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The flow in an axisymmetric contraction fitted to a fully developed pipe flow is
experimentally and numerically studied. The reduction in turbulence intensity in
the core region of the flow is discussed on the basis of the budgets for the
various turbulent stresses as they develop downstream. The contraction generates a
corresponding increase in energy in the near-wall region, where the sources for energy
production are quite different and of opposite sign compared to the core region,
where these effects are caused primarily by vortex stretching. The vortices in the
pipe become aligned with the flow as the stretching develops through the contraction.
Vortices which originally have a spanwise component in the pipe are stretched into
pairs of counter-rotating vortices which become disconnected and aligned with the
mean flow. The structures originating in the pipe which are inclined at an angle
with respect to the wall are rotated towards the local mean streamlines. In the very
near-wall region and the central part of the contraction the flow tends towards two-
component turbulence, but these structures are different. The streamwise and azimuthal
stresses are dominant in the near-wall region, while the lateral components dominate
in the central part of the flow. The two regions are separated by a rather thin region
where the flow is almost isotropic.

Key words: pipe flow boundary layer, shear layer turbulence, vortex interactions

1. Introduction
Flow subjected to strong axisymmetric strain in the streamwise direction has

considerable engineering interest. The viscous flow near a stagnation point, such as
for an impinging jet, experiences a strong deceleration which causes a rapid change
in the turbulent structure. Equally frequent are the contracting flows found in pipes
where a sudden area reduction is experienced, e.g. in the case where a large pipe is
connected to a smaller one or when a metering orifice is inserted in the pipe. In the
pipe systems of an alumina refinery plant, the scale deposition rate on the surface
of an axisymmetric contraction increases 2- to 3-fold compared to that of adjacent
straight pipes (Nawrath, Khan & Welsh 2006). Deposition of scale is undesirable, as it
results in the reduction of the active diameter or even in a complete blockage of pipes.

† Email address for correspondence: hjsung@kaist.ac.kr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:hjsung@kaist.ac.kr
https://doi.org/10.1017/jfm.2011.361


Effects of an axisymmetric contraction on a turbulent pipe flow 377

The direct cost of scale removal may contribute to as much as one quarter of the
operational costs of an alumina refinery. Such deposition is significantly affected by
the near-wall effects of a contraction. Metering nozzles with geometries regulated by
international standards, which are used when trading with oil and natural gas between
countries, for example, are perhaps among the economically most important examples.
Errors of the order of fractions of one per cent in the estimated flow rates may imply
millions of dollars of extra cost or income to the parties. It is therefore important
to understand what happens to the turbulence when the flow is exposed to rapid
straining.

The most studied case of the effect that a contracting flow has on the turbulence
has been the reduction in turbulent energy in wind tunnels caused by a strong
contraction. Based on a conservation of energy principle, Prandtl (1933) derived
expressions for the amount of reduction in the streamwise turbulence intensity that
could be obtained by a positive streamwise strain. This theory was improved by
Taylor (1935), who studied the problem from a vortex stretching point of view. The
problem of rapid distortions is treated in Fourier space by Batchelor (1953), assuming
that the changes happen so quickly that turbulent inertia and viscous forces may
be neglected. This leads to a predicted reduction in the streamwise normal stress
by (u′2x (ζ ))/(u

′2
x (ζ = 1)) = (3/4ζ 2)(log(4ζ 3) − 1) and a linear increase in the lateral

components by (u′2r (ζ ) + u′2θ (ζ ))/(u
′2
r (ζ = 1) + u′2θ (ζ = 1)) = (3/4)ζ when the area

contraction ratio ζ is large enough. In this case it was assumed that the initial
turbulence was isotropic and the turbulence level was sufficiently low to allow the
equations of motion to be linearized. While the predicted change in the streamwise
normal stress is in good agreement with observations, the equations for the changes in
the lateral components appear to significantly overpredict the increase in the turbulent
lateral energy.

Since these early analytical treatments of the straining effect on homogeneous
turbulence, a large number of analytical, numerical and experimental investigations
have been undertaken. The flow has been studied in experiments so the effects on
the mean flow and second-order moments are well known in the core region. Uberoi
(1956) investigated the effects of contraction ratio and Reynolds number. He found
that the longitudinal component decreases and the lateral component increases as the
flow accelerates through the contraction in absolute magnitudes, and the turbulence
Reynolds number has an insignificant effect on the performance of a nozzle. To
improve the isotropy of grid generated turbulence for the Reynolds stress tensor,
Uberoi & Wallis (1966) and Comte-Bellot & Corrsin (1966) used a contraction
downstream of the grid with area ratios of 1.25 and 1.27, respectively. Both studies
found that the turbulence was nearly isotropic at the exit of these contractions.
However, the results of the studies are different in the way the flow developed
further downstream. The results of Comte-Bellot & Corrsin (1966) indicate that the
isotropy persisted downstream of the contraction, whereas the turbulence tended to
return to its pre-contraction value in the results of Uberoi & Wallis (1966). Hussain
& Ramjee (1976) investigated the effect of the contraction shape with the same
contraction ratio. They found that the mean velocity and normal turbulence intensities
in the core region at the exit plane are unaffected by the contraction shape. In most
of the measurements performed along the symmetry axis of nozzles with a high
contraction ratio, the streamwise turbulence intensity first decreases and then increases
again downstream in the nozzle. Ertunç & Durst (2008) proposed measurement and
correction methods to detect and eliminate all major contaminations of velocity
fluctuation measurements. They found that, after applying the proposed correction
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methods, the streamwise turbulence intensity does not show any sign of increase in
the nozzle at high contraction ratios. The correction effect was also strong for the
transverse turbulent stresses.

Improved prediction methods became available as the rapid distortion theory (RDT)
was developed. Information about RDT may be found in Pope (2000), for example,
and the review paper by Savill (1987) gives information about how the theory
performs when the assumptions implicit in the method are not met. RDT may fail
if the distortion is not sufficiently fast for the viscous terms to be neglected or if the
turbulent energy level is not sufficiently low to allow the equations to be linearized.
For the case investigated in the present paper, which consists of a contraction fitted at
the end of a fully developed pipe flow, the centreline turbulence level is low but the
contraction is too long for viscous effects to be negligible. Therefore one may expect
RDT to predict an excessively fast distortion of the flow, as shown by Sreenivasan &
Narasimha (1978).

The effects of the axisymmetric contraction are well known along the axis of
symmetry of the contraction through previous studies. However, there seems to be
much more uncertainty as to the effect of the contraction on the lateral components.
In the present study, experiment and direct numerical simulation (DNS) are performed
to elucidate the effects of an axisymmetric contraction on a turbulent pipe flow. With
the introduction of DNS the flow structure in a contraction can be studied with high
degree of accuracy and in much more detail than is available from RDT. The purpose
of the present study has therefore been to perform DNS on a case where classical
methods are expected to fail. Obviously the current setup produces strong anisotropy,
due to the dominating cross-stream fluctuations. The streamwise vortex stretching
increases the angular velocity, suppressing streamwise energy in favour of cross-stream
fluctuations. The phenomenon is clearly connected to the influences of redistribution
and secondary production terms, caused by the streamwise acceleration. To investigate
the effects of Re, direct numerical simulations are presented for Re= 5300 and 15 000.
The experiment was carried out at Re = 35 000 for the same geometry. This was the
lowest Re for which high-accuracy data could be obtained in the present test rig. Some
Re effects must therefore be accounted for when comparing the DNS and the measured
data. The contraction ratio in the experiment was ζo = 8 and the test rig is shown
in figure 1(a). The effects of the contraction ratio are also examined in the low-Re
direct numerical simulations, which are performed for three contraction ratios, ζo = 2,
4 and 8. The variations of the Reynolds stresses in the contraction are scrutinized and
the budgets of the Reynolds stress equations are examined. Finally instantaneous flow
fields and the conditional structures are analysed to characterize the response of the
vortical structures in the contraction. In this paper we hope to shed more light on how
the streamwise mean strain rate modifies the structure of the turbulence in the flow.

2. Experimental details
The experiment was undertaken in the fully developed pipe flow test rig at the

Norwegian University of Science and Technology. The internal pipe diameter is
D= 186 mm and the length of the pipe corresponds to 83 diameters. The pipe is fitted
with pressure taps roughly at 8D intervals. At the entrance the pipe was fitted with
honeycombs and screens. The flow underwent a natural transition, as no tripping of
the flow was made. For a fully developed pipe flow the centreline turbulence intensity
is of the order of Tu =

√
u′2x /U ≈ 3.5 %, and since a considerable reduction through

the contraction was anticipated, it is essential to keep other disturbances at a minimum.
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FIGURE 1. Contraction design. (a) Pipe rig facility; (b) computation domain in the x–r plane
and grid points for Re = 5300 with ζo = 8 (grid points are plotted only at every fourth point
for clarity); (c) local contraction radius distribution. The inset shows the wall angle.

The test rig was therefore fitted with a large labyrinth settling chamber with damping
material inside. This was mounted behind the fan and connected to the pipe by means
of a flexible tube. In this way the pressure fluctuations generated by the fan were
eliminated. At the outlet, the pipe was fitted with contractions of various area ratios.
Here we concentrate on the one with the highest contraction ratio, ζo = 8. The length
of the contraction was 600 mm or about 3.2D and its shape was designed so that the
area-averaged mean velocity increased linearly from about x ∼ 1D into the contraction.
The design strain rate was dUm(x)/dx = 40 s−1. The shape of the contraction is shown
as circles in figure 1(c). The bulk velocity in the pipe for the present case was
Um,in = 2.83 m s−1, which produced a Reynolds number of Re= Um,inD/ν ≈ 35 000.

All data were taken using purpose-made single- and two-component hot-wire probes.
All probes were fitted with partly etched Pl-10 %Rh Wollaston wires. The mean flow
and second-order moments were obtained using 0.4 mm long 2.54 µm diameter wires.
The two-component probes were all fitted with 0.5 mm long wires with 2.54 µm
diameter. This corresponds to a spatial resolution of better than one Kolmogorov
length along the centreline of the pipe for all probes, deteriorating slightly as the
measurement points were shifted into the contraction. The probes were all calibrated
in situ by moving them close to the centreline and traversing a miniature total
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pressure probe equally far from the opposite side of the centreline. A fourth-order
polynomial was used to fit the voltage-velocity characteristics of the probe and the
effective angle method was used to describe the angular dependence of the signal
when using two-component probes. Further details of the calibration procedures may
be found in Bakken & Krogstad (2004). Purpose-made low-noise anemometers, filters
and amplifiers were also made for this experiment. The amplifiers were adjusted to
cover as much as possible of the range of the acquisition system and the filter cut-off
frequency was continuously adjusted to the frequency where noise started to affect
the dissipation spectrum. This ensures that the entire energy content in the signal is
captured. The sampling frequency was then set according to the Nyquist criterion.

3. Numerical method
The governing equations are the continuity and the Navier–Stokes equations for an

incompressible flow in cylindrical coordinates:
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(3.2)

The bulk velocity Um,in and the radius R at the inlet are used for non-
dimensionalization. The Reynolds number is defined as Re = Um,inD/ν, where D is
the diameter of the inlet. To simulate the flow in the axisymmetric contraction, we
introduce the generalized coordinates for the streamwise and radial directions, i.e.
(x, r)→ (η1, η2), and use a cylindrical coordinate for azimuthal direction (θ = η3).
The velocity components are transformed into the volume fluxes across the faces of
the cells qi or q, which are equivalent to using the contravariant velocity components
on a staggered grid multiplied by the Jacobian of the coordinate transformation. The
transformed governing equations can be written as

1
r

1
J

∂rq1

∂η1
+ 1

r

1
J

∂rq2

∂η2
+ 1

r

∂q3

∂η3
= 0, (3.3)

∂qi

∂t
+ N i(q)=−Gi(p)+ Li

1(q)+ Li
2(q), (3.4)

where N i is the convective term, Gi(p) is the pressure gradient term, Li
1 and Li

2 are the
diffusion terms without and with cross-derivatives, respectively. The terms in (3.4) are,
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(3.6)

where qj = γ j
kuk, q3 = u3, cj

k = ∂xj/∂η
k, γ j

k = J (ck
j )
−1, αjk = J (cm

j cm
k )
−1, J = (‖cm

j cm
k ‖)

1
2 ,

(x1, x2, x3) = (x, r, θ), (u1, u2, u3) = (ux, ur, uθ) and j, k, l,m = 1, 2. These terms are
similar to those proposed by Choi, Moin & Kim (1993), who introduced generalized
coordinates based on Cartesian coordinates.

The governing equations are integrated in time by using the fully implicit fractional
step method. All terms are advanced with the Crank–Nicolson method in time, and
they are resolved using a second-order central difference scheme in space with a
staggered grid. In the present study, we have tested two time-advanced methods:
the fully implicit decoupling method proposed by Kim, Baek & Sung (2002) and
the Newton iterative method (Choi et al. 1993). For the decoupling method, to
ensure the numerical stability for rather large Courant–Friedrichs–Lewy (CFL) number
(CFLmax ∼ 24) for the azimuthal velocity component at the first radial grid, one
additional iteration is needed for solving the intermediate velocity components whereas
the velocity components are solved without iteration in the original method proposed
by Kim et al. (2002). However, for the Newton iterative method, more than twelve
iterations are needed to solve the discretized nonlinear momentum equations. As
shown in figure 2, the results from the two methods are exactly the same, but the
Newton iterative method requires about three-fold total CPU time. In the present study,
computational cost can be reduced by using the fully implicit decoupling method.
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FIGURE 2. Comparison of the two methods: decoupling method (solid line) and Newton
iterative method (circles), at Re = 5300 with ζo = 8. (a) Mean velocity profile; (b) Reynolds
stresses. (i) x/R= 3.34; (ii) x/R= 4.90; (iii) x/R= 6.66.

The transformed Poisson equation for p was solved via fast Fourier transform along
the azimuthal direction and a multigrid algorithm was employed to accelerate the
convergence of the iterative procedure.

Direct numerical simulations of a contraction turbulent pipe for two Reynolds
numbers (ReD,in = 5300 and 15 000) and three contraction ratios (ζo = 2, 4 and 8)
defined as the ratio of the inlet area to the outlet area are performed. The
computational domain size is Lx = 10.2R, Lr 6 R and Lθ = 2π. The spatial and
time resolutions are summarized in table 1, where 1s+

η1 is defined as the distance
between two grid points at the solid wall and 1s+

η2 is the distance of the grid point
in the immediate vicinity of the wall. Non-uniform grid distributions were used in
the streamwise and radial directions, whereas a uniform grid distribution was used
in the azimuthal direction. To obtain the grid orthogonality at the boundary and the
grid clustering in the interior of the computational domain, an elliptic grid generation
method proposed by Spekreijse (1995) was used based on a composite mapping of a
nonlinear algebraic transformation and an elliptic transformation, shown in figure 1(b).
The computational time step used is 1t = 0.001R/Um,in and 0.0005R/Um,in for the
cases of Re = 5300 and 15 000, respectively. The total averaging time to obtain the
statistics is 132R/Um,in, sufficient to allow a particle to travel 17, 22 and 27 times
through the whole axial dimension at the bulk velocity for the cases of ζo = 2, 4 and 8,
respectively. Statistical quantities are averaged over time and the azimuthal direction.

Auxiliary simulations of the fully developed turbulent pipe flow were carried out
separately to obtain the inflow data. The stored instantaneous plane data of velocities
in the inflow simulation are provided at the inlet of the main simulation for each time
step. The convective outflow condition ∂u/∂t + c∂u/∂x = 0 is applied at the outlet
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ReD,in ReD,out ζo (Nx,Nr,Nθ ) 1s+
η1,min

1s+
η1,max

1s+
η2,min

(R(x)1θ)+max 1t+max

5300 7510 2 (512,128,256) 4.22 7.32 0.13 7.12 0.07
5300 10 600 4 (512,128,256) 5.45 11.50 0.13 9.20 0.21
5300 14 990 8 (512,128,256) 5.32 18.60 0.13 11.20 0.62

15 000 42 430 8 (1280,192,640) 5.19 16.10 0.18 9.720 0.51

TABLE 1. Simulation details.
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FIGURE 3. Comparison of turbulence statistics. (a) Mean velocity profile; (b) Reynolds
stresses at ReD,in = 5300; (c) Reynolds stresses at ReD,in = 15 000.

where c is the local bulk velocity. The no-slip condition is imposed at the solid wall.
The centreline condition for the radial velocity is obtained by averaging corresponding
values across the centreline (Akselvoll & Moin 1995). Derivatives of quantities that
are staggered with respect to the centreline can be obtained by differencing opposing
values across the centreline, accounting for reversals in the directions of the radial and
azimuthal unit vectors through the centreline. The periodic condition is applied in the
azimuthal direction. To ascertain the reliability and accuracy of the present numerical
simulation, comparisons of the turbulence statistics with previously published data
are made and presented in figure 3. The mean velocity profile normalized by the
friction velocity is shown in figure 3(a), where y+ = (R − r)uτ/ν and U+x = Ux/uτ .
Comparisons of the turbulence intensities and Reynolds shear stress are presented in
figures 3(b) and 3(c). The present results are in good agreement with the previous data
at both Reynolds numbers. This suggests that the resolution of the present study is
sufficient to analyse the second-order turbulence statistics.

4. Results and discussion
4.1. Mean properties

First, we examine the variation of mean variables due to the axisymmetric contraction.
Figure 4 shows the streamwise distributions of the bulk mean velocity and the mean
strain based on Um,in. The bulk mean velocity increases linearly in the constant strain
region, where the normalized strain rates are dUm(x)/dx = 0.18, 0.55 and 1.29 for
systems with ζo = 2, 4 and 8, respectively. The distributions of the pressure coefficient
along the centreline, Cp = (Pc.l.(x) − Pc.l.,in)/(ρU2

m,in/2) are shown in figure 4(c). In all
of the flows, Cp decreases monotonically all the way to the end of the computational
domain. The streamwise pressure gradient decreases linearly in the constant strain
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region and becomes a minimum at the end of the constant strain region. Figure 4(d)
shows the distributions of the skin friction coefficient, Cf = τw/(ρU2

m,in/2). In all of
the flows, Cf increases linearly in the constant strain region τw ∼ R (x)−2 in absolute
magnitude. After this region where the strain decreases, Cf rapidly decreases. However,
relative to Cf at the inlet, Cf is always higher when the flow enters the contraction.
A slight Re-dependence is evident in the Cp distribution for two different Reynolds
numbers with ζo = 8 in figure 4(c). This comes from the significant differences in Cf .
Figure 5 shows the variation of the friction velocity normalized with the local bulk
velocity Um(x) and Reτ defined as Reτ (x) = uτ (x)R(x)/ν. The local friction velocity
and Reτ increase rapidly in the region where the wall angle, defined as the angle
between the solid wall and the contraction axis, increases rapidly (figure 1c). In the
constant strain region, the local friction velocity decreases monotonically and Reτ
becomes constant due to the relation of τw ∼ R (x)−2.
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streamwise direction for Re = 15 000 with ζo = 8. The locations of x/R are 1.79, 3.34, 4.90
and 6.66 for ζ = 2, 4, 6 and 8, respectively.

Figure 6 shows the variation of mean velocities along the radial and streamwise
directions for Re = 15 000 with ζo = 8. Due to the homogeneity in the azimuthal
direction, the mean velocity vector reduces to U = [Ux(x, r),Ur(x, r), 0]. The mean
streamwise velocity increases and becomes very uniform as the local contraction ratio
(ζ = Um(x)/Um,in) increases, except for a very thin layer at the wall (figure 6a).
The magnitude of dUx/dr increases in the inner region and drops to zero at the
centreline. After x/R = 2(ζ = 2.3), the streamwise distributions of Ux are independent
of r except very close to the wall and increase linearly, dUx/dx = constant, in
the range 1 − r/R(x) > 0.1. Due to the contraction, negative radial velocity is
generated from the wall to the centreline. Ur becomes a minimum very near the
wall and then increases linearly to the centreline. This linear relation is easily
obtained from the continuity equation for mean velocity when dUx/dx is constant,
dUr/dr = −0.5 dUx/dx = constant. For the streamwise direction, Ur decreases rapidly
in the initial region of the contraction and gradually increases in the constant strain
region until it increases rapidly when the streamwise acceleration ceases at the end
region of the contraction. The variation trend of Ur magnitude is similar to that of
the wall angle (figure 6b). Downstream of the contraction, a small negative Ur still
remains. This means that Ux is decelerated in the inner region and accelerated in the
outer region as the flow again develops towards a new state of fully developed pipe
flow. The wall similarity is summarized in the Appendix.

4.2. Second-order turbulence statistics
The presence of an axisymmetric contraction significantly affects the turbulent flow
statistics. Figure 7 shows the variation of turbulence intensities normalized by Um,in

as a function of the radial distance from the wall, scaled with the local radius R(x).
Also included in the figures are the measurements for ζo = 8 taken at Re= 35 000. The
streamwise component of the turbulence intensities is most significantly affected by
the contraction in the outer region. For ζo = 2, the streamwise component decreases in
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FIGURE 7. Turbulence intensities based on Um,in. (a) Straight pipe; (b) x/R= 3.34; (c) x/R=
4.90; (d) x/R = 6.66. (i) Streamwise component; (ii) radial component; (iii) azimuthal
component.

the outer region, whereas the radial and azimuthal components are similar to those of
the straight pipe. For ζo = 4 and 8, the radial variation of the streamwise component
has two different regions in the contraction. As the local contraction ratio increases,
the streamwise component increases in the inner region and decreases in the outer
region. The near-wall peak locations in the streamwise component for ζo = 8 are
shifted closer to the wall and the peak value increases as Re increases. The global
features of the radial and azimuthal components affected by the contraction are similar.
The radial and azimuthal components relative to those of the straight pipe always
increase in the contraction region except the radial component near the wall region
∼1 − r/R(x) = 0.05, where the local minimum exists. This local minimum will be
discussed later by the change of the coordinate system. When the contraction ratio
is large enough (ζo = 4 and 8), the radial and azimuthal components rapidly become
dominant in the outer region. The turbulence intensities for ζo = 8 are almost the same
despite the different Reynolds numbers in the outer region. Thus, the contraction ratio
is the main parameter for characterizing the second-order turbulence statistics in the
outer region.

From previous experimental works of Uberoi (1956) and Ertunç & Durst (2008),
it is well known that the streamwise component of the turbulent kinetic energy is
reduced, but the lateral components are increased along the centreline. Figure 8 shows
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FIGURE 8. (a) Relative streamwise turbulent stress and (b) relative radial turbulent stress
based on Um,in, along the centreline.

the computed variations in the streamwise and radial turbulent stresses along the
centreline, compared with the previous experiments. The data are normalized by the
corresponding values from the straight pipe for comparison. The streamwise turbulent
stress rapidly decreases where the bulk velocity is relatively low, whereas the radial
turbulent stress increases almost linearly as the bulk velocity increases. The azimuthal
component is identical to the radial component at the centreline and has therefore not
been shown. The global trend of the variation of the turbulent stresses is in good
agreement with the previous experimental data despite the differences in the geometry,
Re and the contraction ratio. The data of Uberoi (1956) were measured from the
contraction duct for Rem = 3710 with ζo = 4, and the data of Ertunç & Durst (2008)
from the axisymmetric contraction for Reλ = 26.7 with ζo = 14.75. Ertunç & Durst
(2008) showed that the error correction of the hot-wire measurement data is important
when the contraction ratio is high, and the remarkable correction to the radial turbulent
stress should be done for most of the experiments performed, especially with high
contraction ratio nozzles.

Figure 9 shows the total turbulent kinetic energy k = 0.5(u′2x + u′2r + u′2θ ) normalized
by Um,in. In the inner region, the rapid increase of k corresponds to that of the
streamwise turbulence intensity. For ζo = 2 and 4, k is unaffected by the contraction
in the outer region. This means that the energy gain of the radial and azimuthal
stresses is similar to the energy loss of the streamwise stress in the outer region.
For ζo = 8, the equilibrium of the energy redistribution between the streamwise and
lateral stresses holds for x/R < 3.34. After this range, k gradually increases in the
outer region. This increase indicates that the energy gain of the lateral stresses is more
than the energy loss of the streamwise stress. The turbulence intensity based on the
local bulk velocity is the major parameter in the design of the contraction. As the
flow is accelerated, the streamwise turbulent stress vanishes in the outer region, thus
the reliable turbulence intensity should be calculated from the total kinetic energy.
The variation of the local turbulence intensity, defined as Tk = {(u′2x + u′2r + u′2θ )/3}1/2,
is shown in figure 10. As the flow goes downstream, the local turbulence intensity
first drops rapidly before x/R = 3.34 and then gradually decreases to the end of
the contraction.

The energy partition parameter K∗ = 2u′2x /(u
′2
r + u′2θ ) is calculated to see the relative

contributions to the turbulent kinetic energy of the streamwise turbulent stress and
the lateral turbulent stresses. In all of the flows, the peak location of K∗ is slightly
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(b) x/R= 3.34; (c) x/R= 4.90; (d) x/R= 6.66. Circles show measurements at Re= 35 000.
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FIGURE 11. Energy partition parameter K∗ = 2u′2x /(u
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r + u′2θ ). (a) Straight pipe;

(b) x/R= 3.34; (c) x/R= 4.90; (d) x/R= 6.66.

shifted to the wall because of the contraction, as shown in figure 11. After x/R= 4.90,
the peak value of K∗ is significantly higher than that of the straight pipe due to the
energy gain of the streamwise turbulent stress caused by the increase in the radial
variation of the mean streamwise velocity near the wall. As the flow is accelerated, K∗

gradually decreases in the outer region compared with that of the straight pipe. The
decrease of K∗ indicates that the energy is redistributed from the streamwise stress
to the lateral stresses in the outer region by the contraction. For ζo = 8, the region
where the lateral turbulent stresses are very dominant (K∗ = 0.2) for Re = 15 000 is
wider than that for Re = 5300, because of the increase of the uniform region of the
mean streamwise velocity in the outer region as Re increases. The severe contraction
greatly reduces the streamwise stress relative to the lateral stresses in the outer
region.

For all of the flows, the Reynolds shear stress is practically unaffected by the
contraction in the outer region as shown in figure 12, even though the turbulent
stresses are affected by the severe contraction. For ζo = 8, the Reynolds shear stress
increases in the inner region, where the streamwise turbulent stress increases as the
flow is accelerated. The negative value is observed in the near-wall region where the
local minimum of the radial turbulence intensity is seen in the contraction. However,
the small plateau near the wall in the distribution of the radial turbulence intensity
(figure 7) and the negative region in the Reynolds shear stress disappear by the change
of the coordinates from the cylindrical to the tangential and normal to the mean
streamline.

To see the effects of the axisymmetric contraction, we consider the budget
of Reynolds stress equations. The transport equation for the normal stresses by
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introducing the homogeneity in the azimuthal direction can be reduced as
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FIGURE 13. Budgets for normal stresses normalized by U3
m,in/R for Re = 5300 with ζo = 8.

(a) Straight pipe; (b) x/R = 3.34; (c) x/R = 4.90; (d) x/R = 6.66. (i) Streamwise stress;
(ii) radial stress; (iii) azimuthal stress.

The terms on the right-hand side of the transport equations represent: Cii = convection,
Pii = production, Tii = turbulent transport, εii = dissipation, Dii = viscous diffusion and
Πii = velocity pressure-gradient. Figure 13 shows the budgets for normal stresses
normalized by U3

m,in/R for Re= 5300 with ζo = 8. For the contraction, it is easy to see
that the budget terms which are correlated to the mean velocity and the gradient of the
mean velocity are more dominant than those which are correlated to the fluctuations
in the outer region. As shown in figure 13(i), the production term of the streamwise
stress has two different regions, like the streamwise stress itself in the contraction.
Pxx increases with the increase of the local contraction ratio in the inner region, but
becomes negative in the outer region. The first term of Pxx in (4.1) is always negative
in the contraction due to the positive dUx/dx. The second term of Pxx is strongly
positive in the inner region, but becomes zero in the outer region. This is due to the
rapid increase of Ux near the wall and the uniformity of Ux in the outer region, as
shown in figure 6. For the contraction, the effect of this term is restricted within the
inner region, whereas this term is always a dominant producing term for the straight
pipe. However, in the inner region, the second term of Pxx increases as the flow is
accelerated. In the outer region, Pxx is proportional to the streamwise stress due to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.361


392 S. J. Jang, H. J. Sung and P.-Å. Krogstad
the same mean strain regardless of r, and thus the magnitude of Pxx decreases as the
streamwise stress decreases. The convection term Cxx becomes the dominant producing
term in the outer region.

The budgets of the radial stress are shown in figure 13(ii). For the straight pipe, the
dissipation term εrr is the main sink term and the velocity pressure-gradient term Πrr

is the dominant source term. For the contraction, the production term Prr, which is
zero for the straight pipe, becomes the dominant producing term and the convection
term Crr becomes the dominant damping term in the outer region. The second term
of Prr in (4.2) is positive except near the wall region where Ur becomes a minimum
(figure 6). This term is proportional to the radial stress itself in the outer region,
because dUr/dr is constant as mentioned earlier. In the budget of the azimuthal stress
shown in figure 13(iii), the velocity pressure-gradient term is dominant and is balanced
by the dissipation term except very near the wall, where the viscous diffusion (not
shown here) is very important for the straight pipe. For the contraction, Pθθ and Cθθ

are the dominant producing and consuming terms in the outer region respectively, in
the same way as Prr and Crr are for the radial budget. Pθθ has only one term in (4.3),
which is always positive because of the negative radial velocity.

4.3. Turbulent structure
To assess the effects of the axisymmetric contraction on turbulent structure, we
analysed the turbulent anisotropy. A convenient way to characterize the anisotropy
is through the Reynolds stress anisotropy tensor as proposed by Lumley & Newman
(1977), bij = τij/τkk − δij/3, where τij is the turbulent stress tensor and δij is the
Kronecker delta tensor. For isotropic turbulence, all elements of bij vanish. The
diagonal elements of bij are restricted to −1/3 < bij < 2/3. The first invariant of
bij is zero by definition, and the second and third invariants of bij are given by

I2 =−bijbji/2 and I3 = bijbjkbki/3. (4.4)

Lumley & Newman (1977) have shown that the cross-plots of the invariants −I2

and I3 for axisymmetric turbulence and for two-component turbulence define the
anisotropy invariant map (AIM) that bounds all physically realizable turbulence. In
the AIM, turbulence must exist within the area bounded by three lines; an upper
straight line representing the state of two-component turbulence, and left and right
boundaries originating from the bottom cusp, which correspond to two types of
axisymmetric turbulence. The left and right boundaries correspond to ‘disk-like’ and
‘rod-like’ turbulence states (Lee & Reynolds 1985), respectively, and the bottom cusp
characterizes isotropic turbulence. Figure 14 shows the AIM for Re = 15 000 with
ζo = 8 in the outer region and in the near-wall region. As the flow enters the
contraction, the turbulence quickly moves from a ‘rod-like’ to a ‘disk-like’ state in
the outer region (ζ < 2) due to the rapid decrease of the streamwise turbulent stress
as shown in figure 8(a). As the flow develops, the turbulence moves along the left
axisymmetric boundary towards a two-component axisymmetric turbulent ‘disk’ state
due to the decrease in the streamwise stress and the linear increase of the lateral
stresses. Along the centreline, the turbulence follows perfectly the left axisymmetric
boundary, ‘disk-like’ state. This confirms that the lateral turbulent stresses are identical
and increase whereas the streamwise stress decreases along the contraction at the
centreline. In the near-wall region, the turbulence develops along the upper, two-
component turbulence boundary, due to the increase of the streamwise stress in
the inner region and the suppression of the radial stress by the wall. As the flow
is accelerated, the streamwise stress becomes dominant and the turbulence moves
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FIGURE 14. Anisotropy invariant map for Re= 15 000 with ζo = 8. (a) Outer region;
(b) near-wall region.
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FIGURE 15. Anisotropy invariant function F = 9I2 + 27I3 + 1. (a) Straight pipe;
(b) x/R= 3.34; (c) x/R= 4.90; (d) x/R= 6.66.

towards the one-component state of the upper right-hand corner. Another estimate
of the overall anisotropy in the Reynolds stress tensor is given by the function
F = 9I2 + 27I3 + 1, which is a measure of the approach towards either two-component
turbulence (F = 0) or isotropic turbulence (F = 1). It is clear from the variation
of F shown in figure 15 that the severe contraction pushes the turbulence towards
two-component turbulence as the streamwise stress is being suppressed. For ζo = 2,
however, F remains mostly close to 1 and hence the turbulence state moves closer to
an isotropic state due to the mild contraction ratio.
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FIGURE 16. Vortical structures for Re= 15 000 with ζo = 8. (a) Perspective view; (b) top
view; (c) side view; (d) rear and front views.

To observe the responses of the vortical structures to the contraction, we visualize
the instantaneous vortical structures for Re = 15 000 with ζo = 8 using an iso-surface
of the swirling strength λci (figure 16), as proposed by Zhou et al. (1999). The
swirling strength λci is the imaginary part of the complex conjugate eigenvalue of
the velocity gradient tensor. The swirling strength is a quantity that can be used to
detect vortex cores and to distinguish vortical structures from shear regions. The iso-
surface value of λciR/Um,in = 4 is used. The great difference between the straight pipe,
−1 < x/R < 0, and the contraction, x/R > 0, is the presence of the spanwise vortical
structure in the pipe. In the contraction, the axes of the spanwise vortical structures
are stretched into the streamwise vortices. After x/R > 1.5, only the long streaky
streamwise structures are observed. The streamwise vortical structures, including the
aligned structures, are stretched in the mean flow direction in the initial region of the
contraction, 0 < x/R < 1.5, and the short stretched structures are merged in the flow
direction and stretched significantly as the flow is accelerated. Some streaky structures
are lifted to the centre region by the mean radial velocity.

The spatial characteristics of the streamwise velocity and vorticity fluctuations are
obtained from the correlation coefficients Ruxux and Rωxωx , which are defined as

Ruxux(1x, r,1θ)= 〈u
′
x(xref , rref , θ)u′x(xref +1x, r, θ +1θ)〉

u′x,rms(xref , rref )u′x,rms(xref +1x, r)
(4.5)

and

Rωxωx(1x, r,1θ)= 〈ω
′
x(xref , rref , θ)ω

′
x(xref +1x, r, θ +1θ)〉

ω′x,rms(xref , rref )ω′x,rms(xref +1x, r)
, (4.6)

where the angle bracket indicates an average over the azimuthal direction and time.
Using the data of Re = 15 000 with ζ0 = 8, the correlation coefficients are obtained
and the radial reference location rref is 1 − r/R(x) = 0.5 to observe the spatial
characteristics in the outer region. Contours of the two-point autocorrelation coefficient
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FIGURE 17. Contours of Ruxux(1x, r,1θ) for Re = 15 000 with ζo = 8. (a) Straight pipe;
(b) x/R = 3.34 (ζ = 4); (c) x/R = 4.90 (ζ = 6). (i) 1θ = 0 in the x–r plane; (ii) 1x = 0 in
the r–θ plane; (iii) top view of the x–θ plane at 1 − r/R(x) = 0.5. The contour levels are
from −0.9 to 0.9 in increments of 0.1. Negative contours are dashed and zero contours are not
drawn.

of the streamwise velocity fluctuations are shown in figure 17. For reference, the
correlation coefficients for the straight pipe are shown in figure 17(a). For the
local contraction ratios ζ = 4 and 6, the correlation coefficients are displayed in
figures 17(b) and 17(c), respectively. Compared to the contours of the straight pipe, the
contours of the contraction are shrunk along the radial and azimuthal directions, and
are nearly unaffected along the streamwise direction. The ratio of the shrunk contours
is the same as the contraction ratio of the local radius.

Contour plots of the two-point autocorrelation coefficient of the streamwise vorticity
fluctuations are shown in figure 18. Compared to the contours of the straight pipe, the
contours of the contraction are also shrunk along the radial and azimuthal directions.
However, the contours in the contraction are more slender than those of Ruxux . Along
the streamwise direction, the contours are elongated with the same ratio as the increase
in the local bulk velocity. The streamwise structure with positive correlation, which
is inclined to the wall for the straight pipe, is aligned with the mean flow direction
by the contraction. This is consistent with the behaviour of the instantaneous vortical
structures as shown in figure 16.

It is reported that the vortical structures are closely related to the production of
Reynolds shear stress (Robinson 1991). Moin, Adrian & Kim (1987) proposed that
conditionally averaged vortical structures can be identified by carrying out a linear
stochastic estimate (LSE) based on the velocity vector that makes the dominant
contribution to the Reynolds shear stress. We examined the vortical structures
associated with the production of Reynolds shear stress by using the method of Moin
et al. (1987). The weighted joint probability density functions u′xu

′
r p.d.f. (u′x, u′r) are
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FIGURE 18. Contours of Rωxωx(1x, r,1θ) for Re = 15 000 with ζo = 8. (a) Straight pipe;
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drawn.
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FIGURE 19. Angle of velocity vector with the maximum contribution to local Reynolds shear
stress at x/R= 3.34 as a function of (a) 1− r/R(x) and (b) y+. The inset shows an example of
contours of probability weighted Reynolds shear stress u′xu

′
r p.d.f. (u′x, u′r) at y+ = 5.4 for the

straight pipe with Re= 15 000.

examined to determine the conditional event vector uE = (ux,m,−ur,m). These events
are detected by finding the maximum values of u′xu

′
r p.d.f. (u′x, u′r) in the second

quadrant Q2. An example contour plot of the probability weighted Reynolds shear
stress is shown in the inset of figure 19. The event angles γII = tan−1(−ur,m/ux,m)

defined by uE, which maximizes the contribution to the Reynolds shear stress
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(a) (b)

(c) (d )

y
x
z

FIGURE 20. Vortical structures of the linearly estimated flow field with the Q2 event vector
uE = (ux,m,−ur,m) at x/R = 3.34 and 1 − r/R(x) = 0.28 (y+ = 50 for the straight pipe) for
Re = 5300. (a) Straight pipe; (b) ζo = 2; (c) ζo = 4; (d) ζo = 8. The vortices are identified
with an iso-surface of swirling strength (30 % of maximum λci). The vectors represent the
velocity events used in the estimation. The distance between ticks on each axis is 0.5R.

at x/R = 3.34, are represented in figure 19. It is easy to see that the effects of Re are
relatively small for the same geometry in the outer region as shown in figure 19(a). As
a function of y+, the profile for the straight pipe of Re = 5300 is in good agreement
with that of Re = 15 000 at y+ < 100; however, the profiles for the contraction of
Re = 5300 and 15 000 are different. As ζo increases, the event angles increase in the
outer region. This is consistent with the observation that the radial turbulent stress
increases in the outer region with the increase in ζo, whereas the Reynolds shear stress
remains fairly unaffected by the contraction.

Conditional vortical structures around the Q2 events that make the dominant
contribution to the mean Reynolds shear stress at x/R = 3.34 and 1 − r/R(x) = 0.28
(y+ = 50 for the straight pipe) for Re= 5300 are compared in figure 20. We introduce
LSE because direct computation of the conditional averages is impractical. It is
well known that LSE is a robust conditionally averaged approximation that provides
satisfactory results for various turbulent fields (Adrian et al. 1989). The linear estimate
of the conditional average is given by

〈ui(x+ r)|ux,m(x),−ur,m(x)〉 = Li1ux,m(x)− Li2ur,m(x), (4.7)

with i= x, r and θ and[
Li1

Li2

]
= 1

〈u′2x 〉〈u′2r 〉 − 〈u′xu′r〉2
[
〈u′2r 〉 −〈u′xu′r〉
−〈u′xu′r〉 〈u′2x 〉

][
〈u′x(x)u′i(x+ r)〉
〈u′r(x)u′i(x+ r)〉

]
. (4.8)

The conditional structures are identified with an iso-surface of λci based on the
conditionally averaged velocity fluctuations. As ζo increases, the conditional structure
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FIGURE 21. Vortical structures of the linearly estimated flow field with the Q2 event vector
uE = (ux,m,−ur,m) at x/R = 3.34 for Re = 15 000. (a, b) 1 − r/R(x) = 0.11 (y+ = 50 for
the straight pipe); (c, d) 1 − r/R(x) = 0.46 (y+ = 203 for the straight pipe). The vortices
are identified with an iso-surface of swirling strength (30 % of maximum λci). The vectors
represent the velocity events used in the estimation. The distance between ticks on each axis
is 0.5R.

changes from hairpin vortices (figures 20a and 20b) to counter-rotating pairs of
streamwise vortices (figures 20c and 20d). The streamwise length scale of the
conditional structure is significantly elongated in the mean flow direction as ζo

increases. The conditional structure, which is inclined to the wall for the straight
pipe, is aligned with the mean flow direction by the contraction. To see the difference
between the inner and outer regions, the conditional vortical structures associated with
the Q2 event at 1 − r/R(x) = 0.11 and 0.46 for Re = 15 000 are shown in figure 21.
These locations are at y+ = 50 and 203 correspondingly for the straight pipe. It is
apparent that the developments of the conditional structures in the inner and outer
regions are similar. The hairpin vortices are changed into counter-rotating pairs of
streamwise vortices in both the inner and outer regions. The vortical structures are
stretched with the same streamwise length scale in both regions detected by the
iso-surface of the swirling strength (30 % of maximum λci), while the vortical structure
in the outer region is larger than that in the inner region for the straight pipe. However,
the maximum value of λci for the inner structure is larger than that for the outer one
in the contraction. This indicates that the individual vortices located in the inner region
are more stretched than those in the outer region.

5. Summary and conclusions
Detailed experimental and numerical studies have been performed to elucidate the

effects of an axisymmetric contraction fitted to a fully developed turbulent pipe flow.
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Direct numerical simulations were carried out at Re= 5300 and 15 000 and experiment
was performed at Re = 35 000 with the same geometry where the contraction ratio
is ζo = 8. The effects of the contraction ratio were examined by using DNS with
three contraction ratios, ζo = 2, 4 and 8. This study verified earlier findings that the
turbulence structure is significantly modified by the contraction. The turbulent kinetic
energy decays rapidly in the core region of the contraction when scaled with the local
bulk velocity. Very quickly the turbulence tends towards two-component turbulence
where the streamwise component virtually disappears. We found that the shear stress
distribution is little affected by the contraction. However, the radial variation of the
streamwise turbulent energy has two different regions in the contraction. In the near-
wall region the dominant turbulent energy producing velocity gradient ∂Ux/∂r grows
rapidly along the contraction, leading to a significant increase in near-wall energy.
As Re increases, the near-wall peak value increases. Since the contraction causes the
flow in the core region to become more homogeneous, the production from ∂Ux/∂r
disappears over the bulk part of the cross-section and is replaced by the negative
turbulent production, primarily from the streamwise acceleration −u′2x ∂Ux/∂x. In the
outer region, the dominant producing term is the convection term, not the pressure-
strain term, which redistributes turbulent energy from the lateral stresses. At the
same time, the two lateral stresses receive energy from the two positive production
terms −u′2r ∂Ur/∂r and −u′2θ Ur/r, which do not contribute in a fully developed pipe
flow. The turbulence intensities for ζo = 8 in the outer region are almost the same
despite the differences in Re, and thus the contraction ratio is the main parameter for
characterizing the second-order turbulence statistics. An invariant analysis confirmed
that most of the flow in the contraction is in a state close to two-component turbulence.
This is because the streamwise stress in the core region is significantly suppressed,
while the wall-normal stress is suppressed near the wall. An intermediate region exists
between these two regions, where the flow tends towards isotropy for the Reynolds
stress tensor as the contraction ratio increases. The acceleration causes a stretching of
the turbulent vortical structures in such a way that hairpin-type vortices found in the
pipe are stretched into two parallel, counter-rotating vortices in the contraction. This
is so strong that the spanwise braid in the original structure is broken. The vortical
structure, which is inclined with respect to the wall for the straight pipe, is now
aligned with the mean flow direction, and the stretching effect appears to be virtually
independent of the radial position.

This work was supported by the Creative Research Initiatives (No. 2011-0000423)
program of the National Research Foundation of Korea.

Appendix
The boundary layer equations for an axisymmetric contraction pipe flow in the

body-fitted (s, n) coordinate system are

∂

∂s
[Usr] + ∂

∂n
[Unhr] = 0, (A 1)

Us

h

∂Us

∂s
+ Un

∂Us

∂n
+ κ UsUn

h
=− 1

hρ

∂P

∂s
+ 1

r

∂

∂n

r

h

[
ν
∂

∂n
(hUs)

]
+ 1

r

∂

∂n

[
r
τsn

ρ

]
+ 2κ

h

τsn

ρ
, (A 2)
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rb
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centerline

r

FIGURE 22. Schematic diagram of the coordinate system.

1
ρ

∂P

∂n
= κ

h
U2

s , (A 3)

where the local radius is r = rb − n cosϕ, rb is the radius of the body, 1/rb

is the transverse curvature, κ is the longitudinal curvature with the definition of
h= 1+ κn, and φ is the inclination angle. A schematic configuration of the coordinate
system is shown in figure 22. The boundary conditions are n = Us(s, 0) = Un(s, 0) =
τsn(s, 0) = 0.

The appropriate outer variables for similarity analysis are

Us = Uc

h

∂f (η, s)

∂η
, τ = ρU2

c T(η, s), η =
∫

r

δh
dn. (A 4)

Next, let Uc(s)= Us,δsm and m= (δ/Uc)(dUc/dδ); the inner variables are

Us

uτ
= U+s (n

+, s),
τsn

ρu2
τ

= τ+sn(n
+, s),

nuτ
ν
= n+. (A 5)

The addition of δ and ν to the radius rb = a leads to three non-dimensional parameters
δ/a, a+ = auτ/ν and δ+ = δuτ/ν. Considering the effect of longitudinal and transverse
curvatures, the law of the wall and the defect law are expressed as (Afzal &
Narasimha 1976)

law of the wall: U+s (n
+)= A ln n+ + B

(auτ
ν
,

uτ
κν

)
, (A 6)

defect law:
Us,δ − Us

uτ
=−A ln

n

δ
+ D

(
δ

a
, κδ

)
. (A 7)

Figure 23 shows the law of the wall and the defect law and figure 24 shows the
Reynolds stresses. Under the strong favourable pressure gradient, the Reynolds stresses
are weakened (Cal & Castillo 2008). This reduction in energy applies in the core
region for all the stresses. However, the near-wall behaviour is quite complicated,
and different for the various stresses. While the u′n and u′θ components decrease
continuously along the contraction all across the radius, u′s first decreases rapidly
near the surface, but then increases with distance. This is due to the strong energy
production caused by the rapid increase in the mean velocity gradient near the
wall as the flow accelerates through the contraction. Due to this complex stress
development, where some increase and some decrease in the same flow domain, it
appears impossible to find similarity solutions for the turbulent stresses. As the stresses
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FIGURE 23. (a) Law of the wall and (b) velocity defect law.
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FIGURE 24. Profiles of (a) u′s, (b) u′n, (c) u′θ and (d) τsn.

decrease, (A 1)–(A 3) in the outer variables become (Davis, Whitehead & Wornom
1971)

f ′′′ + 1
R2

t

(α f + 2A− 2B)f ′′ + β

R2
t

(1− f ′2)− 2βh2

R2
t

∫ ∞
η

κ

h
(1− f ′2) dη = 0 (A 8)

where Rt = r/rb, α = g (Ucg)
′ /r2

b, β = U′cg
2/r2

b, A = g cosφ/r2
b and B = gκ/rb. When

the transverse and longitudinal curvatures become very small 1/rb → 0 and κ → 0,
assuming A= B= φ = α − 1= 0, (A 8) returns to the Falkner–Skan equation,

f ′′′ + ff ′′ + β(1− f ′2)= 0. (A 9)

In terms of the outer variable F(η)= 1− f ′(η), the Falkner–Skan equation is expressed
as (Cal & Castillo 2008)

cF′′ + ηF′ − F′
∫ η

0
F dη + β(2F − F′2)= 0. (A 10)
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FIGURE 25. (a) Falkner–Skan equation (b) velocity profiles.

Comparison of the present data with the Falkner–Skan equation in figure 25(a)
guarantees the above assumption. Finally, the velocity profiles indicate a self-similarity
in figure 25(b).
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