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Current global ocean models rely on ad hoc parameterizations of diapycnal mixing,
in which the efficiency of mixing is globally assumed to be fixed at 20 %,
despite increasing evidence that this assumption is questionable. As an ansatz for
small-scale ocean turbulence, we may focus on stratified shear flows susceptible to
either Kelvin–Helmholtz (KHI) or Holmboe wave (HWI) instability. Recently, an
unprecedented volume of data has been generated through direct numerical simulation
(DNS) of these flows. In this paper, we describe the application of deep learning
methods to the discovery of a generic parameterization of diapycnal mixing using
the available DNS dataset. We furthermore demonstrate that the proposed model
is far more universal compared to recently published parameterizations. We show
that a neural network appropriately trained on KHI- and HWI-induced turbulence
is capable of predicting mixing efficiency associated with unseen regions of the
parameter space well beyond the range of the training data. Strikingly, the high-level
patterns learned based on the KHI and weakly stratified HWI are ‘transferable’ to
predict HWI-induced mixing efficiency under much more strongly stratified conditions,
suggesting that through the application of appropriate networks, significant universal
abstractions of density-stratified turbulent mixing have been recognized.

Key words: ocean processes, stratified turbulence, turbulent mixing

1. Introduction

A vital mechanism for ventilating the abyssal ocean is that due to vertical mixing
of deep, cold and nutrient-rich waters with shallower, warm and nutrient-scarce waters
(Wunsch & Ferrari 2004). Mediated by the complex interactions of the internal wave
field in the ocean interior, these mixing events emerge at the smallest scales and
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(a) (b)

FIGURE 1. Schematic of two ‘atoms’ of turbulence in stratified shear flows associated
with Kelvin–Helmholtz instability (a) and Holmboe instability (b).

undergo transition to turbulence that leads to an irreversible conversion of kinetic
energy to potential energy. Figure 1 illustrates two flavours of these events that may
develop in stratified shear flows, namely the Kelvin–Helmholtz instability (KHI) and
the Holmboe wave instability (HWI) (refer to Salehipour, Caulfield & Peltier (2016a),
Salehipour, Peltier & Caulfield (2018) for an in-depth comparison of these instability
mechanisms). Despite their critical role in modulating the large-scale meridional
overturning circulation of the ocean, the effect of these small-scale ‘atoms’ of ocean
turbulence are often overly simplified by parameterizing them as involving a constant
mixing rate that is always 20 % of the local dissipation rate of kinetic energy (Gregg
et al. 2018). However, detailed numerical simulations and experimental measurements
have collectively demonstrated significant departures from this fixed canonical value
(see, for example, Monismith, Koseff & White 2018). Recent advances have been
made in proposing alternative parameterizations of mixing efficiency based on forced
and homogeneously stratified flows (see, for example, Mater & Venayagamoorthy
2014; Maffioli, Brethouwer & Lindborg 2016) or freely evolving and inhomogeneously
stratified flows (see, for example, Salehipour et al. 2016b; Mashayek et al. 2017).
Even in the latter conditions that are more realistic, the focus has been mainly on the
fully turbulent flows for which the imprint of the initial ‘atom’ involved is minimal.
For instance, the effect of ubiquitous large overturns (see, for example, figure 1) that
are convectively unstable, leading to highly efficient mixing (with efficiency as high
as 0.8–0.9), have been ignored in these earlier investigations.

Our main goal in this paper is to propose a data-driven approach that substantially
improves previous parameterizations by encompassing all the data that is available
based on direct numerical simulation (DNS) of these ‘atoms’. To introduce this
approach in the current study we focus on two of the distinct archetypical flavours of
stratified turbulence. Section 2 presents the cornerstone of this paper, which involves
a large compilation of data associated with KHI and HWI. These data are prepared in
the manner described in § 3 to be further analysed in § 4 based on the application of
‘deep learning’ methods. We evaluate the predictions of this data-driven approach and
compare them with previous methods in § 5. Our findings and discussion of future
research directions are summarized in § 6.

861 R4-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.980


Deep learning of mixing by two ‘atoms’ of stratified turbulence

2. The parent DNS dataset

We model a stratified mixing layer by assuming initial velocity and density
distributions that have a hyperbolic tangent form, as

u(z, 0)=U0 tanh
( z

d

)
, ρ(z, 0)= ρ0

[
1− tanh

( z
δ

)]
, (2.1a,b)

in the Boussinesq approximation such that ρ0� ρr (note that here density represents
departures from a hydrostatic state associated with ρr). Also, U0 and ρ0 denote,
respectively, half the total velocity and density jumps across the shear layer (with
a total depth 2d) and the density layer (with a total depth of 2δ). As a result of
this canonical setting, the dimensionless Boussinesq equations are governed by four
important non-dimensional parameters, namely the (initial) Reynolds number Re; the
bulk Richardson number Rib; the Prandtl number Pr; and the initial scale ratio R,
defined together as

Re=
U0d
ν
, Rib =

gρ0d
ρrU2

0
, Pr=

ν

κ
, R=

d
δ
, (2.2a−d)

in which ν is the kinematic viscosity, κ is the molecular diffusivity and g is the
gravitational acceleration. Table 1 lists all the DNS analyses from which data will be
employed for training and validation of the proposed artificial neural networks. These
simulations have been thoroughly analysed and discussed previously in a number
of recent publications on KHI (Salehipour & Peltier 2015; Salehipour, Peltier &
Mashayek 2015; Salehipour et al. 2016b) and HWI (Salehipour et al. 2016a, 2018).
For details of each simulation, interested readers are referred to the relevant papers.

For the supervised machine learning application to be discussed herein, we have
further subdivided these datasets into training and validation sets with an approximate
80 %–20 % ratio, as indicated in table 1. Both these subsets include examples of flow
evolution due to KHI and HWI. We have intentionally chosen the validation dataset to
include all DNS cases with extreme values for their initial parameters, which are well
beyond the range of similar parameters employed for training purposes. This enables
us to investigate the extent to which our trained model is generalizable and thus robust.
Note that our training dataset had a very limited number of HWI examples (compared
to KHI) and that these examples are also at much smaller values of Rib and R.

3. Preprocessing of DNS data

The result of each three-dimensional DNS experiment associated with the evolution
of either KHI or HWI is comprised of ns snapshots in time, where each saved
snapshot represents three-dimensional fields of flow quantities, namely the density ρ
and velocity fields u = (u, v, w) (table 1 lists ns for each simulation). The intensity
of turbulent activity may be represented by the pointwise dissipation rate of total
kinematic energy, ε(x, t), defined as

ε(x, t)= 2νsijsij, (3.1)

in which sij= (∂ui/∂xj+ ∂uj/∂xi)/2 is the total strain rate tensor. We may also reduce
the above three-dimensional fields into a one-dimensional profile by performing
horizontal averaging (to be denoted here by an overbar). Thus the horizontally
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Training dataset Validation dataset
Re Rib Pr R ns Re Rib Pr R ns

KHI

6 000 0.12 1 1 201 6000 0.12 16 1 298
6 000 0.12 2 1 250 6 000 0.001 1 1 172
6 000 0.12 4 1 200 6 000 0.22 1 1 185
6 000 0.12 8 1 188 20 000 0.16 1 1 150
6 000 0.005 1 1 409 30 000 0.16 1 1 169
6 000 0.01 1 1 541
6 000 0.02 1 1 293
6 000 0.04 1 1 208
6 000 0.08 1 1 100
6 000 0.16 1 1 150
6 000 0.20 1 1 150
6 000 0.02 8 1 126
6 000 0.04 8 1 133
6 000 0.10 8 1 150
6 000 0.14 8 1 125
6 000 0.16 8 1 150
6 000 0.18 8 1 154
6 000 0.20 8 1 146
4 000 0.16 1 1 150
4 000 0.16 8 1 150
8 000 0.16 1 1 150
8 000 0.16 8 1 106

12 000 0.16 1 1 150

Re Rib Pr R ns Re Rib Pr R ns

HWI

4000 0.16 8 2.83 250 6000 0.32 8 10 183
6000 0.16 8 2.83 201 6000 0.32 8 5 267
6000 0.16 8 5 195 6000 0.16 8 25 187
6000 0.16 8 10 163
6000 0.08 8 5 214
6000 0.08 8 10 182

TABLE 1. The collection of initial parameters (as defined in (2.2)) employed for
conducting DNS experiments associated with either KHI or HWI. ns indicates the number
of saved snapshots for each individual simulation. The split between training and validation
sets is also highlighted.

averaged dissipation rate of total kinematic energy, ε(z, t), and the mean flow density,
ρ(z, t), are defined as

ε(z, t)=
1

LxLy

∫
ε(x, t) dx dy, ρ(z, t)=

1
LxLy

∫
ρ(x, t) dx dy, (3.2a,b)

where Lx and Ly denote the size of the computational domain in the streamwise and
spanwise directions.

The (generally) time-dependent mixing efficiency, E , may be computed precisely
by invoking the concept of irreversible diapycnal mixing (originally introduced by
Winters et al. 1995), which relies on a special kind of reduction operator, namely a
three-dimensional sorting of the density field into a notional state that is strictly stably
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stratified (Peltier & Caulfield 2003), and is defined as

E (t)=
M (t)

M (t)+ 〈ε(z, t)〉
, (3.3)

where 〈 〉 denotes vertical averaging. For a precise definition of M (t) refer to (2.18)
of Salehipour et al. (2016a) and the cited discussions therein. The required parallel
implementation of the sorting procedure is described in Salehipour et al. (2015)
(see, for example, their figure 1). Such an elaborate technique for calculating E is
only viable in numerical simulations such as those employed in this work because
in practice oceanographers only measure one-dimensional profiles in depth and are
therefore unable to perform the same analysis. Indeed, there is a similar subtlety in
defining the ‘background’ buoyancy frequency, N2(z, t), as described in Salehipour
& Peltier (2015) (see their discussion leading to (2.23)) and more recently in Arthur
et al. (2017). In order to distinguish between irreversible mixing and reversible
stirring, N2(z, t) must be defined based on the same notional state obtained by
the three-dimensional sorting procedure. For consistency with common practice in
oceanography, in this paper we may define N2 using the mean flow density introduced
in (3.2) such that N2(z, t)=−(g/ρr) dρ/dz.

We seek a mapping between the instantaneous vertical profiles of ε(z, t0) and
N2(z, t0) (i.e. at a given time t0) and the precisely computed values of mixing
efficiency, E (t0). Once the network is trained, this mapping would essentially reveal
a reduction operator that is conceivably very different from a straightforward vertical
averaging; one which also incorporates the structural pattern and length scales that
implicitly exist and are thus ‘hidden’ in these profiles. Thus the inputs to our artificial
neural network are tuples of (X1,X2) defined respectively as

X1(z, t0)≡
ε(z, t0)

κ

∫
N2(z, t0) dz

, X2(z, t0)≡
N2(z, t0)∫
N2(z, t0) dz

. (3.4a,b)

Furthermore, the true ‘labels’ in our supervised learning setting are the instantaneous
values of mixing efficiency, namely

Y(t0)≡ E (t0). (3.5)

It is important to highlight that (X1,X2) appear in a normalized form to render ε(z, t0)
and N2(z, t0) comparable in terms of their dimensionality and physical relevance, and
furthermore to extend the applicability of the trained network to oceanographic
profiles. In (3.4), X1 represents the vertical profile of kinetic energy dissipation rate
relative to the molecular diffusion rate in the absence of mean flow shear. The
vertical profiles are assumed to have a fixed length of i = 512 points in which the
‘dead’ regions of the simulation (near top and bottom boundaries) have been excluded
by focusing on the largest segments of the profiles where |dρ(z)/dz| > 10−3. This
approach is analogous to identifying ‘patches’ of turbulence from DNS calculations
(Smyth, Moum & Caldwell 2001).

4. Deep convolutional neural networks

Deep learning methods involve a multilayer stacking of simple modules that
perform linear or nonlinear input–output mappings whose weights and biases are
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FIGURE 2. Illustration of the type of convolutional neural network investigated in this
paper with increasing number of stacked layers. Refer to the text for definition of the
various layers. For any given example data point, the tuples of X = (X1,X2) are of size
(512× 2), representing vertical profiles of normalized ε(z) and N2(z) as defined in (3.4).

subject to ‘training’ through an optimization procedure (LeCun, Bengio & Hinton
2015). These techniques became widely popularized after Krizhevsky, Sutskever &
Hinton (2012), from University of Toronto, employed a ‘deep convolutional neural
network’ to classify a dataset of 1.2 million images and won first place in the 2012
ImageNet competition. A convolutional neural network (CNN) is a special type of
neural network architecture that relies on the convolution operator in lieu of general
matrix multiplication in at least one layer of its configuration (Goodfellow, Bengio &
Courville 2016). In two dimensions, this operator may be defined as

X̃ (i, j)= (X ∗K )(i, j)=
∑

m

∑
n

X (m, n)K (i−m, j− n), (4.1)

where the input field X ∈ Ri×j and the convolution kernel K ∈ Rm×n is represented
by characteristic filter lengths of size m6 i and n6 j. A convolved (i.e. filtered) field
is constructed by traversing the kernel K over the dimensions of X . To keep the
filtered field, X̃ , the same size as X , zero-padding is often employed.

Figure 2 illustrates the schematic configuration of the selected neural network
architectures to be employed in this paper, which may consist of one to seven
convolution layers labelled as CNN1 to CNN7. Each configuration receives the input
X = (X1, X2) ∈ R512×2, as defined in (3.4), and passes it to a ‘batch normalization’
layer (Ioffe & Szegedy 2015) that, for any given ‘batch’ of the training dataset
(with size nb), normalizes X1 and X2 individually by subtracting the batch mean and
dividing by its variance. The batch-normalized data are then subsequently fed into
a series of convolution layers each having 64 filters with a kernel K ∈ R4×2. Each
convolution kernel undergoes a nonlinear activation function of type f (x)=max(0, x),
also known as a Rectified Linear Unit (ReLU). The output of each convolution layer
is followed by an ‘average pooling’ operator which effectively reduces the size of the
profile by half through averaging any two adjacent data in the profile (i.e. averaging
window of size (2 × 1)). The reduced outputs are then reshaped appropriately to
be fed into a dense (or fully connected) layer with 64 neurons that also employs
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FIGURE 3. (a) Comparing the predictions of CNN1–CNN7 on the validation set. (b) The
results of CNN6 (this study) are compared quantitatively with other methods in terms of
mean squared error for various sets of validation data, labelled (a–h) as per figure 5.

ReLU as its nonlinearity function. To avoid overfitting and to improve the model
predictions, we regularize the network by a method known as ‘dropout’ (Hinton
et al. 2012), which randomly turns off 50 % of the neurons, thereby eliminating
their contribution in the ‘backpropagation’ procedure (a method to apply the chain
rule to derive gradients of the loss function with respect to trainable parameters in
the network) of the optimization process. As a result the network is forced to learn
robust features that emerge more frequently in the random subsets during training.
Finally we use a single neuron to represent the network output, Ŷ . We have chosen
a sigmoid activation function for the output layer because efficiency values must
be between 0 and 1. We have used the Adam optimizer (Kingma & Ba 2014) for
performing stochastic gradient descent to minimize the loss function, defined as the
mean squared error

∑
nb
(Y − Ŷ)2/nb, where the batch size is set as nb = 100.

Notice that the number of trainable parameters, np, in the network decreases from
CNN1 to CNN6 and increases slightly from CNN6 to CNN7 (see figure 3a). Taking
CNN1 for instance, the network has copious neurons that link the first convolution
layer (after pooling) to a fully connected dense layer, leading to np > 2 × 106. As
the network becomes deeper, increasingly more structure is built into the network
due to the locality of the convolution operators that may be contrasted to the global
connectivity of the dense layers. By definition (4.1), the convolution layer shares
its kernel parameters (m × n weights for a two-dimensional kernel) across a given
‘tiling’ of its input field. Notice that for deeper convolution layers whose inputs are
derivative of the previous pooling operator with q filters, there are m× n× q trainable
weights and one trainable bias that are shared by each tiling of the convolution layer.
For instance in CNN2, np ∼ 64 × (4 × 2 + 1)conv1 + 64 × (4 × 2 × 64 + 1)conv2 +

(128 × 2 × 64 × 64)dense. Refer to Goodfellow et al. (2016, Chap. 9) for further
details on parameter sharing in convolutional networks. Figure 3(a) also evaluates
the effect of increasing the depth of the network in so far as the validation data
is concerned. Clearly CNN6 outperforms others, which might be explained by the
observed saturation of network training capacity also shown in this figure.

Obviously there are many parameters (or hyper-parameters) that we have assumed
to be fixed within the above networks. Moreover, there are many other types of
deep neural networks (DNN) (Goodfellow et al. 2016) that could be exploited –
an alternatively good candidate being the recurrent neural network, which enables
handling input sequences of vertical profiles with varying dimensions. We only note
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in passing that we have also investigated a deep feed-forward neural network (that
consists of deep stacking of dense layers only) in this work, but the CNN results
were substantially more accurate. We wish to emphasize that our focus in this paper
has not been to find the optimal configuration (or architecture) for producing the
least possible error on the validation set. This paper rather intends to make the first
step in introducing the idea of employing deep learning methods for the purpose of
parameterizing subgrid scale processes using DNS datasets. We have open-sourced
our code and postprocessed dataset in the hope of encouraging the community to
further enhance such a data-driven approach to parameterization. Indeed, we believe
the ultimate success of these efforts will rely upon a cohesive community-driven
collaboration. Fortunately, these data-driven ideas are being embraced most recently
in the broader context of Earth system modelling (Schneider et al. 2017).

5. Results

It is expected that the network learns the inherent (and intricate) patterns amongst
the spatial structures of N2(z) and ε(z) and maps it properly to the true DNS-based
values of mixing efficiency. Figure 4(ai–aiv) illustrates the evolution of the local
structures within these profiles for one KHI and one HWI case among the unseen
validation set; more in-depth discussion on these structures are provided in Salehipour
et al. (2016a) (see, for example, their figure 12). The other panels in this figure
illustrate the corresponding outputs of the first convolution layer that are filtered
by various kernels whose weights and biases have been learned during the training
procedure based on the CNN6 network (or CNN for brevity). For brevity and
clarity, only the five most descriptive filtered outputs (out of 64), which have been
hand-picked, are shown here and denoted respectively as filters (b, c, d, e, f ) as per
their labels in figure 4.

It appears that filter b reproduces the structure of its input profiles merely at a
different amplitude through, for example, a simple linear scaling. Filters c and d,
on the other hand, seem to produce an interesting attenuation of less important
(insofar as mixing efficiency is concerned) segments of the profile. These segments
include regions with negligible turbulent dissipation (see figure 4(ci,cii,di,dii) or
regions with N2(z, t)≈ 0 (see figure 4(ciii,civ,diii,div). In contrast, filters (e) and ( f )
have been trained to detect and isolate features of the input profiles that contribute
more prominently to irreversible mixing. Figure 4(cii,dii) illustrates zero output fields
for HWI, implying that our basic approach to isolate quiescent regions of the profile
(discussed in § 3) needs hardly any improvement for the HWI case, unlike that for the
KHI case. It is crucial to note that the identification of relevant regions with distinct
dynamical effects on mixing has emerged inevitably through the training procedure of
our deep neural network, and is surprisingly reminiscent of (at least qualitatively) the
identification into quiescent (by filter c and d), intermittent (for example by filter f )
and turbulent patches (for example by filter e) proposed by Portwood et al. (2016)
in the context of homogeneous stratified turbulence. We therefore believe a similar
approach based on a convolutional neural network could be ideally suited to classify
a turbulent field into these distinct regions.

As demonstrated in figure 4(ai–aiv), HWI and KHI have categorically different
localization of N2(z) and ε(z). It is nonetheless very interesting that a single
convolution kernel, that has been trained with a disproportionately higher number
of KHI examples, results in extracted features that are meaningful (and not distorted)
for HWI, regardless of this difference in localization of these vertical profiles. In
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FIGURE 4. (ai–aiv) Spatiotemporal structure of normalized N2(z, t) and ε(z, t) defined
as X1 and X2 in (3.4) (at a given instance t0) for a representative KHI case (labelled as
case (c) in figure 5) and a representative HWI case (labelled as case (g) in figure 5). The
following rows include outputs of the first convolution layer in CNN6 that demonstrate
filtered versions of their corresponding field (either X1 in log-scale or X2). In the text,
these filters are referred to by the alphabetical part of their labels. For instance filter (b)
produces panels (bi–bii) associated with X1 for the KHI and HWI cases, respectively.

other words, the extracted features represent repeated patterns that are not tied to a
specific position in the input field X . This might be explained by recalling that the
CNN architecture has the important property of parameter sharing that is inherent
in the convolution operator. This property implies a strong prior knowledge that
essentially assumes the nearby and local values of co-located ε(z) and N2(z) may
have self-similar patterns that are relevant in approximating the induced mixing
efficiency. Moreover, the pooling operator encourages the network to learn features
that are translationally invariant. As a result, the CNN network is able to detect
similar patterns even when the characteristic structure of the normalized ε(z) and
N2(z) are localized very differently; an issue that becomes particularly relevant to the
two ‘atoms’ of stratified turbulence investigated herein.
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FIGURE 5. Comparing the precise calculation of mixing efficiency, Edns (3.3) with those
predicted by a convolutional neural network, denoted by Ecnn (this study), and the most
recent multiparameter parameterization (Salehipour et al. 2016b), denoted by Epar, and
that estimated by the Osborn–Cox method, Rf ,cox (defined in appendix A, not available in
panels (a,e)). Each panel illustrates temporal evolution of mixing efficiency due to either
KHI or HWI under the various specified initial conditions for the validation set listed in
table 1.
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Next we assess to what extent the learned mapping function can be generalized
to the unseen validation dataset. Figure 5 demonstrates the prediction results of our
deep learning approach based on the CNN network (see figure 2), denoted by Ecnn
as well as their true DNS-based values (denoted by Edns). For further comparison,
this figure also includes estimates of mixing efficiency due to (i) the Osborn–Cox
method, denoted by Rf ,cox (refer to appendix A for its definition), and (ii) the
multiparameter parameterization of Salehipour et al. (2016b), denoted by Epar. The
latter relies on two dimensionless parameters, the buoyancy Reynolds number Reb(t)=
〈ε(z, t)〉/(ν〈N2(z, t)〉) and a bulk Richardson number Ri(t)=〈N2(z, t)〉/〈(du(z, t)/dz)2〉.
Figure 3(b) provides the mean squared error associated with these various estimates
applied to each validation set, labelled as in figure 5. As mentioned earlier in § 2,
we have intentionally chosen the validation dataset to include simulations with extreme
initial parameters (to avoid trivial ‘interpolation’ between the training dataset). The
associated results in figure 5 therefore consist of (a) very weakly and (b) very
strongly stratified KHI, (c,d) KHI with extremely high initial values of Re, (e) KHI
at high Pr, ( f ) HWI with a density layer that is very much sharper than its shear
layer with R= 25 and (g,h) very strongly stratified HWI.

Our CNN-based predictions are markedly superior to those predicted by the
Osborn–Cox model or indeed by any published parameterization of mixing efficiency,
including our own most recent suggestion (Salehipour et al. 2016b). The predictions
of Ecnn are exceptionally accurate at higher Reynolds (cases c,d) and Prandtl
(case e) numbers, considering that the ensuing turbulence is significantly more
energetic than those employed for training purposes. Perhaps most surprising is the
reasonable accuracy of Ecnn for HWI-induced turbulence under strong stratification
with Rib = 0.32 (cases g,h). As discussed in depth in Salehipour et al. (2018), unlike
KHI, which is quite sensitive to its initial conditions, HWI reveals the striking
characteristics that (regardless of its initial conditions) it self-organizes towards a
critical state with a particular distribution of mean density and velocity (i.e. a critical
state associated with a high probability density function of the gradient Richardson
number, Rig(z) = N2(z)/(du/dz)2 near 1/4). Furthermore, the mechanics involved in
this self-organization are entirely different for a given Rib, or even depending on the
thickness ratio R. Remarkably, however, the universal common features discovered
by the network reveal plausible transferability to HWI at significantly higher Rib
(cases g,h) or R (case f ), as if the network has learned the pathways available for
self-organization! While the predictions of Ecnn in (case a) for KHI under extremely
weak stratifications might have the largest variance compared to Edns, it is nonetheless
very interesting that the increasing trend of Edns with time is correctly predicted
by CNN. The mixing efficiencies under such weak stratifications (for example, the
training case with Rib = 5 × 10−3) are so small that they do not impact adversely
the mean squared error loss function employed during training. This may explain
the higher variance of Ecnn observed in case (a) despite its low MSE as shown
in figure 3(b). For strongly stratified KHI (case b), CNN predicts accurately the
evolution of mixing efficiency towards its maximum, but suggests a more rapid decay
than that inferred from Edns. The underlying reason for this relative inaccuracy of
Ecnn during a short period is not known to us.

Although Rf ,cox relies on additional information regarding the scalar dissipation
field that is not required as an input by our deep neural network, its predictions
are not consistently accurate. Most worrisome is perhaps for strongly stratified HWI
(see cases g,h), where Rf ,cox predicts essentially negligible mixing, a prediction that
is simply erroneous. For KHI cases Rf ,cox estimates are reasonable, albeit being less
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accurate than Ecnn (see figure 3b) with the exception of case (b), where Osborn–Cox
estimates are almost perfect. The parameterization of Salehipour et al. (2016b) has
been constructed entirely based on the fully turbulent flows that are only subject to
KHI. As a result and as expected, Epar systematically overestimates the efficiency for
HWI cases and fails to capture the high efficiencies attained during the convectively
unstable roll-up of primary instabilities of either KHI or HWI type.

6. Summary

Using properly normalized vertical structures of N2(z) and ε(z), we have proposed
a data-driven approach based on deep convolutional neural networks (CNN) that can
accurately predict the value of mixing efficiency for the entire life cycle of KHI and
HWI (i.e. two ‘atoms’ of turbulence in stratified flows) beyond the range of initial
conditions that have been employed for training the network. The large overturns that
are convectively unstable are no longer ignored in such an approach. We have also
shown that the results of the CNN model for KHI and HWI are more reliable and
accurate than those based on the Osborn–Cox method.

Deep neural networks have a compositional hierarchy in which low-level features
are composed to form higher-level features (for example, for image recognition, the
first layers of a CNN detect basic abstract features such as edges, then deeper layers
combine edges to form motifs, and subsequent layers assemble parts from motifs). We
believe the proposed CNN model has similarly discovered such an ‘abstract’ level of
stratified turbulence with characteristics that are so universal that even with a small
portion of data associated with HWI, the generic behaviour of its induced mixing
efficiency can be predicted robustly for wildly different initial conditions.

What makes such a data-driven approach especially appealing is its capability to
become increasingly more accurate, robust and generic. This is foreseen to be achieved
by (i) experimenting with many other types of DNN architectures, (ii) tuning the
hyper-parameters (of which there are many) and, perhaps most importantly, (iii) further
enriching the training dataset by adding additional examples of KHI and HWI, as
they become available, or perhaps more excitingly by including more ‘atoms’ of
ocean turbulence such as those induced by, for example, double-diffusion, Taylor and
Rayleigh–Taylor instabilities. Another exciting future direction would involve using
observed profiles (either from laboratory or real environments) to estimate mixing
efficiency based on the proposed model, especially due to the relative inaccuracies of
the Osborn–Cox method.
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Appendix A

An alternative measure of mixing efficiency is the flux Richardson number, Rf ,
which assumes that the buoyancy flux, B, is an appropriate quantity to describe
diapycnal mixing M :

Rf (t)=
B(t)

B(t)+ 〈ε(z, t)〉
. (A 1)
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A widely used method for estimating mixing efficiency from observational profiles
(see, for example, Monismith et al. 2018) is that following Osborn & Cox (1972).
In this method B is estimated using the scalar dissipation rate χ = 2κ〈|∇ρ ′|2〉 as

Bcox(t)=
χ

2
〈N2
〉

(
dρ
dz

)−2

, (A 2)

where turbulent fluctuations of the density field are defined as ρ ′(x, t) = ρ(x, t) −
ρ(z, t). Therefore Rf ,cox (using the ‘Cox’ method), plotted in figure 5 based on the
original DNS data, is computed by inserting Bcox into (A 1).
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