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Based on energy principles, we propose a statistical model to describe the bubble size
probability density function of the daughter bubbles resulting from the shattering of
a mother bubble of size Dy immersed in a fully developed turbulent water flow. The
model shows that the bubble size p.d.f. depends not only on Dy, but also on the value
of the dissipation rate of turbulent kinetic energy of the underlying turbulence of the
water, €. The phenomenological model is simple, yet it predicts detailed experimental
measurements of the transient bubble size p.d.f.s performed over a range of bubble
sizes and dissipation rates € in a very consistent manner. The agreement between
the model and the experiments is particularly good for low and moderate bubble
turbulent Weber numbers, We, = p Au?(Dy)Dy/o where the assumption of the binary
breakup is shown to be consistent with the experimental observations. At larger
values of We,, it was found that the most probable number of daughter bubbles
increases and the assumption of tertiary breakup is shown to lead to a better fit of
the experimental measurements.

1. Introduction

The dispersion of an immiscible fluid in a turbulent one is commonly found in
many engineering as well as natural processes. The size distribution of the drops (or
bubbles) resulting from the turbulent breakup and the dynamics of their interactions
with the underlying turbulence plays a determinant role in the overall performance of
these processes. For example, in liquid-liquid or gas-liquid chemical separators, the
absorption rate of a given chemical compound depends not only on the dynamics
of the motion between the two immiscible fluids, but more importantly on the
size p.d.f. of the drops (or bubbles) in which one fluid is dispersed in the other.
Surface-dominated diffusion processes of this nature are also found extensively in
naturally occurring phenomena, i.e. air bubbles entrained by the air—sea interaction
contribute to the exchange of gases and water vapour between the oceans and the
atmosphere (Thorpe 1982; Farmer & Vagle 1988; Longuet-Higgins 1992; Melville
1996). A quantitative understanding of drop (or bubble) breakup and coalescence is
essential to the development of predictive models for the behaviour of these processes.

Resulting from its widespread use, the problem of the breakup of an immiscible
fluid immersed in a turbulent flow has been the subject of a continuing investigation

1 With an Appendix by M. S. Longuet-Higgins.
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and has generated a large bibliography (Kolmogorov 1949; Hinze 1955; Coulaloglou
& Tavlarides 1977; Konno, Aoki & Saito 1983; Cohen 1991; Longuet-Higgins 1992;
Tsouoris & Tavlarides 1994; Novikov & Dommermuth 1997, among others).

The framework of the ‘population balance equation’, given as equation (3.1) of a
companion paper (Martinez-Bazan, Montafiés & Lasheras 1999, referred to hereafter
as Part 1), has been widely used in chemical engineering, combustion (spray equa-
tion), cloud dynamics etc. to study two-phase processes dominated by breakup and
coalescence (Coulaloglou & Tavlarides 1977; Williams 1985; Prince & Blanch 1990;
Tsouoris & Tavlarides 1994; Sathyagal & Ramkrishna 1996; etc). This Boltzmann-
type equation describes the time rate of change of the number density of drops (or
bubbles) with respect to position and time of a certain size D existing in a time ¢, at
a given position x, n(D, x, t), (Williams 1985):

O Ve n) = (R) 0y 4 Qe (11)
where v is the mean velocity of all the particles of size D, R = dD/dt is the rate of
change of the size D of a particle due condensation, evaporation and dissolution, Q,,
and Q. are the rate of change of n due to the breakup and coalescence respectively.
For very dilute systems (negligibly small rate of collisions between particles), and in
the absence of dissolution (or evaporation) effects, the rate of change of the number
density of particles can simply be written as the sum of the death rate of particles of
size D due to their breakup into smaller ones, and the birth rate of particles of size D
resulting from the breakup of larger ones:

0

T Ve (on) = / (Do) (D. Do)g(Do)n(Dy) Dy — g(D)n. (1.2)
The use of equation (1.2) requires the solution of three closure problems: the first
involves the breakup frequency, g(D), the second is the average number of daughter
particles formed from the breakup of a mother particle of size Dy, m(Dy) and the
third is the p.d.f. of the daughter particles f(D, Dy). Although equation (1.2) applies
to either drops or bubbles, in this study, we will restrict our analysis to only the case
of bubbles breaking in a turbulent water flow.

In Part 1 we have shown that under dilute conditions of air bubbles immersed
in a turbulent water flow whose turbulence is locally homogeneous and nearly in
equilibrium, the bubble’s breakup frequency is a function of both its size and the
turbulent kinetic energy (or the dissipation rate, €) of the underlying turbulence,

\/8.2(eDg)** — 125 /(pDy)

D, ’
where K, is a constant found experimentally to be equal to 0.25. The above breakup
frequency, which is based on the simple premise that the breakup time of the bubbles
is inversely proportional to the sum of the non-inertial forces acting on its surface
(resulting in deformation and confinement), was found to be in excellent agreement
with recent experimental measurements (Part 1). In the present study, we will use this
model for the bubble breakup frequency to solve the remaining two closure problems,
i.e. to provide models for m(Dy) and f(D, Dy).

In the past, three main approaches have been used to model f(D, Dy): phenomeno-
logical models based on surface energy considerations (Tsouris & Tavlarides 1994),
statistical models (Coulaloglou & Tavlarides 1977; Prince & Blanch 1990; Longuet-
Higgins 1992; Novikov 1997), and hybrid models based on a combination of both

g(e,Dg) = K, (1.3)
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(Konno et al. 1983; Cohen 1991). Among the most widely used phenomenologi-
cal models based on surface energy considerations is the one proposed by Tsouris &
Tavlarides (1994). They proposed that upon breakup, m(Dy) = 2, and only two daugh-
ter droplets of size D; and D, are formed whose most probable sizes are inversely
proportional to the amount of surface energy created in the breakup process. This
gives a minimum probability for the formation of two particles of the same size (since
their surface energy is maximum), and a maximum probability for the formation of a
pair made up of a very large particle and a complementary very small one. To avoid
the singularity present in their model, they also assumed the existence of a minimum
particle size, D,,;,,. Their model for the daughter particle p.d.f. gives

f(DlaDO) _ N emin [emax e(Dl)] , (14)

(emin + [emux - e(Dl)]) le

0
where the energy to form a particle of size Dy, e(D,), is given by

DA}

= (%)
Dy

The maximum energy, e,..(Dy), corresponding to the formation of two particles of

diameter D; = D, = Dy/2'/3 is
emax = T D[22 —1]. (1.6)

2/3
D2
e(D,) = noD? + noD3 — noDi = noD} (D;) + —1|. (1.9

As indicated above, equation (1.5) reaches a minimum value when a particle of
minimum diameter, D,,;,, and a complementary one of maximum size, D, = (D§ —
D3 )73 are formed. The minimum energy, e,,, is given by

min
Dmin ? Dmin :
emin = Ta D} < ) + |1 - ( ; >

o
The daughter particle’s size p.d.f. given by equation (1.4) has a U shape and has
been shown to lead to results which are radically different from the experimental
distributions measured in stirred tanks and other turbulent flows (Hesketh, Etchells
& Russell 1991; Sathyagal & Ramkrishna 1996; Kostoglou & Karabelas 1998; Part
1; and others). In addition, an important unresolved issue in the above model is the
need to define a criterion for the value of D,,;,.

Pure statistical distributions have also been used by Coulaloglou & Tavlarides
(1977), Prince & Blanch (1990), and others. Coulaloglou & Tavlarides also assumed
that m(Dy) = 2, and that the probability distribution function of daughter droplets
(or bubbles) is well represented by a normal distribution (as proposed by Valentas &
Amudson 1966). By selecting the variance so that more than 99.6% of the daughter
droplets were in the range of volumes between 0 and vy = nD]/6, they obtained a
daughter particle size p.d.f. as

2/3
—1]. (1.7)

2.4 20 —vg)?
£(v,10) = == exp {—4.5 (”2”‘))] : (1.8)
[ %)
where vy and v are the volumes of the mother and daughter particles respectively.
Coulaloglou & Tavlarides showed that this distribution could be adjusted to predict
some of the experimental results obtained in stirred tanks.
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Purely statistical studies have been performed by Longuet-Higgins (1992), Novikov
(1997), and others. Longuet-Higgins proposed a simple mechanism for the breakup
process by simulating it through a series of a random divisions of a cubical block
of size unity by a number of planes which are parallel to the faces of the block. In
studying the p.d.f. resulting from cuts performed in one, two, and three dimensions,
he obtained an infinite number of possible distributions depending on the number of
random partitions performed in the initial dimension. By adjusting the combination
of the number of cuts performed in each dimension, he showed that the model could
fit various experimental results. In the Appendix Longuet-Higgins compares some of
the measurements described in Part 1 with this model.

Concerning hybrid models, it is worth noting the model proposed by Konno et al.
(1980, 1983). This model is based on their experimental observations that three daugh-
ter droplets are produced from the breakup of a mother one, m(Dy) = 3. They calcu-
lated the probability of obtaining a certain combination of three droplets and weighted
their probability by a factor proportional to the energy contained in the turbulent
scales of sizes equal to the size of the daughter droplets. They assumed that the volume
of a mother droplet, vy, is divided into J units of volume elements v,, so that J = vy/v,.
Their statistical model then states that the mother droplet breaks into m daughter
droplets whose volume is given by a random combination of elements v,. The number
of elements of each daughter droplet formed, numbered by the index i, is given by K; =
v;/v., where v; is the volume of the droplet i. All combinations are then derived from
the different arrangements of Ky, K,,..., K,,, which satisfy the conservation of volume,

K1+K2+"'+Km=‘]~ (19)

The combinations of the J elements, taken in m groups satisfying equation (1.9), gives
all the possible values of the non-dimensional combinations of volumes K; that can
be formed. The probability of a certain combination of K; elements is then given by

P oc E(K))E(K2)E(K3)...E(Ky), (1.10)

where E(K;) is the spectrum function of the turbulent kinetic energy estimated from
the Heisenberg energy spectrum as

8 \*? 5 n \ 8v3(n/6v.K;)* 43
)= /3 SF WD)
E(K) (9a> ¢ <6veK,«) (1 + > . (L1

where o = 0.51, and v is the kinematic viscosity of the continuous phase.

To obtain a continuous distribution with this model, one needs to use a large
value for J, and Konno et al. used J = 100. Konno’s distribution produces a low
probability for combinations of very large and very small particles and gives a
maximum probability for combinations of particles of similar sizes. This model
has the deficiency that the distribution of the daughter droplets is basically neither
dependent on the size of the mother droplets, nor on the turbulent kinetic energy of
the underlying turbulence, two facts which are contrary to experimental observations.
In fact, Konno’s distribution is practically a universal one, and can be approximated
by a Beta function (Konno et al. 1983):

8 2
Do f(D,Dy) = f*(D") = F(rg()1r2()3) (3)) (1 — 5()) , (1.12)

where f*(D") represents the probability density function of the daughter particles
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resulting from the breakup of a mother particle of size Dy using a non-dimensional
diameter of the daughter particle defined as D* = D/D,.

Another hybrid model based on energy and entropy considerations has been
proposed by Cohen (1991). Using entropy arguments, he found that the most probable
distribution resulting from the shattering of a mother droplet is similar to the Beta
function proposed by Konno et al. (1983). However, his p.d.f. model incorporated a
dependence on e. Although Cohen’s model is an elegant one, it has the drawback
of producing an explosive breakup in which a droplet breaks into a very large
number of daughter droplets (several thousands), which has not been observed in any
experiments.

In this paper we will use a detailed set of measurements of the transient evolution of
n(D, x, t), performed over a wide range of bubble sizes and turbulent kinetic energy of
the underlying turbulence to test a new phenomenological model for f(D, D). These
measurements, first reported in Part 1, were conducted by measuring the transient
bubble-size p.d.f. resulting from the breakup of a volume of air of a certain size
injected into the fully developed region along the axis of a high-Reynolds-number
water jet. Rather than attempting to solve the otherwise intractable inverse problem of
calculating f(D, Do) from equation (1.2), we propose a new phenomenological model
for the daughter bubble-size p.d.f. based on a weighted probability model. This model
is then contrasted to previous ones and compared to the experimental measurements.

In § 2 we formulate the phenomenological model for the daughter bubble size p.d.f.
This model is then compared to available experimental evidence and to previously
formulated theories in § 3. Finally, some concluding remarks are presented in §4.

2. Model formulation

Consider a mother or parent bubble (mother or parent refers to a bubble before
breakup) to be spherical with an initial diameter Dy. At time ¢t = ty, the bubble is
immersed in a stationary water flow whose turbulence is nearly homogeneous and
isotropic. The initial bubble diameter is assumed to be in the inertial subrange of the
underlying turbulence, 1 < Dy < L,, where 5 is the Kolmogorov microscale of the
viscous dissipation, and L, is the integral length scale.

When the air bubble is injected into the turbulent water jet, the velocity fluctuations
of the underlying turbulence result in pressure deformation forces acting on the
bubble’s surface that, when greater than the confinement forces due to surface tension,
will cause its breakup. Since the Ohnesorge numbers of the bubbles of interest here
are always very small (Oh = p,/. /p.cD < 1073), the internal viscous deformation
forces are negligible compared to the surface tension forces, and thus will be ignored.

The average deformation energy per unit volume acting on the surface of the
bubbles is

1. = 1ppe* Dy, (2.1)
where f = 8.2 is a constant obtained by integrating the difference between the velocity
fluctuations, Au?(Dy), of two points separated by a distance Dy, over the whole range
of turbulence scales, Batchelor (1956). The confinement energy per unit volume is
simply

6no D} o
Ty = Dy 6DO. (2.2)
When 1, > 1, the bubble will break in a certain time t,, with a frequency
g(E,Do) = l/tb
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FiGure 1. Difference in stresses associated with the formation of a bubble, Dy, and its complement,
D>, Aty = 1pB(eDy)**—606/Dg and At, = 1pB(eD2)** —60/Dy. In this example, the mother bubble
is of size Dy = 1 mm, and e = 1000 m?s—>.

In Part 1, we have shown that the breakup time of a bubble of size Dy can be
estimated from the deformation acceleration, a, = u;/t,, produced by the non-inertial
forces acting on the surface of the bubble. Here, u; is the deformation velocity, and
ty is the bubble’s breakup time given by

t, oC Do .
V/B(eD)** — 124 /(p Dy)

As shown in the above equation, the breakup frequency, g(e, Dy) = 1/t;, depends
on both the size of the bubble and the value of the turbulent kinetic energy (or
dissipation rate, €) of the underlying turbulence.

Upon breakup, the bubble is shattered into an array of smaller bubbles whose size
p.d.f. is denoted by f(D, Dy). The first premise of our bubble shattering model is
that upon breakage, a bubble of size Dy only breaks into two bubbles [m(Dy) = 2]
of complementary masses with diameters D; and D, (an important point to be
addressed later on). If the stochastic variable D; were uniformly distributed on the
segment [0, Do], D* = D{/Dy would be uniformly distributed on the segment [0, 1]
and its probability density would always be p(D*) = 1 (Longuet-Higgins 1992).
However, since the values of the pressure deformation forces, 7,, are not uniform
with the distance D;, our bubble splitting phenomenon cannot produce a uniformly
distributed density function. In fact, for a spherical bubble of size Dy, there is a
minimum distance D,;,, such that the turbulent stresses acting between two points
separated by this distance, %p B (€ D,in)*3, are just equal to the confinement pressure
due to the surface tension, 6 a/Dy (see figure 1). Thus, the probability of the splitting
of a fraction of size Dy < D, = 126 /(f pD0)3/ 2¢~!, from a bubble of size D, should
be zero. On the other hand, it appears reasonable to accept that the probability of the
splitting of any portion of size D,,;, < D; < D should be weighted by the difference in
the stresses, Aty = 1pp(eD1)** — 60 /Dy, associated with the formation of a bubble of
size D;. However, associated with the generation of a bubble of size D, there is also
the formation of a complementary bubble of size D, = Dy[1 — (D;/Dy)*]'/, involving

(2.3)
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FiGure 2. Difference in stresses associated with the formation of a bubble (solid line) and its
complement (dashed line) given in equation (2.6). In this particular case, the mother bubble is of
size Dy = 3mm, and the dissipation rate is € = 1000 m?s~>.

a difference of stresses At = 1pB(eD>)”* — 66/Dy. Thus, we postulate that the
probability of the formation of a pair of bubbles of sizes D; and D, from the shattering
of a mother bubble of size Dy is weighted by the product of the two surplus stresses,

P(D*)=0 for D* < D; .,
P(D") oc p(D*)[At][AT2] for D;,, < D" <D, . (2.4)
P(D*)=0 for D* > D,
or similarly,
" . 60 . 60
P(D*) o | 4pp(eD" Do) — DO] {;Pﬁ(EDzDo)ZB ~ 5| (2.5)

in the range D}, < D* < D, where D* = D/Dg and D,,;, = Dyin/Do = (125 /(Bp))*/*
D, 72¢-1 In other words, we postulate that the probability of a certain sized
pair to form should be weighted by the product of the excess stresses associated
with the length scales corresponding to each bubble size. From a simple mass
balance, and neglecting the compressibility effect in the air inside the bubbles,

Dy = Do[1 — (D1/Dy)*]', and
P(D*) «c (3pB(eDy)”?)’[D"?* — A%3)[(1 — D) — 45, (2.6)

where 4 = D./Dy, and D, = (126/(Bp))*/°e%/ is a critical diameter defined by the
crossing point of the curves 7, and 7, in figure 1. Our model implies that D}, < D* <
D;,.. or, equivalently, that D,;, < D; < D, where D, = (126/(BpDo))**¢~! and

Dyax = Do[1 — (Din/Do)*]1'/3, provided that D,,;,, > 5. Otherwise, D,,;, is taken to be
equal to #.
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FIGURE 3. Probability density functions of the daughter bubbles formed from the breakup of a
mother one of size Dy. (a) Evolution of the p.d.f. for various values of ¢ and fixed Dy = 3 mm.
(b) Influence of Dy on the p.d.f. for a fixed value of e = 1000 m?s—3.

The difference in stresses associated with the formation of a bubble and its comple-
ment given in equation (2.6) are shown in figure 2. Using the normalization condition
of the density of probability, fol f*(D*)d(D") = 1, the daughter probability density
function of D*, f*(D"), can then be written as

* D*2/3 _A5/3 1— D*3 2/9 A5/3
[ L Jo-popr—a]
/ P(D*) / [D*23 — A53] [(1 — D*?)¥? — A3/3] d(D*)
0 D;

min

The probability density function of the daughter bubbles resulting from the breakup
of a mother bubble, Dy, is then calculated as f(D;, Dg) = f*(D*)/Dy. The dependence
of f*(D*) on € and Dy is shown in figure 3. Note that the peak of the distribution is
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always located at D* = (1)"/3 ~ 0.8, which corresponds to the case of two daughter
bubbles with the same volume, and that the p.d.f.s become wider as either ¢ or D
are increased.

It should first be made clear that we are proposing a statistical model. Clearly
our phenomenological model represents a simplified view of the bubble by assuming
sphericity. However, we believe that this assumption does not limit its validity. The
confinement energy per unit volume is a minimum if the bubble is spherical, and
the minimum necessary energy to deform the bubble is inversely proportional to
this spherical diameter. We then postulate that the probability of a certain breakup
occurring should be proportional to the difference between the deformation energy
due to the turbulence and this minimum confinement value (if the bubbles are not
spherical the confinement energy should be even larger).

3. Experimental results and discussion

A detailed description of the experimental facility and measurement techniques
used in the experiments reported here can be found in Part 1, and in Martinez-Bazan
(1998). The reader is referred to these two publications for details. For the purpose
of our discussion, in this section we will simply summarize the most salient features
of these experiments.

The experimental facility used to perform the experiments on the breakup of a
bubble in a turbulent water flow consists of a submerged turbulent water jet where
a continuous air jet is injected through a small-diameter hypodermic needle located
at a given position along the central axis in the fully developed turbulent region of
the jet. This allowed us to assume that the underlying turbulence where the breakup
takes place is nearly homogeneous and isotropic in the absence of any moving solid
surfaces. The evolution of the bubble size p.d.f., as the bubbles are broken by the
turbulence and transported downstream by the mean convective motion of the jet,
was measured using digital image processing techniques. These bubble size p.d.f.
measurements were then discretized into 150 size bins and used to calculate the rate
of change with respect to position of the number of bubbles of a certain size per
unit volume as the bubble cloud was convected into regions of decreasing values of e.
Several sets of experiments were performed in which both the initial bubble size and
the initial value of e at the injection point were systematically changed. A summary
of the test conditions used for the measurements is given in table 1 in Part 1.

We will begin by discussing the results of Set 2 in table 1 in Part 1. In this case, the
air was injected on the jet’s centreline at a location 15 jet diameters downstream from
the jet’s exit nozzle. The initial jet velocity was Uy = 17m s~ !, and the jet’s Reynolds
number was R, = UyD;/v = 51000. The air injection velocity was U, = 9.84ms~!,
and equal to the local mean velocity of the water at the air injection point. Thus,
upon injection into the water, the air bubbles were only subjected to the velocity
fluctuations of the underlying turbulence of the water flow. These turbulent stresses
resulted in deformation forces that were much greater than the confinement forces
due to surface tension, and the bubble was observed breaking into a set of daughter
ones. Since the characteristic breakup time of the bubble depends on its size, Dy, and
on the value of the turbulent kinetic energy (or dissipation rate, €) of the underlying
turbulence, this breakup process continued while the resulting array of bubbles was
convected downstream to regions of lower and lower dissipation rate, €, until it was
observed that the bubble size p.d.f. eventually reached a frozen or unchanged shape
(Part 1).
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FIGURE 4. (a) Downstream evolution of the cumulative volume probability density function.
(b) Downstream evolution of the Sauter mean diameter, D3; = > N;D} />~ N;D? and D,o9v,. Exper-
imental Set 2.

The downstream evolution of the cumulative bubble volume p.d.f. corresponding
to this experiment is shown in figure 4(a) where, for clarity, we have presented four
measuring locations only. Note that all the values of the characteristics diameters
and the various moments of the size distribution, i.e. Do, and DT, decay with
the downstream distance, X/D,, due to the breakup process until they all reach
asymptotic values at a downstream distance of approximately 28D;, at which point
the cumulative volume p.d.f. is no longer observed to change.

It is important to emphasize that in all our experiments the bubbles broke up
under the action of a fully developed, spatially nearly uniform, isotropic turbulence,
and in the absence of any solid surfaces. The air was always injected at the jet’s
centre axis, and during their breakup, the bubbles remained at the centre of the jet,
being transported laterally by the action of the turbulence to radial distances always
smaller than 30% of the width of the jet. Thus, the process can be assumed to be
one-dimensional. The radial dispersion did not affect the measurements, and indeed,
we measured only the bubble size p.d.f. resulting from the breakup and convective

T D3 = S.N;D}/>S.N,D?, Dip = . N;D;/>_ N; where N; is the number of bubbles of size D;
measured. D9, = diameter of a bubble such that 90% of the total volume of air is contained in
bubbles of smaller diameter.


https://doi.org/10.1017/S0022112099006692

https://doi.org/10.1017/50022112099006692 Published online by Cambridge University Press

On the breakup of an air bubble. Part 2. The resulting daughter bubbles 193

transport at each downstream location. As mentioned above, coalescence effects were
negligibly small in our experiments since the bubble void fraction was always < 107>,

3.1. Comparison of the theoretical model with the experimental results

The phenomenological model for the daughter p.d.f. presented in § 2 was used to solve
equation (1.2) in order to obtain the evolutions of the bubble size distributions and
to compare them with the above experimental results. Since the problem of interest
here is steady state, dn/0t = 0, equation (1.2) reduces to

aUn)
ox

where U(x) is the mean centreline velocity of the water jet, which is equal to the mean
convective velocity of all bubbles v(D, x, t) regardless of their size D.

In the steady-state experiments described above our measurements show that all the
bubbles, regardless of their size, are convected at the same mean velocity, equal to the
mean local velocity of the water jet (Martinez-Bazan 1998). Thus, the term d(Un)/0x
in equation (3.1) is simply d(U(x)n)/0x, where U(x) is now the corresponding mean
velocity of the water jet measured at each measurement location, and x is the
downstream location along the axis of the jet, i.e. this term represents the spatial
downstream evolution of the number density of the bubbles of size D as they are
transported downstream by the convective velocity of the water jet. When integrating
the right-hand side of equation (3.1) we used the value of g(e, Dy) calculated from
equation (1.3), and the experimentally measured values of e (figure 3 in Part 1) at
each downstream location. The initial conditions used to integrate equation (3.1)
were taken to be equal to the size p.d.f. measured at the first measurement location,
X/D,; = 16.1.

The downstream evolution of the cumulative bubble volume p.d.f. resulting from
the above calculation performed by integrating equation (3.1) is given in figures 5(a)
and 5(b), where it is compared to the experimental measurements. Note that the
agreement with the experimental data is very good, not only concerning the various
moments of the bubble size distribution (figure 5b), but more importantly, between
the shape of the measured and the calculated cumulative volume p.d.f:s (figure Sa).
The same excellent agreement shown between the calculated and the measured p.d.f:s
was also found for the other cases studied (see figures 6a and 6b corresponding to
Set 3a, Part 1).

We will now turn our attention to discussing the assumption of binary splitting.
Our model is based on the assumption that upon breaking, the bubble is broken
into two daughter ones, m(Dy) = 2. This appears to be consistent with all of our
measurements performed at low and moderate values of the turbulent Weber number,
We, = pAu?(Dy)Do/c. In these cases, the surface of the mother bubbles is always
observed to be relatively smooth. A typical sequence of the evolution of a bubble
during its breakup is shown in figure 7. This sequence was taken at 6000 frames per
second and shows consecutive steps in the bubble breakup process. Observe that the
bubble marked A; breaks into two labelled A;; and Aj,. Subsequently Ay, breaks
into Ajy; and Aqy,, and later on the bubble Ay, breaks into Ajy; and Aq,. This binary
splitting process appears to continue until the breakup is fully finished. However,
although difficult to characterize, we have also observed that at larger values of the
turbulent Weber number, the mean number of daughter bubbles, m(Dy), increases.
Thus, the assumption of binary breakup appears to be well justified only at low and
moderate We,. Regardless of the weakness in the assumption of m(Dy) = 2, the reason

/ " m(D)f (D, Do)g(Do)n(Do) dDo — g(D)n, (3.1)
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FIGURE 5. (a) Downstream evolution of the cumulative volume probability density function. (b)
Downstream evolution of the Sauter mean diameter, D3, and D,ggo,. Initial value of the dissipation
rate of TKE was €y = 2000m?s~3 at the air injection point, X /D; = 15. The lines represent the
results obtained from the model integrating equation (3.1) and the symbols are the experimental
measurements. Experimental Set 2.

for the excellent agreement observed between the measurements and the model is also
due to the fact that the shape of the cumulative volume p.d.f. is fairly insensitive to
the appearance of satellite small bubbles. This is a consequence of the fact that the
volume fraction contained in the small bubbles is very small. Nevertheless, in most
diffusion-controlled processes, the important parameter controlling the process is the
Sauter Mean Diameter, D3,, which is an indication of the volume-to-surface ratio
of the distribution function, and this is always very well predicted with the binary
breakup assumption, as shown in figures 5(b) and 6(b).

At larger values of the Weber number, the binary breakup assumption needs to be
revised. To address the possible formation of a larger number of daughter bubbles,
we can use a simple estimate based on energy arguments. If the energy associated
with the difference of turbulent velocities existing between two points separated a
distance equal to the size of the bubbles were the only energy causing the changes in
the energy associated to surface tension, and neglecting viscous and compressibility
effects, the total energy associated with the differences of velocity and surface tension
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should remain constant during the breakup process. Thus,
1pB(eDoy*tnDy + moD§ = > ppNi(eD)*inD} + o > N;D},  (32)
i=1 i=1

where N; is the number of bubbles of size D;, and ) ,_| N; D} = DS. Equation (3.2)
can be rewritten as

1+A4=4Y ND"*+> N:D?, (3.3)
i=1 i=1
where A = (p/120)e*3D]> = A=%/3, and D* = D/D, is a non-dimensional diameter of
the resulting daughter bubble. Expressing equation (3.3) as a function of the daughter
bubble p.d.f., f*(D"):

1 1
1+A4= ANt/ (D)D" dD* + Nt/ f(D*)D**dD". (3.4)
0 0
From conservation of volume,
1 1
— = / f*(D*)D**dD* = D3;. (3.5)

Equations (3.4) and (3.5) can be solved by a trial and error scheme to obtain the
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FiGURre 7. Time evolution of the characteristic breakup of a mother bubble showing a binary
bubble splitting mechanism. The images were taken at 6000 frames per second.

number of bubbles resulting from the breakup of a mother bubble Dy, and the
daughter-bubble p.d.f., f*(D*), given in equation (2.7).

For the particular case of e = 1000m?s—> and Dy, = 2mm, as in the experimental
Set 3c, we obtain 4 = 29.7. For such value of A, substituting the daughter bubble p.d.f.,
f"(D"), predicted by our model given in equation (2.7) into equations (3.4) and (3.5),
the number of daughter-bubble obtained, for the same value of A, is approximately
3. Now, we can use this estimated number of daughter bubble to recalculate the
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FiGURE 8. (a) Downstream evolution of the cumulative volume probability density function.
(b) Downstream evolution of the Sauter mean diameter, D;; and Dye,. Initial value of the
dissipation rate of TKE was ¢y = 1000m?s—> at the air injection point, X/D; = 15. The lines
represent the results obtained from the model integrating equation (3.1) and the symbols are the
experimental measurements. Experimental Set 3c.

daughter-bubble p.d.f,, f*(D*), and obtain a new number of daughter bubbles until
equations (3.4) and (3.5) in conjunction with equation (2.7) for f*(D") are satisfied.

Thus, it is reasonable to expect that our assumption of m(Dy) = 2 will hold only for
small values of We,, and that at large values of We, the number of daughter bubbles
could be greater than two. This increase in the number of daughter bubbles with
We, could explain why we obtained a poorer agreement between the p.d.f. calculated
with our model and the experimental measurements for the case of large We, (see
figure 8). Note that, as opposed to the cases where the deformations on the surface
of the bubbles were relatively small and the agreement was excellent (figures 5a, 6a),
now although the agreement is reasonable, there is a noticeable difference between
the calculated p.d.f. and the measured ones. To consider a tertiary bubble breakup
process, we will further assume, for simplicity, that a bubble is broken into one of
diameter D; and two bubbles of equal diameters D,, such that

pi—p31"”?
D, = [021} . (3.6)
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FIGURE 9. Comparison of the daughter-bubble p.d.f. resulting from a binary and a tertiary
splitting, e = 1000 m? s~3, Dy = 2 mm.

The daughter-bubble p.d.f. resulting from the breakup of a mother bubble of size D
is then given by
. [0 — AP [(4(1 = D)0 — AP
f1(D) = —5 2 , (3.7)

max

(D72 — AY)[(4(1 = D)0 — 4] d(D")

D:ﬂ'n
where D* = D/Dy, Dyin < D1 < Dypux and D, is now given by
1/3
126 \** _
Dmax = DS -2 <ﬁpD0> € 3 . (38)

Equation (3.7) can be used as an extension of our bubble breakup model for cases
where the estimated number of bubbles resulting from the breakup is larger than two,
although a more elaborate model including all the possible combinations of three
bubbles of diameters Dy, D, and D; should be considered at larger Weber numbers.
The daughter-bubble p.d.f. resulting from equation (3.7) is shown in figure 9 where
it is compared to that obtained using a binary breakup assumption for the same
flow conditions. Notice that the maximum of the p.d.f. is now shifted to D* ~ 0.7
which corresponds to three bubbles of the same size, and the probability of formation
of large bubbles has decreased considerably. Therefore, it is expected to result in
a more rapid breakup process than that obtained considering a binary breakup.
The downstream evolution of the cumulative volume p.d.f. obtained by integrating
equation (3.1) now using the model presented in equation (3.7) is shown, along with
the experimental results, in figure 10 for the experimental Set 3c. The agreement
between the model and the experimental results is much better, confirming that the
number of bubbles created and the shape of the daughter-bubble p.d.f. is strongly
dominated by the magnitude of the turbulent stresses.

3.2. Comparison with other models
A comparison of the daughter bubble size p.d.f. predicted by our model and those
predicted by previously proposed models is shown in figure 11. It is important to
emphasize that, as opposed to previously proposed models, the probability density
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integrate equation (3.1), and the symbols are the experimental measurements. Experimental Set 3c.

function f*(D*) given by our model is a function of not only the size of the mother
bubble, Dy, but also of e. To illustrate this point we have plotted f*(D") corresponding
to three different values of € (¢ = 4.5, 10, and 1000 m? s—3). As the value of e increases,
f7(D") widens out toward smaller sizes, and therefore, the spectrum of bubble sizes
resulting from the turbulent breakup of a mother bubble D, is wider, producing
smaller bubbles. Note that the model given by Tsouris & Tavlarides (1994) has a U
shape giving a minimum probability for the formation of two daughter bubbles of
equal volume (D* ~ 0.8), and a maximum probability for the formation of widely
different volume pairs.

We have integrated equation (3.1) using Tsouris & Tavlarides’ model in the same
manner as we did for our model. The resulting evolution of the cumulative volume
p.d.f. is shown in figure 12, where we compare it to the experimental measurements.
The discrepancy between the experimental results and the results obtained with this
model is very apparent. It is clear that due to the fact that the daughter-bubble p.d.f.
is independent of €, this model grossly underpredicts the evolution of the volume
p.d.f. The large discrepancy between the measured and calculated evolutions of the
D3, is due to the fact that this model gives the highest probability to the formation
of a very large and very small pair of bubbles, a fact which brings into question the
validity of the basic assumptions made in the model.

The downstream evolution of the cumulative volume p.d.f. obtained by integration
of equation (3.1), using the daughter-bubble p.d.f. proposed by Konno et al. is shown
in figure 13. Although the frozen p.d.f,, reached at X/D; = 35, obtained with this
model seems to be in good agreement with the experimental results, the temporal
evolution is not very well described. This discrepancy is not surprising since, as shown
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FIGURE 11. Comparison of the daughter bubble size p.d.f. predicted by the present model and
previously proposed models by Tsouris & Tavlarides (1994) and Konno et al. (1983).

in figure 11, the probability of producing bubbles smaller than 0.3D, after the breakup
of a mother bubble of size D, is negligibly small, and independent of the value of
both € and Dy. Therefore, the size of the daughter bubbles created with this model
is always in the range of 0.3Dy < D{ < Dy, and it is more likely to form bubbles of
similar sizes which translates into a faster evolution of the cumulative volume p.d.f.
shown in figure 13. Notice also that in figure 11, the probability of forming small
bubbles predicted by our model increases as the value of e is increased, resulting in
a larger amount of small bubbles in the early stages of the breakup process (close to
the point of injection) where the value of € is the largest. As the bubbles are broken,
after being injected into the flow by the turbulent stresses of the water jet, they are
transported further downstream by the mean motion of the flow to locations of lower
value of e. This decrease of € and D, as the bubbles are convected downstream in the
flow produces an evolution of the daughter-bubble p.d.f., increasing the value of the
peak and therefore increasing the probability of forming bubbles of equal size. In this
evolution, the shape of our daughter-bubble p.d.f. becomes closer to that proposed
by Konno et al. This explains why although the calculated cumulative volume p.d.f.
obtained using our model is initially different from that obtained using Konno et al.’s
model, the final stage of the frozen p.d.f. appears to be well reproduced by both
models.

4. Conclusion

We have proposed a model for the size p.d.f. of the daughter bubbles produced by
the shattering of a mother bubble immersed in a fully developed turbulent water flow.
The model is based on the premise that the probability of a given pair forming is
proportional to the product of the surplus energy corresponding to the two size scales
formed. This model has been shown to be in good agreement with recently obtained
experimental data of the transient bubble size distribution. Contrary to previously
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FIGURE 12. (a) Downstream evolution of the cumulative volume probability density function.
(b) Downstream evolution of the Sauter mean diameter and D,gg,. The lines represent the results
obtained using Tsouris & Tavlarides’ (1994) model to integrate equation (3.1), and the symbols are
the experimental measurements. Experimental Set 2.

existing models, our phenomenological model predicts a dependence of the daughter
bubble size p.d.f. on both the bubble size and the value of the dissipation rate of
turbulent kinetic energy of the underlying turbulence. The model, although simple and
straightforward, predicts, in a consistent manner, the experimental measurements of
the transient bubble size p.d.f. performed over a range of bubble sizes and dissipation
rates, €. This agreement was found to be better at small and moderate values of
the mother bubble’s turbulent Weber number in which case the binary breakup
assumption was found to be consistent with the experimental observations. At larger
turbulent Weber numbers, it was found that the most probable number of bubbles
increases, and the assumption of tertiary breakup was found to lead to a better
agreement with the experiments.

Support for this work was provided by a grant from the US Office of Naval Research
ONR# NO00014-96-1-0213, (Program officer, Dr Edwin P. Rood). The authors are


https://doi.org/10.1017/S0022112099006692

https://doi.org/10.1017/50022112099006692 Published online by Cambridge University Press

202 C. Martinez-Bazdn, J. L. Montafiés and J. C. Lasheras

s -
L Lo AT ]
Tt A ,
r“_; 08 r A/ Vel . . '
a i’ .y i
g I ERYaN / ]
ER Bty
s I ’/_ // ——X/D,=15
o I ko — -X/D,=20
% 041 £y A - — -X/D)=25
B T, B U WD Cien
R o e . X/D)=20.58
O I ¢ o X/D,=24.64
« X/D)=3323
0 0.5 1.0 1.5 2.0 2.5
» D (mm)
P
r (b) o'. L] D3z
[ \’ D, 909,
’é\ 1.5 \‘\ Ds,
\E/ r \ 1
— r ° T
2 10l . b e
E . _
5 [ S =
05 et o 1
ol R R
10 15 20 25 30 35 40
X/D,

FIGURE 13. (a) Downstream evolution of the cumulative volume probability density function. (b)
Downstream evolution of the Sauter mean diameter and D,gs,. The lines represent the results
obtained using Konno et al’s (1983) model to integrate equation (3.1), and the symbols are the
experimental measurements. Experimental Set 2.

grateful for the assistance provided to J. L. M. by the Spanish Ministry of Education
while he was on leave from the E.T.S. Ingenieros Aeronauticos, Universidad Politécnica
de Madrid (Spain). The assistance of José Antonio Alfaro, from the Universidad
Carlos III de Madrid, is also acknowledged. C. M.-B. would like to thank the support
of a Fellowship from the Consejo Asesor the Investigacion de la Diputacion General
de Aragon (Spain). The material presented here has been extracted from the PhD
thesis of the first author (C. M.-B.).
This work is dedicated to the memory of Maruja Torralba de Lasheras.

Appendix. On the initial volume distribution of bubbles injected
into a turbulent flow
By M. S. Longuet-Higgins

Institute for Nonlinear Science, 0402, University of California, San Diego,
La Jolla, CA 92093, USA

It may be of interest to compare some of the measurements of bubble distributions
described in Part 1 with a much simplier theoretical model proposed earlier by the
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(a) (b)

FiGURE 14. Idealized model of the initial bubble breakup.

present author (Longuet-Higgins 1992). The latter can be expected to apply only to
the initial distribution of bubble sizes very close to the point of injection, and not to
the subsequent stages of development of the bubble distribution. The argument is as
follows.

One would expect that any small spherical cavity in a highly turbulent liquid flow
would tend to be distorted by the straining of the surrounding flow. In a regime
where viscous stresses are negligible, the cavity would tend to be elongated in the
direction of the principal rate of strain which has the greatest positive magnitude, as
sketched in figure 14(a). If the form of the cavity is idealized as a cylinder of constant
cross-section, it may be assumed to be broken into a small number of pieces by a
sequence of m cuts along its length. Figure 14(b) sketches the case m = 3, for example.
If the spacing of the cuts occurs at random, then the volumes of the cuts will be
approximated by the one-dimensional ‘broken-stick’ distribution. What is this?

Let V} be the initial volume of the cavity and V' the volume of an individual bubble
fragment. Then the p.d.f. of V /¥, which we denote by p(V /Vy) is simply

p(V Vo) =m(1 =V /Vo)"! (A1)
as proved for example in Longuet-Higgins (1992). The cumulative distribution of
V /Vy, which we write P(V /Vy) = OV/VO p(4)d(4), is thus given by

PV /Vo)=1—=(0—=V/Vo)" (A2)
The quantity shown in figure 9(a) of Part 1 is

dP(V
Fp) = L (A3)
where D is the notional diameter of a bubble of volume D that is

V= %D% D = (6V/m)", (A4)
If we denote by Dy the value of D corresponding to V,, then we have

V/Vy=(D/Do)*. (A5)

Writing V' /Vy = V* and D/Dy = D* we find from (A 3) that

dP(V* dv*dp(v"
DoF(p) = ) = SRR (A6)

Since
dvr
=3D" A7
i (A7)
and dP(V*)/dV* = p(V*) we have altogether
DyF(D) = 3mD**(1 — D*)" 1, (A8)
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FIGURE 15. The broken-stick volume distribution when m = 1,2,...5.

1 1.0000 3.000 3.000
2 0.7368 1.954 1.440
3 0.6300 2.009 1.266
4 0.5665 2.109 1.195
5 0.5228 2.213 1.157

TABLE 1. Parameters for the mode of the ‘broken-stick’ distribution, equation (A 8).

Figure D, U, Dy Dy,
# (mm) (ms™) R, (mm) (mm) D, m
9(a) 0.39 9.84 25,000 2.55 1.7 0.68 2.58
12(a) 0.39 9.84 51,000 2.40 1.3 0.54 4.53

TABLE 2. Parameters of the observed distribution of volume sizes, taken from Part 1.

This set of curves is shown in figure 15 for m = 1 to 5. For the larger values of m
these curves become roughly symmetric in shape. On the left they vary as D*2, and
on the right as (1 — D*)"1,

To facilitate a comparison with observation, consider the position of the mode of
each distribution. In table 1 we show the mode D;, of the distribution (A 8) which is

easily calculated as
) 1/3
v (52)" 9

In table 2 are shown some parameters of the observed distribution corresponding
to figures 9(a) and 12(a) of Part 1. Dy is the estimated maximum bubble diameter,
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FIGURE 16. The distribution of bubble volumes (a) as shown in figure 9(a) of Part 1, compared with
the initial distribution given by equation (A 8), when Dy = 2.55 and m = 2.58; and (b) as shown in
figure 12(a) of Part 1, compared with the initial distribution given by equation (A 8), when Dy = 2.4
and m = 4.53.

and D,, the diameter corresponding to the maximum value of F(D). The next column
shows the ratio D;, = D,,/D, and the last column shows the value of m calculated
from equation (A9), i.e.

m=1(1+2/D;}). (A 10)

m

Non-integral values of m may be taken as corresponding to statistical averages.
Figures 16(a) and 16(b) show a comparison of the observed functions F(D) with
the two corresponding theoretical curves. In figure 16(b), where the observed curve is
the smoothest, the theoretical curve is a fairly close fit to the observations. Note that
in figures 7 and 10(a) of Part 1 a satisfactory estimate of Dy could not be given, and
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in figure 11(a) the distribution nearest the point of injection is only for the second
‘window’, not the first.

At larger distances from the point of injection the peak of the observed volume
distribution moves further to the left as does that of the broken-stick distribution for
larger values of m. However it is not to be expected that the broken-stick distribution
will apply, and in fact it does not do so. Note that in the limit as m — oo, P(V) is
well approximated by

P(V)~1—¢ V" (A11)

where V7 = Vy/m, and hence
D, % ~ 3(D/D;)e!P/P’ (A12)

where D; = Dy/m'/3. On the other hand the limiting distributions shown in Part 1 are
generally broader, with longer ‘tails’ on the right. The peak of the distribution (A 12)
occurs when D/Dy = (2/3)"/? = 0.8736 and so DdP/dD = 2e~?/* = 1.0268. This is
the limit of the values shown in the last column of table 1. The observed values of
D dP/dD lie generally outside this range.
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