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A numerical study of a bubble pair rising side by
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The motion of a pair of bubbles rising side by side under the influence of external
magnetic fields is numerically examined. Through solving the fully three-dimensional
Navier–Stokes equations, the results reveal that the bubble interactions are rather sensitive
to the field direction and strength. At first, we identify that, in a hydrodynamic flow,
whether the two bubbles will bounce or coalesce depends on the developments of the
counter-rotating streamwise vortices during the collision. In particular, for an originally
bouncing bubble pair, a streamwise magnetic field tends to promote their coalescence
by weakening the strengths of the standing streamwise vortices, and such a weakening
effect is caused by the asymmetric distribution of the Lorentz force in the presence of
another bubble such that a torque is induced to offset the original streamwise vortices.
Under a horizontal magnetic field, on the other hand, the influences are highly dependent
on the angle between the bubble centroid line and the field: a transverse field or a moderate
spanwise field always leads the bubble pair to coalescence while a strong spanwise field
has the opposite effect. This anisotropic effect comes from the Lorentz force induced
flow diffusion along the magnetic field, which not only produces two pairs of streamwise
vortices at the bubble rear, but also homogenizes the pressure along the magnetic lines.
As the competition between the two mechanisms varies with the magnetic direction and
strength, the interaction between the bubble pair also changes. We show that the external
magnetic fields control the bubble interaction through reconstructing the vortex structures,
and hence the core mechanisms are identified.

Key words: bubble dynamics, magneto convection, vortex interactions

1. Introduction

Bubbly flows are commonly encountered in both metallurgic and chemical engineering
applications, where bubbles are generated or injected into the reactors to create a global
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motion or turbulent mixing in an initially quiescent liquid. Under such circumstances,
the flow characteristics are greatly dependent on the bubble distributions and their local
volume fractions. In particular, for metallurgical refining or melting operations using
bubbly flows, external magnetic fields (MFs) are one of the few potential tools available
to control the bubble motion, with the objective of homogenizing the physical and
chemical properties of the liquid metal. Consequently, the combination of external MFs
and gas bubble injections enables the liquid metal to produce an optimized environment
for the final product quality. Nevertheless, to the best of the authors’ knowledge, the
understanding of such bubbly flows under magnetohydrodynamics (MHD) effects is far
from satisfactory, and more seriously, how an external MF affects the interactions between
one pair of bubbles remains unclear.

Early studies (Smereka 1993; Sangani & Didwania 1993) regard the irrotational theory
as a valid model to compute bubbly suspension within a flow, and the formation of
horizontal bubble clusters is obtained. However, this result is contrary to the experimental
observations (Lammers & Biesheuvel 1996) and the numerical results (Bunner &
Tryggvason 2002; Loisy, Naso & Spelt 2017); they find that the bubbles distribute
homogeneously within the flow. This highlights the fact that the bubble interactions inside
the plume are highly influenced by the vorticity effects and the bubble deformations,
which are neglected in the potential flow assumption. In particular, two bubbles rising
side by side, which is viewed as the most simplified configuration for bubble interaction,
has been studied to obtain a better understanding of the mechanisms governing the bubble
interactions. Legendre, Magnaudet & Mougin (2003) numerically find that, for a spherical
bubble pair, whether they will repel or attract one another depends on the rise Reynolds
number (Re), which characterizes the balance between the blocking effect owing to the
vorticity diffusion and the attractive force because of the irrotational mechanism. More
recently, the influence of the bubble deformation, which beyond a critical value produces
an unstable wake, was reported by Zhang, Chen & Ni (2019) such that the double-threaded
vortices are found to play a significant role in causing the bubble pair to bounce off.
With respect to the experimental studies, Duineveld (1998) and Sanada et al. (2009) find
one pair of bubbles rising in water and silicon oils always attract each other after being
released, but whether they will coalesce or bounce highly depends on the collision and the
rise velocities. Moreover, the visualization technology identifies that the wakes behind the
bubbles collide with each other during the bubble collision. Recent experiments conducted
by Kong et al. (2019) have also addressed the importance of the bubble wakes because the
path instability is triggered in the presence of another bubble.

On the other hand, in the presence of external MFs, although the gas bubble will not
experience a direct force due to the electrically non-conducting properties, the rising
bubble provokes the flow in an ambient liquid metal which is strongly affected by the
induced Lorentz force, and hence indirect MHD consequences are imposed on the bubble
motion. However, the relevant studies are relatively scarce, and the reason could be
ascribed to two aspects: the first difficulty is due to the opacity of the liquid metal,
rendering it very difficult to obtain both qualitative and quantitative experimental results
by applying common optical techniques, and therefore, either the developments of the
vortex structures or the flow field in the vicinity of the bubble is unclear; the second
problem comes from the coupling of the multi-physical fields, including the free surface,
the liquid flow and the electromagnetic field, since this adds to the difficulty in solving the
governing MHD equations numerically. But, even so, the MHD effects on the motion
of an isolated bubble have become clearer in recent years (Zhang, Eckert & Gerbeth
2005; Schwarz & Fröhlich 2014; Zhang & Ni 2014b; Jin et al. 2016; Zhang, Ni &
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Moreau 2016; Richter et al. 2018), and the main findings are summarized as follows: a
streamwise MF is found to make the twisted vortex structures more straight and parallel
along the streamwise direction in an isotropic manner, while a horizontal MF produces
an anisotropic effect on the flow field and the bubble shape. More recently, Pan, Zhang
& Ni (2018) and Delacroix & Davoust (2018) also found similar anisotropic effects in
numerical simulations about the flow past a sphere in the presence of a horizontal MF.
Actually, it has been a long time since Sommeria & Moreau (1982) reported that the
vorticity axis tended to align with the MF lines, because a spreading of momentum
along the MF lines led to a preferential formation of the flow structures parallel to the
MF, yielding a more homogeneous flow field along the MF lines to decline the Joule
dissipation. Such an anisotropic effect is also very remarkable in MHD jet flows (Davidson
1995) and MHD turbulence (Krasnov et al. 2008a,b) if the field is transverse to the flow
direction.

Things become more complicated in the MHD bubbly flows; most of the experimental
studies are reported by the MHD research group in Dresden, Germany (Eckert, Gerbeth &
Lielausis 2000a,b; Zhang, Eckert & Berbeth 2007; Zhang 2009; Keplinger, Shevchenko
& Eckert 2019), who use the ultrasound Doppler velocimetry measurement to detect the
bubble velocities and distributions, and they observe an isotropic distribution of the gas
phase under streamwise MFs and an anisotropic distribution under horizontal MFs. Later
Miao et al. (2013) confirmed their experimental results numerically by incorporating a
turbulent model into the commercial software ANSYS CFX, and so far as the authors
know, this is the only numerical study which places attention on more than one bubble
rising in MHD flows. Wiederhold, Boeck & Resagk (2017) also developed a method to
detect and to measure the size and velocity of elongated bubbles or drops in a dispersed
two-phase flow by using MFs. In addition, some much earlier experiments conducted by
Gherson & Lykoudis (1984) and Michiyoshi (1989) also found the anisotropic effect in the
presence of a horizontal MF, however, the quantitative results are different. Nevertheless,
the interaction between neighbouring bubbles and the corresponding vortex developments
are not the focus of their study due to the opacity of the liquid metal; as a consequence,
the in-depth mechanisms leading to different bubble distributions under different MFs are
unclear yet.

Focusing on the side-by-side configuration, the present study aims to clarify how
external MFs, probably varying in magnitude and direction, affect the interactions between
a pair of bubbles, and the results can shed some light on more complex situations
concerning MHD effects on the bubbly flows. Also, by tracking the evolution of the flow
fields and the vortex structures, the numerical results help us comprehend the anisotropic
effect of the non-streamwise MF. For this purpose, three-dimensional time-dependent
computations are carried out using the open-source code Gerris developed by Popinet
(2009), and the MHD solver developed in our previous studies (Zhang & Ni 2014b; Zhang
et al. 2016) which has been implemented into the code. Note that the complete validation
for an isolated bubble rising in liquid metal under MFs could be also found in those
references. Moreover, the adaptive mesh refinement (AMR) technique, supported by a
specific criterion developed by Zhang et al. (2019), makes it possible to locally refine the
meshes inside the thin film between the two bubbles when they get very close, and thus
the numerical coalescence could be delayed or prevented to a large extent. This paper is
organized as follows. Section 2 states the problem and describes the numerical methods,
some important dimensionless parameters are also introduced. Sections 3–5 present the
numerical results for a pair of bubbles rising side by side without/with a MF, which is
applied in the streamwise or horizontal direction, and the physical mechanisms concerning
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Figure 1. Sketch of a pair of bubbles rising in a liquid metal under the influence of a spanwise MF.

the MHD effects on the bubble interactions are highlighted from the aspects of vortex
developments. Finally, the conclusions and perspectives are presented in § 6.

2. Problem statement and the numerical method

A pair of spherical argon bubbles, with diameters of D, are released side by side in
liquid GaInSn near the bottom of the numerical tank, they are initially separated by a
distance of S between the bubble centroid and then rise and deform under gravity. We
choose liquid GaInSn as the working fluid because this is in accordance with most of
the available experiments owing to its liquid attribute at room temperature. Note that we
do not concern ourselves with the formation of the bubbles in liquid GaInSn; Mirsandi
et al. (2020) showed differences of the detached bubbles in a liquid metal–argon system
compared with those in a water–air system. Figure 1 specifies a spanwise configuration
which means the external MF is parallel to the line connecting the bubble centroid, and
the other two situations are that the streamwise MF is parallel with the gravity and the
transverse MF is perpendicular to the XOY plane. The three-dimensional domain is 60D
high and has a horizontal cross-section of 20D × 20D; note that such a computational
domain was also used in our previous study (Zhang et al. 2019).

The rise of an incompressible bubble exposed to an external MF is governed by
the combination of the Navier–Stokes equations and the simplified Maxwell equations,
given as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · μ(∇u + ∇uT) + σκδsn + ρg + F l (2.1)

∇ · u = 0 (2.2)

J = σe(−∇ϕ + u × B) (2.3)

∇ · (σe∇ϕ) = ∇ · (σeu × B) (2.4)

where ρ and μ denote the density and dynamic viscosity of the two fluids and g is the
gravitational acceleration. Besides, σ and κ are the surface tension coefficient and the
interface curvature, respectively, while n is the normal direction of the interface and δs
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Name Abbreviation Expression

Reynolds number Re ρ1uT D/μ1
Weber number We ρ1u2

T D/σ

Interaction parameter No σeB2D/ρ1uT
Galilei number Ga ρ1g1/2D3/2/μ1
Bond number Bo ρg1D2/σ

Variant Interaction parameter N σeB2D1/2/g1/2ρ1

Table 1. Dimensionless parameters for the description of the bubble motion exposed to an external MF.

the Dirac distribution function; F l = J × B represents the Lorentz force with J denoting
the induced current density and B the external MF. Note that the induced MF can be
neglected in the present study because of the very small magnetic Reynolds number
(Rem = μmσeDuT � 1, with μm denoting the magnetic permeability and σe the electrical
conductivity, uT is the terminal rise velocity of the bubble) in liquid metal, as indicated
by Sommeria & Moreau (1982). Besides, the induced current density is calculated from
Ohm’s law as revealed by (2.3), where ϕ is the induced electric potential. Due to the
conservative property of the charge, a divergence-free condition of ∇ · J = 0 should be
preserved such that an additional electric potential Poisson equation needs to be solved,
given as (2.4). The liquid–gas interface is advanced through computing the volume fraction
of the disperse phase by using the volume-of-fluid method, and then the physical properties
of the system, i.e.ρ, μ and σe, are updated in the next timestep through a volume averaged
scheme (Popinet 2009).

Based on the above governing equations, some dimensionless parameters are defined
to govern the rise behaviour of the bubble motion exposed to an external MF, as listed in
table 1, where the subscript 1 denotes the properties of the liquid metal. Since the Reynolds
number (Re), Weber number (We), Galilei number (Ga) and Bond number (Bo) are well
known to this research community and they are already described by many other papers
(Tripathi, Sahu & Govindarajan 2015; Cano-Lozano et al. 2016), only the interaction
parameter No is new here, which characterizes the ratio between the electromagnetic force
and the inertial force. Moreover, since No depends on the terminal velocity of the bubble
which is unknown a priori before finishing the numerical simulation, we thus introduce
a variant interaction parameter as N by replacing uT with the gravitational velocity√

gD so that N describes the ratio of the electromagnetic force to the gravity. Besides,
by introducing different characteristic scales, all the variables are non-dimensionalized
throughout this paper, respectively as L∗ = L/D, t∗ = t

√
g/D, u∗ = u/

√
gD and ω∗ =

ω
√

D/g. Another important dimensionless parameter is the aspect ratio of the bubble
shape, given as χ = b/a, denoting the length ratio of the major axis to the minor axis
of the bubble, however, note that the bubble becomes less fore-aft symmetric as its size
increases and thus a fully ellipsoidal bubble is hardly observed. Table 2 shows the physical
properties of the liquid GaInSn–argon system as used by Zhang (2009) in experiments,
and we adopt them throughout the present numerical simulations.

Then, the investigated rising bubble, with diameter in the range 2 mm ∼ 4 mm, has
a terminal Re � (2000 ∼ 3000), a terminal We � (2 ∼ 4) and a terminal No changing
between 0 and 1.6 with the varied external MFs herein; note that the variant interaction
parameter is now in a range of 0 < N < 2.24. At the bottom and the lateral walls of
the domain no-slip and impermeability conditions are used, while at the top of the
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Properties ρ (kg m−3) μ (Pa s) σ (N m−1) σe (Ω−1 m−1)

Liquid GaInSn 6361 2.2 × 10−3 0.533 3.27 × 106

Gas argon 1.65 2.24 × 10−5 — 0.1

Table 2. Physical properties of liquid GaInSn and gas argon (Zhang 2009).

domain free-outflow conditions are imposed. When computing the electromagnetic field,
the electrical potential is applied with homogeneous Neumann boundary conditions on
all walls, given as ∂ϕ/∂n = 0 so that the current density cannot penetrate the bottom and
lateral walls.

The numerical results to be discussed below, unless otherwise stated, are still obtained
by solving the three-dimensional Navier–Stokes equations with the open-source software
of the Gerris flow solver developed by Popinet (2009), which is also used by Zhang et al.
(2019) and Tripathi et al. (2017) to study the hydrodynamic interactions between two
bubbles. Moreover, by employing the consistent and conservative scheme developed by
Ni et al. (2007) and Zhang & Ni (2014a) to solve the electromagnetic field, a MHD solver
has been implemented into Gerris for the simulation of multiphase MHD flows, especially
that of an isolated bubble in motion in a liquid metal (Zhang & Ni 2014b; Zhang et al.
2016). Because numerous tests have been provided in the aforementioned references for
validation of the numerical method, now we only focus to two particular aspects arisen
from the bubble pair problem; one is the confinement effect of the computational domain
and the other is to justify the choice of the spatial resolution when the two bubbles become
very close during the collision.

The computational domain is spatially discretized by using a ‘topology based AMR
technique’, which indicates the meshes inside the gap between the bubble pair will be
refined locally and automatically as the bubbles approach one another, while the mesh
sizes are untouched along the bubble interface in other regions. In particular, in the present
study, the maximum mesh resolution of Δgap = D/800 based on the topology AMR,
together with Δbubble = D/64 in the vicinity of the bubble interface and Δwake = D/32
inside the wake region, are adopted to study the interactions between the pair of bubbles.
If the thickness of the film between the bubbles is thinner than a prescribed value of
Δgap = D/800, we let them coalesce numerically. Such a strategy of spatial resolution
was proposed by Zhang et al. (2019) and we will not provide more details. The numerical
validations are presented in the supplementary material available at https://doi.org/10.
1017/jfm.2021.695 (§ 1), where we identify that a domain width of 20D enables the
boundary effects to be ignored, and the topology based AMR is also effective to delay
or even prevent the numerical coalescence. In addition, the completion of a numerical
case usually requires approximately two months on a workstation which has 24 processors
(Intel(R) Xeon(R) E5 – 2630 v3) by using the Intel MPI library for parallel computations.

Besides, to qualitatively describe the influence of an external MF upon the flow field,
sometimes a frozen bubble may be better because the unsteady spatio-temporal evolutions,
i.e. the continuously deforming bubble shape and the varying separation distance, could
be eliminated. For this reason, an in-house code, which solves the complete governing
equations (2.1)–(2.4) for MHD flow past frozen bubbles, is used as a subsidiary numerical
tool to illustrate the MHD effects on the wake behind the bubble and several sketch maps
are provided throughout the present study. Moreover, this numerical solver has already
been proven to be accurate in simulating the MHD flow past a rigid sphere with body-fitted
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grids, as presented by Pan et al. (2018) and Pan, Zhang & Ni (2019). Herein, we just replace
the rigid sphere by an (two) oblate bubble(s) through imposing the free-slip boundary
condition at the bubble interface. The complete validations of this numerical method could
be found in the supplementary material (§ 2), and we call it NM2 in the following sections.

3. Bubble interactions without applying MF

As a first step, the hydrodynamic characteristics of different bubble pairs rising in
GaInSn are studied. Three different bubble sizes are considered here with D = 2.0 mm,
D = 3.0 mm and D = 4.0 mm, while the corresponding Galilei numbers and the Bond
numbers are {(Ga, Bo) ∼ (809.61, 0.47), (1487.29, 1.05), (2289.78, 1.87)}, however, note
that we will still use the bubble diameter D but not Ga or Bo to differentiate different pairs
in the following study because the bubble size is more intuitive in an unchanged liquid.
The initial separation between the bubble pair is fixed at S = 2D, which indicates the gap
between the bubble pair has a width of one diameter. The front views (XOY) of the rise
paths, referring to the positions of the bubble centroid throughout the present study, are
displayed in figure 2(a,b,c), while their bottom views (XOZ) before bubble coalescence are
shown in panels (d,e,f ). Note that, for better illustration, the rise paths of the corresponding
isolated bubble (S = ∞) are also displayed with the black dash-dotted lines, while their
vortex structures are portrayed in figure 2(d–f ) with the λ2 iso-surfaces (Jeong & Hussain
1995) of λ2 = −0.2 and the streamwise vorticity of ωy = ±4. It is clear that, in case of
D = 2.0 mm, which corresponds to an oblique rise path for an isolated bubble, the bubble
pair coalesce directly once they come into contact with each other at a height of Y = 5.
However, when the bubble size increases to D = 3.0 mm, an isolated bubble displays a
chaotic motion, a bounce first happens at a height of Y = 5.5 while a coalescence follows
at Y = 16. Furthermore, if the bubble size grows to D = 4.0 mm, an oscillatory zigzag
motion without bounce is observed between the bubble pair, while the isolated bubble is
also found to rise in a zigzag path. This variation tendency reveals two characteristics, in
one respect, increasing the bubble size causes the bubble interaction to transition from
coalescence to bounce, and on the other hand, the bubble interaction is highly dependent
on the rise behaviour of an isolated bubble.

Snapshots of the three-dimensional streamlines past the two bubbles are plotted in
figure 3, which corresponds to a size of D = 3 mm, and the contour maps describe the
distributions of the streamwise velocity field. It is observed that, when the two bubbles
are greatly separated, i.e. at t = 1.84, the streamlines past the left bubble converge to the
red dotted line, which is almost coincident with the centre of the bubble rear, and thus an
axisymmetrical structure is maintained. However, as the two bubbles get closer, i.e. from
t = 1.84 to t = 3.33, the converging line shifts to the interior side gradually, and eventually
almost coincides with the edge of the left bubble. Such flow asymmetries, undoubtedly, are
the source of the double-threaded streamwise vortices owing to the tilting/stretching term
in the vorticity transport equation, given as dωy/dt ∼ ωϑ∂uy/∂ϑ . Clearly, uy becomes
inhomogeneous in the azimuthal direction (ϑ) during the approach of the bubble pair.
This effect is also known to be very important in controlling the migration of an isolated
bubble in a shear flow, as numerically studied by Adoua, Legendre & Magnaudet (2009).
This also explains why a larger bubble pair more easily bounce off each other, it is because
the increased aspect ratio and the enhanced shear flow inside the gap will intensify the
strength of the streamwise vortices. Keep in mind that, in experiments (Duineveld (1998),
Sanada et al. (2009), Kong et al. (2019), it is also found that such double-threaded vortices
are generated during the approach of two bubbles by increasing their size.
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(d ) ( f )

Figure 2. Rise paths of different bubble pairs, whose sizes are varied as (a,d) D = 2.0 mm, (b,e) D = 3.0
mm and (c, f ) D = 4.0 mm while the initial separation is fixed at S = 2D. (a–c) Front views; (d–f ) bottom
views. Red and blue lines correspond to the positions of the bubble centroids in one pair, and black dash-dotted
line denotes that of the isolated bubble. Iso-contours in (d–f ) display the vortex structures behind the isolated
bubble, corresponding to the iso-values of λ2 = −0.2 (c) and ωy = ±4 (d), respectively.

Exterior

t = 1.84
–2.5 –3.2 –2.0 –0.8 0.4 –4.2 –2.7 –1.2 0.3–1.3 –0.1 1.1

t = 2.67 t = 3.33

Interior

(b)(a) (c)

Figure 3. Three-dimensional velocity streamlines past the left bubble within one pair at D = 3.0 mm in the
reference frame of the bubble; the contour maps describe the iso-values of the streamwise velocity field.

After understanding the importance of the collision induced vortices during the bubble
interaction, now we come to another problem discovered by Duineveld (1998), who find
there is a transition state between ‘direct coalescence’ and ‘bounce separation’, known as
‘bounce coalescence’, but it has never been reported in other studies. Then, we investigate
the bubbles pairs with D = 2.5 and D = 3 mm, and the snapshots of their shapes and
the streamwise wake vortices ωy = ±4 are presented in figure 4. Note that the displayed
time period is very short, i.e. for D = 2.5 mm, the starting dimensionless time moment is
t0 = 2.90 with an interval of t = 0.066 (Y < 0.13) between two successive pictures,
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(b)

(a) Bouncing

Bouncing Separation

Coalescence

Figure 4. Snapshots of the streamwise wake vortices ωy = ±4 during the bubble collision corresponding to
(a) D = 2.5 mm, (b) D = 3 mm. Note that, for better readability, the vortex structures are only displayed every
two pictures, and the black dotted boxes indicate those moments when the two bubbles coalesce, bounce and
separate. In (a) the first image is at t0 = 2.90 and the time interval is t = 0.066, and they are t0 = 2.90 and
t = 0.13 in (b).

and they are t0 = 2.90 and t = 0.13 for D = 3.0 mm. In each panel, the wake vortices
are only displayed every two pictures while others just portray the bubble shapes. At D =
2.5 mm, the bubble pair bounce off at the first touch, then they perform shape oscillations
and approach again until coalescing at the second touch. On the contrary, a separation
follows the second touch in the case of D = 3 mm. Keep in mind that such a process is too
short to be distinguished from the full rise path shown in figure 2(b). More quantitatively,
Duineveld (1998) find that the time between the two touches is very close to one period of
the second mode surface oscillation, while this agreement could be also identified from the
experiments of Sanada et al. (2009) (figure 7 in their paper). From figure 4, the calculations
reveal that the dimensionless time between the two touches is tn = 0.66 (0.78) for D =
2.5 mm (3 mm), while the period of the n = 2 shape oscillation is tm = 0.55 (0.66)
in theory, and a deviation of 20 % could be estimated from the comparisons. Besides,
the entire snapshots using ωy and λ2 criteria for all bubble pairs could be found in the
supplementary material (§ 3).

In order to find a criterion to identify the transition border between different
interactive patterns, Duineveld (1998) proposed two critical Weber numbers, one is
Wec = ρ1u2

xD/2σ , depending on the collision velocity to distinguish direct coalescence
and bounce coalescence, and the other is Wer = ρ1u2

yD/σ , based on the rise velocity to
separate bounce coalescence and bounce separation; their critical values are Wec ≈ 0.18 ±
0.03 and Wer ≈ 2.6 ± 0.3, respectively. Later, by using different liquids in experiments,
Sanada et al. (2009) argued that whether the two bubbles would coalesce or bounce
actually depends on the rise Weber number, but they do not distinguish between
direct coalescence and bouncing coalescence as Duineveld does. Although the physical
properties of the liquid metal differ significantly from those of water and silicon oils,
however, we still compute the collision velocity, the rise velocity and the film thickness
between the two bubbles, their time histories are illustrated in figure 5. Note that, in
the present study, different components of the bubble velocity are estimated though a
volume averaged scheme over all discrete cells inside the bubble, for instance u〈x,left〉 =∑

u〈x,i〉γi/
∑

γi with i the discrete cell inside the left bubble and γ the gas volume
of the cell. In particular, the collision velocity between the bubble pair is defined as
ux = u〈x,left〉 − u〈x,right〉. In the picture, the embedded iso-surfaces are the bubble shapes
at different time moments as marked by the circles, with hollow ones denoting bounce
(separation) and solid ones coalescence, and the numbers are the Weber numbers Wec
depending on collision velocity at their first touch. We see that Wec decreases from
D = 2 to D = 4 mm, and this result is apparently opposed to Duineveld’s conclusion,
revealing that a higher collision Weber number does not necessarily lead to a bounce
interaction at first touch. This divergence should be ascribed to different characteristics
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Figure 5. Time histories of (a) the collision velocity defined by ux = u〈x,left〉 − u〈x,right〉, (b) the film
thickness between the bubble pair and (c) the rise velocity for different bubble pairs. In (a), the embedded
iso-surfaces are the bubble shapes at different times as marked by the circles, with hollow ones denoting
bounce (separation) and solid ones coalescence, and the numbers are the collision Weber number Wec =
ρ1u2

xD/2σ depending on collision velocity at their first touch. In (c), the rise velocity based Weber numbers
Wer = ρ1u2

yD/σ are also calculated.

of the bubble pairs rising in water and liquid GaInSn. In the latter case, the production
of the double-threaded vortices is already very significant during the bubble approach
(see figure 4), and thus the repulsive lift forces is strong enough to reduce the approach
velocity as the bubbles become larger, however, for small bubbles (D < 1.8 mm studied
by Duineveld 1998) rising in water, the production of the double-threaded vortices should
not be so obvious. Then, in figure 5(b), we find that the thickness of the thin liquid film
oscillates over time after the first bounce at D = 2.5 and D = 3 mm, and it must be
ascribed to the shape oscillations so that, when the bubbles stretch, they may coalesce
or bounce again depending on the repulsive force provided by the vortex interactions
(see figure 4). In figure 5(c), the rise Weber number Wer is positively correlated to the
bubble size, and the border between bouncing coalesce and bouncing separation is almost
Wer = 2.50 ∼ 3.04, which is very close to the value proposed by Duineveld (1998), and
thus we think this Weber number is better used to distinguish the coalescence and bounce
interactions between the bubble pair in the hydrodynamic cases.

In summary, in this section we show that the developments of the streamwise vortices
during bubble collision play a key role in causing the two bubbles to bounce off each
other, and this will be the basic argument when we consider the influences of the external
MFs on the bubble interactions. Accordingly, the streamwise vortices but not other vortex
structures are displayed and discussed in the following sections. In addition, note that,
by varying the separation distance and the bubble size in this problem, there are three
controlling parameters of {Ga, Bo, S}, and imposing an external MF adds to the difficulty
with another two parameters: the magnitude and the direction. Correspondingly, it is nearly
impossible to draw a full map containing all of the five parameters in three-dimensional
numerical simulations. Alternatively, as the present study aims to detect the underlying
mechanisms caused by the external MF, we will just focus on one particular bubble
pair of D = 3 mm ({(Ga, Bo, S) ∼ (1487.29, 1.05, 2)}) throughout this paper, and the
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Figure 6. Sketch of the distribution of the current density (black streamlines) and the Lorentz forces
(iso-contours) on the horizontal plane at a distance of D downwards the bubble centroid. (a) A sketch to
describe the visual angle; (b) an isolated bubble case and (c) a bubble pair case. Panels (b,c) are obtained
by NM2 with defined parameters of Re = 100, No = 2.0 and χ = 2.4, the bubble pair have a separation of
S = 1.5D. In (b,c), the red dashed lines are the projection of the bubble interface, the blue arrow lines are
the Lorentz forces and the green dashed lines denote the induced Lorentz torque owing to the presence of the
neighbouring bubble.

MF direction and strength are varied. After that, the MHD effects on other bubble pairs
could be inferred from our previous study (Zhang et al. 2019), in which the influences of
{Ga, Bo, S} have been investigated in hydrodynamic cases.

4. Influences of the streamwise (vertical) MF

The influences of the streamwise MFs on the rise behaviours of the bubble pair are
discussed in this section. Note that, for the case of an isolated bubble, some previous
numerical studies (Schwarz & Fröhlich 2014; Zhang & Ni 2014b, 2017) already reveal that
a streamwise MF makes an unstable bubble rise more rectilinearly, because the twisted
trailing wakes are straightened along the streamwise direction owing to the MHD effects.
However, things are different here because no path instability happens before the bubbles
collide, and hence the influences of the neighbouring bubble require extra study.

4.1. Difference between an isolated bubble and a bubble pair
Figure 6 describes the differences between the isolated bubble case and the bubble pair
case under a streamwise MF. Panel (a) illustrates the visual angle towards a horizontal
plane at a distance of D downstream of the bubble centroid and panels (b,c) are the
corresponding bottom views. Note that the results are obtained by NM2, with the
parameters of Re = 100, No = 2.0 and χ = 2.4 that no vortex rings or streamwise vortices
appear at the rear of the bubble(s), and the bubble pair have a separation of S = 1.5D.

For an isolated bubble, figure 6(b) reveals that the current densities distribute in an
axisymmetric way, and the distribution of the induced Lorentz forces, which are depicted
by the iso-contours in the figure, is also fully axisymmetric. This is understandable by
looking into the electrical potential equation (2.4) with a variant form of ∇2ϕ = B · ω, by
which we know ∇ϕ vanishes in the domain under a streamwise MF since the streamwise
vorticity ωy is zero everywhere owing to the rectilinearly rising path. Then, (2.3) is reduced
to J = σe(u × B), and hence the current densities just depend on the distribution of the
radial velocity. However, when two bubbles rise side by side, as shown in figure 6(c),
the distribution of the current densities are no longer axisymmetric because the flow
does not converge at the centreline of the bubble rear (see figure 3) and the electric
potential becomes asymmetric. Correspondingly, the induced Lorentz forces, which are
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also shown by the iso-contours in figure 6(c), are not axisymmetric anymore so the forces
at the exterior of the bubble are found to be stronger than those in the interior. Under
such circumstances, the induced Lorentz torque parallel to By becomes non-zero and its
calculation is referred to the formula given by Davidson (1995)

Hy = [x × (J × B)] · B = −(B2
y/2)∇ · (x2

⊥J ), (4.1)

where x⊥ is the transverse distance in the directions perpendicular to the MF. Clearly,
for an isolated bubble, formula (4.1) implies that the Lorentz torque Hy vanishes since
∇ · (x2

⊥J ) is zero owing to the axisymmetric distributions of the current density, however,
we would also expect a non-zero Hy for the bubble pair case because ∇ · (x2

⊥J ) is
non-zero. Moreover, a positive (negative) Hy is generated at the front (back) part of the
left bubble, i.e. z > 0 (z < 0) in figure 6(c) because the Lorentz force decreases from the
exterior position to the interior position. Therefore, the Lorentz torque induced streamwise
vortices, as sketched by the green dashed line in figure 6(c), have the opposite signs to
the collision induced vortices, which are dampened accordingly. As a consequence, the
bouncing interaction should be also weakened.

4.2. Freely rising bubble pair in streamwise MFs
The numerical results of the freely rising bubble pair in a streamwise MF are discussed,
by fixing their size at D = 3 mm and the initial separation at S = 2. The MF magnitude is
varied in between N = 0 (No = 0), 0.058 (0.036), 0.09 (0.056), 0.20 (0.13), 0.80 (0.50)
and 2.24 (1.60), but only four of the cases are reported here. The rise trajectories together
with the snapshots of the bubble shapes during collision are presented in figure 7(a–d),
while the full set of the results can be found in the supplementary material (§ 4). It
is clear that the two bubbles show an interaction of bounce separation at N = 0, and
transition to bounce coalescence at Ny = 0.09, then, ultimately, a direct coalescence
at Ny � 0.2. The results reveal that a stronger streamwise MF prefers to make the
bubbles coalesce instead of bounce. A better understanding of this transition could be
obtained from figure 7(e–h), which portrays the streamwise wake vortices ωy = ±3.5
at the collision moment for the corresponding MFs. We see that the wakes behind the
bubble pair are significantly weakened by the streamwise MFs, and hence the repulsive lift
force are reduced correspondingly. These results support the discussions in figure 6(c)
that the Lorentz torque induced vortices offset those produced by the collision, and
correspondingly, whether the bubble pair are about to coalesce or bounce highly depends
on the developments of the wake vortices.

Then, a particular case of Ny = 2.24 is focused on to confirm the mechanisms, by noting
that this streamwise MF is strong enough so that the Lorentz torque induced vortex pairs
are expected to be dominant over the collision induced vortex pairs if the two bubble are
not too close. In other words, when the two bubbles are separated with a moderate-to-large
distance, the double-threaded vortices at Ny = 2.24 must have opposite signs compared
with those collision induced vortices at N = 0. This is verified in figure 8(a) that depicts
the wake vortices of ωy = ±0.60 at N = 0, and (b) corresponds to the same wake vortices
at Ny = 2.24. Moreover, at the same time moment, figure 8(c) shows the contour maps
of Hy calculated from (4.1) on a horizontal plane at a distance of D downwards from
the bubble centroid, and obviously the results comply with the previous analysis in
figure 6(c); a pair of non-zero Lorentz torque are produced. Therefore, a streamwise
MF will undoubtedly weaken the wake vortices during the bubble collision through the
Lorentz torque mechanism. Besides, the bubble deformation is also observed to decrease
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Figure 7. Rise characteristics of the bubble pairs exposed to different streamwise MFs ranging between N = 0
and Ny = 0.80, while the bubble size is fixed at D = 3.0 mm. (a–d) Rise paths and the snapshots of the
bubble shapes during collision; note that the bottom image denotes t0 = 2.61 and the time interval between
two successive pictures t = 0.334. (e–h) Vortex structures of ωy = ±3.5 at the collision moment.
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Figure 8. Iso-surfaces of ωy = ±0.60 around the bubble pair, corresponding to (a) N = 0 and (b) Ny = 2.24.
Note that the two bubbles rise in an early stage so that they are not too close. (c) Describes the results
corresponding to (b) on a horizontal plane at a distance of D downwards from the bubble centroid, the contour
map depicts the induced Lorentz torque (4.1), the black arrow lines are the current densities and the red dashed
line is the projection of the bubble interface.

significantly from N = 0 to Ny = 2.24, and, as a consequence, the generated vortices
are also reduced remarkably owing to a theoretical estimation of ω ∝ χ8/3 given by
Magnaudet & Mougin (2007).

Furthermore, the time series of the collision velocities are presented in figure 9, where
the weak-to-moderate streamwise MF is varied in the range 0 ≤ Ny ≤ 0.20. In the figure,
the collision velocity shows a tendency of u〈x,N=0〉 < u〈x,N=0.058〉 < u〈x,N=0.090〉 <

u〈x,N=0.20〉 during the bubble approach before the first bounce. Correspondingly, it
seems that a higher collision velocity prefers to lead the two bubbles to coalescence
rather than bounce, and this is understandable because, under a stronger streamwise
MF, the double-threaded vortices are dampened (see figure 7) more seriously, and hence
the induced repulsive lift force is also reduced. Furthermore, if the streamwise MF is
strengthened to N ∼ O(1), things would be different because the rise velocity of the bubble
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Figure 9. Collision velocity between a pair of bubbles under different streamwise MFs, ranging between
N = 0 and Ny = 0.20.

pair is decreased significantly under a moderate-to-strong MF and the flow field becomes
more homogeneous, so that the attractive force between the two bubbles declines sharply.

5. Influences of the spanwise and transverse MFs

The influence of a horizontal MF on the motion of the bubble pair is investigated in this
section. We should now keep in mind that the MHD effects are expected to be strongly
dependent on the angle (θ ) between the B lines and the line connecting the bubble
centroids because a horizontal MF produces anisotropic effects which are already known
in MHD turbulence (Sommeria & Moreau 1982) and MHD jet flows (Davidson 1995).
To begin with, two extreme cases are discussed in detail, corresponding to the spanwise
MF with θ = 0◦ being parallel to the bubble centroid line and the transverse MF with
θ = 90◦ being perpendicular to the bubble centroid line. After that, the numerical results
with different θ in the range 0◦ ∼ 90◦ will be reported briefly.

5.1. Anisotropic MHD effects on an isolated bubble and bubble pair
Before discussing the influence of a horizontal MF on the bubble pair, the isolated bubble
motion exposed to a horizontal MF should be unfolded first. Note that some of these
characteristics have not been reported before, neither in experiments (Zhang 2009; Wang
et al. 2017; Richter et al. 2018) nor in numerical studies (Jin et al. 2016; Zhang et al. 2016),
so it is desirable to discuss them in detail herein. To begin with, we should be aware of the
diffusion effects induced by a MF along the B lines; they are governed by the following
dimensionless equations derived from (2.1) (Sommeria & Moreau 1982; Davidson 1995)

Du
Dt

= −∇p∗ + 1
Re

∇2u − N∇−2[∂2u/∂x2
//], (5.1)

where p∗ is the augmented pressure, and the last term on the right-hand side of (5.1)
is a variant form of the Lorentz force, given by F l = N∇−2[∂2u/∂x2

//] + ∇φ with the
gradient term merely augmenting the fluid pressure. In addition, the subscript // indicates
the direction parallel to the B lines while ∇−2 is an inverse of the Laplacian operator. As
a consequence, the Lorentz force looks like a unidirectional diffusion term, and moreover,
whether or not this diffusion produces any significant lengthening of x// depends on the
magnitude of N.
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Figure 10. Sketch obtained by using NM2 describing the influence of a horizontal MF on the motion of
an isolated bubble; the parameters are Re = 100, No = 6.0 and χ = 2.4. (a,b) Bottom view of the velocity
streamlines without and with an x-directional MF, respectively. The cut plane is at a distance of D downwards
from the bubble centroid, while the iso-contours indicate the streamwise velocity, the red dashed line is the
projection of the bubble interface, the blue solid (dashed) lines are the Lorentz diffusion induced positive
(negative) streamwise vortex pairs and the green dashed lines denote the double symmetrical planes of S1 and
S2. (c) Front view of the flow field on S1 (left) and S2 (right) planes, and the blue dashed line implies where
the flows converge on S1.

The first consequence of such unidirectional diffusion is to produce the streamwise
vorticities behind the bubble, as portrayed in figure 10 which is still obtained by using NM2
at Re = 100, No = 6.0 and χ = 2.4. In figure 10(a,b), the iso-contours of the streamwise
velocity uy are displayed on a transverse plane at a distance of D downstream the bubble
centroid, with the former picture denoting a hydrodynamic case and the latter one having a
horizontal MF in the x-direction. Besides, the black arrow lines are the velocity streamlines
and the red dashed line is the projection of the bubble interface. In the absence of a MF,
the flows converge to the centre of the bubble rear so that a fully axisymmetric structure
is formed. However, under a horizontal MF, the momentum of the flow diffuses out along
the B lines, and the maximum ‘jet’ velocity is reduced accordingly. Then, the conservation
of mass requires some of the surrounding fluid from other planes to be entrained by
the diffused jet. This explains the bending of the velocity streamlines and the non-zero
azimuthal component of the velocity in figure 10(b). Correspondingly, double pairs of
streamwise vortices are produced at the rear of the bubble, as depicted by the blue lines,
where the solid ones are for positive values and dashed ones are for negative values. For the
isolated case, the vortex pairs have a structure of double-planar symmetry so that the lift
force is zero, and the symmetrical planes are denoted by S1 and S2 in the picture. In order
to differentiate them from the ‘Lorentz torque’ induced vortex pair under a streamwise MF,
we call them ‘Lorentz diffusion’ induced vortices in the rest of the paper. In addition, a
three-dimensional view of the streamlines past the bubble is given in figure 10(c); it is seen
that the flows can converge to the rear centre on the plane S2 but cannot on the plane S1,
and the blue dashed line denotes the non-central convergence position. Note that, so far as
the authors know, such phenomena of Lorentz diffusion induced streamwise vortices have
not been reported in the previous experimental or numerical studies on bubble motion.

After that, if there is another bubble rising by the side, the structure of the ‘Lorentz
diffusion’ induced vortices evolves. NM2 enables us to have a detailed understanding of
this change, as illustrated in figure 11, whereas the iso-contours are ωy = ±0.5 and the
black arrows are the velocity streamlines. For an isolated bubble, as shown in figure 11(a),
the vortex pairs R1(2) and L1(2) are equal in strength and the symmetrical planes of S1
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Figure 11. Sketch showing how the Lorentz diffusion induced vortices evolve in the presence of a
neighbouring bubble. The results are obtained by using NM2 and the parameters are identical to those in
figure 10. (a) Isolated bubble case in a horizontal MF, R1(2) and L1(2) are the Lorentz diffusion induced
streamwise vortices denoted by ωy = ±0.5, the black arrow lines are the velocity streamlines and the green
dashed lines denote the double symmetrical planes S1 and S2. (b,c) Bubble pair cases under a spanwise MF
and a transverse MF, respectively, and the red arrow lines highlight the diffusion effect along the B lines.

and S2 are depicted by the green dashed line. When another bubble is rising by the side at
S = 1.5D to form a spanwise configuration, figure 11(b) reveals that the symmetry plane
S1 is still present but S2 disappears. Instead, the borders (blue dash-dotted line) between
vortex pairs R1(2) and L1(2) move to a more exterior position because the pressure at the
R1(2) region is lower than that at L1(2) owing to the faster flows in the gap. Consequently,
R1(2) dominates over L1(2) in this configuration, and such an imbalance will be more
serious when the two bubbles are about to collide. Furthermore, we must note that, in this
spanwise configuration, R1(2) has the same signs as the collision induced vortex pair (see
figure 7), therefore a spanwise MF is expected to enhance the collision by strengthening
vortex pair R1(2) which induces a repulsive lift force. In contrast, a transverse MF, as
presented in figure 11(c), is expected to weaken or even fully eliminate the collision
induced vortices because R1(2) have opposite signs and thus the repulsive lift force is
also reduced, and thus the two bubbles prefer coalescence to bounce in this configuration.
Besides, the symmetrical structure between R1(2) and L1(2) is almost maintained in a
transverse MF because the streamlines are diffused along S1 but compressed along S2 to
keep far away from another bubble.

The second consequence of the Lorentz force is to homogenize the pressure field along
the B lines owing to the centrifuge effect induced by the inhomogeneous distribution
of the Lorentz force, as revealed by Zhang et al. (2016). As a result, a spanwise MF
reduces the attractive force and the approaching velocity between the bubble pair under
this mechanism. Accordingly, the collision strength between the two bubbles must be
dampened and fewer vortices are produced, then a transition from bounce to coalescence
is expected owing to this mechanism under a spanwise MF. Note that such a prediction
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Figure 12. Rise path of bubble pairs under different transverse MFs. The snapshots show the bubble shapes
during the collision. Other descriptions refer to those in the caption of figure 7. Note that (d) does not show the
whole coalescence process because the rise velocity of the bubble is greatly suppressed by the MF at Nz = 2.24,
and thus the coalescence cannot be displayed in the snapshots within the time period.

does not contradict the results discussed for the streamwise MF, whereas we find a higher
collision velocity is apt to produce coalescence between the bubble pair, that is because
the streamwise MF has a different mechanism to dampen the streamwise vortices.

In light of these remarks, we would expect that a transverse MF will always encourage
the two bubbles to coalesce by offsetting the collision induced vortex pair, while the
spanwise MF has two opposite impacts: its influence on streamwise vortices has a positive
effect towards bouncing, but the homogenizing effect on the pressure field has a negative
influence. Besides, also keep in mind that a horizontal MF decreases the ellipsoidal nature
of an oblate bubble (Zhang et al. 2016), and hence the vorticities produced at the bubble
interface are reduced correspondingly.

5.2. Freely rising bubble pair in transverse MFs
In this part, the numerical results concerning the bubble pair rising freely in a transverse
MF are discussed, with the magnitude still varied in between N = 0, 0.058, 0.09, 0.20,
0.80 and 2.24. For likewise concise reasons, we show only four of the rise paths and the
shape evolutions of different bubble pairs in figure 12, and the full set of results can be
found in the supplementary material (§ 4). Given an enhanced transverse MF, as conveyed
by the pictures, the interaction between the bubble pair transits from bouncing separation
(N = 0) to bouncing coalescence (Nz = 0.090) and finally to a direct coalescence (Nz �
0.80). Moreover, we see the coalescence moment is delayed at Nz = 2.24 (and even cannot
be displayed in the snapshots within the time period), and we will demonstrate later (in
§ 5.4) that such reversal is owing to the significant suppression of the rise velocity of the
bubble in a strong horizontal MF, with the attracting force also reduced correspondingly.

Furthermore, more information about the flow characteristics is provided in figure 13.
In the top row, panels (a–d) portray the three-dimensional velocity streamlines past the
left bubble within one pair, and the corresponding vortex structures, with the iso-contours
denoting ωy = ±1.7, displayed behind the right bubbles. In a small MF (Nz = 0.09), the
streamline patterns are very similar to the hydrodynamic case at N = 0, the deviation
of the converging line towards the interior position leads to a significant production of
the streamwise vortices. However, at a moderate-to-large Nz (Nz = 0.80 and 2.24), the MF
drives the converging line back to the centre of the rear, and the flow around the left bubble
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Figure 13. Characteristics of the flow field in the vicinity of the bubble pairs at the moment of collision,
the transverse MF is varied as (a,e) Nz = 0.0, (b, f ) 0.09, (c,g) 0.80 and (d,h) 2.24. (a–d) Three-dimensional
streamlines past the left bubble and the iso-contours of ωy = ±1.7 behind the right bubble. (e–h) The bottom
view of the streamlines on a horizontal plane at a distance of D below the bubble centroid, the iso-contours
denote ωy = ±1.7, the blue dashed line is the projection of the bubble interface and the green dash-dotted line
is S2 described in figure 10.

almost recovers to a symmetrical configuration on the XOY plane, which is exactly S2 in
figure 10. Furthermore, we see the collision induced vortex pair are weakened successively
in a greater MF, while the Lorentz diffusion induced vortices grow inversely. The two types
of vortices are marked by the black and blue boxes, respectively, and it is observed that,
at Nz = 2.24, the former vortex pair completely disappear while the latter vortex pairs
dominate at the centre of the bubble rear by maintaining the symmetry between R1(2) and
L1(2). Then, how the the streamwise vortices evolve becomes more obvious by looking
at the projected view onto a cut plane of D below the bubble centroid, as described in
panels (e–h), where the blue dashed circles are the projection of the bubble interface and
the iso-contours represent ωy = ±1.7. At N = 0 and Nz = 0.09, we see the streamlines
bend due to bubble collision, which produces a negative vortex at z > 0 and a positive
one at z < 0. Then, at Nz = 0.80 and Nz = 2.24, the collision induced vortex pair are
weakened while the Lorentz diffusion induced double pairs are more visible. Also note
that the interior pair R1(2) have opposite signs to the collision induced ones, and thus the
repulsive forces are dampened significantly. Then the bubble pair approach one another
until coalescence. As a consequence, figure 13 verifies the speculations presented in § 5.1
that the growth of the Lorentz diffusion induced vortices should be responsible for such a
bounce-to-coalescence transition in a transverse MF.

5.3. Freely rising bubble pair in spanwise MFs
Next, the numerical results concerning the freely rising bubble pairs in spanwise MFs are
reported. Some of their rise paths and the snapshots of their shapes are plotted in figure 14,
while the full results can be also found in the supplementary material (§ 4). Different from
the transverse configuration, the influence of the spanwise MF on the bubble iteration is
non-monotonic. That is, although the transition from bounce to coalescence still appears
at a small value of Nx = 0 ∼ 0.09, the bubbles bounce again at Nx = 0.80 and ultimately
repel at Nx = 2.24. The results reveal that the MHD effects caused by a spanwise MF are
more complex than other MFs.

Three-dimensional velocity streamlines around the bubble pair and the corresponding
iso-surfaces of ωy = ±1.7 are displayed in figure 15(a–d). We see that the streamlines
do not converge towards the centre of the bubble rear by strengthening the spanwise MF,
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Figure 14. Rise path of bubble pairs under different spanwise MFs. The snapshots are the bubble shapes
during the collision. Other descriptions refer to those in the caption of figure 7.
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Figure 15. Characteristics of the flow field in the vicinity of the bubble pairs at the moment of collision. The
spanwise MF is varied as (a,e) Nx = 0.0, (b, f ) 0.09, (c,g) 0.80 and (d,h) 2.24. Other descriptions refer to those
in the caption of figure 13.

and in the extreme case of Nx = 2.24, a void area appears beneath the bubble on the plane
XOY , which is S1 in this spanwise configuration. This variation tendency is exactly what
we expect as the consequence of the Lorentz diffusion, as fully detailed in figure 10(b,c).
Simultaneously, the vortex pairs are slightly dampened by a weak MF (Nx = 0.09) but
are inversely enhanced in a moderate field (Nx = 0.80), and ultimately only the Lorentz
diffusion induced vortices are visible at Nx = 2.24. Such a non-monotonic variation is also
in line with our speculations as discussed in § 5.1, implying that the spanwise MF has two
opposite impacts on the bubble interactions: (i) the Lorentz diffusion induced streamwise
vortices will strengthen the collision between the two bubbles, and thus the repulsive lift
force is enhanced to produce a bouncing interaction (hereinafter referred to as the ‘L’
mechanism); (ii) the flow field and pressure field will be more homogeneous along the line
connecting the bubble centroids so that the attractive force is correspondingly reduced to
favour a coalescence interaction (hereinafter referred to as the ‘P’ mechanism).

Then the competition between the two mechanisms could be divided into three stages
according to figure 15: (I) at a weak spanwise MF of Nx = 0.09, the ‘L’ mechanism is
very weak, and the ‘P’ mechanism reduces the attracting force between the bubble pair
so that the collision is dampened to generate fewer vortices, then the coalescence between
the bubble pair is favoured in this stage; (II) at a moderate value of Nx = 0.80 , the ‘P’
mechanism further reduces the attracting force but the bubble pairs could still approach
towards each other, now the ‘L’ mechanism becomes significant during the collision and
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Exterior Interior
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–2.62–2.25

Nx = 0.090 Nx = 0.80 Nx = 2.24

–2.20 –2.46 –1.26 –1.33

(b)(a) (c)

Figure 16. Hydrodynamic pressure field in the vicinity of the bubble pair at Nx = 0.09, 0.80 and 2.24. The
values at the exterior and the interior positions of the left bubble indicate the minimum pressure there. Note
that only the pressure outside the bubbles is displayed, and this picture confirms that the pressure field along
the line connecting the bubble centroid is homogenized by a stronger spanwise MF.

vortex pairs R1(2) are greatly enhanced to produce a bounce; (III) as the spanwise MF
is intensified to Nx = 2.24, the ‘P’ mechanism leads to a rather weak attractive force by
highly homogenizing the pressure field along the B lines, but the ‘L’ mechanism produces
a repulsive force by creating asymmetry between R1(2) and L1(2) (see the blue dot-dashed
box in figure 15d), and such imbalance causes the bubbles to repel each other from the very
beginning of the rise. Furthermore, figure 15(e–h) also displays the streamlines projected
onto the cut plane at a distance D below the bubble centroid, the evolution of the vortex pair
caused by collision and the Lorentz diffusion becomes more clear against the enhancement
of the spanwise MF, and the results further support the core mechanisms that it is the
vortex development that determines the interaction between the bubble pair. Besides,
because spanwise MFs of Nx = 0.80 and 2.24 inversely produce strong collision and
repulsion between the bubble pairs, it is desirable to explore the vortex evolution during
the rise of the bubble pair, and the results are provided in the supplementary material (§ 5).

In addition, to further illustrate the ‘P’ mechanism, figure 16 depicts the hydrodynamic
pressure of ( p − ρ1gy) outside the bubbles on an XOY plane in different spanwise
MFs. Note that the gap widths between the two bubbles at Nx = 0.09 and Nx = 0.80 are
equivalent for accurate comparison. By displaying the minimum hydrodynamic pressure
at the exterior and the interior positions of the left bubble, the pictures reveal that an
enhanced spanwise MF reduces the pressure difference on the two sides of the bubble,
and hence the attractive force is also reduced owing to such a homogenizing effect. Keep
in mind that, in the case of Nx = 2.24, p = pext − pint = 0.07 is still positive so that a
very weak attractive force should be maintained, however, it is now overwhelmed by the
repulsive force induced by the asymmetry between vortices L1(2) and R1(2).

5.4. Rise and bounce velocities
We are now clear that the MHD effects on the vortex developments are the essential
mechanisms to alter the bubble interactions. Since the evolutions of the collision velocity
vs Nx(z) are also concerned sometimes, with the results under spanwise MFs described in
figure 17(a), we witness that the collision velocity has a negative correlation vs the value
of Nx, and this variation tendency fully supports our ‘P’ mechanism that the spanwise MF
reduces the attractive force by homogenizing the pressure field. Moreover, at Nx = 0.80,
we see the collision velocity is significantly suppressed but the two bubbles still bounce
off, and apparently, it implies that the collision velocity is not a determining factor in the
bubble interaction. In contrast, things are quite different under transverse MFs as depicted
in figure 17(b). It is found that a small Nz below 0.20 still enhances the collision velocity
due to the weakened double-threaded vortices at the rear of the bubble pairs, similar to that
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Figure 17. Collision velocity between a pair of bubbles under different (a) spanwise MFs Nx and (b)
transverse MFs Nz.
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Figure 18. Rise velocities of the bubble pair under (a) spanwise MFs Nx and (b) transverse MFs Nz.

under a streamwise MF. However, a moderate-to-large Nz at 0.80 and 2.24 suppresses the
collision velocity inversely, this is due to the sharp decline in rise velocity which weakens
the attracting force subsequently, and we will confirm this shortly in figure 18.

Finally, figure 18 describes the rise velocities for the above bubble pairs. Not
surprisingly, the rise velocities are always suppressed by a stronger horizontal MF owing to
the induced Lorentz forces acting downwards at the top of the bubbles (Zhang et al. 2016),
and such resistance is not obvious at small Nx(z) (�0.20) while it becomes significant at
moderate-to-large Nx(z) (�0.20). Meanwhile, note that the suppression effects caused by
the two directions of MF are almost identical at a given N, implying that different bubble
interactions caused by spanwise and transverse MFs are not because of the bifurcation in
rise velocities.

5.5. Results with varied θ in the range 0◦ ∼ 90◦

We rotate the horizontal MF in the XOZ plane to form different angles between the line
connecting the bubble centroid and the B lines, and a smaller θ indicates the two are
more parallel. By maintaining the magnetic strength at N = 2.24, the rise paths of the left
bubble are shown in figure 19(a), where the grey lines correspond to a spanwise (θ = 0◦)
MF and a transverse (θ = 90◦) MF for comparison. It clearly reveals that in a wide range
of θ , i.e. within θ � 30◦, the two bubbles attract with one another until coalesce, and the
coalescence happens earlier at a larger inclination angle. This is because the momentum
diffuses along the B lines, and thus an increased θ not only reduces the asymmetry between
R1(2) and L1(2) but also dampens the velocity diffusion along the bubble centroid line,
and thus the repulsive force is decreased but the attractive force is enhanced. Moreover, at
θ = 15◦ and 5◦, the two bubbles repel each other within a short period after being released.
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Figure 19. Rise path of the left bubble within a pair at a constant N = 2.24 and varied θ , which denotes the
angle between the horizontal MF and the bubble centroid connecting line. (a) Front view; (b) the fit curve for
the inverse of the coalescence height against θ .
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Figure 20. Bottom view of the rise path of the bubble pairs with varying θ while maintaining the MF strength
at N = 2.24. The arrows denote the motion direction of the bubble. It is observed that the bubbles also drift in
the z direction during the approaching period in the range of 5◦ < θ < 45◦. The iso-contours denote ωy = ±1.7
behind the bubble pairs.

We will prove later (figure 20) that this is because the two bubbles rotate in the XOZ plane
owing to the torque produced by an initially non-zero θ , and then their angle actually grows
during the bubble rise to make the force transit from repulsive to attractive.

Furthermore, if we split the horizontal MF into two parts in orthogonal directions, which
are parallel to and perpendicular to the line connecting the bubble centroid, then we obtain
different decompositions of N‖ (in the x-direction) and N⊥ (in the z-direction). A varied θ

is more or less like the combined effect of imposing a transverse MF and a spanwise MF
simultaneously. In the case of θ = 60◦, which consists of N‖ = 1.120 and N⊥ = 1.940,
the bubble pair is observed to coalesce directly, by noting that a sole spanwise MF of Nx =
0.80 already makes the two bubbles bounce off (figure 14). Besides, even if θ decreases to
15◦ (5◦) the ‖ component of N‖ = 2.163 (2.231) is already very large, nevertheless, we still
observe the two bubbles coalescing after a very short period of repulsion at the early stage.
Such a result indicates most horizontal MFs promote the coalescence between the two
bubbles, unless the inclination angle is very close to zero. In addition, figure 19(b) displays
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the inverse of the coalescence heights against different θ , and an arc tangent correlation is
found to fit well against the numerical results.

Figure 20 displays the bottom view of the trajectories of the bubble pairs; note that
we separate different cases along the x-coordinate to make the picture be more readable.
Clearly, the result reveals that, with an initially non-zero θ , the bubble pair not only interact
along the x-coordinate, but they also drift in the z-direction to form a rotating motion,
which is most remarkable at θ = 5◦. This is because, with a non-zero θ , not only the
double vortex pairs R1(2) and L1(2) lose symmetry, but the two threads at the interior
position, given by R1 and R2, also become imbalanced. Moreover, the vorticity diffusion
induced by the MF does not fully comply with the bubble connecting line and thus the
blocking effect also becomes skewed. As a consequence, the two imbalanced mechanisms
produce a torque to drive the bubble rotation. Then, with an initial angle of 5◦, θ actually
increases during the bubble rise and becomes 15.43◦ at the extreme position, after which
we observe the two bubbles attract each other again. Furthermore, the streamwise vortices
ωy = ±1.7 during bubble pair approaching are also displayed on the same figure, the most
impressive scenario is that, by increasing θ , we observe the Lorentz diffusion induced
vortex pairs rotate in an anticlockwise direction from a bottom view.

6. Conclusions and perspectives

A pair of bubbles rising side by side in liquid GaInSn has been studied numerically in
the presence of external MFs. Bubble interactions are observed to highly depend on MF
direction and strength, moreover, the in-depth physical mechanisms for the MHD effects
are investigated by mainly focusing on the vortex developments. The results reveal that the
Lorentz torque induced vortices under a streamwise MF and the Lorentz diffusion induced
vortices under a horizontal MF, in essence, control the collision between the bubble pair.

Without applying external MFs, the numerical results show that, by increasing the
bubble size from D = 2.0 to D = 4.0 mm, the interactions between a pair of bubbles
rising in liquid GaInSn evolve from direct coalescence to bouncing coalescence, bouncing
separation and ultimately separation without bounce in sequence, and the collision
induced double-threaded vortices are responsible for such transitions. In the presence of
a streamwise MF, we find the induced current density in vicinity of the bubble within
one pair is no longer axisymmetric, this is owing to the asymmetric flow produced by
the neighbouring bubble rising by its side. Correspondingly, a Lorentz torque is generated
to produce a pair of streamwise vortices which dampen the original vortices at the rear
of the collision bubbles. Under such influences, the interaction between a bubble pair is
weakened under streamwise MFs, and a transition from bounce to coalescence is observed.
In the presence of a horizontal MF, its influences are rather direction dependent and
anisotropic: a transverse MF always leads the bouncing bubble pair to coalescence, while
a spanwise MF has more complex impacts depending on the field strength. Under a
spanwise MF, although the flow field is homogenized along the B lines which produce
smaller attractive force by declining the pressure difference at the two sides of the bubble,
nevertheless, the Lorentz diffusion also produces double streamwise vortex pairs at the
rear of the bubble and the interior pair are stronger in the presence of a neighbouring
bubble so that a repulsive lift force is induced. As a consequence, the two effects compete
with each other on varying the magnetic strength, and we find a weak spanwise MF makes
the bubble coalesce while a strong MF causes them to bounce or even to repel. On the
other hand, a transverse MF always promotes the coalescence between the bubble pair
because the Lorentz diffusion induces a pair of vortices at an interior position to offset the
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collision induced vortex pair, and thus the collision between the two bubbles is dampened
so that a coalescence is always favoured. Moreover, we find even a small deviation from the
spanwise configuration, i.e. θ = 5◦, greatly promotes the coalescence tendency between
the bubble pair, which also rotate in the horizontal plane because a torque is induced by
the non-zero θ . More importantly, the numerical results confirm that the collision velocity,
calculated in any MF, is not the decisive factor to determine whether the two bubbles will
coalesce or bounce.

Note that, in the present study, only one bubble size (D = 3.0 mm) and one initial
separation (S = 2) are discussed in the presence of MFs, but the varying MHD effects
depending on these parameters could still be inferred from our previous studies (Zhang &
Ni 2014b; Zhang et al. 2016, 2019). For instance, the zigzagging interactions between a
larger bubble pair of D = 4.0 mm must be suppressed firstly by the MF directing in any
direction, and then the influences of a stronger MF conform to those reported in §§ 4
and 5. On the other hand, if the separation distance is enlarged or reduced between
the bubble pair of D = 3.0 mm, the interaction without MF would maintain bounce
or transition to coalescence as Zhang et al. (2019) reveal, and thus the critical N(x,y,z)
separating different interaction patterns must be varied too. Besides, this study does
not examine the influence of slight differences in the size of the two bubbles, or the
influence of the deviation of the line connecting the bubble centroid from the side-by-side
configuration. Actually, they are non-trivial tasks as Hallez & Legendre (2011) and
Kusuno, Yamamoto & Sanada (2019) reveal, in particular, the deformation of the bubble
shapes complicates the problem because the unstable wake effects become significant, and
a detailed investigation is in our future plan.

In addition, the present study is the first attempt to bridge the gap between isolated
bubble motion and bubbly motion in MHD flows; it helps us understand the varying
performances of bubbly flows exposed to different MFs. For instance, the experiments
in streamwise MFs witness a significant concentration of the gas phase in an isotropic
manner (Eckert et al. 2000a), while a horizontal MF is found to produce an anisotropic
distribution of the bubble void fraction (Zhang et al. 2007). These observations conform
to our numerical results that a streamwise MF promotes the coalescence between bubbles
and a horizontal MF produces anisotropic interactions between the bubbles. Moreover, the
dependency of the vortex developments and the bubble interactions on MF directions can
shed some light on our understanding of the in-depth physics of these problems. However,
it should be noted that bubbly jetting flow is still much more complex than the rise of a
bubble pair owing to the dominating turbulent structures, which significantly complicate
the problem.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.695.
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