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Observational evidence in space and astrophysical plasmas with a long collisional
mean free path suggests that more massive charged particles may be preferentially
heated. One possible mechanism for this is the turbulent cascade of energy from
injection to dissipation scales, where the energy is converted to heat. Here we
consider a simple system consisting of a magnetized plasma slab of electrons and a
single ion species with a cross-field density gradient. We show that such a system is
subject to an electron drift wave instability, known as the universal instability, which
is stabilized only when the electron and ion thermal speeds are equal. For unequal
thermal speeds, we find from quasilinear analysis and nonlinear simulations that the
instability gives rise to turbulent energy exchange between ions and electrons that
acts to equalize the thermal speeds. Consequently, this turbulent heating tends to
equalize the component temperatures of pair plasmas and to heat ions to much higher
temperatures than electrons for conventional mass-ratio plasmas.
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1. Introduction
An interesting and fundamental question in plasma physics is how thermal

equilibrium is determined in an essentially collisionless plasma. In such a system,
there is no reason a priori to assume that the relative temperatures of the component
species will be equal: on the contrary, there are numerous collisionless heating
mechanisms that have been identified – shocks, magnetic reconnection, cyclotron
resonance (Cranmer, Field & Kohl 1999) and various forms of turbulent heating
(Quataert & Gruzinov 1999; Howes et al. 2008; Chandran et al. 2010; Barnes,
Parra & Dorland 2012), to name a few – and each of these mechanisms may drive
temperature separation instead of equilibration. Indeed, evidence from observations
of collisionless space and astrophysical plasmas, e.g. the solar wind and accretion
flows onto compact objects, suggests that more massive charged particles may be
preferentially heated; cf. Schmidt et al. (1980), Collier et al. (1996), Kohl et al.
(1997), Quataert & Gruzinov (1999).
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A thorough treatment of this problem would require exploration of a parameter
space spanning a wide range of plasma β (ratio of plasma to magnetic pressure),
electron–ion temperature ratio, energy injection mechanisms, etc. while including all
potentially relevant physics present from the macroscopic to microscopic space–time
scales. As such a study is infeasible, we choose to focus on a single heating
mechanism – turbulent Joule heating – in a simplified system: a two-component
plasma immersed in a straight, homogenous magnetic field with a cross-field density
gradient. This system supports electron drift waves and is known to be susceptible
to the so-called ‘universal’ instability (Galeev, Oraevsky & Sagdeev 1963; Krall &
Rosenbluth 1965; Helander & Plunk 2015; Landreman, Antonsen & Dorland 2015).
The universal instability serves as an energy injection mechanism for turbulence at the
ion Larmor scale that gives rise to plasma fluctuations that drive cross-field transport
and Joule heating (or cooling) of the component plasma species. For sufficiently
infrequent collisions, this turbulent heating and transport determines the thermal
equilibrium of the plasma.

To guide our study, we note that the universal instability is derived analytically in
the limit of disparate ion and electron thermal speeds. As noted in Helander (2014),
the universal instability is eliminated for an equal temperature pair plasma, or, more
generally, when the ion and electron thermal speeds are equal. In the following
sections we analytically and numerically calculate the dependence of the universal
instability and resultant turbulent heating on the electron–ion temperature ratio for two
cases: pair plasmas and conventional mass-ratio plasmas. The former case is relevant
for proposed experiments in which a small population of positrons is to be added to a
pure electron plasma of a different temperature (Pedersen & Boozer 2002); the latter
may provide insight into how astrophysical plasmas can achieve disparate electron
and ion temperatures. We introduce the gyrokinetic model used for the analysis in
§ 2. In § 3 we calculate linear growth rates and use them to obtain quasilinear heating
and cross-field flux estimates. We provide linear, quasilinear and nonlinear simulation
results in § 4 to support the analytical calculations before concluding.

2. Model system
We consider a collisionless plasma immersed in a straight, homogeneous magnetic

field B = Bẑ and with a fixed density gradient perpendicular to the field in the
x-direction. The fixed density gradient could be, e.g. the result of gravitational
equilibrium in an astrophysical plasma or of an external particle source in a laboratory
plasma. We restrict our attention to electrostatic fluctuations whose frequency is small
compared with the Larmor frequency and adopt the gyrokinetic ordering:

ε
.= ω

Ωs
∼ k‖

k⊥
∼ ρs

Ln
∼ δfs

fs
∼ qsϕ

Ts
� 1, (2.1)

where ϕ is the electrostatic potential fluctuation, fs is the distribution function for
species s, δf is the fluctuating component of f , ω is the characteristic frequency of
the fluctuations, k‖ and k⊥ are the associated wavenumbers along and across the mean
field, Ωs is the Larmor frequency for species s, ρs its thermal Larmor radius, Ts its
temperature, qs its charge and Ln is the mean density gradient scale length.

Applying these orderings to the Fokker–Planck equation and averaging over the
rapid gyration of particles about the mean magnetic field results in the gyrokinetic
equation,

∂hs

∂t
+ v‖ ∂hs

∂z
+ c

B
{〈ϕ〉Rs, hs} =−qs

∂〈ϕ〉Rs

∂t
∂F0,s

∂Es
+ c

B
∂〈ϕ〉Rs

∂y
∂F0,s

∂x
+C[hs], (2.2)
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where hs= δfs− qsϕ(∂F0,s/∂Es) is the non-Boltzmann piece of δfs, Es=msv
2/2 is the

kinetic energy of species s, ms is species mass, t is time, v‖ is the parallel component
of the particle velocity, c is the speed of light, F0,s is the mean component of fs,
{} indicates a Poisson bracket, 〈ϕ〉Rs is the average of ϕ over Larmor angle at fixed
guiding centre position Rs = r+ v × ẑ/Ωs, r is particle position and C[hs] represents
the effect of Coulomb collisions on species s.

The gyrokinetic system is closed by coupling to Poisson’s equation:

4π
∑

s

qs

∫
d3vδfs =−∇2

⊥ϕ, (2.3)

with ∇2
⊥ = ∂2

x + ∂2
y . If the Debye length λs

.= (Ts/4πnsq2
s )

1/2 is much smaller than the
electron Larmor radius, the right-hand side of equation (2.3) can be neglected. In this
limit Poisson’s equation reduces to the quasineutrality constraint that the total charge
density of the plasma is zero. The ratio of Debye length to Larmor radius can be
written as λ2

s/ρ
2
s = (1/2βs)(vth,s/c)2, with βs = 8πps/B2. Thus Debye length effects

are only significant in Poisson’s equation if the plasma is relativistic and/or if βs is
sufficiently small (.v2

th,s/c
2). The latter condition is consistent with the non-relativistic,

electrostatic approximation we employ.
Note that even when λ2

s/ρ
2
s ∼ 1, the displacement current appearing in Ampere’s law

is negligible in the gyrokinetic ordering compared to the plasma current. Only when
taking the divergence of Ampere’s law, i.e. when considering charge conservation,
must the displacement current be retained for λ2

s/ρ
2
s ∼ 1.

2.1. Turbulent heating and heat transport
By taking fluid moments of the Fokker–Planck equation and closing the system with
the gyrokinetic ordering, one obtains an equation for the slow evolution of the mean
temperature Ts (Sugama et al. 1996; Hinton & Waltz 2006; Howes et al. 2006; Barnes
et al. 2010a; Abel et al. 2013):

3
2

ns
dTs

dt
+ ∂Qs

∂x
=Hs, (2.4)

where the cross-field turbulent heat flux Qs and turbulent heating Hs are given by

Qs = 1
V

∫
d3R

∫
R

d3v

(
msv

2

2
− 3

2
Ts

)
(hsvE) (2.5)

and

Hs = 1
V

∫
d3R

∫
R

d3vqs

(
hs
∂〈ϕ〉Rs

∂t

)
. (2.6)

Here V is the volume of the region over which the spatial integration is performed, the
subscript R on the velocity integration indicates that it is carried out at fixed guiding
centre, vE = −(c/B)∂ϕ/∂y is the x-component of the E × B drift velocity and the
overline indicates an average over time scales long compared to the fluctuation time
1/ω but short compared to the equilibrium time scale. Note that we have neglected
collisional temperature equilibration as we are considering systems with collisional
mean free path much longer than any other scales of interest.
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An alternative expression for Hs is obtained by integrating equation (2.6) by parts
in time (Candy 2013):

Hs = 1
2V

∫
d3R

∫
R

d3vqs

(
hs
∂〈ϕ〉Rs

∂t
− ∂hs

∂t
〈ϕ〉Rs

)
. (2.7)

Substitution of Poisson’s equation (2.3) in (2.7) immediately indicates that the
net (species-summed) turbulent heating is zero in the absence of an external
energy injection mechanism; i.e. for a two-component plasma, Hi = −He. If
trace minority ions are present, one can obtain mass- and charge-dependent
scalings for their turbulent heating rates relative to the main ions (Barnes et al.
2012). Expressing equations (2.5) and (2.7) in terms of Fourier modes with
hs =

∑
k h̃k,s(v‖, v⊥, t) exp(ik · Rs) gives

Qs = i
c
B

∑
k

ky

∫
d3vJ0(αk⊥,s)

msv
2

2
(h̃k,sϕ̃

∗
k)
.=
∑

k

Q̃k,s (2.8)

and

Hs = qs

2

∑
k

∫
d3vJ0(αk⊥,s)

(
∂ϕ̃∗k
∂t

h̃k,s − ϕ̃∗k
∂ h̃k,s

∂t

)
.=
∑

k

H̃k,s, (2.9)

where αk⊥,s
.= k⊥v⊥/Ωs and J0 is a Bessel function of the first kind.

2.2. Connection to particle transport
The effect of cross-field particle transport is encapsulated in the continuity equation:

∂ns

∂t
+ ∂Γs

∂x
= 0, (2.10)

where ns is particle density and

Γs = 1
V

∫
d3R

∫
R

d3v(hsvE) (2.11)

is the cross-field particle flux. Expanding ϕ and h in terms of Fourier modes gives

Γs = i
c
B

∑
k

ky

∫
d3vJ0(αk⊥,s)(h̃k,sϕ̃

∗
k)
.=
∑

k

Γ̃k,s. (2.12)

The particle flux Γ can be related to the turbulent heating of (2.6) by multiplying
the gyrokinetic equation (2.2) by ϕ and averaging over the phase space:

Hs =− 1
V

∫
d3R

∫
R

d3v

(
Tshs

F0,s
C[hs]

)
+ Ts

∂ ln ns

∂x
Γs. (2.13)

Note that the effect of collisions is retained in (2.13), but collisional temperature
equilibration is neglected in the energy equation (2.4). This is because the turbulent
fluctuations undergo filamentation in phase space (Schekochihin et al. 2008, 2009;
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Tatsuno et al. 2009; Barnes, Dorland & Tatsuno 2010b; Hatch et al. 2014) and
thus tiny collisional deflections in velocity have immediate impact on the turbulent
fluctuations – even when the amount of energy that is exchanged in the course
of the deflection is negligible. At the small phase space scales where collisional
dissipation occurs, the dissipation is effectively diffusive (Abel et al. 2008; Barnes
et al. 2010b, 2012). This gives rise to heating that is positive definite for each
species. Furthermore, Poisson’s equation (2.3) applied to our two-component plasma
dictates that Γi = Γe

.= Γ and ni = ne
.= n. Substituting these expressions in (2.13)

and enforcing Hi = −He results in the constraint that Γ (∂ ln n/∂x) 6 0 and thus
|Hs| 6 Ts|Γ (∂ ln n/∂x)|. Comparing this inequality with (2.4) and (2.10), one finds
that the time scale associated with turbulent particle transport is always at least as
fast as that associated with turbulent heating. One would therefore expect that when
turbulent heating drives temperatures apart (as we find below), the effect would be
bounded by the rate of transport down the density gradient. For systems supported
by an external plasma source, e.g. a magnetically confined plasma, this may be set
by the rate at which plasma is introduced.

3. Linear analysis
If we consider small amplitude perturbations, we may neglect the quadratic

nonlinearity and carry out a linear analysis of the gyrokinetic equation. Upon
assuming solutions of the form hs =

∑
k ĥk,s(v‖, v⊥) exp(ik · Rs − iωt), one obtains

ĥk,s = qsϕ̂k

Ts
J0(αk⊥,s)

(
ω+ω∗,s
ω− k‖v‖

)
FM,s, (3.1)

where

ω∗,s = kyρsvth,s

2Ln,s

qs

|qs| , (3.2)

v2
th,s = 2Ts/ms, ms is species mass, ρs = vth,s/|Ωs| and 1/Ln,s =−∂ ln ns/∂x.
From Poisson’s equation (2.3),∫

d3v(hi − he)= en
Te
(1+ τ − λ2

e∇2
⊥)ϕ, (3.3)

where τ .= Te/Ti, and we have restricted our attention to a single ion species with
proton charge e. Substitution of (3.1) into (3.3) results in the dispersion relation

ε(ω, k) = 1+ τ + k2
⊥λ

2
e +
(
ζe − kyρe

2k‖Ln

)
Υ (k⊥ρe)Z(ζe)

+ τ
(
ζi + kyρi

2k‖Ln

)
Υ (k⊥ρi)Z(ζi)= 0, (3.4)

where ζs
.=ω/k‖vth,s,

Z(x) .= i
√

πe−x2
erfc(−ix) (3.5)

is the plasma dispersion function, erfc is the complementary error function and

Υ (x) .= exp
(
−x2

2

)
I0

(
x2

2

)
, (3.6)

with I0 a modified Bessel of the first kind. Note that we have used quasineutrality to
set Ln,i = Ln,e

.= Ln.
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3.1. Quasilinear energy exchange

Using equation (3.1) for ĥk,s in (2.9) we obtain a quasilinear approximation for the
energy exchange:

Ĥk,s
.= H̃k,s

nTi

|Ln|
vth,i

T2
i

e2|ϕ̃k|2

= Υ (k⊥ρs)k‖|Ln|Ti

Ts
Re(ζi)Im

((
ζs + kyρs

2k‖Ln

qs

|qs|
)

Z(ζs)

)
. (3.7)

It is straightforward to verify that summing this expression over species and using the
dispersion relation of (3.4) leads to zero net heating.

This quasilinear estimate provides information about linear phase relationships that
indicate the sign of the heating contribution as a function of wavelength. It predicts
neither the spectrum nor the saturated heating amplitude in steady state. As we are
primarily interested in the sign of the heating, it is enough to make some assumptions
about the turbulent heating spectrum; in particular, we assume that the steady-state
heating has the same sign as the quasilinear estimate for the mode(s) with the largest
linear growth rate. In the following subsections we obtain numerical and approximate
analytical solutions for the mode frequencies and associated quasilinear heating in
various limits.

3.2. Comparable thermal speeds
The dispersion relation (3.4) has been analysed thoroughly for both pair plasmas
and conventional mass-ratio plasmas with equal temperatures; cf. Helander & Connor
(2016), Mischenko et al. (2018). Here, we begin by showing that there is no instability,
and thus no turbulent heating, in the general case of vth,e= vth,i. To find the condition
for marginal stability, we seek solutions for which γ

.= Im(ω) = 0. In this case, the
plasma dispersion function simplifies to Z(x)=√π exp(−x2)(i− erfi(x)), with erfi the
imaginary error function and x=Re(ζ ). The constraint Im(ε)= 0 then gives(

xe − kyρe

2k‖Ln

)
Υ (k⊥ρe) exp(−x2

e)=−τ
(

xi + kyρi

2k‖Ln

)
Υ (k⊥ρi) exp(−x2

i ). (3.8)

Substituting this expression into the constraint Re(ε)= 0 gives

0= 1+ τ + k2
⊥λ

2
e + τ

(
xi + kyρi

2k‖Ln

)
Υ (k⊥ρi)π

1/2 exp(−x2
i )(erfi(xe)− erfi(xi)). (3.9)

When vth,e = vth,i, then xe = xi, and equation (3.9) has no solution. Such a plasma
is therefore either always stable or always unstable, independent of wavenumber and
density gradient. As there is no instability for zero density gradient, the plasma must
therefore be always stable for vth,e = vth,i.

Next, we seek marginally stable solutions when vth,e = vth,i(1+ δ), with |δ| � 1. In
this limit, the constraint equation (3.9) becomes

0≈ 1+ k2
⊥λ

2
e

2
− xiΥ (k⊥ρi)

(
xi + kyρi

2k‖Ln

)
δ, (3.10)
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with solutions given by

xi =− kyρi

4k‖Ln
±
√(

kyρi

4k‖Ln

)2

+ 1+ k2
⊥λ

2
e/2

Υ (k⊥ρi)δ
. (3.11)

In order for the solutions to be real (as we assumed when we considered marginal
stability), the term inside the square root must be positive definite. This constraint
is satisfied when δ > 0 or when (kyρi)

2Υ (k⊥ρi)|δ| > 16(k‖Ln)
2(1 + k2

⊥λ
2
e/2). The

latter constraint can always be satisfied for sufficiently long parallel wavelengths.
Consequently, an unbounded system can be unstable for all finite values of δ; i.e. for
all plasmas with vth,i 6= vth,e.

We now proceed to obtain the sign of the turbulent heating driven by instabilities
with δ < 0 and δ > 0, respectively. Since |δ| � 1, we can approximate ζs ≈ xs in the
quasilinear heating expression (3.7) to obtain:

Ĥk,i = k‖|Ln|xiΥ (k⊥ρi)

(
xi + kyρi

2k‖Ln

) √
π

2
exp(−x2

i ). (3.12)

When δ < 0, xi given by (3.11) satisfies −kyρi/2k‖Ln < xi < 0. Substituting this range
of xi values in (3.12) results in the constraint Ĥk,i < 0. When δ > 0, xi given by
(3.7) satisfies xi > 0 or xi <−kyρi/2k‖Ln. Substituting this range of xi values in (3.12)
results in the constraint Ĥk,i > 0. Combining these two constraints gives the general
expression sgn(Ĥk,i)= sgn(δ). Thus we see that for small deviations from stability, the
quasilinear turbulent heating acts to equalize the ion and electron thermal speeds and
thus stabilize the mode.

For the case of pair plasmas (mi = me) our quasilinear analysis indicates that
turbulent heating driven by the electron drift wave acts to equalize the positron and
electron temperatures. We can also use a symmetry of the gyrokinetic–Poisson system
of equations to see how pair plasma heating depends on the temperature ratio. In
particular, we consider how the equations are modified under an interchange of the
electron and positron temperatures. First we note that the average over Larmor angle
is unaffected by the interchange, as the Larmor radius of each particle is independent
of temperature. Denoting the solutions when τ = τ0 as (hs, ϕ) and the solutions when
τ = 1/τ0 as (h↔s , ϕ↔), we have

∂h↔s
∂t
+ v‖ ∂h↔s

∂z
+ c

B
{〈ϕ↔〉R, h↔s } =−

qs′

Ts′

∂〈ϕ↔〉R
∂t

F0,s′ + c
B
∂〈ϕ↔〉R
∂y

∂F0,s′

∂x
+C[h↔s ]

(3.13)

and

∫
d3v(h↔i − h↔e )=

(
√
τ0 +

√
1
τ0
− T0

4πe2
∇2

)
eϕ↔

T0
, (3.14)

with T0
.= (TeTi)

1/2, s′ = i when s= e, and s′ = e when s= i.
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There are two sets of solutions to these equations that can be obtained via symmetry
considerations: h↔s (x, y, z, v‖, v⊥, t)=−hs′(−x,−y, z, v‖, v⊥, t) with associated potential
ϕ↔(x, y, z, t)= ϕ(−x,−y, z, t), and h↔s (x, y, z, v‖, v⊥, t)= hs′(x,−y, z, v‖, v⊥, t) with
associated potential ϕ↔(x, y, z, t) = −ϕ(x, −y, z, t). They can be verified by direct
substitution into equations (3.13) and (3.14), noting that the interchange Ti↔Te results
in F0,i↔ F0,e. As the interchanged solutions differ from the original solutions merely
by sign and spatial orientation, the associated linear growth rates remain unchanged.
For pair plasmas growth rates are thus symmetric under interchange of Ti and Te, as
seen in figure 2.

Substituting the interchanged solutions into the heating expression (2.6) gives

H↔s =
1
V

∫
d3R

∫
R

d3vqs

(
h↔s
∂〈ϕ↔〉Rs

∂t

)
= 1

V

∫
d3R

∫
R

d3vqs′

(
hs′(±x,−y, z, v‖, v⊥, t)

∂〈ϕ(±x,−y, z, t)〉Rs′

∂t

)
= Hs′ =−Hs, (3.15)

where the last equality follows from the fact that the species-summed heating is zero.
Thus the heating of each species of a pair plasma is anti-symmetric under interchange
of Ti and Te, and there can be no turbulent heating when Ti = Te.

3.3. Disparate thermal speeds
For plasmas with mi�me, the ions and electrons will have disparate thermal speeds
vth,i � vth,e for temperature ratios satisfying me/mi � τ � mi/me. In this case, we
can look for solutions to the dispersion relation that satisfy |ζe| � 1� |ζi|. With this
restriction, the plasma dispersion functions appearing in (3.4) can be greatly simplified.
In particular, we use

Z(ζe)≈ i
√

π (3.16)

and

Z(ζi)≈−1/ζi, (3.17)

giving the following approximate dispersion relation:

ζi(1+ τ + k2
⊥λ

2
e)+ ζi

(
ζe − kyρe

2k‖Ln

)
Υ (k⊥ρe)i

√
π− τ

(
ζi + kyρi

2k‖Ln

)
Υ (k⊥ρi)= 0.

(3.18)

We next consider wavelengths much shorter than the ion Larmor radius but much
longer than the electron Larmor radius; i.e. k⊥ρi � 1� k⊥ρe. In this limit we can
approximate Υ (k⊥ρe)≈ 1 and Υ (k⊥ρi)≈ 1/(

√
πk⊥ρi) in (3.18) to obtain

ζi(1+ τ + k2
⊥λ

2
e)+ ζi

(
ζe − kyρe

2k‖Ln

)
i
√

π− τ√
π

(
ζi

k⊥ρi
+ ky

k⊥

1
2k‖Ln

)
= 0. (3.19)

Seeking solutions for which ζi ∼ k⊥ρe/k‖Ln allows us to neglect the ζe and ζi/k⊥ρi
terms. The resultant solution for ω is

ω= τk‖vth,i√
π

2k‖Ln(1+ τ + k2
⊥λ

2
e)sgn(ky)+ i

√
πk⊥ρe

(1+ τ + k2
⊥λ2

e)
2(2k‖Ln)2 +πk2

⊥ρ2
e

. (3.20)
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FIGURE 1. Comparison of exact (solid lines) and approximate analytical (dashed lines)
growth rates for the case τ = 1 and mi/me = 337 824 (tungsten ions).

In figure 1 we show an example comparison of the exact and analytical expressions
for ω for a plasma with k⊥λe= 0 and mi/me= 337 824 (corresponding to the mass of
tungsten).

Equation (3.20) indicates that for k‖ > 0 there is an instability with peak growth
rate γ at wavelengths km satisfying (∂γ /∂k‖)|km = (∂γ /∂k⊥)|km = 0. These constraints
give

2√
π

k‖,m|Ln|(1+ τ + k2
⊥,mλ

2
e)= k⊥,mρe, (3.21)

with the largest growth rate for k⊥,mλe = 0. Using these results in (3.20) gives

ωm = τ

4
√

π(1+ τ)
vth,i

|Ln|(i+ sgn(kyLn)), (3.22)

with ωm
.=ω(km) the complex frequency evaluated at the wavevector km that maximizes

the linear growth rate.
Plugging equation (3.22) for ωm into (3.7) for turbulent heating and using the

appropriate approximations for Υ (k⊥ρs) and Z(ζs) gives

Ĥk,i = −Ĥk,e ≈ kyρe

k‖vth,i
Re(ω)

|Ln|
Ln

√
π

4

= τ

8
√

π
> 0. (3.23)

So ions are heated and electrons are cooled; i.e. the instability acts to equalize vth,e
and vth,i and thus stabilize the mode.

4. Simulation results
We now provide numerical data to verify our analytical predictions. All simulations

were conducted using the local, Eulerian gyrokinetic code GS2 (Kotschenreuther,
Rewoldt & Tang 1995; Dorland et al. 2000) with kinetic electrons and a single ion
species immersed in a straight, uniform magnetic field and with a cross-field density
gradient. The fluctuations are constrained to be purely electrostatic, and we take
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FIGURE 2. Normalized linear growth rates maximized over k‖ and ky (a) and
corresponding turbulent heating (b) from GS2 simulations as a function of electron–ion
temperature ratio for an electron–positron plasma. The quasilinear turbulent ion heating
Ĥi (black circles and line) given by (3.7) is weighted by the linear growth rate
γ |Ln|/v0 to qualitatively estimate saturated fluctuation amplitudes. The turbulent ion
heating (Hi|Ln|/nT0v0)(|Ln|/ρ0)

2 obtained from nonlinear simulations is also given (red
squares). Here ρ0 = v0/Ωi, with v0 the geometric mean of the ion and electron thermal
speeds.

k⊥λe = 0. Each simulation uses 32 points along the magnetic field direction (z), and
the velocity space is sampled on a polar grid (Barnes et al. 2010b), with 12 points
in speed v and 16 points in pitch angle v‖/v.

First we consider the case of an electron–positron plasma. The linear growth rates,
maximized over k‖ and k⊥, are plotted against Te/Ti in figure 2. They are normalized
by |Ln|/v0, with v0

.=√vth,ivth,e, in order to make manifest the expected symmetry of
the growth rates with respect to the interchange of Ti and Te. As predicted, the plasma
is stable only when Te = Ti, and the growth rates are symmetric about Te/Ti = 1.

Also shown in figure 2 are the quasilinear heating estimates defined in (3.7) and the
heating determined from nonlinear simulations as a function of Te/Ti. The nonlinear
simulations employed 47 modes (after de-aliasing) in both directions perpendicular
to the magnetic field (x and y). The box sizes in both x and y were 20πρi. The z
the box size was 40πLn for the τ = 0.5 and τ = 2 cases and 60πLn for the τ = 10
case. A small amount of hyperviscosity, as well as a gyrokinetic collision operator
(Abel et al. 2008; Barnes et al. 2009) that includes the Landau test-particle operator
and a model field-particle operator that conserves number, momentum and energy
were used in all nonlinear simulations. The collisionality used for both species was
νii|Ln|/vth,i = 0.0005, with νii =

√
2πne4 ln Λ/(T3/2

i m1/2
i ). All simulations were run

until a steady state was reached, and time averages of the turbulent energy exchange
were taken during the steady-state interval. An example time trace, along with the
statistical average used, is shown in figure 3. As we showed analytically, the heating
(both quasilinear and nonlinear) is antisymmetric about Te/Ti = 1, with the heating
acting to equilibrate the electron and positron temperatures and thus shut off the
linear instability.

We next show the growth rates and turbulent ion heating as a function of electron–
ion temperature for an electron–proton plasma in figure 4. Again we see that the
plasma is unstable for vth,e 6= vth,i. Furthermore, the ion turbulent heating is positive
definite for vth,e > vth,i, in agreement with our approximate analytic result.
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FIGURE 3. Typical time traces (here for Te/Ti = 0.5) of the normalized turbulent heating
from a nonlinear GS2 simulation, along with their time-averaged values (black dashed
lines). Here ρ0 = v0/Ωi, with v0 the geometric mean of the ion and electron thermal
speeds.

FIGURE 4. Normalized linear growth rates maximized over k‖ and ky (a) and
corresponding turbulent heating (b) from GS2 simulations as a function of electron–ion
temperature ratio for an electron–proton plasma. The quasilinear turbulent ion heating
Ĥi (black circles and line) given by (3.7) is weighted by the linear growth rate
γ |Ln|/vth,i to qualitatively estimate saturated fluctuation amplitudes. The turbulent ion
heating (Hi|Ln|/nTivth,i)(|Ln|/ρi)

2 obtained from nonlinear simulations is also given (red
squares).

5. Conclusions
The analytical and numerical results shown in this paper indicate that turbulent

heating driven by the electron drift wave instability present in an inhomogeneous,
magnetized plasma acts to stabilize the mode. Stabilization occurs when the ion and
electron thermal speeds are equal. For a conventional mass-ratio plasma with Ti ∼ Te,
this leads to the ions being heated and the electrons cooled; for a pair plasma, the
turbulent heating acts to equalize the ion and electron temperatures.

While turbulent heating acts to stabilize the mode, it is not the only stabilization
mechanism in the system. We showed that the instability drives particle transport that
flattens the driving density gradient on a time scale at least as fast as the heating
influences the electron–ion temperature ratio. Consequently, for the turbulent heating
to fully set the thermal equilibrium there must be additional physics that fixes the
density gradient; e.g. an external density source or a lowest order equilibrium set by
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gravitational forces. In this case, thermal equilibrium would correspond to Ti/Te =√
mi/me.
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