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The collapse of a granular column in a liquid is investigated using numerical simulations.
From previous experimental studies, it has been established that the dynamics of the
collapse is mostly influenced by the Stokes number St, comparing grain inertia and viscous
fluid dissipation, and the initial volume fraction of the granular column φi. However, the
full characterization of the collapse in the (St, φi) plane is still missing, restricting its
modelling as a physical process for geophysical applications. Only numerical tools can
allow the variation over the parameter space (St, φi) that is hardly reachable in experiments
as well as a full description of the granular phase that plays a major role in dense granular
flows. For this purpose, a dedicated numerical model is used including a discrete element
method to resolve the granular phase. The specific objectives of the paper are then twofold:
(i) the characterization of the dynamics of the collapse and its final deposit with respect to
(St, φi) to complement available experimental data, and (ii) the description of the granular
rheology according to these two dimensionless numbers including dilatancy effects. A
simple predictive model stems from the obtained results, allowing one to explain the
evolution of the final deposit with (St, φi).

Key words: granular media, particle/fluid flow, rheology

1. Introduction

Destructive natural phenomena such as snow avalanches, landslides, rock falls and debris
flows remain difficult to safeguard against. Given the complexity and the observed
heterogeneity in dynamics of these gravity-driven and unsteady multiphase flows, it is
natural to focus on canonical flows that can be controlled at the laboratory scale. For this
purpose, several studies have been devoted to model configurations dealing with dry or
wet granular flows.
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Among other configurations, the collapse of an initial granular column in air and over
a horizontal surface, referred to as dry granular collapse, reveals the behaviour of an
unsteady granular flow starting from an initial unstable rest state and evolving towards a
final deposit. This configuration thus shares many key features with natural situations, and
it has naturally become the topic of several studies. It should be noted that specific attention
has been paid to the case of a dry monodisperse granular medium using laboratory
experiments (Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Lube et al. 2004, 2005;
Balmforth & Kerswell 2005; Lajeunesse, Monnier & Homsy 2005; Lacaze, Phillips &
Kerswell 2008) or numerical modelling at different scales (Mangeney-Castelnau et al.
2005; Zenit 2005; Staron & Hinch 2005, 2007; Lacaze & Kerswell 2009; Lagrée, Staron
& Popinet 2011; Girolami et al. 2012; Ionescu et al. 2015). Even for such a canonical
design, the dynamics of the collapse remains not fully understood, like many dry dense
granular flows. Surprisingly, some simple features have nevertheless been observed in all
these studies. In particular, the characterization of the dynamics and of the final deposit
has shown that the collapse is mostly controlled by the aspect ratio a = Hi/Li of the initial
column, with Hi and Li its initial height and its initial horizontal length, respectively.

Complexity has been increasingly added to the dry granular collapse to incorporate
observable features in natural configurations, such as polydispersity or complex grain
shape (Phillips et al. 2006; Degaetano, Lacaze & Phillips 2013; Cabrera & Estrada 2019),
erodible bottom (Crosta, Imposimato & Roddeman 2009; Mangeney et al. 2010) or the
influence of the surrounding fluid (Roche et al. 2011; Rondon, Pouliquen & Aussillous
2011; Topin et al. 2012; Bougouin & Lacaze 2018; Jing et al. 2018, 2019). In the latter
situation, it has been highlighted that, as well as a, the initial volume fraction φi (Rondon
et al. 2011) and Stokes number St (Bougouin & Lacaze 2018) can also play a significant
role in the dynamics of collapse. In other words, for given granular material and aspect
ratio, the surrounding fluid can affect the granular collapse because of its influence on
falling grain inertia through viscous dissipation, i.e. the St number, but also due to the
initial compaction of the granular column, i.e. φi.

The specific contributions of both St and φi to the immersed granular collapse now
require to be characterized. For this purpose, a full picture of the influence of (St, φi)

needs to be provided, as up to now only a limited set of dimensionless parameters has
been considered. In particular, the role of φi observed at small St (Rondon et al. 2011)
– and presumed to be negligible at large St according to the results obtained in dry
configuration – suggests a combined influence of (St, φi) which would both originate from
fluid viscosity. Thus, the influence of φi has to be clarified as a function of St. Moreover,
modelling granular collapse from physical analysis is required for larger-scale situations.
This means, in particular, extracting pertinent continuous models for the granular phase
including its rheological behaviour. The granular collapse has already been shown to be
an attractive test case for rheological models in the case of dry configuration (Lacaze &
Kerswell 2009). It has to be extended to the case of immersed situations.

In order to achieve these objectives, fluid–particle properties have to be
continuously varied, and fluid–particle stresses have to be known. These objectives
then suffer experimental limitations, which, for now, can only be achieved using
numerical simulations. Here, a volume-averaged Navier–Stokes/discrete element method
(VANS/DEM) coupling approach is used. This approach is referred to as the mesoscale
approach in the following as it allows one to solve the fluid phase at a scale slightly
larger than the grain scale. This provides a reasonable scale of description to model
laboratory-scale configurations, keeping the Lagrangian description of individual grains.
It has therefore often been used when dealing with immersed granular flows such as,
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Immersed granular collapse

among others, the immersed simple shear flow (Trulsson, Andreotti & Claudin 2012) and
sediment transport (Maurin et al. 2015; Charru et al. 2016; Pähtz & Durán 2018). Even
if most of the dynamics of the system is resolved with this approach, the properties and
dynamics of the fluid flow in between grains remains modelled, and thus requires closure
terms. This approach has nevertheless proved to be relevant for the above-mentioned
configurations and, particularly, to provide the relevant mechanisms, allowing us to
improve our understanding of the physics of these systems. This means that most of
the required subscale physics of the fluid phase is captured by these closure models.
Accordingly, this remains a pertinent scale approach to reach the main objectives depicted
previously.

The paper is organized as follows. The numerical VANS/DEM method used in the
paper, the collapse set-up and the dimensionless parameters are presented in § 2. In
order to discuss the reliability of the mesoscale model used in this paper, an alternative
resolved numerical approach for the fluid phase, solving part of the subscale physics, has
also been tested. Results, comparisons and limitations are discussed in supplementary
material available at https://doi.org/10.1017/jfm.2020.1088. The influence of (St, φi) on
the dynamics of the collapse and its final rest state is then characterized in § 3, with
specific attention paid to the prevailing role of φi when decreasing St. In § 4, the rheology
of the granular material is extracted and characterized as a function of (St, φi), in the
spirit of the μ–I model for dense granular flows. Prior to concluding, the link between
the proposed rheological model and the obtained final deposit for immersed granular
collapse is discussed in terms of a simplified predictive model in § 5.

2. A mesoscale approach for granular collapse modelling

The VANS/DEM numerical method used in the following has been explained in detail in
Charru et al. (2016). The method is thus only briefly recalled for the record. Nevertheless,
we pay attention here to highlighting the terms that require closure models and the
strategy adopted accordingly (see also the supplementary material for a discussion on
these models). The physical set-up and the associated dimensionless parameters used are
then given.

2.1. Granular phase: discrete element method
The dynamics of the granular phase is solved using a classical DEM. The motion of each
solid particle j, with j ∈ [1,Np] (with Np being the number of particles), submitted to
gravitational acceleration, solid contact force with other particles and hydrodynamics force
induced by the surrounding fluid, is obtained by integrating Newton’s equations for linear
and angular momentum of a solid sphere of mass mj,

mj
dvj

dt
= mjg + F h

j +
∑
k /= j

F c
kj,

mjdj
2

10
dωj

dt
= Γ h

j +
∑
k /= j

Γ c
kj, (2.1a,b)

where vj and ωj correspond to the linear velocity and the angular velocity, respectively,
F h

j and Γ h
j are the hydrodynamic force and torque exerted on each particle j, respectively,

and F c
kj and Γ c

kj are the solid contact force and torque, respectively, exerted by particle
k on particle j if they are in contact. Note that, with the formulation just mentioned,
F h

j then includes the buoyancy contribution. The model of the hydrodynamics force on
each particle will be specified in the next section.
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Solid contacts between particles are modelled using a soft sphere approach, i.e. by
allowing a small overlap between particles to mimic the deformation of real grains.
This overlap is then used to calculate the contact force between grains, using a linear
spring–dashpot model. The tangential force is limited by a Coulomb threshold allowing
sliding between grains. Details of the model can be found in Izard, Bonometti & Lacaze
(2014). We only recall that the solid contact is then parametrized by the coefficient of
restitution e and the coefficient of friction μp between the two particles in contact and
the stiffness of the considered material kn, or equivalently the contact time tc. In the case
of granular material, we impose tc � √

d/g to ensure rigidity of the material for the dry
situation (Baran et al. 2006). Here, tc = 2 × 10−3√d/g, or equivalently the stiffness of
the particle is kn = 2 × 105 mg/d. Note that, in such a limit, the stiffness of the material
no longer influences the dynamics of the granular material (Baran et al. 2006). In fact, we
also have tc � ρd2/η, where ρ and η are the density and the viscosity of the surrounding
fluid, respectively. The latter constraint ensures that the contact time is smaller than the
diffusive time scale in the vicinity of the moving particle.

2.2. Fluid phase: volume-averaged Navier–Stokes model
The fluid phase is solved at a scale larger than the grain size, as sketched in figure 1 for
a two-dimensional (2-D) cross-section of the 3-D physical domain. For this purpose, the
fluid-phase equations to be resolved are derived from the Navier–Stokes (NS) equations
spatially averaged over a spatial scale larger than the grain size (Jackson 2000). In other
words, the NS equations are averaged over a volume Vf of fluid contained in a volume of
reference V larger than a solid particle and similar to the mesh cell volume (see figure 1
for a sketch). The VANS mass and momentum equations read (Jackson 2000)

∂ε

∂t
+ ∇ · (

ε〈u〉f
) = 0, (2.2)

ε
D〈u〉f

Dt
= εg + 1

ρ
∇ · S − 1

ρ
n〈 f p/f 〉p, (2.3)

where ε = 1 − φ is the local fluid volume fraction (φ is the particle volume fraction), 〈·〉f
and 〈·〉p denote the average operator over the fluid phase and particle phase within the
volume V , respectively, and D/Dt is a fluid material derivative and is defined accordingly
with respect to the fluid velocity 〈u〉f as D/Dt = ∂/∂t + 〈u〉f · ∇. The fluid–particle
interaction force averaged over the particles within V is denoted n〈 f p/f 〉p, with n the
number of particles per unit volume. Finally, S is an effective stress tensor for the fluid,
which has to be specified. Note that using this volume-averaged formulation, different
contributions emerge in the stress S, including the average fluid stress tensor over Vf as
well as what is referred to as the traction term in Jackson (2000), defined at the interface
between the particles and the fluid.

The fluid–particle interaction force n〈 f p/f 〉p is simply related to the hydrodynamics
force on each grain F h

j in the Lagrangian formulation (2.1a,b) as

n〈 f p/f 〉p = 1
V

∑
j∈V

F h
j . (2.4)

In the VANS/DEM model, particle–fluid interaction is not resolved at the grain scale
and F h

j , and thus n〈 f p/f 〉p, have therefore to be modelled. According to Jackson (2000),
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V

Vf �yV

�xV

Vj

Figure 1. Sketch of the spatial scales used for the VANS/DEM approach in a 2-D (x, y) cross-section. Here
(�xV ,�yV ) defines the grid size for the fluid phase resolution in the 2-D plane. Grey disks are the 2-D slice
through the three-dimensional (3-D) spherical grain of diameter d in this 2-D cross-section.

the fluid–particle interaction force can be split into a buoyancy contribution and a local
interaction force. For the sake of simplicity, we assume that the remaining contribution is
only a drag force. We thus write

n〈 f p/f 〉p = φ∇ · S + nF M
D , (2.5)

where F M
D corresponds to a drag model force at the scale of the grain, superscript M

standing for ‘modelled’. We choose in the following to model this drag contribution as
(see,for instance, Richardson & Zaki 1954; Maurin et al. 2015)

nF M
D = 18η

d2 φ(1 − φ)−ξ
(

1 + 1
60

Rep

) (〈v〉p − 〈u〉f
)
, (2.6)

with Rep = ρd|〈v〉p − 〈u〉f |/η, and ξ is a constant whose value lies in the interval [1, 3].
Note that such a force model does not provide any torque on the particle that would
be induced by the fluid; thus Γ h

j = 0 in (2.1a,b) for this specific method. The only
torque applied to each grain therefore comes from solid contact. This is quite a crude
approximation, but it provides the simplest model leading to the expected dynamics of the
collapse (see the supplementary material).

Moreover, we assume that the deviatoric part of the stress can be simply written as a
generalized viscous stress, leading to a total stress S of the form

S = −〈p〉f I + ηeff
(∇〈u〉 + T∇〈u〉) ≡ −〈p〉f I + ηM

eff
(∇〈u〉 + T∇〈u〉) , (2.7)

where 〈·〉 stands for an average over the mixture and 〈u〉 = ε〈u〉f + φ〈v〉p is its average
velocity, with φ〈v〉p = (1/V)∑j∈V Vjvj. The viscosity ηeff is an effective viscosity. This
viscosity has to be modelled and will thus be denoted ηeff ≡ ηM

eff .
Note that, in (2.7), mixture velocity has been chosen instead of the fluid velocity to

model the viscous deviatoric stress component. In the literature, both choices can be
found as long as they provide an actual deviatoric tensor for the viscous stress (for a
review, see Jackson 2000). Then, if the fluid velocity is chosen, its trace contribution has to
be subtracted, as the fluid phase is not divergence-free in the case of the fluid (Baumgarten
& Kamrin 2019). Using the mixture velocity allows one to satisfy straightforwardly the
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previous constraint, as it is divergence-free, and moreover it has been shown to appear
quite naturally in the case of dilute Stokes flow (Zhang & Prosperetti 1997; Jackson 2000).
The latter approach has also been used to describe dense situations (Guazzelli & Pouliquen
2018). This definition has thus been chosen here regarding the state of our knowledge.
Moreover, the following model will be used for the effective viscosity,

ηM
eff

η
= 1 + 5

2
φ + 7.6φ2 + ζφ3, (2.8)

where we recognize the Einstein viscosity at O(φ), the Batchelor viscosity for hard spheres
at O(φ2), and an extra O(φ3) term to account for higher-order correction in such a dense
configuration.

In most of the simulations discussed in this paper, ξ = 1 in (2.6) and ηM
eff /η = 1 + 5φ/2

in (2.8). However, a discussion on the influence of these models is given in § 3.4, including
ξ = 2, ξ = 3 and higher-order viscosity terms. Moreover, a resolved numerical approach at
the grain scale has been used to show the relevance of these different models and to obtain
an estimation of ζ ≈ 16 in (2.8) for the flows studied in this work (see the supplementary
material).

The VANS equations (2.2) and (2.3) are solved numerically to obtain 〈u〉f and 〈p〉f
on a regular mesh grid �xV = �yV = �zV = 2d, where the cell volume matches the
elementary volume V (see figure 1). Note that we take advantage of the incompressibility
of the mixture (fluid plus grains) to solve a divergence-free equation for the mixture
phase instead of (2.2), allowing the use of a standard numerical algorithm developed for
incompressible flows. The required ε and 〈v〉p are obtained by averaging DEM results over
the fluid cell. For more details on the numerical algorithm, the reader can refer to Charru
et al. (2016).

2.3. Set-up and dimensionless numbers
A typical sketch of the configuration considered in this study is shown in figure 2. The
computational domain consists of a rectangular box (Lx, Ly, Lz) in (x, y, z) with (x, y)
the main propagation plane, y being opposed to gravity (see figure 2), and z is the third,
out-of-plane, direction. Boundary conditions for both the fluid phase and the granular
phase are periodic in the z direction. For the fluid phase, a no-slip condition is imposed
at the walls located at x = 0 and y = 0, while a slip condition is imposed at the walls
located at x = Lx and y = Ly, ∂〈u〉f /∂n = 0, with n being the normal to the wall. Grains
of diameter d are glued on the bottom plane – on a square grid centred at y = 0 – to prevent
the granular material from rolling on the bottom.

At the left-hand side of the domain, x = 0, a rectangular column of base (Li, Lz) is filled
up to a height Hi with Np spherical grains of mean diameter d and the same density ρp (see
figure 2a). Only a small dispersion (±5 % in diameter of a uniform distribution) is imposed
onto the grain diameter to avoid a crystal-like pattern in the medium while keeping a
monodisperse behaviour, i.e. no segregation is observed for such small dispersion in grain
diameter. The geometry of the system is unchanged for all simulations. In particular, the
aspect ratio of the initial column is set to a = Hi/Li = 0.5, i.e. Hi = Li/2, as its influence
on the collapse has already been reported in several studies. The dimensionless base length
of the column is Li/d = 64. The dimensionless size of the computational domain is such
that Lx/d ≈ 192, Ly/d ≈ 51 and Lz/d = 8.

At t = 0, the column is released in a liquid of density ρ and viscosity η. For t > 0, the
granular medium first collapses during a so-called slumping phase, and eventually stops
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y

y

Hi

Hf

Li

Lx

Ly

Ly

Lx

x

xLf

g

g

(b)

(a)

Figure 2. Sketch of the 3-D set-up in a 2-D streamwise (x, y) plane at a fixed z coordinate. Unit vector z is in
the out-of-plane direction. (a) Initial configuration at t = 0 and (b) final deposit for t ≥ tf .

at a finite time t = tf . The final deposit can be characterized by two lengths, say a final
spreading length Lf and a final maximum height Hf (see figure 2b), or equivalently Lf and
a deposit slope tanα, which will be defined later.

At the grain scale, the dynamics is controlled by several dimensionless parameters,
including solid–solid interaction and fluid–solid interaction. For the solid–solid
interaction, first, the dimensionless parameter characterizing the rigidity is defined as
κ = (τi/tc)2, with τi = d

√
ρp/�ρgHi a characteristic time of rearrangement imposed by

the granular pressure (see, for instance, GDR MiDi (2004); here the characteristic pressure
is the granulostatic one at the bottom of the column using the apparent weight of the
granular material �ρ = ρp − ρf ). The value of this parameter in the present simulations
is κ = 5 × 105 ensuring the rigidity of the material as mentioned previously (Da Cruz
et al. 2005). In this rigid limit, the significant parameters characterizing the solid–solid
interaction are then the coefficient of restitution e and the coefficient of friction μp. In the
following, they are set to e = 0.87 and μp = 0.25.

For the fluid–solid interaction in such a gravity-driven flow, two dimensionless
parameters can be built upon the fluid and particle properties, say a Stokes number St
and a density ratio r. The density ratio r is usually defined as r = (ρp/ρ)

1/2 and is kept
constant in the following, r = 1.6, corresponding to glass into water, as mostly used in
laboratory experiments. Its influence on the collapse has been reported in Bougouin &
Lacaze (2018), and is beyond the scope of the present paper. The Stokes number St can be
defined in different ways, and we choose here to follow Bougouin & Lacaze (2018) as

St = 1

18
√

2

(ρp�ρgd3)1/2

η
. (2.9)

In order to vary St, the viscosity of the fluid η is varied over five decades to range in
St ∈ [6 × 10−3, 60]. This range of St allows one to cover both the viscous regime and
the free-fall regime as defined in Courrech du Pont et al. (2003) and Cassar, Nicolas &
Pouliquen (2005). Note that the validity of the model (2.8) for ηM

eff when increasing St in
this range is probably questionable, as fluid inertia at the scale of the grains could become
not negligible. However, the small-scale fluid-inertia contribution should be limited in
a dense granular configuration, and mostly dominant close to the upper surface of the
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a Li/d Lz/d φi r St

0.5 64 8 [0.57, 0.59, 0.63] 1.6 [6 × 10−3, 60]
(13 values evenly

distributed on a log scale)

Table 1. Range of dimensionless parameters covered.

granular medium. This is therefore expected to decrease quickly in the granular medium
and not to be a dominant effect in the present configuration. Fluid inertia is therefore only
accounted for through the drag model (2.6).

At the scale of the initial column, beyond the initial aspect ratio a set constant in the
present study (recall that we have set a = 0.5), the column is characterized by its initial
volume fraction defined as

φi =
∑

j=1:Np
Vj

LiHiLz
, (2.10)

with Vj the volume of grain j. The volume fraction of the initial column φi is varied by
modifying the filling procedure. We cover the range φi ∈ [0.57, 0.63]. Note that the total
number of grains is Np ≈ 20 000 whose exact value depends on φi.

The set of dimensionless parameters used is collected together in table 1.

3. On the influence of St and φi on immersed granular collapses

3.1. Preliminary considerations and typical observations
Experimental observations of dry and immersed granular collapses are noticeably
different, particularly concerning the influence of φi reported in both cases. Even if
differences in the transient and the final profiles for varying φi were observed for the dry
case in an almost similar configuration (Daerr & Douady 1999), they remain relatively
small. Then the influence of φi was not discussed any longer in the literature for the
case of dry granular collapse. On the other hand, when dealing with immersed granular
flows, Rondon et al. (2011) reported the influence of φi as one of the dominant effects
on the granular pile evolution. Their experiments were performed for St = {0.035, 0.065}
according to the definition (2.9), i.e. in a viscous regime at small St.

These experimental observations can be recovered using the VANS/DEM approach as
reported in figure 3. In particular, one shows the temporal evolution of the dimensionless
height profiles of the granular material h(x/d)/d for different values of (St, φi). We
focus here on St = {6 × 10−3, 60} and φi = {0.57, 0.63}. In a viscous-dominated situation,
St = 6 × 10−3 (figure 3a,b), φi clearly influences both the dynamics and the final rest
state of the collapse. In particular, the initiation of the collapse is clearly delayed for
the dense initial situation φi = 0.63 with an initiation of the collapse at the right upper
corner of the initial column (figure 3b) while no delay is observed for the initial loose
configuration for which the collapse is initiated at the right bottom corner (figure 3a).
Moreover, the spreading length is significantly more important for the loose situation.
These observations are in qualitative agreement with experimental observations at small
St (Rondon et al. 2011). On the other hand, for a particle-inertia (free-fall) configuration,
St = 60 (figure 3c,d), the influence of φi is less obvious. Certainly, the spreading length is
not affected, which explained why no influence of φi was reported in experimental studies
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(b)(a)

(c) (d )

Figure 3. Dimensionless height profiles h(x/d)/d of the granular medium at different times: (a) (St, φi) =
(6 × 10−3, 0.57) and time step �t

√
g/d = 150; (b) (St, φi) = (6 × 10−3, 0.63) and time step �t

√
g/d = 150;

(c) (St, φi) = (60, 0.57) and time step �t
√

g/d = 15; and (d) (St, φi) = (60, 0.63) and time step �t
√

g/d =
15.

dealing with dry collapse. However, a small difference can be observed close to the summit
of the deposit. This observation reflects results reported by Daerr & Douady (1999).

The numerical results reported in figure 3 highlight the relevance of the mesoscale
approach to provide the main behaviours obtained in previous experiments.

3.2. Granular morphology during collapse: a simple geometrical model
In order to highlight similarities and differences of collapses in the range of (St, φi)
considered here, the time-dependant position of the centre of mass of the granular
material (Xg, Yg) in the (x, y) plane is first considered as a relevant quantifier of its
morphology during collapse. For this purpose, the trajectory of the centre of mass
(2Yg − Li)/Li, (2Xg − Li)/Li during the collapse, i.e. for t ∈ [0, tf ], is shown in figure 4
for different values of (St, φi). Surprisingly, one observes that all trajectories remarkably
collapse onto a single curve prior to reaching the final deposit. The only difference between
all the cases considered here is the position at which the trajectory of a given (St, φi) stops
onto this universal curve (see, in particular, the inset of figure 4). Note that this observation
confirms the experimental results reported by Bougouin & Lacaze (2018) for constant
φi ≈ 0.64. Obviously, a closer investigation indicates some small deviations, mostly at
the early stages of the collapse particularly for small φi and small St (light grey squares).
Assuming these deviations to be of second order, we focus here on the main curve holding
all these trajectories.

The trend of the trajectory of the centre of mass can be predicted by deriving the
trajectories of simple geometric models. In particular, according to the shapes observed
for small spreading length situations and larger ones, one considers that the shape of the
collapse remains either trapezoidal or triangular during the entire collapse. We obtain for
the trapezoidal shape and the triangular shape, respectively,

2Yg − Hi

Hi
∼ −

(
2Xg − Li

Li

)1/2

and
2Yg

Hi
∼

(
2Xg

Li

)−1

. (3.1a,b)

These two solutions are plotted in figure 4 with dashed line and solid line, respectively.
Such simple solutions are shown to predict quite well the numerical data far from the initial
state, i.e. for ((2Xg − Li)/Li, (2Yg − Hi)/Hi) sufficiently far from (0, 0). In the latter case,
the trapezoidal and triangular predictive models give an identical trend. However, closer to
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Figure 4. Trajectories of the dimensionless position of the centre of mass ((2Yg − Li)/Li, (2Xg − Li)/Li)
(inset: log–log representation). Light grey symbols, dark grey symbols and black symbols correspond to
φi = 0.57, φi = 0.59 and φi = 0.63, respectively (squares, St = 6 × 10−2, and circles, St = 6 × 10−1). Solid
line (triangular shape) and dashed line (trapezoidal shape) correspond to model (3.1a,b).

the initial state, i.e. ((2Xg − Li)/Li, (2Yg − Hi)/Hi) ≈ (0, 0), the trapezoidal model gives
a better estimation of the collapse evolution in the range of parameters considered here
(dashed line). This is in accordance with the small aspect ratio a = 0.5 considered here,
for which the granular medium remains in a trapezoidal shape during most of the collapse
and particularly at the early stages, even if the final rest state can be closer to the triangular
shape for some cases (small φi and small St, for instance). Note that it has been shown that
situations with larger a are better estimated by the triangular model, as shown in Bougouin
& Lacaze (2018) for laboratory experiments.

Even if these simple models give a first insight into the dynamics of the collapse, the
final rest state remains unpredicted. In order to close model (3.1a,b), i.e. to predict the final
state of the granular collapse, it would necessary to prescribe the time scale of the collapse
and one of the final state morphological properties, such as the final spreading length or
the final height or even the deposit slope. This is discussed in the next section.

3.3. Final-state morphology and time scale
In order to quantify the combined influence of (St, φi) on both the final state and the time
scale of the collapse, figure 5(a–c), respectively, show the final run-out r = (Lf − Li)/Li,
the mean deposit slope tanα and the dimensionless collapse time scale T95/Tc, as
functions of St and for several φi (φi = 0.57, green symbols; φi = 0.59, red symbols;
and φi = 0.63, blue symbols). In figure 5(b), the mean deposit slope tanα is defined
as tanα = Lf /Hf for a triangular deposit and as tanα = (Lf − Lb)/Hf for a trapezoidal
deposit (see inset of figure 5(b) for sketches and corresponding deposit lengths). Also
shown in figure 5(b) is the maximum deposit slope tanαt obtained at the top of the deposit
(dots). In figure 5(c), T95 corresponds to the time at which 95 % of the final spreading
length is reached by the front of the granular avalanche. Two different characteristic
times Tc have been considered here (full symbols and open symbols in figure 5c) and
defined as in Bougouin & Lacaze (2018). A so-called free-fall characteristic time Tc =
Ti = √

2ρpHi/(ρp − ρ)g corresponds to the time that a particle needs to fall from a height
Hi with a constant acceleration induced by gravity g, assuming no interaction with the
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Figure 5. (a) Dimensionless run-out r = (Lf − Li)/Li, (b) mean deposit slope tanα as defined in the text
(squares) and maximum deposit slope tanαt (dots) as sketched in the inset and (c) dimensionless time
scale T95/Tc, all as a function of St (green symbols, φi = 0.57; red symbols, φi = 0.59; and blue symbols,
φi = 0.63). Full symbols in (c) correspond to Tc = Ti while open symbols are for Tc = Tv (see text for
definitions of Ti and Tv). In (a,b), horizontal small black lines at large St correspond to dry simulations of
the present configuration for φi = 0.57 and φi = 0.63, respectively, while dark grey lines are extracted from
the experimental results of Lajeunesse et al. (2005).

surrounding fluid (full symbols in figure 5c). A second characteristic time corresponds
to a viscous time scale that a grain needs to fall from a height Hi when its velocity
remains constant as an equilibrium between weight and viscous drag. In this case, one can
write Tc = Tv = 18ηHi/(ρp − ρ)gd2 and the corresponding results are shown by empty
symbols in figure 5(c).

When St is large enough, St ≥ 10, figure 5(a) shows that (Lf − Li)/Li is independent
of φi and reaches the expected dry situation (grey horizontal line from experiments of
Lajeunesse et al. (2005) and black horizontal lines from dry DEM simulations; dry
DEM simulations are performed by removing the fluid solver on the same granular
configuration). The spreading length then clearly decreases with decreasing St when the
initial packing is dense enough, φi = 0.63 and to a lesser extent φi = 0.59, as could be
expected from the role of viscous dissipation. Yet, the opposite trend is observed for the
initial loose packing, φi = 0.57. In particular, (Lf − Li)/Li increases with decreasing St,
reaching a maximum around St = 0.12. For St < 0.12, the spreading length slightly
decreases with St as for the dense situations, but keeping a value larger than that for
the large-St limit. For all φi reported here, (Lf − Li)/Li reaches a plateau when St � 1,
whose value increases for decreasing φi. Accordingly, figure 5(b) shows a similar trend
for the deposit slope tanα (squares). A noticeable difference, however, is observed at

912 A15-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1088


L. Lacaze, J. Bouteloup, B. Fry and E. Izard

large St, where a small difference in the deposit slope tanα (as it is defined here) is
obtained. This remains in the range of values reported from experiments (horizontal grey
line from Lajeunesse et al. (2005)) and dry DEM simulations (horizontal black lines).
This difference at large St quantifies the observations reported in figure 3(c,d), and is
probably a signature of previous experimental observation on a similar configuration
(Daerr & Douady 1999). Finally, the maximum slope close to the top of the deposit
tanαt supports previous observations (dots in figure 5b). Small differences between tanαt
and tanα somehow measure an apparent uncertainty between the macroscopic behaviour
induced by (St, φi) on the shape of the final deposit and a local manifestation of different
spatio-temporal dynamics, close to the front or close to the upper part of the deposit. Then,
accordingly, the influence of (St, φi) is considered as remaining small for St � 1.5, above
which tanαt no longer depends on St or φi.

At large St, the time scale of the collapse scales with a free-fall situation for which the
fluid is disregarded (see full symbols in figure 5c). This time scale then strongly increases
when St decreases (full symbols in figure 5c) to reach a viscous time scale whatever φi
(open symbols in figure 5c). One observes here that the regime of the collapse, viscous
versus free-fall, changes for 1 < St < 10, actually close to St ≈ 1.5, like the transition
observed for the deposit shape mentioned previously. This confirms the influence of the
viscous dissipation on the final deposit. Yet, fluid viscosity can act in a very different
manner on the dynamics and the deposit when St → 0, depending on the value of φi. A
non-intuitive consequence is a possible enhancement of the spreading length due to the
fluid viscosity. This means that the influence of the fluid viscosity is twofold: it not only
slows down the collapse, as could be expected through St whatever φi, but also plays
another role through φi at given St. The only other source of dissipation is obviously
the granular friction, which has therefore to be strongly affected by φi. The rheological
properties of the granular material then play a major role on these observations. This will
be discussed in § 4.

3.4. An effective St definition: unifying closure models and laboratory experiments
Before discussing the rheological properties, we focus on the generalization of the
above-mentioned results regarding the fluid phase closure models and with respect to
experimental data available in the literature. So far, we have provided results for a given set
of parameters of the closure models (2.6) and (2.8). According to the results discussed in
the supplementary material, this specific set of parameters should contain all the required
physics of the fluid phase at the microscale, smaller than d, to provide the expected
behaviour of the collapse, at least qualitatively. This would mean that the influence of a
specific choice of the closure model, in the range of that proposed in § 2.2, could only affect
the dynamics quantitatively. We will show in this section that this quantitative influence of
the closure models can actually be simply accounted for by defining an adequate effective
Stokes number. Moreover, this will then be discussed in light of experimental results to
highlight their predictability from the present simulations.

We have shown previously that the collapse is strongly affected by the transition from
the viscous regime towards the free-fall regime. This transition has been shown to be
controlled by the St number according to many configurations involving fluid–particle
interactions. One can thus anticipate that closure models, affecting viscous dissipation at
the microscale, should modify the critical range of St characterizing the transition from
the viscous regime towards the free-fall regime. However, the qualitative trend obtained
previously by varying (St, φi) should be maintained.
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Figure 6. (a) Ratio of the spreading length Lf − Li to the dry one Ld
f − Li as a function of the effective

Stokes number St∗ = St × η/ηM
eff (open symbols) or St∗ = St/(φi(1 − φi)

−ξ ) (full symbols) for the initially
dense configuration φi = 0.63 (see text for details): simulations for (ξ = 1, ηM

eff /η = 1 + 5φ/2) (squares) and
an extra lubrication model (circles), (ξ = 2, ηM

eff /η = 1 + 5φ/2 + 7.6φ2 + 16φ3) (upward-pointing triangle)
and (ξ = 3, ηM

eff /η = 1 + 5φ/2 + 7.6φ2 + 16φ3) (downward-pointing triangle); and experimental data from
Bougouin & Lacaze (2018) (crosses with uncertainty). (b) Mean deposit slope tanα as a function of φi:
numerical simulations for (ξ = 1, ηM

eff /η = 1 + 5φ/2) and St ≈ 6 × 10−3 (black squares with uncertainty;
blue squares correspond to the same simulations but shifting φi by ≈ 0.012, a value based on the difference
of rheological parameters between experiments and simulations, as explained in § 4.1), experimental data from
Rondon et al. (2011) for St ≈ 5 × 10−2 (small dots) and for St ≈ 5 × 10−2 and a ≈ 0.5 or a ≈ 0.65 (big dots).

To highlight that assumption, different models have been considered for φi =
0.63 and varying St. The results are reported in figure 6(a). The different symbols
correspond to different closure models, namely (ξ = 1, ηM

eff /η = 1 + 5φ/2) (squares;
circles correspond to the same closure models but with an extra lubrication force added
into the DEM contact model as in Izard et al. (2014)), (ξ = 2, ηM

eff /η = 1 + 5φ/2 +
7.6φ2 + 16φ3) (upward-pointing triangles), and (ξ = 3, ηM

eff /η = 1 + 5φ/2 + 7.6φ2 +
16φ3) (downward-pointing triangles). One shows in this figure that providing a relevant
definition of St, say St∗, allows the different cases almost to collapse onto a master curve.
In particular, this modification of St includes the influence of φi through the effective
models as St∗ = St × η/ηM

eff (open symbols in figure 6a) or St∗ = St/(φi(1 − φi)
−ξ ) (full

symbols in figure 6a), i.e. accounting for the φi contribution included in either the effective
viscosity closure model or the effective drag closure model, respectively. Note that, for
the specific situation of an additional lubrication force in the contact model (circles),
the definition of St∗ chosen as St∗ = Stη/ηM

eff uses ηM
eff /η = 1 + 5φ/2 + 7.6φ2 + 16φ3,

even if the first-order Einstein viscosity was used here, as lubrication adds dissipation,
which is not incorporated in the fluid phase solver. Then, one shows that models used
for drag and/or viscosity, and even lubrication, only shift the transition from viscous to
free-fall regimes, which could be easily understood using an appropriate definition of the St
number. This is a remarkable result, as it provides the relevance of the mesoscale approach
for modelling immersed granular flows, even if the accurate closure models to be used are
still debated.

A comparison of the results with available experimental data is given in figure 6. More
particularly, figure 6(a) compares the influence of St in a dense configuration φi ≈ 0.64
on the spreading length as experimentally studied by Bougouin & Lacaze (2018), and
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figure 6(b) shows the comparison of the deposit angle as a function of φi at small St as
reported by Rondon et al. (2011). In figure 6(a), the final spreading length is shown relative
to the dry one. This is done to ensure comparability between the numerical simulations and
the experiments, for which the bottom surface is different. In figure 6(b), the comparison
is done on the deposit slope tanα. Moreover, note that, here, the values of St between
numerical simulations and experiments are slightly different. However, their small values
ensure a viscous regime, for which the final state remains roughly unchanged up to St ≈
10−1. In both cases (figure 6a,b), a good agreement is obtained between the numerical
simulations and the experimental data. In particular, the evolution of the final deposit as a
function of (St, φi) is clearly captured and, moreover, the quantitative ranges of evolution
are in reasonable agreement. Note that, as the value of φi is very sensitive, we also provide
in figure 6(b) results for which φi is slightly shifted for the numerical data (blue squares;
the shift value is not arbitrary and is based on the difference of equilibrium rheological
states obtained in experiments and simulations as explained in § 4).

It can be noted that adding φi in St∗ only accounts for the rate of fluid dissipation induced
by compaction in the granular pores. This allows one to capture the relevant range of
variation of the final state as a function of fluid dissipation (figure 6a) but not to provide,
solely, an explanation for the influence of φi at given St reported in the previous section.
In fact, the latter highlights a too significant influence on the final state to be attributed
only to the definition of St∗. This shows again that the obtained results are to be linked to
a significant influence of the rheological properties of the granular phase.

4. Rheological model of the granular phase

Following Lacaze & Kerswell (2009), we use here a coarse-graining approach to extract
the equivalent stress tensor of the granular medium in this unsteady configuration. We do
not recall this methodology here, as it has become quite standard, and we simply refer
the reader to Goldhirsch & Goldenberg (2002) for details. It should be noted that the
granular collapse is an interesting configuration to test and validate rheological models
– as equilibrium models obtained from steady and one-dimensional shear flows – in
the case of unsteady and multi-directional shear configurations. Moreover, it allows one
to extract out-of-equilibrium local behaviours, which could be significant for unsteady
configurations and required to improve models. In return, the averaging procedure of
the coarse-graining method has to be localized in space and time to extract the local
component of the shear and stress tensors, which are space- and time-dependent (Lacaze
& Kerswell 2009). This usually leads to relatively dispersed results, as will be shown in
the following. Note, however, that the granular collapse allows one to cover a wide range
of dynamical properties such as shear rate and stress contribution, allowing most of the
rheological law to be extracted, during a single event.

Here, coarse graining is performed on a regular grid in the (x, y) plane of resolution
2d at different times of the collapse. The averaging procedure is performed over volumes
of Gaussian shape in (x, y) of standard deviation d and invariant in the z direction. From
the coarse-grained results, the rheological law will be characterized by the local volume
fraction φ, which can also be referred to the local state of the granular material, and the
coefficient of local effective friction μ defined as

μ = ‖〈τ 〉p‖/〈p〉p, (4.1)

with both the deviatoric contribution of the granular stress tensor 〈τ 〉p and the granular
pressure 〈p〉p being obtained from the coarse-graining method. Once again, in such a
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configuration, all these quantities depend on (x, y) and t. In the case of a 3-D flow, ‖ · ‖
refers to the second invariant of a tensor.

The μ(I) rheology as defined in Jop, Forterre & Pouliquen (2006) is used as the relevant
rheological model, but including the extension of Trulsson et al. (2012) defined when
transition from viscous to free-fall granular flow occurs, as observed, for instance, when
increasing St (see previous section). Note that, in gravity-driven configuration, a distinction
is sometimes made between inertial and free-fall regimes, for which ‘inertial’ is referred
to as the state of the fluid drag at large Rep. However, Bougouin & Lacaze (2018) shows
that a fluid-inertial regime that would differ from the free-fall regime is hardly observable
in the range of properties of the immersed granular collapse covered here. Thus, we do
not clearly distinguish the inertial regime and the free-fall regime, as they both share quite
common features for the granular phase. In Trulsson et al. (2012), the high-St limit is
referred to as an inertial regime in their neutrally buoyant configuration. However, inertial
refers to the inertia of the grain and the rheology then shares the same features as for
the dry situation. This is basically the same as the free-fall case considered here, in which
gravity now drives particle inertia through their apparent weight, i.e. weight and buoyancy.

The rheological model defines the effective friction μ of the granular material as
a function of a single dimensionless number, comparing a time scale of macroscopic
deformation of the granular media induced by a shear ‖〈γ̇ 〉p‖ and a microscopic time
scale of rearrangement of the media due to a confining granular pressure 〈p〉p. Depending
on the flow regime, Cassar et al. (2005) have proposed two different relevant definitions
for this dimensionless number, say J in the viscous regime and I in the free-fall regime.
Trulsson et al. (2012) then proposed a combination of these different definitions I and J,
labelled K, unifying a large range of St, from the viscous regime to the free-fall regime.

One therefore uses the dimensionless number K, which can be written as

K = J + βI2, with

∣∣∣∣∣∣∣∣

J = η‖〈γ̇ 〉p‖
〈p〉p

,

I = ‖〈γ̇ 〉p‖d√〈p〉p/ρp
,

(4.2)

where β is a constant, found to be ≈ 0.65 in Trulsson et al. (2012). It should be noted that
this value of β was found for 2-D simulations. In the present case of 3-D simulations, a
different value could be obtained. However, in the range of parameters considered here,
small variations of β around this reference value do not show any significant improvement
for universal collapse of the rheological data. It has been chosen to be set to the value
already proposed by Trulsson et al. (2012). Note that dedicated 3-D simulations should
help in adjusting this parameter more accurately for 3-D configurations.

4.1. Influence of St in the loose packing configuration
In this section, we focus on the initial loose packing configuration, i.e. φi = 0.57.
This initial case is first considered as most of the initial column contributes to the
granular motion, while for large φi, most of the bottom-left corner remains static during
the collapse. It will be shown that this configuration more clearly highlights an equilibrium
state according to the rheological and state parameters (φ, μ), as obtained in steady flows.

The discussion on the rheological results obtained from the coarsening method is first
discussed over the entire collapse without making any distinction between specific regions,
i.e. over the domain A ∈ {x > 2d, y > 2d, y < h(x, t)}, with h the time-dependent height
profile of the granular medium, and over a linear time-stepping scale, as t ∈ [0, T95] with a
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Figure 7. (a) Volume fraction φ and (b) effective coefficient of friction μ as functions of K for (St, φi) = (6 ×
10−3, 0.57) (light green dots) and (St, φi) = (6, 0.57) (dark green dots). Inset: average data on a regular K scale
from rough local data. Solid lines correspond to model (4.3) with φc = 0.592, a = 0.18, μc = 0.24,�μ = 0.6
and

√
K0 = 0.2. Dashed lines correspond to the model used at large St and extracted from figure 8(b), i.e.

φc = 0.6 and μc = 0.29, keeping the other parameters equal to the former case.

time step T95/10. Note that T95 is a function of St; thus this time stepping accounts for the
different dynamics of the collapse to cover regularly the full range of evolution. Moreover,
boundaries are excluded from the analysis, as they would need a specific attention such as
an adapted coarse-graining approach (Weinhart et al. 2012).

Only the influence of St is thus considered here. The results obtained from the
coarse-graining approach are shown for (St, φi) = (6 × 10−3, 0.57) (light green symbols)
and (St, φi) = (6, 0.57) (dark green symbols) in figure 7. Note that larger values of St have
been performed up to St = 60, for which no significant difference is observed from St = 6.
Thus St = 6 is discussed here without altering the analysis. The volume fraction φ and the
effective friction μ are plotted as functions of K in figures 7(a) and 7(b), respectively. We
can first note that, beyond an important dispersion of the results as anticipated, φ and μ
show a clear evolution with respect to K, thus highlighting the relevance of the parameter K
as the controlling dimensionless parameter to describe the rheology of immersed granular
material. Moreover, the two different cases (St, φi) = (6 × 10−3, 0.57) and (St, φi) =
(6, 0.57) nearly collapse onto a similar trend curve, even if a slight difference is actually
observed, as will be discussed in the following. These observations reinforce the role of
K, whose purpose is to unify the different regimes from viscous to free-fall.

The results obtained here show that, at small φi, the rheology is not significantly affected
by St, and that the obtained critical volume fraction φc = φ(K → 0) is larger than that in
the initial state. These observations suggest that the rheological state is close to a somehow
universal one, independent of the initial state, which should therefore be expected to be
the one obtained for steady-state systems. We thus compare these results to the model
proposed by Trulsson et al. (2012) obtained for steady state and considered here as the
equilibrium state rheology. This model can be written as

φeq = φc − a
√

K,

μeq = μc + �μ√
K0/K + 1

,

⎫⎪⎬
⎪⎭ (4.3)

where subscript eq stands for equilibrium. In figure 7, black solid lines correspond
to the model (4.3) with φc = 0.592, a = 0.18, μc = 0.24, �μ = 0.6 and

√
K0 = 0.2.
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Figure 8. (a) Evolution of 〈K〉 as a function of time t/T95 over the domain AD (see text for details) for
(St, φi) = (6 × 10−3, 0.57) (black squares) and (St, φi) = (6, 0.57) (grey squares). (b) Plot of μc (black
squares) and φc (grey circles) as functions of St. Vertical lines in (b) indicate the typical uncertainty in
evaluating μc and φc.

These values correspond to the best fit that can be obtained from the data shown in figure 7
for St = 6 × 10−3, which shows less dispersion. Moreover, the values for�μ and

√
K0 are

consistent with results obtained for the dry collapse (Lacaze & Kerswell 2009). This leads
to values of the fitting data that are in reasonable agreement with what is obtained in the
literature. It can also be noted at this point that the usual value of φc found in experiments
is around 0.58 (see, for instance, Pailha & Pouliquen 2009). The ≈ 0.012 difference of
φc between experiments and simulations has thus been used as the shift value for φi in
figure 6(b) (blue symbols).

The agreement between numerical results and the equilibrium model in figure 7
confirms the reliability of this model in the case of an unsteady and 3-D configuration
for a large range of St, at least for φi = 0.57. However, a closer inspection of the results
suggests that the influence of St is not non-existent, and that the spatio-temporal domain
of extraction of the rheological characteristics requires specific attention, as it highlights
different states during collapse. This point is discussed in the following, and will also be
considered attentively in the next section.

As mentioned above, the general rheological trend given in figure 7 is obtained at 10
regularly spaced time steps for t ∈ [0, T95]. At large St, this includes both accelerating and
decelerating stages of the collapse, while at small St it only includes decelerating stages.
This is highlighted in figure 8(a) in which the average value 〈K〉 is plotted as a function
of t/T95 for St = 6 × 10−3 and St = 6, and with 〈K〉 being the spatial average of K over
the non-static area AD ∈ {x > 2d, y > hs(x), y < h(x, t)}, where hs is the height profile
delimiting the granular region which remains static for t ∈ [0, T95].

We now focus on the decelerating stage, referred to as the resting stage, which
is characterized as the time interval of decreasing 〈K〉. Note that, according to the
results shown in figure 8(a), the case St = 6 × 10−3 is not significantly affected by this
new procedure, as previous results were already obtained in the resting stage. However,
this is somehow different for St = 6, for which part of the coarse-grained results are
removed with this new procedure. It explains the more important dispersion of results
for St = 6 in figure 7. Using this new procedure, each St is investigated independently.
The insets of figure 7 show the average values of φ and μ, respectively, obtained on AD
during the resting stage, for the two values of St considered previously. The average is
obtained here by binning the spatio-temporal rough data in log-scale compartments of K.
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This first confirms the K trend of both φ and μ. Moreover, μ and φ merge at large K for the
different St, typically K > 10−3 here, i.e. at the beginning of the resting stage. This would
naturally support the fact that the granular material has reached a universal equilibrium
state. However, according to the definitions of φc and μc in (4.3) and obtained as K → 0
during the resting stage, this refined investigation shows that they are both functions of St.
The dependences of φc and μc with St are shown in figure 8(b).

The evolution of μc(St) and φc(St) shown in figure 8(b) highlights a rapid transition
around St ≈ 1 delimiting two asymptotic behaviours at small St and large St, at which
plateaus are obtained. In particular, for both μc and φc, the values on these plateaus
are found to be slightly larger for St � 1 than for St � 1. Note that the value found
at St � 1 is very close to that reported for dry collapses in Lacaze & Kerswell (2009).
However, the physical reason for the sudden decrease of μc at small St remains unclear,
even if viscous/free-fall transitions are usual observations for several properties in different
configurations (see, for instance, Gondret, Lance & Petit (2002) for the case of particle
bouncing). It can be at least noted that this is associated with the state of the granular
medium for K → 0, as φc follows a similar trend, such that μc decreases with φc. This
indicates an influence of the history of the collapse on the final state, through St, which
leads to a small deviation from a universal equilibrium law.

For an unsteady configuration such as collapse, the state of the granular system and
its associated rheological law, described here by φ and μ during the resting stage, i.e.
for decreasing K, are close to the equilibrium law obtained for steady flows. However, the
unique function of K with constant parameters in (4.3) as obtained in steady configurations
is not clear in the state. Here, different states can exist for the same value of K. In the loose
configuration considered here, it has been shown to be possibly modelled by including a St
dependence in μc and φc, keeping the trend of the equilibrium model. To finish with, note
that the obtained evolution of μc(St) is in line with the conclusions drawn previously from
the final state shape of the initial loose packing case, i.e. the spreading length increases
while μc decreases for decreasing St (see figure 5b).

4.2. Influence of φi at small St
The same procedure can be followed to identify the influence of the initial volume fraction
φi. As the influence of φi is clearer at small St, we focus here on St = 6 × 10−3. In this
case, the granular flow remains in the viscous regime and then K = J. Figure 9 reports
the coarse-graining results obtained over the temporal interval t ∈ [0, T95] with a time
step T95/10 and over the spatial domain A ∈ {x > 2d, y > 2d, y < h(x, t)}, as done in the
previous section. More particularly, the volume fraction φ and the effective coefficient
of friction μ are plotted as functions of J for (St, φi) = (6 × 10−3, 0.57) (green symbols)
and (St, φi) = (6 × 10−3, 0.63) (blue symbols) in figures 9(a) and 9(b), respectively. Note,
again, that the equilibrium law is recovered for φi = 0.57 on this spatio-temporal domain,
as discussed in the previous section. Yet, as observed in figure 9, the case φi = 0.63 does
not show the same trend as for φi = 0.57; the influence of the initial decompaction of
the granular medium prior to collapsing cannot be disregarded from the rheological point
of view. This behaviour has been reported in Pailha & Pouliquen (2009), specifying a
dilatancy angle ψ having to be accounted for when defining the effective friction angle.
Following their analysis, we define the dilatancy angle ψ as

tanψ = ∇ · 〈v〉p. (4.4)
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Figure 9. (a) Volume fraction φ and (b) effective coefficient of friction μ as functions of J for (St, φi) = (6 ×
10−3, 0.57) (green dots) and (St, φi) = (6 × 10−3, 0.63) (blue dots). Inset of (a): Angle of dilatation tanψ (4.4)
as a function of φ for (St, φi) = (6 × 10−3, 0.63). (c) Corrected coefficient of friction μ− tanψ as a function
of J (symbols are similar to panels a,b). Note that the dilatation effect for φi = 0.57 is hardly observable, so its
correction tanψ has therefore been neglected for this case (green dots in c); and the dilatation angle correction
tanψ is only observable when grain motion is significant enough, so data below J ≈ 10−4, i.e. in the plastic
region, have therefore been disregarded for φi = 0.63 (blue dots in c). Solid lines in (a,c) correspond to model
(4.5) with φeq = φc. Solid line in (b) corresponds to model (4.3).

The rheological model (4.3) can then be modified to include the influence of the
dilatancy angle ψ as discussed in Roux & Radjai (1998) and Pailha & Pouliquen (2009),

tanψ = b(φoeq − φeq),

μoeq − tanψ = μc + �μ√
K0/J + 1

,

⎫⎬
⎭ (4.5)

where subscript oeq stands for out of equilibrium. According to this model, μ− tanψ
is plotted as a function of J in figure 9(c), with the same symbols as previously. For
φ = 0.63, only values above J ≈ 10−4 are reported here. As will be shown later, this is
actually similar to considering only the moving region of the granular medium after the
initial stages of the collapse corresponding to the initial expansion of the granular material.
Below J ≈ 10−4, the μ− tanψ does not collapse on the same curve (not shown here). The
reason can probably be attributed to the connection with the plastic region, which is not
well captured by the μ(J) rheology (probably related to the behaviour of the μ(I) rheology
at small I as discussed in Barker & Gray (2017)). This very specific behaviour should be
addressed in future works but is beyond the scope of the present paper, as it does not
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significantly affect the physics and the dynamics of the collapse. However, for J > 10−4,
one obtains a collapse ofμ− tanψ onto a single function of J for φi = 0.57 and φ = 0.63.

In order to predict simply the rheological behaviour shown in figure 9, we can first
assume that φeq ≈ φc in (4.5), as it is shown to be roughly constant in the inset of
figure 9(a) , where tanψ is shown to be a single linear function of φ whatever J. This
is, moreover, shown here to be equal to φc = 0.592 (intersection of the solid line and
tanψ = 0 in the inset of figure 9a), similar to the value obtained with model (4.3) for
(St, φi) = (6 × 10−3, 0.57). The solid lines in figure 9(a,c) correspond to the model (4.5)
with φeq = φc keeping the values of μc, �μ and K0 obtained previously and b = 5.5.
This model prescribes relatively well the trends of rheological parameters obtained from
the simulations, particularly for μ− tanψ as a function of J and tanψ as a function of
φ, highlighting the influence of the deviation of the volume fraction φ with respect to a
reference value φc. Nevertheless, this model does not allow the trend of φoeq as a function
of J to be provided, i.e. model (4.5) is not closed as we basically end up with one equation
for two unknowns (φoeq, μoeq).

A slightly more advanced approach to close the rheological model (4.5) in our
configuration would be to prescribe φoeq. This is not necessarily an obvious task without
solving an appropriate time-dependent equation. For the sake of simplicity, we propose
in the following a prediction based on the expected behaviour of φoeq, or more likely of
tanψ , during the collapse. For that purpose, we rewrite the dilatancy angle ψ such that

tanψ = − 1
φ

Dφ
Dt
γ̇−1 = − 1

φ

Dφ
Dt̃

J−1, (4.6)

where t̃ = t/tm with tm = η/〈p〉p is a microscopic time scale of rearrangement of the
granular material in the viscous regime (Cassar et al. 2005). As dilatation/compaction
are precisely a rearrangement process, then we can assume that (1/φ)Dφ/Dt̃ = O(1) and
then tanψ ∼ J−1. That said, we seek a solution that is also regular when J → 0. As shown
in figure 9(a), φ(J → 0) can take several values. However, these values can be anticipated
to be either φi or φc, depending on the situation. These situations can be distinguished, as
J → 0 at two different stages of the collapse, say at the very beginning of the collapse and
when reaching its final rest state. In particular, the former case φ(J → 0) = φi is more
likely to be expected at the initial stage of the collapse, when the granular medium starts
from an imposed volume fraction φi. This will be referred to as the initiation stage. The
latter case, φ(J → 0) = φc, on the other hand, is more likely to be reached at the end of the
collapse when the granular material returns to rest. As already discussed in the previous
section, this resting stage could be considered as mainly described by its equilibrium state.
This can be summarized as φ(J → 0, t → {0; tf }) = {φi;φc}. A solution that would be
consistent with (4.5) and (4.3) when J → 0 should then have the form tanψ → b(φi − φc)
for an initiation state and tanψ → b(φc − φc) = 0 for a resting state.

We thus propose the following simple model that would account for the
out-of-equilibrium state during the granular collapse:

φoeq = φeq + ({φi;φc} − φc) J1

J + J1
,

μoeq = μeq + b ({φi;φc} − φc) J1

J + J1
,

⎫⎪⎪⎬
⎪⎪⎭

(4.7)

where {φi;φc} takes one of these values depending on the considered stage, i.e. initiation
versus resting. Note, again, that, with this description, the resting stage is nothing but
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an equilibrium state. In (4.7) J1 is a regularization term allowing one to reach a finite
non-zero value when J → 0. Its value is found here to be J1 ≈ 10−3 to fit the numerical
data. This can be seen as the transition from the dominance of the dilatation/compaction
effect towards a rheology controlled by the equilibrium state, this transition being found
here to be controlled by the number J.

In order to show the relevance of the above-mentioned model, one proposes in the
following to extract and to separate results from simulations during the so-called initiation
stage and resting stage, labelled in the following as (.i) and (.ii), respectively. For that
purpose, the distinction between these two stages has to be prescribed. We propose here
to use the temporal evolution of averaged quantities over the granular medium. We thus
plot the evolution of 〈J〉 and 〈φ〉 as a function of t/Tv in figure 10(a,b) for both φi = 0.57
(left column, labelled L for loose) and φi = 0.63 (right column, labelled D for dense).
Recall that Tv is a viscous time scale. Here, the procedure to obtain 〈·〉 is the same as that
explained in § 4.1 but over the domain ADt ∈ {x > 2d, y > hs(x, t), y < h(x, t)}, with hs
delimiting the flowing region and plastic region at each time step. Note that domain ADt
is slightly more restrictive than AD as used previously in § 4.1.

For the loose packing configuration L, one observes that the dynamics of the collapse,
measured as 〈J〉, quickly reaches its maximum inertial state, and then 〈J〉 → 0. At
the same time 〈φ〉 increases during all the collapse (see figure 10a). However, in the
log–linear representation of figure 10(a), the slope of 〈φ〉(t/Tv) suddenly changes. This
also corresponds to a change in slope of 〈J〉(t/Tv). This time is chosen as a delimitation
of region (L.i) and region (L.ii). For the dense packing configuration, the evolutions of
〈J〉 and 〈φ〉 are slightly different (see figure 10b). In particular, a first initial stage (D.0)
is observed during which 〈J〉 ≈ 0. This corresponds to the initial dilatancy during which
both 〈J〉 and 〈φ〉 evolve very slowly. Then 〈J〉 increases suddenly. The rest of the dynamics
can also be separated into two stages (D.i) and (D.ii) roughly similarly to the loose
configuration, and therefore corresponding to the initiation stage and resting stage. Here,
however, the delimitation is characterized by an inversion of evolution of 〈φ〉(t/Tv) which
decreases during (D.i) and increases during (D.ii). Note that, in both cases (loose and
dense), the chosen delimitation between stages (.i) and (.ii) more clearly corresponds to
a change in the evolution of the state of the granular medium through the evolution of
〈φ〉. However, it is clear from figure 10(a,b) that this separation also delineates dynamical
stages of the collapse, as for instance 〈J〉 is maximum during the initiation stage (.i), while
it slowly goes to zero during the resting stage (.ii). On the other hand, stages (.i) and (.ii)
actually correspond to significant difference in the mass evolution, and thus the run-out,
between loose and dense configurations (as shown by the snapshot of the grains’ positions
in figure 10a,b; black dots correspond to moving grains). In particular, T95 is obtained at
the end of stage (L.ii) for the loose configuration, while it is at the end of (D.i) or only
early (D.ii) for the dense one. Note that the latter observation explains the coarse-grained
results shown in figure 9, as will be discussed later.

Using the above-mentioned delimitation in time, the rheological and state variables μ
and φ are plotted as a function of J during stage (.i) (red dots) and stage (.ii) (green
dots) in figure 10(c,d). Here, coarse-graining is performed over the spatial domain ADt.
Even though coarse-grained results are a bit sparse, trends can be observed. These
coarse-grained results are compared to the model (4.7) for φ(J → 0, t → 0) = φi (solid
line) and φ(J → 0, t → tf ) = φc (dashed lines). The qualitative agreement between the
model and the simulations confirms the assumptions used to obtain model (4.7).

To finish, we come back to the results obtained in figure 9. Recall that, there,
coarse-grained results were obtained in the interval t ∈ [0, T95] over a regular time grid

912 A15-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1088


L. Lacaze, J. Bouteloup, B. Fry and E. Izard

Loose (L): φi = 0.57 Dense (D): φi = 0.63
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Figure 10. Time-dependent rheology of the viscous collapse, St = 6 × 10−3, for φi = 0.57 (loose L, left
column) and φi = 0.63 (dense D, right column). (a,b) Plots of 〈J〉 (black symbols) and 〈φ〉 (grey symbols),
averaged over domain ADt (see text for details), as a function of time (upper plots show snapshots of the
granular medium within the different phases with static grains in grey and moving grains in black). (c,d) State
and rheological parameters φ and μ as functions of J for the different phases as labelled in each panel. In
all panels, (.0), (.i) and (.ii) correspond to the different stages of the granular flow according to its dynamical
behaviour and rheological state: (.0) is an initial decompaction stage prior to collapsing only observed for dense
configuration (D.); (.i) corresponds to the initiation stage as an accelerating phase of the collapse; and (.ii) is
the resting stage during which the granular material goes to rest.

in a linear scale, and also includes the static region. According to results reported in
figure 10 and the scale of T95 for the loose and dense configurations, the spreading phase
t ∈ [0, T95] mostly lasts at the end of (L.i) and during (L.ii) for the loose configuration,
while it mostly lasts during (D.i) for the dense one. In figure 11, one compares model (4.7)
with this previously obtained coarse-grained results. The solutions of (4.7) are shown
here for {φi;φc} = φi = [0.57 : 0.01 : 0.63] (thin lines), with highlights on {φi;φc} =
φc (dashed line) and {φi;φc} = φi = 0.63 (solid line). We can first conclude that the
model proposed is in good agreement with numerical data showing its relevance for
out-of-equilibrium situations. Moreover, the dense packing configuration highlights more
clearly an out-of-equilibrium law model with {φi;φc} = φi while the loose packing
situation shows an equilibrium state, i.e. {φi;φc} = φc, during most of the spreading phase
t ∈ [0, T95]. This latter remark does not mean that the loose configuration is not affected
by the initiation stage, but that it happens on a short time scale compared to the entire
collapse one, unlike the dense configuration.
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Figure 11. Comparison of the coarse-graining results reported in figure 9 for φi = 0.63 (blue dots) and φi =
0.57 (green dots) with the model (4.7) (lines): (a) φ as a function of J and (b) μ as a function of J. Dashed lines
correspond to the equilibrium rheological model, i.e. φi = φc, while solid lines show the out-of-equilibrium
model for φi = [0.57 : 0.01 : 0.63].

5. Discussion

A simple phenomenological model is proposed in an attempt to provide a link between
the rheological models obtained in the previous section and the morphology of the final
state of the collapse. If the inertial acceleration of the granular slumping is not a dominant
contribution of the collapse, which seems reasonable for immersed configurations and
more particularly for small a, the final state is controlled by a balance between the macro
pressure gradient, linked to the height gradient, and the friction term close to threshold.
In other words, we suppose a quasi-static evolution of the collapse preventing the granular
medium spreading further than its state at the threshold of motion. Obviously more
complex situations could be imagined, particularly when increasing a, but it is shown
here that this assumption is sufficient to explain the influence of (St, φi) discussed so far.
Assuming the final deposit to have a trapezoidal shape, one simply obtains

tanα = μ and
Lf − Li

Li
= a

2μ
, (5.1a,b)

with μ some effective friction coefficient at the macroscopic scale to be determined. Then
the deposit only depends on the model prescribed to μ for a given a. According to the
results obtained in the previous section, the friction parameter, even at threshold, can vary
for varying St and φi. This leads to a finite interval of possible deposit slope, even for
a quasi-static situation. Based on (4.6) and (4.7), we propose here to write this friction
parameter as

μ = μc(St)+ b (φi − φc)
Γ̇ −1

tφ
, (5.2)

with tφ a time scale associated with the evolution of φ, from φi to φc during the initiation
stage, and Γ̇ −1 is a macroscopic time scale of deformation of the granular medium.

Defining these two time scales is not straightforward for such a predictive model, as
different stages of the collapse have been shown to highlight different behaviours. A
key point is thus to anticipate the stage controlling the final deposit. We thus base their
definition on the observations extracted from figures 5 and 10. In particular, we have shown
that φi influences the final deposit mostly at small St. Moreover, φi has been shown to affect
the rheological behaviour during the initiation stage. We thus anticipate that the initiation
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Figure 12. Geometrical characteristics of the final deposit: (a) the deposit angle and (b) the dimensionless
spreading length r = (Lf − Li)/Li as functions of St and different φi (green, φi = 0.57; red, φi = 0.59; and
blue, φi = 0.63). Symbols correspond to mesoscale VANS/DEM simulations (reported from figure 5a,b; see
the corresponding caption for details) and lines are model (5.3) with μc(St → 0) = 0.24 (solid lines) and
μc(St � 1) = 0.29 (dashed lines).

stage is of main importance at small St while it probably does not affect much the final
state at large St. Accordingly, Γ̇ −1/tφ should be order one at small St and decreases with
increasing St.

According to the definition of tφ as given in the previous section, i.e. a microscopic
time scale of rearrangement, we write tφ = η/�ρgHi + βd

√
ρp/�ρgHi, obtained for a

granulostatic pressure over the column height, and accounting for a viscous to free-fall
transition. Note that β is used here as in the definition of K for the sake of simplicity, as
the transition parameter from the viscous to the free-fall regime. Then tφ accounts for the
difference in time scale for rearrangement depending on the state, viscous versus free-fall.
According to the previous discussion, this time scale should be compared to a viscous time
scale of macroscopic deformation of the granular medium, then Γ̇ −1/tφ would actually be
of order one at small St. This therefore implies that the relevant deformation accounting
for dilatancy/compaction of the initial granular column is associated with a viscous scale.
It is thus written as Γ̇ −1 = η/�ρgHi, imposed by the balance between pressure gradient
and viscous shear. This leads to

μ = μc(St)+ b (φi − φc)
1

1 + βSt
√

Hi/d
. (5.3)

Figure 12 shows a comparison of this model for both the spreading length and final
deposit angle with numerical results. Here, each line corresponds to the St dependence
of the final deposit through the dilatancy/compaction term in (5.3), μc being the value
obtained in figure 8(b) either at large St (dashed lines) or at small St (solid lines). Even
if the quantitative agreement seems poor, it clearly captures the trend of the evolution of
the final state depending on (St, φ). Then the ingredient to understand and predict the
final deposit seems to be captured. Certainly, the specific evolution of the collapse and the
different stages observed depending on (St, φ) have not been explicitly considered here,
as, for instance, loose and dense configurations do not have a similar initiation stage and
resting stage. A better description and understanding of the physics of immersed granular
collapse would thus require an intermediate description between the mesoscale approach
and such a simple model. In particular, Euler–Euler simulations would be necessary to
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show the relevance of the local rheology obtained in the previous sections in the concept
of continuum modelling. A full shallow-layer prediction on the unsteady flow could then
be used to confirm the pertinent time scales required for a simple predictive model as
discussed here.

6. Conclusion

Numerical simulations of an immersed granular collapse have been reported. The objective
of the paper was to provide a characterization of immersed granular collapse with respect
to the Stokes number St and the volume fraction of the initial column φi, which have
been reported as the two parameters controlling the dynamics and the final deposit in
experimental studies. The relative influences of these two parameters have been studied
here using numerical simulations at a scale referred to as the mesoscale according to the
scale of the fluid resolution, the granular phase being solved using a Lagrangian DEM
approach. This method has been referred to as the VANS/DEM approach.

The influence of the two control parameters (St, φi) that characterize the immersed
granular column in this case can thus be investigated. First, their influences on the
dynamics and the final deposit have been considered. In particular, the influence of φi
is quite significant on the dynamics of the flow at small St, i.e. in the viscous regime as
reported by Rondon et al. (2011), but tends to disappear at large St, probably explaining
why its influence has mostly not been reported in dry granular flows. However, when
St → 0, varying φi can lead to very distinct behaviours, as it can enhance the mobility of
the granular material compared to the dry case for small φi, while the spreading length
decreases with decreasing St for large φi.

These simulations have then been used to provide the proposed viscoplastic rheological
models, based on models obtained for steady configurations in the literature. In particular,
the well-known μ(I) rheology has been considered as the rheological base model,
but accounting for both an extension to the inertial number K as defined in Trulsson
et al. (2012) unifying free-fall and viscous granular flows, and a dilatancy ψ model.
In particular, the rheology is characterized here by φ(K) and μ(K) obtained using a
coarse-graining method. The rheological behaviour has been studied by separating two
stages of the collapse: an initiation stage dominated by a dilatancy/compaction process
and a resting stage assumed as being characterized by an equilibrium rheological law as
in the steady configuration. The initiation stage has been shown to be strongly influenced
by φi. Accordingly, an extension of the equilibrium rheological model accounting for the
dilatancy/compaction effect has been proposed, referring to out-of-equilibrium rheological
states. This has been shown to be pertinent for the configuration studied in this paper.
However, it would have to be confirmed in other situations, as the assumptions made here
to obtain the model could be relevant only for the considered flow. The resting stage has
been shown to slightly depend on St. However, this latter observation remains unclear, as
it has no clear physical support. This would deserve specific attention, particularly on the
process of compaction during the resting stage, probably influenced by St.

To finish with, a link between this rheology and the shape of the final deposit has been
highlighted assuming a quasi-static evolution state towards an equilibrium between the
pressure gradient and a friction term at threshold. A comparison with the numerical results
shows that the influence of (St, φi) on the final state can be captured by this simple model.
A more refined model would be required to improve the quantitative evolution of the final
state in the (St, φi) parameter space.
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