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Kolmogorov’s theory of turbulence predicts that only wavenumbers below some
critical value, called Kolmogorov’s dissipation number, are essential to describe the
evolution of a three-dimensional (3D) fluid flow. A determining wavenumber, first
introduced by Foias and Prodi for the 2D Navier–Stokes equations, is a mathematical
analogue of Kolmogorov’s number. The purpose of this paper is to prove the
existence of a time-dependent determining wavenumber for the 3D Navier–Stokes
equations whose time average is bounded by Kolmogorov’s dissipation wavenumber
for all solutions on the global attractor whose intermittency is not extreme.
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1. Introduction

The Navier–Stokes equations (NSE) on a torus T
3 are given by{

ut + (u · ∇)u − νΔu + ∇p = f
∇ · u = 0,

(1.1)

where u is the velocity, p is the pressure, and f is the external force. We assume that
f has zero mean, and consider zero mean solutions. We also assume that f ∈ H−1

or f is translationally bounded in L2
loc(R,H−1).

In this paper, we investigate the number of degrees of freedom of a three-
dimensional (3D) fluid flow governed by (1.1). Kolmogorov’s theory of turbulence
[24] predicts that there is a wavenumber κd above which the viscous forces dom-
inate. This suggests that the frequencies above κd should not affect the dynamics
and the number of degrees of freedom is of order κ3

d. A natural question is whether
this can be justified mathematically.

The notion of determining modes, which allows us to define the degrees of freedom
mathematically, was introduced by Foias and Prodi in [12] where they showed that
high modes of a solution to the 2D NSE are controlled by low modes asymptotically
as time goes to infinity. Then the number of these determining modes was estimated
by Foias, Manley, Temam, and Treve [17] and later improved by Jones and Titi
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[22]. We refer the readers to [10,11,13–16,18–20] and references therein for more
background and related results.

In this paper, we are concerned with 3D flows governed by (1.1), for which the
existence of regular solutions is one of the Millennium open questions. Therefore, we
study weak solutions, whose existence was proved by Leray [25]. In [9], Cheskidov,
Dai, and Kavlie proved the existence of a determining wavenumber Λu(t), defined
for each individual trajectory u(t), whose average is uniformly bounded on the
global attractor. More precisely, it was shown that two solutions u(t) and v(t) on the
global attractor are identical, provided their projections below modes max{Λu, Λv}
coincide. This recovered the results by Constantin, Foias, Manley, and Temam [10]
in the case where ‖∇u(t)‖2

L2 is uniformly bounded on the global attractor, which
is known for small forces. Moreover, when the force is large and the attractor is
not a fixed point, but rather a complicated object consisting of points on complete
bounded trajectories that may not be regular, the determining wavenumber Λu

from [9] still enjoys the following pointwise bound

Λu(t) � ‖∇u(t)‖2
L2

ν2
. (1.2)

Note that this bound is optimal (from the physical point of view) in the case of
extreme intermittency, that is, when there is only one eddy at each dyadic scale.
Indeed, taking into account intermittency, Kolmogorov’s dissipation wavenumber
reads

κd :=
( ε

ν3

)1/d+1

, where ε := λd
0ν〈‖∇u‖2

L2〉 =
λd

0ν

T

∫ t+T

t

‖∇u‖2
L2 dτ. (1.3)

Combined with (1.2), this gives 〈Λu〉 � κd when d = 0. Here d ∈ [0, 3] is the inter-
mittency dimension that measures the average number of eddies at various scales.
Roughly speaking, the number of eddies at the lengthscale l is proportional to l−d

(see [8] for precise mathematical definitions of active volumes, eddies, and their
relations to intermittency). In this paper, we adopt an approach used in [5,7,9]
and define the intermittency dimension d through the average level of saturation of
Bernstein’s inequality (see §3 for the precise definition).

As experimental and numerical evidence suggests, turbulent flows do not devi-
ate much from Kolmogorov’s regime where d = 3, that is, eddies occupy the whole
region. For instance, d ≈ 2.7 was observed in a direct numerical simulation per-
formed by Kaneda et al. [23] on the Earth Simulator. In [9] it was shown that
one can improve (1.2) for d > 0, but such an improvement was not enough to con-
clude that the average determining wavenumber was bounded by κd. For instance,
in the case d = 3, the obtained bound was 〈Λu〉 � κ2+

d , which suggested that the
definition of Λu was not optimal in the physically relevant regime. In this paper, we
complement the result of [9] by focussing on the region d ∈ [δ, 3], δ > 0, and finding
a different determining wavenumber Λu that enjoys the optimal bound 〈Λu〉 � κd

(modulo a logarithmic correction in the case d = 3).
We define the determining wavenumber in the following way:

Λu(t) := min{λq : (Lλp−q)δ−1/2λ−1
q ‖up‖L∞

< c0ν, ∀p > q and λ−2
q ‖∇u�q‖L∞ < c0ν, q ∈ N},
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where 0 < δ � 3 is a fixed (small) parameter, and c0 is an dimensionless constant
that depends only on δ. In fact, c0 → 0 as δ → 0. Here λq = 2q/L, L is the size of
the torus, u�q =

∑q
p=−1 uq, and uq = Δqu is the Littlewood–Paley projection of u

(see §2).
Now, we are ready to state our main result.

Theorem 1.1. Let u(t) and v(t) be complete (ancient) bounded in L2 Leray–Hopf
solutions (i.e., solutions on the global attractor or pullback attractor). Let Λ(t) :=
max{Λu(t), Λv(t)} and Q(t) be such that Λ(t) = λQ(t). If

u(t)�Q(t) = v(t)�Q(t), ∀t < 0, (1.4)

then

u(t) = v(t), ∀t � 0.

The dissipation wavenumber Λu enjoys the following bound:

〈Λu〉 − λ0 � Cδ,dκd � Cδ,dκ0G
2/d+1

(
1

νTκ2
0

+ 1
)1/d+1

,

for all complete bounded in L2 Leray–Hopf solutions with d ∈ [δ, 3). Here Cδ,d is an
dimensionless constant that blows up when δ → 0 or d → 3. The bound is also writ-
ten in terms on the dimensionless Grashof number defined as G := ‖f‖H−1/(ν2κ

1/2
0 )

in the autonomous case (see (3.8) for the nonautonomous case).
In Kolmogorov’s regime where d = 3, we also obtain the optimal bound, but with

a logarithmic correction:〈
Λu − λ0

(log(Λu/λ0))1/4

〉
� C̃δκd � C̃δκ0G

1/2

(
1

νTκ2
0

+ 1
)1/4

,

for all complete bounded in L2 Leray–Hopf solutions with d = 3. Here C̃δ is an
dimensionless constant that depends only on the parameter δ in the definition of
Λ. Again, C̃δ → ∞ as δ → 0.

2. Preliminaries

2.1. Notation

We denote by A � B an estimate of the form A � CB with some absolute
constant C, by A ∼ B an estimate of the form C1B � A � C2B with some abso-
lute constants C1, C2, and by A �r B an estimate of the form A � CrB with
some dimensionless constant Cr that depends only on the parameter r. We write
‖ · ‖p = ‖ · ‖Lp , and (·, ·) stands for the L2-inner product. We will also use 〈·〉 for
time averages:

〈g〉(t) :=
1
T

∫ t+T

t

g(τ) dτ,

for some fixed T > 0.
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2.2. Littlewood–Paley decomposition

The techniques presented in this paper rely strongly on the Littlewood–Paley
decomposition, which recall here briefly. For a more detailed description on this
theory, we refer the readers to the books by Bahouri, Chemin and Danchin [1] and
Grafakos [21].

We denote λq = 2q/L for integers q. A nonnegative radial function χ ∈ C∞
0 (R3)

is chosen such that

χ(ξ) :=

{
1, for |ξ| � 3

4

0, for |ξ| � 1.
(2.5)

Let

ϕ(ξ) := χ(ξ/2) − χ(ξ)

and

ϕq(ξ) :=

{
ϕ(2−qξ) for q � 0,

χ(ξ) for q = −1,

so that the sequence of ϕq forms a dyadic partition of unity. Given a tem-
pered distribution vector field u on T

3 = [0, L]3 and q � −1, an integer, the qth
Littlewood–Paley projection of u is given by

uq(x) := Δqu(x) :=
∑
k∈Z3

û(k)φq(k)ei2π/Lk·x,

where û(k) is the kth Fourier coefficient of u. Note that u−1 = û(0). Then

u =
∞∑

q=−1

uq

in the distributional sense. We define the Hs-norm in the following way:

‖u‖Hs :=

( ∞∑
q=−1

λ2s
q ‖uq‖2

2

)1/2

,

for each u ∈ Hs and s ∈ R. Note that ‖u‖H0 ∼ ‖u‖L2 . To simplify the notation, we
denote

u�Q :=
Q∑

q=−1

uq, u(P,Q] :=
Q∑

q=P+1

uq, ũq := uq−1 + uq + uq+1.

2.3. Bernstein’s inequality and Bony’s paraproduct

Here, we recall useful properties for the dyadic blocks of the Littlewood–Paley
decomposition. The first one is the following inequality:
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Lemma 2.1 (Bernstein’s inequality). Let n be the spatial dimension and r � s � 1.
Then for all tempered distributions u,

‖uq‖r � λn(1/s−1/r)
q ‖uq‖s. (2.6)

Secondly, we will use the following version of Bony’s paraproduct formula:

Δq(u · ∇v) =
∑

|q−p|�2

Δq(u�p−2 · ∇vp) +
∑

|q−p|�2

Δq(up · ∇v�p−2)

+
∑

p�q−2

Δq(ũp · ∇vp).

2.4. Weak solutions and energy inequality

A weak solution u(t) of (1.1) on [0,∞) is an L2(T3) valued function in the class
u ∈ C([0,∞);L2

w) ∩ L2
loc(0,∞;H1) that satisfies (1.1) in the sense of distributions.

A Leray–Hopf solution u(t) is a weak solution satisfying the energy inequality

1
2
‖u(t)‖2

2 � 1
2
‖u(t0)‖2

2 − ν

∫ t

t0

‖∇u(τ)‖2
2 dτ +

∫ t

t0

(f, u) dτ, (2.7)

for almost all t0 > 0 and all t > t0. A Leray solution u(t) is a Leray–Hopf solution
satisfying the above energy inequality for t0 = 0 and all t > t0. A complete Leray–
Hopf solution u(t) is an L2(T3) valued function on (−∞,∞), such that u(· − t)|[0,∞)

is a Leray-Hopf solution for all t ∈ R.

3. Global attractor, pullback attractor, and Kolmogorov’s wavenumber

In the case of a time-independent force f it can be shown that the energy inequality
(2.7) implies the existence of an absorbing ball

B := {u ∈ L2(T3) : ‖u‖2 � R}.
Here the radius R is such that

R > νκ
−1/2
0 G,

where κ0 = 2πλ0 = 2π/L and G is the dimensionless Grashof number

G :=
‖f‖H−1

ν2κ
1/2
0

.

Note that the absorbing ball B is for all the Leray solutions, that is, the ones that
satisfy the energy inequality starting from 0. More precisely, for any Leray solution
u(t) there exists t0, depending only on ‖u(0)‖2, such that

u(t) ∈ B ∀t > t0.

However, when we restrict the dynamics to the absorbing ball, we consider Leray–
Hopf solutions to define the evolutionary system and the global attractor. The
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Leray–Hopf solutions are weak solutions satisfying the energy inequality starting
from almost all time (but not necessarily 0). Hence, a restriction of a Leray–Hopf
solution to a smaller time interval is also a Leray–Hopf solution. See [6] for a more
detailed discussion.

The existence of the weak global attractor A was proved in [13,18]. It has the
following structure:

A = {u(0) : u(·) is a complete bounded Leray–Hopf solution to the NSE}.
The attractor A ⊂ B is the L2-weak omega limit of B, and it is the minimal L2-
weakly closed weakly attracting set (see [2,4]).

In the case of a time-dependent force f = f(t), a relevant object describing the
long-time dynamics is a pullback attractor, whose existence was proved in [6]. In
the nonautonomous case, there exists an absorbing ball for all the Leray solutions,
whose radius R is such as R > νκ

−1/2
0 G, just as in the autonomous case, but the

Grashof number is

G =
T 1/2κ

1/2
0 ‖f‖L2

b(T )

ν3/2(1 − e−νκ2
0T )1/2

. (3.8)

Here it is assumed that f is translationally bounded in L2
loc(R,H−1) and

‖f‖2
L2

b(T ) := sup
t∈R

1
T

∫ t+T

t

‖f(τ)‖2
H−1 dτ.

The pullback attractor is defined as the minimal weakly closed weakly pullback
attracting set for all Leray–Hopf solutions in the absorbing ball. It is the weak
pullback omega limit of B, and it has the following structure (see [6]):

A(t) = {u(t) : u(·) is a complete bounded Leray–Hopf solution to the NSE}.
Let u(t) be a complete bounded Leray–Hopf solution to the NSE. Then the energy

inequality (2.7) implies

0 � ‖u(t + T )‖2
2 � lim sup

τ→t+
‖u(τ)‖2

2 − 2ν

∫ t+T

t

‖∇u(τ)‖2
2 dτ + 2

∫ t+T

t

(f, u) dτ

� ν2κ−1
0 G2 − ν

∫ t+T

t

‖∇u(τ)‖2
2 dτ +

1
ν

∫ t+T

t

‖f‖2
H−1 dτ.

Therefore,

〈‖∇u‖2
2〉 :=

1
T

∫ t+T

t

‖∇u(t)‖2
2 dt � νG2

Tκ0
+ κ0ν

2G2. (3.9)

We can now connect this to Kolmogorov’s dissipation wavenumber defined as

κd :=
( ε

ν3

)1/d+1

, ε := νλd
0〈‖∇u‖2

2〉, (3.10)

where d is the intermittency dimension and ε is average energy dissipation rate per
unit active volume (i.e., the volume occupied by eddies). In order to define d, first,
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note that

λ3
0λ

−1
q ‖uq‖2

2 � λ−1
q ‖uq‖2

∞ � CBλ2
q‖uq‖2

2, (3.11)

due to Bernstein’s inequality. Here CB is an absolute constant (which depends on
the choice of χ(ξ) in (2.5)). The intermittency dimension d is defined as

d := sup

{
s ∈ R :

〈∑
q

λ−1+s
q ‖uq‖2

∞

〉
� C3−s

B λs
0

〈∑
q

λ2
q‖uq‖2

2

〉}
, (3.12)

for u �≡ 0, and d = 3 for u ≡ 0 on [t, t + T ]. Thanks to (3.11) and the fact that
〈∑q λ2

q‖uq‖2
2〉 < ∞, we have d ∈ [0, 3] and〈∑

q

λ−1+d
q ‖uq‖2

∞

〉
= C3−d

B λd
0

〈∑
q

λ2
q‖uq‖2

2

〉
.

The intermittency dimension d, defined in terms of a level of saturation of Bern-
sten’s inequality (see [7,8] for similar definitions), measures the number of eddies
at various scales. The case d = 3 corresponds to Kolmogorov’s regime where at each
scale the eddies occupy the whole region. Note that d = d(u, t) and κd = κd(u, t),
defined for each individual trajectory, are functions of time. We can also define their
global analogues as

D := inf
u∈E,t∈R

d(u, t), Kd := sup
u∈E,t∈R

κd(u, t).

Here E is a family of all complete bounded Leray–Hopf solution to the NSE.
Finally, thanks to the bound (3.9),

κd =
〈

λd
0

ν2
‖∇u‖2

2

〉1/d+1

� (2π)−d/d+1κ0G
2/d+1

(
1

νTκ2
0

+ 1
)1/d+1

.

Also, taking the supremum over all u ∈ E and t ∈ R, we obtain

Kd � κ0G
2/D+1

(
1

νTκ2
0

+ 1
)1/D+1

,

provided G � 1.

4. Proof of the main result

Let u(t) and v(t) be completely bounded in L2 Leray–Hopf solutions. Denote w :=
u − v, which satisfies the equation

wt + u · ∇w + w · ∇v = −∇p′ + νΔw (4.13)

in the sense of distributions. Here p′ stands for the difference of the pressures.
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Recall the definition of the determining wavenumber:

Λu(t) = min{λq : (Lλp−q)σλ−1
q ‖up‖L∞ < c0ν,

∀p > q and λ−2
q ‖∇u�q‖L∞ < c0ν, q ∈ N},

where σ = (δ − 1)/2. Let Λ(t) := max{Λu(t), Λv(t)} and Q(t) be such that Λ(t) =
λQ(t). By our assumption, w�Q(t)(t) ≡ 0. Recall that 0 < δ � 3, that is, −1/2 <
σ � 1. Let

s = min
{− 1

2 + δ
4 , 0
}

.

Then straightforward computations give −1 − σ < s < σ � 1.
Multiplying (4.13) by λ2s

q Δ2
qw, integrating (i.e., using λ2s

q Δ2
qw as a test function

in the weak formulation), and adding up for all q � −1 yields

1
2
‖w(t)‖2

Hs − 1
2
‖w(t0)‖2

Hs + ν

∫ t

t0

‖w‖2
H1+s dτ

�
∫ t

t0

∑
q�−1

λ2s
q

∣∣∣∣∫
T3

Δq(w · ∇v)wq dx

∣∣∣∣ dτ

+
∫ t

t0

∑
q�−1

λ2s
q

∣∣∣∣∫
T3

Δq(u · ∇w)wq dx

∣∣∣∣ dτ,

=:
∫ t

t0

I dτ +
∫ t

t0

J dτ.

(4.14)

We first decompose I using Bony’s paraproduct as mentioned in §2.3,

I �
∑

q�−1

λ2s
q

∑
|q−p|�2

∣∣∣∣∫
T3

Δq(w�p−2 · ∇vp)wq dx

∣∣∣∣
+
∑

q�−1

λ2s
q

∑
|q−p|�2

∣∣∣∣∫
T3

Δq(wp · ∇v�p−2)wq dx

∣∣∣∣
+
∑

q�−1

λ2s
q

∑
p�q−2

∣∣∣∣∫
T3

Δq(w̃p · ∇vp)wq dx

∣∣∣∣
=: I1 + I2 + I3.

It follows from Hölder’s inequality that

I1 �
∑
q>Q

∑
|q−p|�2
p>Q+2

λ2s
q

∫
T3

|Δq(w�p−2 · ∇vp)wq|dx

�
∑
q>Q

∑
|q−p|�2
p>Q+2

λ2s
q ‖w(Q,p−2]‖2λp‖vp‖∞‖wq‖2.
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Using the definition of Λ, Young’s inequality and Jensen’s inequality, we obtain

I1 � c0ν
∑
q>Q

∑
|q−p|�2
p>Q+2

λ2s
q Λ1+σλ1−σ

p ‖wq‖2

∑
Q<p′�p−2

‖wp′‖2

� c0ν
∑
q>Q

λ1+s
q ‖wq‖2

⎛⎝ ∑
Q<p′�q

λ1+s
p′ ‖wp′‖2λ

−1−s
p′ λs−σ

q λ1+σ
Q

⎞⎠
� c0ν

∑
q>Q

λ1+s
q ‖wq‖2

⎛⎝ ∑
Q<p′�q

λ1+s
p′ ‖wp′‖2(Lλq−p′)s−σ

⎞⎠ ,

where we used σ � −1 and s < σ. Now using Young’s inequality and Jensen’s
inequality, we conclude

I1 � c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2 + c0ν
∑
q>Q

⎛⎝ ∑
Q<p′�q

λ1+s
p′ ‖wp′‖2(Lλq−p′)s−σ

⎞⎠2

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2 + c0ν
∑
q>Q

∑
Q<p′�q

λ2+2s
p′ ‖wp′‖2

2(Lλq−p′)s−σ

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2 + c0ν
∑

p′>Q

λ2+2s
p′ ‖wp′‖2

2

∑
q�p′

(Lλq−p′)s−σ

� c0ν‖∇1+sw‖2
2,

where we needed s < σ. Note that we omit dimensionless constants that depend on
δ throughout this proof. The precise bound on I1 is

I1 � c0ν‖∇1+sw‖2
2

(
1 + (1 − 2s−σ)−1

)
.

Note that (1 − 2s−σ)−1 → ∞ as δ → 0+ by definitions of σ and s. Because of this,
we will have c0 → 0 as δ → 0+ once we choose c0 at the end of the proof. This
explains why we have to avoid the case of extreme intermittency, which is covered
in the companion paper [9].

Following a similar strategy, we have

I2 �
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q

∫
T3

|Δq(wp · ∇v�p−2)wq|dx

�
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q ‖wp‖2‖∇v(Q,p−2]‖∞‖wq‖2

+
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q ‖wp‖2‖∇v�Q‖∞‖wq‖2

≡ I21 + I22,
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where we adopt the convention that (Q, p − 2] is empty if p − 2 � Q. Thus, the first
part of the definition of Λ implies

I21 �
∑
p>Q

∑
|q−p|�2

λ2s
q ‖wp‖2‖wq‖2

∑
Q<p′�p−2

‖∇vp′‖∞

�
∑
q>Q

λ2s
q ‖wq‖2

2

∑
Q<p′�q+2

λp′‖vp′‖∞

� c0ν
∑
q>Q

λ2s
q ‖wq‖2

2

∑
Q<p′�q+2

λ1−σ
p′ Λ1+σ

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2

∑
Q<p′�q+2

λ1−σ
p′ Λ1+σλ−2

q

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2

where we need σ � −1. While the second part of the definition of Λ gives

I22 �
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q ‖wp‖2‖wq‖2‖∇v�Q‖∞

� c0ν
∑
q>Q

Λ2
vλ2s

q ‖wq‖2
2

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2.

We will now estimate I3. It follows from integration by parts that

I3 =
∑

q�−1

λ2s
q

∑
|q−p|�2

∣∣∣∣∫
T3

Δq(wp · ∇v�p−2)wq dx

∣∣∣∣
�
∑
q>Q

∑
p�q−2

λ2s
q

∫
T3

|Δq(w̃p ⊗ vp)∇wq|dx

�
∑
p>Q

∑
Q<q�p+2

λ1+2s
q ‖w̃p‖2‖wq‖2‖vp‖∞.

By Hölder’s inequality and definition of Λ, we have

I3 �
∑
p>Q

‖w̃p‖2‖vp‖∞
∑

Q<q�p+2

λ1+2s
q ‖wq‖2

� c0ν
∑
p>Q

Λ1+σλ−σ
p ‖w̃p‖2

∑
Q<q�p+2

λ1+2s
q ‖wq‖2

� c0ν
∑
p>Q

λ1+s
p ‖w̃p‖2

∑
Q<q�p+2

λ1+s
q ‖wq‖2λ

1+σ
Q λ−1−s−σ

p λs
q
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Now we use Young’s and Jensen’s inequalities to infer

I3 � c0ν
∑
p>Q

λ1+s
p ‖w̃p‖2

∑
Q<q�p+2

λ1+s
q ‖wq‖2(Lλq−p)1+s+σ

� c0ν
∑
p>Q

λ2+2s
p ‖wp‖2

2 + c0ν
∑
p>Q

⎛⎝ ∑
Q<q�p+2

λ1+s
q ‖wq‖2(Lλq−p)1+s+σ

⎞⎠2

� c0ν
∑
p>Q

λ2+2s
p ‖wp‖2

2,

where we used σ � −1 and s > −1 − σ.
Therefore, we have for σ � −1 and −1 − σ < s < σ,

I � c0ν‖∇1+sw‖2
2. (4.15)

Now applying Bony’s paraproduct formula to J yields

J =
∫ t

t0

∑
q�−1

λ2s
q

∣∣∣∣∫
T3

Δq(w · ∇v)wq dx

∣∣∣∣ dτ

�
∑

q�−1

∑
|q−p|�2

λ2s
q

∣∣∣∣∫
T3

Δq(u�p−2 · ∇wp)wq dx

∣∣∣∣
+
∑

q�−1

∑
|q−p|�2

λ2s
q

∣∣∣∣∫
T3

Δq(up · ∇w�p−2)wq dx

∣∣∣∣
+
∑

q�−1

∑
p�q−2

∑
|p−p′|�1

λ2s
q

∣∣∣∣∫
T3

Δq(up · ∇wp′)wq dx

∣∣∣∣
=: J1 + J2 + J3.

We further decompose J1 by using a commutator form

J1 �
∑

q�−1

∑
|q−p|�2

λ2s
q

∣∣∣∣∫
R3

[Δq, u�p−2 · ∇]wpwq dx

∣∣∣∣
+
∑

q�−1

λ2s
q

∣∣∣∣∫
R3

u�q−2 · ∇wqwq dx

∣∣∣∣
+
∑

q�−1

∑
|q−p|�2

λ2s
q

∣∣∣∣∫
R3

(u�p−2 − u�q−2) · ∇Δqwpwq dx

∣∣∣∣
= J11 + J12 + J13.
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To obtain the second term, we used
∑

|p−q|�2 Δqwp = wq. In fact, we have J12 = 0
since div u�q−2 = 0. In the first term, the commutator is defined as

[Δq, u�p−2 · ∇]wp := Δq(u�p−2 · ∇wp) − u�p−2 · ∇Δqwp.

It is easy to see (for more details, see [3]) that for any 1 � r � ∞,

‖[Δq, u�p−2 · ∇]wp‖r � ‖∇u�p−2‖∞‖wp‖r.

Then J11 is estimated as

J11 �
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q

∫
T3

|[Δq, u�p−2 · ∇]wpwq|dx

�
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q ‖∇u(Q,p−2]‖∞‖wp‖2‖wq‖2

+
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q ‖∇u�Q‖∞‖wp‖2‖wq‖2

≡ J111 + J112.

Here

J111 �
∑
q>Q

λ2s
q ‖wq‖2

2

∑
Q<p′�q

λp′‖up′‖∞

� c0ν
∑
q>Q

λ2s
q ‖wq‖2

2

∑
Q<p′�q

Λ1+σλ1−σ
p′

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2

∑
Q<p′�q

Λ1+σλ1−σ
p′ λ−2

q

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2,

where we used σ � −1. As for the second term, using the fact that ‖∇u�q‖∞ �
c0νΛ2 for q � Q, we obtain

J112 � c0νΛ2
∑
q>Q

λ2s
q ‖wq‖2

2 � c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2.

The term J13 is estimated as

J13 �
∑
q>Q

∑
|q−p|�2

p>Q

λ2s
q

∫
R3

|(u�p−2 − u�q−2) · ∇Δqwpwq|dx

�
∑
q>Q

λ1+2s
q ‖u(q−4,q]‖∞‖wq‖2

2
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�
∑
q>Q

λ1+2s
q ‖u(q−4,Q]‖∞‖wq‖2

2 +
∑
q>Q

∑
q−4<p′�q

p′>Q

λ1+2s
q ‖up′‖∞‖wq‖2

2

≡ J131 + J132.

As before, we adopt the convention that (q − 4, Q] is empty if q − 4 � Q. We have

J131 � c0νΛ
∑
q>Q

λ1+2s
q ‖wq‖2

2 � c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2,

and

J132 =
∑
q>Q

∑
q−4�p′�q

p′>Q

λ1+2s
q ‖up′‖∞‖wq‖2

2

� c0ν
∑
q>Q

∑
q−4�p′�q

p′>Q

λ1+2s
q Λ1+σλ−σ

p′ ‖wq‖2
2

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2(LλQ−q)1+σ

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2,

where we used σ � −1.
Now we continue with J2:

J2 =
∑
q>Q

∑
|q−p|�2
p>Q+2

λ2s
q

∣∣∣∣∫
T3

Δq(up · ∇w�p−2)wq dx

∣∣∣∣
�
∑
q>Q

∑
|q−p|�2
p>Q+2

λ2s
q ‖up‖∞‖∇w(Q,p−2]‖2‖wq‖2.

Using definition of Λ, Young’s, and Jensen’s inequalities, we obtain

J2 � c0ν
∑
q>Q

∑
|q−p|�2
p>Q+2

λ2s
q Λ1+σλ−σ

p ‖wq‖2‖∇w(Q,p−2]‖2

� c0ν
∑
q>Q

Λ1+σλ2s−σ
q ‖wq‖2‖∇w(Q,q]‖2

� c0ν
∑
q>Q

Λ1+σλ2s−σ
q ‖wq‖2

∑
Q<p′�q

λp′‖wp′‖2

� c0ν
∑
q>Q

λ1+s
q ‖wq‖2

∑
Q<p′�q

λ1+s
p′ ‖wp′‖2λ

s−σ−1
q λ−s

p′ Λ1+σ

� c0ν
∑
q>Q

λ1+s
q ‖wq‖2

⎛⎝ ∑
Q<p′�q

λ1+s
p′ ‖wp′‖2(Lλq−p′)s−σ−1

⎞⎠
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� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2 + c0ν
∑
q>Q

⎛⎝ ∑
Q<p′�q

λ1+s
p′ ‖wp′‖2(Lλq−p′)s−σ−1

⎞⎠2

� c0ν
∑
q>Q

λ2+2s
q ‖wq‖2

2,

where we used s < σ + 1 and σ � −1.
Notice that the last term J3 can be estimated in the same way as I3. Therefore,

we have for σ � −1 and −1 − σ < s < 1 + σ,

J � c0ν‖∇1+sw‖2
2. (4.16)

Combining (4.15) and (4.16), we conclude that for any δ > 0, there exists an
dimensionless constant C > 0 (that depends only on δ) such that

I + J � Cc0ν‖∇1+sw‖2
2,

where s = min{−1/2 + δ/4, 0} � 0. Choosing c0 := 1/(2C), we infer from (4.14)
that for all t0 � t,

‖w(t)‖2
Hs � ‖w(t0)‖2

Hs − ν

∫ t

t0

‖∇1+sw‖2
2 dτ

� ‖w(t0)‖2
Hs − νκ2+2s

0

∫ t

t0

‖w‖2
2 dτ,

with κ0 = 2π/L. Thus

‖w(t)‖2
Hs � ‖w(t0)‖2

Hse−νκ2+2s
0 (t−t0), t0 � t.

Recall that s � 0 and hence ‖w(t)‖Hs � λs
0‖w(t)‖2, which is bounded on R as w(t)

is the difference of two complete bounded trajectories. Taking the limit as t0 → −∞
completes the proof.

�

5. Average determining wavenumber and Kolmogorov’s dissipation
wavenumber

The goal of this section is to derive a uniform upper bound on the average
determining wavenumber in the absorbing ball. First, recall that Λu(t) is defined
as

Λu(t) := min{λq : (Lλp−q)σλ−1
q ‖up‖∞ < c0ν,

∀p > q and λ−2
q ‖∇u�q‖∞ < c0ν, q ∈ N},

where σ = (δ − 1)/2 and c0 is an dimensionless constant that depends only on δ.
Recall that σ ∈ (−1/2, 1]. We will drop the subscript u in Λu and define Q so that
λQ = Λ.
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Lemma 5.1. If λ0 � Λ < ∞, then

(c0ν)2Λ4 � ‖∇u�Q−1‖2
∞ + sup

p�Q
(Lλp−Q)2σΛ2‖up‖2

∞. (5.17)

If Λ = ∞, then

sup
q

λσ
q ‖uq‖∞ = ∞.

Proof. First, consider the case Λ = ∞. Then for every q ∈ N either

sup
p>q

(Lλp−q)σλ−1
q ‖up‖∞ � c0ν, (5.18)

or

λ−2
q ‖∇u�q‖∞ � c0ν. (5.19)

If (5.18) is satisfied for infinitely many q ∈ N, then

lim sup
q→∞

sup
p>q

λ−σ−1
q (Lλp)σ‖up‖∞ � c0ν.

Since σ > −1, this immediately implies that supq λσ
q ‖uq‖∞ = ∞.

If (5.19) is satisfied for infinitely many q ∈ N, then

lim sup
q→∞

λ−2
q ‖∇u�q‖∞ � c0ν.

On the contrary, since σ � 1,

λ−2
q ‖∇u�q‖∞ � λ−2

q

∑
p�q

λp‖up‖∞

= λ−σ−1
q

∑
p�q

(Lλq−p)σ−1λσ
p‖up‖∞

� λ−σ−1
q sup

p�q
λσ

p‖up‖∞.

Hence, since −σ − 1 < 0, supq λσ
q ‖uq‖∞ = ∞.

Now if λ0 < Λ(t) < ∞, then both conditions in the definition of Λ are satisfied
for q = Q, but one of the conditions is not satisfied for q = Q − 1, that is,

2(p−Q+1)σλ−1
Q−1‖up‖∞ � c0ν, for some p � Q, (5.20)

or

‖∇u�Q−1‖∞ � c0νλ2
Q−1 = 1

4c0νΛ2. (5.21)

Thus we have

(c0ν)2Λ4 � 16(λp−QL)2σΛ2‖up‖2
∞, for some p � Q,

or

(c0ν)2Λ4 � 16‖∇u�Q−1‖2
∞.

Hence, adding the right-hand sides, we obtain (5.17). �
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We will now consider the average determining wavenumber

〈Λ〉 :=
1
T

∫ t+T

t

Λ(τ) dτ,

and compare it with Kolmogorov’s dissipation wavenumber defined as

κd :=
( ε

ν3

)1/d+1

, ε := νλd
0〈‖∇u‖2

2〉 =
νλd

0

T

∫ t+T

t

‖∇u(τ)‖2
2 dτ, (5.22)

where d ∈ [0, 3] is the intermittency dimension and ε is average energy dissipation
rate per unit active volume (i.e., the volume occupied by eddies). Recall from the
definition of intermittency (5.23) that〈∑

q�Q

λ−1+d
q ‖uq‖2

∞〉 � λd
0〈
∑
q�Q

λ2
q‖uq‖2

2

〉
. (5.23)

The case d = 3 corresponds to Kolmogorov’s regime where at each scale the eddies
occupy the whole region, and d = 0 is the case of extreme intermittency.

Consider now a solution u for which d � δ, that is, d � 2σ + 1. Then whenever
Λu(t) is finite, we can use (5.17) in lemma 5.1 and Jensen’s inequality to get

(Λ − λ0)d+1 � Λd−3

(c0ν)2

(
‖∇u�Q−1‖2

∞ + sup
q�Q

(Lλq−Q)2σΛ2‖uq‖2
∞

)

� 1
ν2

⎛⎝ ∑
q�Q−1

λ(d−1)/2
q ‖uq‖∞(LλQ−q)(d−3)/2

⎞⎠2

+
Λd−1

ν2
sup
q�Q

(Lλq−Q)2σ‖uq‖2
∞

�d
1
ν2

∑
q�Q−1

λd−1
q ‖uq‖2

∞ +
1
ν2

sup
q�Q

(Lλq−Q)2σ−d+1λd−1
q ‖uq‖2

∞

�d
1
ν2

∑
q

λd−1
q ‖uq‖2

∞.

If Λ = ∞, this inequality is also true. Indeed, in this case, lemma 5.1 implies∑
q

λd−1
q ‖uq‖2

∞ �
∑

q

λ2σ
q ‖uq‖2

∞ = ∞.

Then thanks to Jensen’s inequality,

〈Λ〉 − λ0 � 〈(Λ − λ0)d+1〉1/d+1

�d

〈
1
ν2

∑
q

λd−1
q ‖uq‖2

∞

〉1/d+1

.
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Now using (5.23), we conclude that

〈Λ〉 − λ0 �d

〈
1
ν2

∑
q�Q

λd−1
q ‖uq‖2

∞

〉1/d+1

�
〈

λd
0

ν2

∑
q�Q

λ2
q‖uq‖2

2

〉1/d+1

�
〈

νλd
0

ν3
‖∇u‖2

2

〉1/d+1

= κd

Consider now Kolmogorov’s regime where d = 3. Then a similar computation
yields〈

Λ − λ0

(log(Λ/λ0))1/4

〉
�
〈

(Λ − λ0)4

Q

〉1/4

�
〈

Q

⎛⎝ 1
c0νQ

∑
q�Q

‖∇uq‖∞
⎞⎠2

+ sup
p�Q

(Lλp−Q)2σΛ2‖up‖2
∞

〉1/4

�
〈

1
ν2

∑
q�Q

λ2
q‖uq‖2

∞ +
1
ν2

sup
q�Q

(Lλq−Q)2σ−2λ2
q‖uq‖2

∞

〉1/4

�
〈

λ3
0

ν2

∑
q

λ2
q‖uq‖2

2

〉1/4

� κd.
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