇), whose ith diagonal entry is as
follows:

γii = α0i + α1i exp(−(q̇i/α2i)
2), (i = 1, . . . , n), (3)

where exp(·) = e(·) is the natural exponential and where the
α0i , α1i , and α2i are positive constants.

We have a bounded desired trajectory

{
qT

d , q̇T
d , q̈T

d

}T ∈ L∞, (4)

The objective is to design a continuous controller and a
continuous observer, with state estimate ẑ of z such that
the below error vector

� ≡ ((q − qd )T , (q̇ − q̇d )T , (ẑ − z)T )T (5)

converges to zero globally exponentially.

Remark 2.1: It is well known that the eigenvalues of M(q)
are bounded (and bounded below away from zero). We will
denote by the constant λmin the smallest eigenvalue of M(q)
over all q and by the constant λmax the largest eigenvalue of
M(q) over all q, i.e.,

λmin ‖w‖2 ≤ wT M(q)w ≤ λmax ‖w‖2 , ∀q, ∀w. (6)

Remark 2.2: Actual values of the parameters σ0, σ1, σ2, and
the αji would be obtained from a system identification. (see,
e.g., page 327 of Chen and Lin2).

3. Proposed Observer/Controller
The proposed observer/controller is given as follows. Define
the position tracking error e as

e ≡ q − qd (7)

and the generalized tracking error s as

s ≡ ė + αe, (8)

where α > 0 is a scalar constant. Then the observer/controller
is

˙̂z = −σ0γ
−1(q̇)diag (|q̇|) ẑ + q̇ − K2Ms, (9)

u = −K1Ms − Ṁs + f (q, q̇) + σ0ẑ + σ1 ˙̂z + σ2q̇

+M q̈d − αMė, (10)

where K1 > 0 and K2 > 0 are constant diagonal gain
matrices where K1 satisfies

σ0 − σ1K1 > 0. (11)

(This restriction in Eq. (11) is not a significant constraint
since the actual values of σ0 are quite large compared to
those of σ1.)

Remark 3.1: The observer in Eq. (9) and control in Eq.
(10) are arrived at by enforcing negativity of the Lyapunov
function derivative in the following section.

4. Analysis and Convergence Proof
In this section we prove that the proposed observer/controller
of Section 3 meets the convergence and boundedness goals
defined in Section 2.

Theorem 4.1: The observer and controller defined in Section
3 meets the goals given in the problem statement of Section
2; namely ((q − qd )T , (q̇ − q̇d )T , (ẑ − z)T )T → 0 globally
exponentially, and all closed loop signals remain bounded.

Proof of Theorem 4.1: Define the observer error z̃:

z̃ ≡ ẑ − z. (12)

Differentiation of Ms (with s from Eq. (8)) while substituting
in the control in Eq. (10) gives

d

dt
(Ms) = σ0z̃ + σ1 ˙̃z − K1Ms. (13)

Subtracting the observer Eq. (9) minus the plant Eq. (2) gives

˙̃z = −σ0γ
−1diag (|q̇|) z̃ − K2Ms. (14)

From Eq. (13), we have, for the Laplace variable p and
transfer function G(p) below:

Ms = G(p)z̃ ≡ (pI + K1)−1 (σ0 + σ1p) z̃ = σ1z̃

+ (pI + K1)−1 (σ0 − σ1K1) z̃ (15)

or

Ms = σ1z̃ + y, ẏ + K1y = (σ0 − σ1K1) z̃. (16)

Define the simple Lyapunov function V :

V ≡ 1
2yT y + 1

2 z̃T
(
K−1

2 (σ0 − σ1K1)
)
z̃ (17)
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(recalling (11)). Differentiation of V while inserting (16) for
ẏ and (14) for ˙̃z gives:

V̇ = −yT K1y + yT (σ0 − σ1K1) z̃ − z̃T
(
K−1

2 (σ0 − σ1K1)
)

σ0γ
−1diag (|q̇|) z̃ − z̃T K−1

2 (σ0 − σ1K1) K2 (Ms) . (18)

The third term is nonpositive and K2 cancels in the last term,
which leaves

V̇ ≤ −yT K1y + yT (σ0 − σ1K1) z̃ − z̃T (σ0 − σ1K1) (Ms) .

(19)
Substituting Ms in the last term from (16) gives:

V̇ ≤ −yT K1y + yT (σ0 − σ1K1) z̃ − z̃T (σ0 − σ1K1)

× σ1z̃ − z̃T (σ0 − σ1K1) y. (20)

The second and fourth terms cancel, leaving

V̇ ≤ −yT K1y − z̃T (σ0 − σ1K1) σ1z̃. (21)

It readily follows that {yT, z̃T }T converges to zero globally
exponentially. Our change of variables is as follows:

{
y

z̃

}
=

[
M −σ1

0 I

]
︸ ︷︷ ︸

≡T

{
s

z̃

}
. (22)

In view of property (6), we have that ‖T −1‖ and ‖T ‖ are
bounded for all q ∈ Rn or there exist constants B1 and B2

such that

{‖T −1‖ ≤ B1, ‖T ‖ ≤ B2}, ∀q ∈ Rn (23)

from which we conclude that {sT , z̃T }T also converges to
zero globally exponentially. Finally, from the strictly stable
error dynamics in Eq. (8), it readily follows that {eT , ėT , z̃T }T
converges to zero globally exponentially.

Remark 4.1: It is known (see, e.g., Panteley et al.10) that z

is bounded in the following way:

|zi(t)| ≤ max
[|zi(0)| , (α0i + α1i) / (σ0)ii

]
,

∀t ≥ 0, (i = 1, ..., n)
(24)

so that ẑ is bounded, i.e., ẑ ∈ L∞.
In view of Eq. (24), we additionally conclude that all closed

loop signals remain bounded. This completes the proof of
Theorem 4.1. QED.

5. Numerical Examples
In this section we present numerical examples. We consider a
2 DOF revolute robotic manipulator with hysteretic friction.
From Craig3 (with reference to plant Eq. (1)):

M11 = m2L
2
2 + 2m2L1L2c2 + (m1 + m2)L2

1,

M12 = M21 = m2L
2
2 + m2L1L2c2, M22 = m2L

2
2,

(25)

where ci ≡ cos(qi) and where the mi are the link masses and
Li the link lengths. And,

f1 = −m2L1L2s2q̇
2
2 − 2m2L1L2s2q̇1q̇2

+m2L2gc12 + (m1 + m2)L1gc1, (26)

f2 = m2L1L2s2q̇
2
1 + m2L2gc12, (27)

where si ≡ sin(qi) and c12 ≡ cos(q1 + q2) and where g is the
gravitational constant. The parameter values considered are,
with all SI units:

mi = 20, Li = 1, g = 9.81. (28)

The following parameter values of the hysteretic friction
are similar to those in the references of Section 1 (see, e.g.,
Chen and Lin2):

σ0 = 105diag(1, 1), σ1 = σ
1/2
0 , σ2 = diag(350, 350),

{α0i = 7.5, α1i = 3.32, α2i = 0.001}, (i = 1, 2). (29)

The desired trajectory is

qd = {1 − cos(ω1t), 1 − cos(ω2t)}T ,

ω1 = 2, ω2 = 3.5. (30)

The initial conditions are (in view of Eq. (24))

q(0) = {0.1, 0.2}T , q̇(0) = {0, 0}T ,{
ẑi(0) = −10−5/2, zi(0) = −10−5

}
, (i = 1, 2). (31)

The control gains used were

K1 = diag(10, 10), K2 = diag(0.1, 0.1), α = 1.0. (32)

Figure 1 shows the position tracking errors versus time.
Figure 2 shows the control torques versus time.

We see that the torque changes quickly as the velocity
changes sign (e.g., in joint 1 near about t = 6.5 s), as can be
revealed by comparing Figs. 2 to 3, where Fig. 3 shows the
position and reference position of joint 1 and Fig. 4 that of
joint 2. The only way to reduce this u̇ is to replace the plant
with an “unstiffened” one or reduce the acceleration/speed
of the reference trajectory, qd (t). (Of course, for the standard
friction compensator term, of the form μsign(q̇), u̇ is
unbounded.)

If the friction compensation term, σ0ẑ + σ1 ˙̂z + σ2q̇, of
the control u in (10) is removed, the tracking performance
deteriorates as shown in Fig. 5.

(If only the ẑ-containing terms of u in Eq. (10) are removed,
at least as significant of deterioration in tracking performance
also occurs.)

Remark 5.1: From a practical perspective, one may not want
to choose K2 too large. This is due to the control term (from
Eqs. (9) and (10)), −σ1K2Ms, and the somewhat large actual
values of σ1. Combined together, the product σ1K2 could lead
to a large control value if K2 were also somewhat large.
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Fig. 1. Position tracking errors versus time – e1 solid, e2 dashed.

Fig. 2. Control torques versus time – u1 solid, u2 dashed.

Fig. 3. Joint 1 position and reference position versus time –
reference solid, actual dashed.

Fig. 4. Joint 2 position and reference position versus time –
reference solid, actual dashed.

Fig. 5. Tracking errors without friction compensation – e1 solid, e2
dashed.

6. Conclusions
We considered the problem of position tracking for
multiple DOF robotic manipulators with hysteretic friction
in the joints. We proposed and presented a continuous
observer/controller that estimates the hysteresis state and
drives the position tracking error to zero. We proved that
the closed loop system’s combined tracking and observation
error converges to zero globally exponentially.
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