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We consider the coupled chemotaxis-fluid model for periodic pattern formation on
two- and three-dimensional domains with mixed nonhomogeneous boundary value
conditions, and prove the existence of nontrivial time periodic solutions. It is worth
noticing that this system admits more than one periodic solution. In fact, it is not
difficult to verify that (0, c, 0, 0) is a time periodic solution. Our purpose is to obtain
a time periodic solution with nonconstant bacterial density.
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1. Introduction

Pattern can be widely observed in the nature, for example, the patterns on butter-
flies, the stripes on zebras. However, the processes that produce them are unknown.
The pattern generation mechanisms have always attracted people’s attention. In
1952, Turing [24] proposed a novel idea, for the following diffusion system,

{
ut = DuΔu + f(u, v),
vt = DvΔv + g(u, v),

in the absence of diffusion (Du = Dv = 0), the solutions tend to a linearly stable
uniform steady state, while under certain conditions, these systems are capable
of generating spatially inhomogeneous patterns if Du �= Dv, and this phenomenon
is known as Turing (diffusion-driven) instability. Diffusion is usually considered a
stabilizing process, and Turing’s discovery broke this knowledge. After that, this
phenomenon has been widely studied, and it has been shown that reaction-diffusion
mechanisms can generate spatially inhomogeneous steady states [19]. Besides the
reaction-diffusion mechanisms, the time delay, the prey-taxis, cell-chemotaxis, etc.,
also have been proposed as the possible causes of pattern formation [13,16,19,
26,32,34].
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In this paper, we consider the time periodic pattern formation for the following
chemotaxis-fluid model⎧⎪⎪⎪⎨

⎪⎪⎪⎩
nt + u · ∇n = Δn − χ∇ · (n∇c) + μn(a(x, t) − n), in Q,

ct + u · ∇c = Δc − cn, in Q,

ut + τu · ∇u = Δu −∇π + n∇ϕ, in Q,

∇ · u = 0, in Q,

(1.1)

where Q = Ω × R
+, Ω is a bounded domain in R

N with ∂Ω ∈ C2+α. This model
describes the motion of oxygen-driven bacteria living in a water drop containing
oxygen. n, c denote the bacterial density, the oxygen concentration respectively,
J = n∇c is the chemotactic flux, a is a nonconstant time periodic function with
period T , μ > 0 is a parameter, μn(a(x, t) − n) reflects the proliferation and death
of bacteria in a logistic law, −cn is the consumption term of oxygen, u, π are the
fluid velocity and the associated pressure with τ = 0 or 1, ∇ϕ is the gravitational
potential.

The chemotaxis-fluid model was initially introduced by Tuval et al. [25] in 2005,
which describes the motion of oxygen-driven swimming bacteria in incompressible
fluid, that is, the bacillus subtilis suspending in a drop of water will move towards
higher concentration of oxygen, this model can be written as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩
nt + u · ∇n = Δn −∇ · (χ(c)n∇c),
ct + u · ∇c = Δc − k(c)n,

ut + τu · ∇u = Δu −∇π + n∇ϕ,

∇ · u = 0.

(1.2)

However, the viscous force plays a leading role in slow viscous flows (low Reynolds
number), and the inertial force is far less than the viscous force. Thus, for which,
the Navier–Stokes equations can be approximated using Stokes equations by ignor-
ing the inertia force u · ∇u [11]. The study of chemotaxis-Navier–Stokes system
or chemotaxis-Stokes system has attracted much attention in the past decade. For
example, for Cauchy problem of this system, a global weak solution in dimension
2(τ = 1) was established in [18], and for the initial and boundary value problem
with zero-flux boundary condition for n, c, and no-slip boundary for u, a unique
global classical solution in the two-dimensional space with τ = 1, and a global weak
solution in the three-dimensional space with τ = 0 were obtained respectively, and
the authors further proved that the weak solution will become smooth eventually
and converge to the semi-trivial steady (u0, 0, 0) [27,28,30], which implies that
there is no pattern formation for this system. While if the proliferation and death
of bacteria is considered, then the system (1.2) becomes (1.1). For which, the global
existence of classical solutions in dimension 2 can be obtained using the same meth-
ods as [27]. While in dimension 3, a global weak solution was obtained by Lankeit
[14] for a ≡ 1. It is also shown that the weak solution will become smooth after
some time and finally converge to a semi-trivial steady state. So, there is no pat-
tern formation for this system. However, the existence of global classical solution
for small μ with any large initial datum remains open in dimension 3, which was
obtained only for large μ or small initial value [15].
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On the other hand, if the mobility of bacteria is characterized by the porous
medium diffusion, that is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
nt + u · ∇n = Δnm − χ∇ · (n∇c),
ct + u · ∇c = Δc − cn,

ut = Δu −∇π + n∇ϕ,

∇ · u = 0,

(1.3)

a global ‘very’ weak solution (n ln n ∈ L1) is obtained for m = 4
3 by Liu and Lorz

[18] in dimension 3. Subsequently, Duan and Xiang perfected this result, and estab-
lished the global existence of this kind of solution for any m � 1 [4]. However, this
kind of weak solution may be unbounded, and it is impossible to identify the singu-
larity of the solution. Hence, many mathematicians began to turn their attention
to searching for a bounded global weak solution. In 2012, Tao and Winkler [22]
established the existence of global bounded weak solution in the two-dimensional
framework for any m > 1. While, the study for the 3-D case is much more difficult.
In 2010, Di Francesco [3] obtained the existence of a global bounded weak solu-
tion for m ∈ ((7 +

√
217)/12, 2]; a locally bounded global weak solution was then

obtained for m ∈ (8
7 ,+∞) in 2013 [23]; the uniform boundedness of solutions was

subsequently supplemented for m ∈ ( 7
6 ,+∞) [29]; further extension was made by

Winkler for m > 9
8 in [31] to a convex domain; recently, we also [10] improved

the results to the case m > 11
4 −

√
3 (approximating to 56

55 ). However, if a logistic
term reflecting the cell proliferation is added to this model, Jin [7] established the
existence of global bounded weak solutions for any m > 1 to the fluid-free case in
dimension 3. Recently, a non-homogeneous boundary value problem is considered in
[1], the global existence of classical solution in dimension 2 and the global existence
of weak solution in dimension 3 were obtained respectively.

From above results, we see that if a is a positive constant, for the homogeneous
boundary value problem, there is no pattern formation, since all these solutions
converge to the semi-trivial steady state. Thus, in the present paper, we assume
that a is a time periodic function with period T . We consider the non-homogeneous
mixed boundary value problem of the model (1.1). For u, we still consider the no-
slip boundary condition, namely, no fluid motion takes place on the surface of the
water drop,

u|∂Ω = 0.

We also assume that there is no bacteria flux through the fluid–air interface, that
is

∂n

∂ν
− χn

∂c

∂ν

∣∣∣∣
∂Ω

= 0.

For oxygen, we absorb the ideas of [1,25], that is, if the water drop is surrounded
by air, oxygen exchange will take place on the boundary of Ω, that is, the solved
oxygen in the water drop may leave, and the free oxygen in the air may diffuse into
the drop. The behaviour of the oxygen exchange can be described by Raoult’s law,
which connects the rate of incoming oxygen to the partial vapour pressure of the
oxygen in the surroundings. We assume that the vapour pressure of the free oxygen
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is given, and thereby, the incoming rate of oxygen is known. The leaving rate of the
oxygen molecules is proportional to the total number of molecules on the surface.
Therefore, we have the following Robin boundary condition

∂c

∂ν

∣∣∣∣
∂Ω

= −a1(x, t)c(x, t) + a2(x, t),

where a1 ∈ C∞(∂Ω) × [0,+∞)), a2 ∈ C∞(∂Ω × [0,+∞)), a1 > 0 is the leaving rate
of the oxygen molecules, a2 � 0 with a2 �≡ 0 is the incoming oxygen and depends
on the known vapour pressure of the free oxygen. By [1,17], there exist g1, g2 with

g1 ∈ C∞
T (Ω × [0,+∞)), g2 ∈ C∞

T (Ω × [0,+∞)) (1.4)

such that

∂g1(x, t)
∂ν

= −a1(x, t) < 0, g2(x, t) =
a2

a1
� 0,

with
∂g2(x, t)

∂ν
= 0, (x, t) ∈ ∂Ω × [0,+∞). (1.5)

Thus, we have the following mixed boundary conditions

∂n

∂ν
− χn

∂c

∂ν
= 0,

∂c

∂ν
=

∂g1(x, t)
∂ν

(c(x, t) − g2(x, t)),

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,+∞). (1.6)

In the present paper, we study the time periodic patterns formation, we aimed
to show the existence of nontrivial time periodic solutions of (1.1) and (1.6). One
will see that the time periodic solution of the problem (1.1) and (1.6) is not unique,
and there are more than one periodic solution. Firstly it is easy to show that
(n, c, u, π) = (0, c, 0, 0) is the time periodic solution of (1.1) and (1.6), where c � 0
is the unique time periodic solution of (1.7). In fact, we see that when n = 0, u = 0,
then (1.1) and (1.6) are equivalent to⎧⎨

⎩
ct = Δc, in Q,

∂c
∂ν

∣∣
∂Ω

= ∂g1(x,t)
∂ν (c(x, t) − g2(x, t)).

(1.7)

It is easy to verify that ‖g2‖L∞ , 0 are the upper and lower periodic solutions of
(1.7) respectively, then by an iterative process, see for example [33], the problem
(1.7) admits a time periodic solution c with

0 � c � ‖g2‖L∞ .

Similar to the proof of lemma 3.2, we also have the uniqueness of periodic solutions
for (1.7). However, in any case, the main purpose of the present paper is to find a
time periodic solution with nontrivial n.

We give the main theorems of this paper as follows.

Theorem 1.1. Assume N = 2, τ = 1, (1.4) and (1.5) hold, a,∇ϕ ∈ L∞
T (Q), a(x, t)

has a positive lower bound, that is there exists a positive constant ρ such that
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a(x, t) > ρ. Then the problem (1.1) and (1.6) admits a bounded strong time periodic
solution (n, c, u, π) with n, c � 0, n is not a constant state, and

n ∈ L∞
T (Q) ∩ L∞

T (R+,H1(Ω)) ∩ W 2,1
2 (QT ),

c̃ ∈ L∞
T (R+,H2(Ω) ∩ W 1,∞(Ω)) ∩ W 3,1

2 (QT ), c̃t ∈ L∞
T (R+, L2(Ω)),

u ∈ L∞
T (R+,H1

σ(Ω)) ∩ W 2,1
2 (QT ),

π ∈ L2
T (R+,H1(Ω)).

In particular, if a,∇φ ∈ C
α,α/2
T (Ω × R

+), then we also have that (n, c, u, π) is a
classical solution with

n, c, u ∈ C
2+α,1+α/2
T (Ω × R

+), π ∈ C
1+α,α/2
T (Ω × R

+).

In dimension 3, we consider the chemotaxis-Stokes system, and have the following
result.

Theorem 1.2. Assume N = 3, τ = 0, (1.4) and (1.5) hold, a,∇ϕ ∈ L∞
T (Q), a(x, t)

has a positive lower bound, that is there exists a positive constant ρ such that
a(x, t) > ρ. Then when μ/χ2 is appropriately large, the problem (1.1) and (1.6)
admits a bounded strong time periodic solution (n, c, u, π) with n, c � 0, n is not a
constant state, and

n ∈ L∞
T (Q) ∩ L∞

T (R+,H1(Ω)) ∩ W 2,1
2 (QT ),

c̃ ∈ L∞
T (R+,H2(Ω) ∩ W 1,∞(Ω)) ∩ W 3,1

2 (QT ), c̃t ∈ L∞
T (R+, L2(Ω)),

u ∈ L∞
T (R+,H1

σ(Ω)) ∩ W 2,1
2 (QT ),

π ∈ L2
T (R+,H1(Ω)).

In particular, if a,∇φ ∈ C
α,α/2
T (Ω × R

+), then we also have that (n, c, u, π) is a
classical solution with

n, c, u ∈ C
2+α,1+α/2
T (Ω × R

+), π ∈ C
1+α,α/2
T (Ω × R

+).

2. Preliminaries

We first give some notations, which will be used throughout this paper.
Notations: ‖ · ‖Lp := ‖ · ‖Lp(Ω); f ∈ Lp

T (R+;X ) ⇐⇒ f is a time periodic function
with period T , and f ∈ Lp((0, T );X ); f ∈ Cα,β

T (Ω × R+) ⇐⇒ f is a time peri-
odic function with period T and f ∈ Cα,β(Ω × R+); C∞

0,σ(Ω) denotes the set of
all C∞(Ω)-real functions φ = (φ1, · · · , φn) with compact support in Ω, such that
divφ = 0. The closure of C∞

0,σ(Ω) with respect to norm Lr is denoted by Lr
σ(Ω). By

[6], each u ∈ Lr has a unique decomposition

u = v + ∇p, v ∈ Lr
σ,∇p ∈ Gr,

with Gr = {∇p;∇p ∈ Lr; p ∈ Lr
loc}, and the projection P : Lr(Ω) → Lr

σ(Ω) is called
Helmholtz projection. Let Aω := −PΔω, then A generates a bounded analytic semi-
group {e−tA}t�0 on Lr

σ, and the time periodic solution u of (1.1) can be expressed
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as

u =
∫ t

−∞
e−(t−s)AP (−u · ∇u + n(s)∇ϕ(s)) ds. (2.1)

For more details, please refer to [5,12].
Next, we show the following two lemmas, which will be used throughout this

paper.

Lemma 2.1. Let T > 0, a > 0, σ � 0, and suppose that f : R
+ → [0,∞) is absolutely

continuous, f, h are time periodic functions with period T, and f satisfies

f(t) − f(t0) + a

∫ t

t0

f1+σ(s) ds �
∫ t

t0

h(s) ds, for any 0 � t0 < t, (2.2)

where 0 � f, h ∈ L1
T (R+) and

∫ T

0

h(s) ds � β.

Then we have

sup
t∈(0,T )

f(t) + a

∫ T

0

f(t) dt �
(

β

aT

)1/(1+σ)

+ 2β. (2.3)

Proof. Taking t0 = 0, t = T in (2.2), we obtain

∫ T

0

f1+σ(t) dt � β

a
.

Using mean value theorem of integrals, there exists t∗ ∈ (0, T ) such that

f(t∗) �
(

β

aT

)1/(1+σ)

.

Then by (2.2), we obtain

sup
t∈(0,T )

f(t) = sup
t∈(t∗,t∗+T )

f(t) � f(t∗) + β �
(

β

aT

)1/(1+σ)

+ β.

Then (2.3) is proved. �
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Lemma 2.2. Let T > 0, a > 0, σ > 0, and suppose that f : R
+ → [0,∞) is absolutely

continuous, f, g, h are time periodic functions with period T, and satisfies

f(t) − f(t0) + a

∫ t

t0

f1+σ(s) ds �
∫ t

t0

g(s)f(s) ds +
∫ t

t0

h(s) ds for any 0 � t0 < t,

(2.4)
where g(t), h(t) � 0 with g, h ∈ L1

T (R+) and∫ T

0

g(s) ds � α,

∫ T

0

h(s) ds � β.

Then we have

sup
t∈(0,T )

f(t) + a

∫ T

0

f1+σ(t) dt � C, (2.5)

where C is a constant depending only on a, α, β, T . While, if a = 0 in (2.4), and∫ T

0

f(s) ds � γ.

Then we also have

sup
t∈(0,T )

f(t) � C, (2.6)

where C is a constant depending only on γ, α, β, T .

Proof. Taking t0 = 0, t = T in (2.4), we obtain

a

∫ T

0

f1+σ(t) dt �
∫ T

0

h(t) dt +
∫ T

0

g(t)f(t) dt � β + α sup
t∈(0,T )

f(t). (2.7)

Using mean value theorem of integrals, there exists t∗ ∈ (0, T ) such that

f(t∗) �
(

β

aT
+

α

aT
sup

t∈(0,T )

f(t)

)1/(1+σ)

.

By (2.4), we see that for any t ∈ [t∗, t∗ + T )

f(t) � f(t∗) +
∫ t

t∗
g(s)f(s) ds + β.

By Gronwall’s inequality, for any t ∈ [t∗, t∗ + T ),

f(t) � (f(t∗) + β)
∫ t

t∗
g(s) ds �

(
β

aT
+

α

aT
sup

t∈(0,T )

f(t)

)1/(1+σ)

eα + βeα

�
(

β

aT

)1/(1+σ)

eα +

(
α

aT
sup

t∈(0,T )

f(t)

)1/(1+σ)

eα + βeα

� 1
2

sup
t∈(0,T )

f(t) + C.
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By the periodicity of f , it implies that

sup
t∈(0,T )

f(t) � 2C,

combining with (2.7), we obtain (2.5). By
∫ T

0

f(s) ds � γ,

there exists t0 ∈ (0, T ) such that

f(t0) � γ

T
.

Then similar to the proof above, we obtain (2.6). �

By [8,20], we also have the following lemma.

Lemma 2.3. Assume that f ∈ Lp
T (R+;Lp(Ω)). Then the following problem{

ut − Δu + u = f(x, t),
∂u
∂n

∣∣
∂Ω

= 0
(2.8)

admits a unique strong time periodic solution u ∈ W 2,1
p (QT ), and

∫ T

0

‖u‖p

W 2,1
p

ds � C

∫ T

0

‖f‖p
Lp ds, (2.9)

where C is a positive constant.

In fact, by [20], we see that if f is Höder continuous, then (2.8) admits a classical
time periodic solution. We take fk ∈ Cα,α/2(Ω × R+) such that fk → f in Lp(QT ),
and the corresponding solution is denoted by uk. By [8],

∫ T

0

‖uk‖p

W 2,1
p

ds � C

∫ T

0

‖fk‖p
Lp ds � C̃.

Letting k → ∞ (take a subsequence if necessary), then

uk ⇀ u, in W 2,1
p (QT ),

and u ∈ W 2,1
p (QT ) is a strong time periodic solution of (2.8), thus the existence is

proved. And (2.9) is a direct result of [8]. The uniqueness is easy to be proved by
(2.9). In fact, let u1, u2 be two time periodic solutions of (2.8), then u1 − u2 is a
time periodic solution of (2.8) with f = 0. Using (2.9),

∫ T

0

‖u1 − u2‖p

W 2,1
p

ds � 0,

it implies that u1 = u2 a.e. in QT .
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3. Existence and Regularity of Time Periodic Solutions for the
Linearized Problem in Dimension 2 and 3

Note that the boundary condition of oxygen concentration c is inhomogeneous, and
the standard Neumann heat semigroup argument can not be applied directly. So,
we first make a transformation. Let

c̃ = e−g1(c − g2).

Then we have
∂c̃

∂ν

∣∣∣∣
∂Ω

= −e−g1
∂g2

∂ν

∣∣∣∣
∂Ω

= 0

since ∂g2/∂ν|∂Ω = 0. And the problem (1.1) and (1.6) is transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = Δn − χ∇ · (eg1n∇c̃ + eg1nc̃∇g1 + n∇g2) + μn(a(x, t) − n), in Q,

c̃t − Δc̃ + (u − 2∇g1)∇c̃ = (|∇g1|2 + Δg1 − n − u∇g1 − g1t)c̃
+e−g1(Δg2 − u∇g2 − ng2 − g2t), in Q,

ut + τu · ∇u = Δu −∇π + n∇ϕ, in Q,

∇ · u = 0, in Q,
∂n
∂ν − χeg1nc̃∂g1

∂ν

∣∣∣
∂Ω

= ∂c̃
∂ν

∣∣
∂Ω

= 0, u|∂Ω = 0.

(3.1)
Consider the linearized problem⎧⎪⎨

⎪⎩
ut − Δu + ∇π + τ û · ∇u = ηn̂∇ϕ, in Q,

∇ · u = 0, in Q,

u|∂Ω = 0,

(3.2)

where η ∈ [0, 1] is a constant. By [8], we have

Lemma 3.1. Assume that û ∈ L4
T (R+, L4

σ(Ω)), n̂ ∈ L2
T (R+, L2(Ω)). Then when N =

2 with τ = 1, or N = 3 with τ = 0, (3.2) admits a unique strong time periodic solu-
tion u with u ∈ L∞((0, T ),H1

σ(Ω)) ∩ L2((0, T ),H2
σ(Ω)), and ut ∈ L2((0, T ), L2

σ(Ω)).

For the above solution u, we consider the following linear problem for any η ∈
[0, 1]. {

ct − Δc + u · ∇c + (1 − η)c = −n̂+c, in Q,
∂c
∂ν

∣∣
∂Ω

= η ∂g1(x,t)
∂ν (c(x, t) − g2(x, t)).

(3.3)

Letting

c̃ = e−ηg1(c − g2).

Then (3.3) is equivalent to⎧⎪⎨
⎪⎩

c̃t − Δc̃ + (u − 2η∇g1) · ∇c̃ + (1 − η + n̂+)c̃ = η(η|∇g1|2 + Δg1 − u∇g1 − g1t)c̃
+e−ηg1(Δg2 − u∇g2 − n̂+g2 − g2t − g2), in Q,

∂c̃
∂ν

∣∣
∂Ω

= 0.

(3.4)
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For (3.4), we have

Lemma 3.2. Assume n̂ ∈ L2
T (R+,H1(Ω)). Let u be the time periodic solution of

the problem (3.2). Then (3.4) (or (3.3)) admits a unique strong time periodic solu-
tion c̃ with c � 0, c̃ ∈ L∞

T (R+ × Ω) ∩ L∞
T (R+,H2(Ω)) ∩ L2

T (R+,H3(Ω)), and c̃t ∈
L∞

T (R+, L2(Ω)).

Proof. It is easy to see that ‖g2‖L∞ and 0 are the upper and lower periodic solutions
of (3.3) respectively, then by an iterative process, see for example [33], the problem
(3.3) admits a time periodic solution c with

0 � c � ‖g2‖L∞ , (3.5)

which implies that the solution c̃ of (3.4) is bounded.
In what follows, to obtain further regularity estimates, for simplicity, we may

assume that the solution c̃ is sufficiently smooth, otherwise, we can approximate
u, n̂+ with a sequence of sufficiently smooth functions uk, n̂k such that the corre-
sponding solutions c̃k are sufficiently smooth, and the following energy estimates
can be obtained through an approximate process.

Multiplying the first equation of (3.4) by c̃, then integrating it over Ω × (0, T ),
and noticing that c̃ is periodic and bounded, then

∫ T

0

∫
Ω

|∇c̃|2 dxdt +
∫ T

0

∫
Ω

(1 − η + n̂+)|c̃|2 dxdt � C

(
1 +

∫ T

0

∫
Ω

|u|2 dxdt

)
.

By lemma 3.1, it gives ∫ T

0

∫
Ω

|∇c̃|2 dxdt � C. (3.6)

Multiplying the first equation of (3.4) by Δc̃, then integrating it over Ω × (t0, t) for
any 0 � t0 < t, using lemma 3.1, we obtain

1
2

∫
Ω

|∇c̃(x, t)|2 dx − 1
2

∫
Ω

|∇c̃(x, t0)|2 dx +
∫ t

t0

∫
Ω

|Δc̃|2 dxds

�
∫ t

t0

‖u‖L4‖∇c̃‖L4‖Δc̃‖L2 ds

+
1
4

∫ t

t0

∫
Ω

|Δc̃|2 dxds + C

∫ t

t0

∫
Ω

(1 + |n̂+|2 + |u|2) dxds

� C

∫ t

t0

‖u‖H1(1 + ‖Δc̃‖1/2
L2 )‖Δc̃‖L2 ds

+
1
4

∫ t

t0

∫
Ω

|Δc̃|2 dx + C

∫ t

t0

∫
Ω

(1 + |n̂+|2 + |u|2) dxds

� 1
2

∫ t

t0

∫
Ω

|Δc̃|2 dxds + C

∫ t

t0

∫
Ω

(1 + |n̂+|2) dxds.
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By (3.6) and lemma 2.2, we arrive at

sup
t∈(0,T )

∫
Ω

|∇c̃|2 dx +
∫ T

0

∫
Ω

|Δc̃|2 dxdt � C. (3.7)

Similarly, it is also easy to get

∫ T

0

∫
Ω

|c̃t|2 dxdt � C.

Applying ∇ to the first equation of (3.3), multiplying the resulting equation with
−∇Δc̃, then integrating it over Ω × (t0, t) for any 0 � t0 < t, and using lemma 3.1,
(3.7), we obtain

1
2

∫
Ω

|Δc̃(x, t)|2 dx − 1
2

∫
Ω

|Δc̃(x, t0)|2 dx

+
∫ t

t0

∫
Ω

|∇Δc̃|2 dx + (1 − η)
∫

Ω

|Δc̃|2 dxds

�
∫ t

t0

∫
Ω

∇((u − 2η∇g1) · ∇c̃)∇Δc̃ dxds

− η

∫ t

t0

∫
Ω

∇((η|∇g1|2 + Δg1 − u∇g1 − g1t)c̃)∇Δc̃ dxds

+
∫ t

t0

∫
Ω

∇(n̂+c̃)∇Δc̃ dxds

−
∫ t

t0

∫
Ω

∇
(
e−ηg1(Δg2 − u∇g2 − n̂+g2 − g2t − g2)

)
∇Δc̃ dxds

�
∫ t

t0

(
(C + ‖u‖L4)‖∇2c̃‖L4‖∇Δc̃‖L2

+ (C + ‖∇u‖L4)‖∇c̃‖L4‖∇Δc̃‖L2 + ‖∇c̃‖L4‖n̂‖L4‖∇Δc̃‖L2) ds

+
∫ t

t0

(‖c̃‖L∞‖∇n̂‖L2‖∇Δc̃‖L2

+ C(1 + ‖u‖H1 + ‖n̂+‖H1 + ‖u‖H1‖∇c̃‖L4 + ‖c̃‖H1)‖∇Δc̃‖L2) ds

� C

∫ t

t0

(‖c̃‖L∞‖∇Δc̃‖L2 + ‖c̃‖1−α
L∞ ‖∇Δc̃‖1+α

L2 ) ds

+
∫ t

t0

((C + ‖∇u‖H1)‖∇c̃‖H1 + ‖∇c̃‖H1‖n̂‖H1)‖∇Δc̃‖L2 ds

+
∫ t

t0

(‖c̃‖L∞‖∇n̂‖L2‖∇Δc̃‖L2

+ C(1 + ‖u‖H1 + ‖n̂+‖H1 + ‖u‖H1‖∇c̃‖L4 + ‖c̃‖H1)‖∇Δc̃‖L2) ds
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� 1
4

∫ t

t0

∫
Ω

|∇Δc̃|2 dxds + C

∫ t

t0

(1 + ‖c̃‖2
H2 + ‖n̂‖2

H1 + ‖u‖2
H2) ds

+ C

∫ t

t0

‖Δc̃‖2
L2(‖n̂‖2

H1 + ‖u‖2
H2) ds,

where α = (8 − N)/(12 − 2N). By (3.7), lemmas 3.1 and 2.2, we further have

sup
t∈(0,T )

∫
Ω

|Δc̃|2 dx +
∫ T

0

‖c̃‖2
H3 dt � C. (3.8)

By the equation (3.4) and the inequality (3.8), it also gives

sup
t∈(0,T )

∫
Ω

|c̃t|2 dx � C. (3.9)

Next, we show the uniqueness. Let c1, c2 be the two time periodic solutions of the
problem (3.3), and denote c = c1 − c2, then{

ct − Δc + u · ∇c + (1 − η)c = −n̂+c, in Q,
∂c
∂ν

∣∣
∂Ω

= η ∂g1(x,t)
∂ν c(x, t).

(3.10)

Multiplying the first equation of (3.10) by c, and integrating it over Ω × (0, T ), we
obtain

− η

∫ T

0

∫
∂Ω

∂g1(x, t)
∂ν

|c|2 dsdt +
∫ T

0

∫
Ω

|∇c|2 dxdt

+
∫ T

0

∫
Ω

(1 − η + n̂+)|c|2 dxdt = 0.

Noticing that −∂g1(x, t)/∂ν|∂Ω = a1 > 0, then when 0 � η < 1, c = 0 in Ω × (0, T );
while if η = 1, then the above inequality implies that c|∂Ω = 0, then by poincaré
inequality, we also have ∫ T

0

∫
Ω

|c|2 dxdt = 0,

and the uniqueness is proved. �

For the above obtained solutions u, c̃, we consider the following linear parabolic
problem.⎧⎪⎪⎨

⎪⎪⎩
nt + u · ∇n + An = Δn − ηχ∇ · (eg1n∇c̃ + eg1nc̃∇g1 + n∇g2)

+ η(μa(x, t) + A)n̂+ − μn̂+n, in Q,
∂n
∂ν − ηχeg1nc̃∂g1

∂ν

∣∣∣
∂Ω

= 0,

(3.11)

where η ∈ [0, 1], A is a sufficiently large positive constant that ensures the unique-
ness of time periodic solutions. Similar to the problem (3.4), the existence of time
periodic solutions can be easily obtained, and we give the regularity estimates.
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Lemma 3.3. Assume a(x, t) ∈ L∞
T (Q), n̂ ∈ L∞

T (R+, L2(Ω)) ∩ L2
T (R+,H1(Ω)), u, c̃

are the time periodic solutions of the problem (3.2) and (3.4), respectively, then for
sufficiently large A > 0, the problem (3.11) admits a unique strong time periodic
solution n with n � 0, n ∈ L∞

T (R+,H1(Ω)) ∩ W 2.1
2 (QT ).

Proof. The existence of time periodic solutions can be easily obtained by a fixed
point method. That is, define a Poincaré map from n(x, 0) to n(x, T ), the time-
periodic solution is then identified as a fixed point of this Poincaré map. We omit
the proof, and only give the regularity estimate and the proof of uniqueness.

Next, we show that n � 0. Let us examine the set J(t) = {x ∈ Ω;n(x, t) < 0},
we assume that J(t) is a differentiable submanifold. Noticing that n = 0 and
∂n/∂ν � 0 on ∂{J(t)} \ ∂Ω; ∂n/∂ν = ηχeg1nc̃(∂g1/∂ν) on ∂J(t) ∩ ∂Ω, then by a
direct integration on J(t) × (0, T ) gives

0 � −
∫ T

0

∫
∂{J(t)}

(
∂n

∂ν
− ηχeg1nc̃

∂g1

∂ν

)
dsdt +

∫ T

0

∫
J(t)

(A + μn̂+)ndxdt

= η(μa + A)
∫ T

0

∫
J(t)

n̂+ dxdt � 0.

It implies that

∫ T

0

∫
J(t)

ndxdt = 0,

namely n � 0. While if J(t) is not a regular submanifold, we can construct a suf-
ficiently smooth approximating sequence {uk, c̃k, n̂k} of (u, c̃, n̂+) such that the
corresponding approximating solutions nk satisfying that nk(·, t) are continuously
differentiable. Thus, the sets Jk(t) are measurable and ∂Jk(t) are differentiable
submanifolds. Then the above result can be obtained by letting k → ∞.

Similarly, in what follows, we still assume that the solution n is sufficiently
smooth. Otherwise, the following estimates can be obtained by an approximating
process.

By a direct integration over Ω × (t0, t) with t0 < t < t0 + T for (3.11), it is easy
to obtain

∫
Ω

n(x, t) dx −
∫

Ω

n(x, t0) dx + A

∫ t

t0

∫
Ω

ndxds + μ

∫ t

t0

∫
Ω

n̂+ndxds � C,

which implies

sup
t∈R+

∫
Ω

ndx +
∫ T

0

∫
Ω

ndxdt � C. (3.12)

Testing the first equation of (3.11) by nχ[t0,t] for any t0 < t < t0 + T , where χ[t0,t]

is the characteristic function of the segment [t0, t], and using lemma 3.2, we see
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that

1
2

∫
Ω

n2(x, t) dx− 1
2

∫
Ω

n2(x, t0) dx+
∫ t

t0

∫
Ω

|∇n|2 dxds+
∫ t

t0

∫
Ω

(μn̂+ + A)n2 dxds

= ηχ

∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)n∇ndxds + η

∫ t

t0

∫
Ω

(μa + A)n̂+ndxds

� C

∫ t

t0

‖∇c̃‖L4‖n‖L4‖∇n‖L2 ds+C

∫ t

t0

‖n‖L2‖∇n‖L2 ds+ C

∫ t

t0

‖n̂‖L2‖n‖L2 ds

� 1
4

∫ t

t0

‖∇n‖2
L2 ds +

A

2

∫ t

t0

‖n‖2
L2 ds + C1

∫ t

t0

‖n‖2
L4 ds + C2

∫ t

t0

‖n̂‖2
L2 ds.

(3.13)

By Gagliardo–Nirenberg interpolation inequality, we have

C1‖n‖2
L4 � C3‖∇n‖2α

L2‖‖n‖2(1−α)
L1 + C4‖n‖2

L1 � 1
4
‖∇n‖2

L2 + C5,

where α = 3N/2(2 + N) < 2. Substituting this inequality into (3.13) gives

1
2

∫
Ω

n2(x, t) dx − 1
2

∫
Ω

n2(x, t0) dx +
1
2

∫ t

t0

∫
Ω

|∇n|2 dxds

+
A

2

∫ t

t0

∫
Ω

n2 dxds � C + C2

∫ t

t0

‖n̂‖2
L2 ds. (3.14)

Using lemma 2.1, we get

sup
t∈R+

∫
Ω

n2 dx +
∫ T

0

∫
Ω

(|∇n|2 + n2) dxdt � C. (3.15)

Multiplying the first equation of (3.11) by −e−ηχc̃eg1 Δ(ne−ηχc̃eg1 ), then integrating
it over Ω × (t0, t), noticing that ∂(ne−ηχc̃eg1 )/∂ν|∂Ω = 0, using lemmas 3.1 and 3.2
and (3.15), we arrive at

1
2

∫
Ω

|∇
(
n(x, t)e−ηχc̃(x,t)eg1(x,t)

)
|2 dx − 1

2

∫
Ω

|∇
(
n(x, t0)e−ηχc̃(x,t0)e

g1(x,t0)
)
|2 dx

+
∫ t

t0

∫
Ω

∣∣∣Δ(ne−ηχc̃eg1
)∣∣∣2 dxds + A

∫ t

t0

∫
Ω

∣∣∣∇(ne−ηχc̃eg1
)∣∣∣2 dxds

= ηχ

∫ t

t0

∫
Ω

eg1n(c̃t + c̃g1t)e−ηχc̃eg1 Δ
(
ne−ηχc̃eg1

)
dxds

+ ηχ

∫ t

t0

∫
Ω

e−ηχc̃eg1∇
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· (n∇g2)Δ
(
ne−ηχc̃eg1

)
dxds +

∫ t

t0

∫
Ω

Δ
(
ne−ηχc̃eg1

)
u∇(ne−ηχc̃eg1 ) dxds

+ ηχ

∫ t

t0

∫
Ω

Δ
(
ne−ηχc̃eg1

)
une−ηχc̃eg1 (eg1∇c̃ + c̃∇eg1) dxds

− ηχ

∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1) Δ
(
ne−ηχc̃eg1

)
∇
(
ne−ηχc̃eg1

)
dxds

− η

∫ t

t0

∫
Ω

(μa + A)n̂+e−ηχc̃eg1 Δ
(
ne−ηχc̃eg1

)
dxds

+ μ

∫ t

t0

∫
Ω

n̂+ne−ηχc̃eg1 Δ
(
ne−ηχc̃eg1

)
dxds

� χ

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2‖ne−χc̃eg1‖L∞‖eg1(c̃t + c̃g1t)‖L2 ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2(‖ne−χc̃eg1‖L2 + ‖∇n‖L2) ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2‖∇

(
ne−χc̃eg1

)
‖L4‖u‖L4 ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2‖ne−χc̃eg1 ‖L∞‖u‖L4‖c̃‖W 1,4 ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2

(
‖∇
(
ne−χc̃eg1

)
‖L4‖c̃‖W 1,4

+ ‖n̂‖L2 + ‖ne−χc̃eg1‖L∞‖n̂‖L2

)
ds

� C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖1+ N

4
L2 ‖ne−χc̃eg1 ‖1−N

4
L2 ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2(‖ne−χc̃eg1‖L2 + ‖∇n‖L2) ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖3/2+N/8

L2 ‖ne−χc̃eg1 ‖(4−N)/8
L2 ds

+ C

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖L2 ds

� 1
2

∫ t

t0

‖Δ
(
ne−χc̃eg1

)
‖2

L2 ds + C

∫ t

t0

‖∇n‖2
L2 ds + C.

Taking advantage of (3.15) and lemma 2.1 gives

sup
t∈R+

∥∥∥∇(ne−χc̃eg1
)∥∥∥2

L2
+
∫ T

0

∥∥∥Δ(ne−χc̃eg1
)∥∥∥2

L2
� C. (3.16)
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Combining with lemmas 3.1 and 3.2, it also implies that

sup
t∈R+

‖∇n‖2
L2 +

∫ T

0

‖Δn‖2
L2 � C. (3.17)

By this inequality and recalling the equation (3.11), we further have∫ T

0

∫
Ω

|nt|2 dxdt � C.

Next, we show the uniqueness. Let n1, n2 be the two periodic solutions of (3.11),
denote n = n1 − n2. Testing the corresponding equation with n, we have∫ T

0

∫
Ω

|∇n|2 dxdt +
∫ T

0

∫
Ω

(μn̂+ + A)n2 dxdt

= ηχ

∫ T

0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)n∇ndxdt

� χ

∫ T

0

‖eg1‖L∞‖∇c̃‖L4‖n‖L4‖∇n‖L2 dt

+ χ

∫ T

0

‖eg1 c̃∇g1 + ∇g2‖L∞‖n‖L2‖∇n‖L2 dt

� C1χ

∫ T

0

‖eg1‖L∞‖∇c̃‖L4‖n‖1−N/4
L2 ‖∇n‖1+N/4

L2 dt

+ C2χ

∫ T

0

‖eg1‖L∞‖∇c̃‖L4‖n‖L2‖∇n‖L2 dt

+ χ

∫ T

0

‖eg1 c̃∇g1 + ∇g2‖L∞‖n‖L2‖∇n‖L2 dt

� 1
2

∫ T

0

‖∇n‖2
L2 dt + M

∫ T

0

‖n‖2
L2 dt,

which implies that

1
2

∫ T

0

∫
Ω

|∇n|2 dxdt +
∫ T

0

∫
Ω

(μn̂+ + A − M)n2 dxdt � 0. (3.18)

When A > M , we have ∫ T

0

∫
Ω

(|∇n|2 + n2) dxdt = 0,

which implies the uniqueness, and this lemma is proved. �

4. Existence of Time Periodic Solutions in Dimension 2

In the following two sections, for simplicity, we let C, Ci, C̃ denote some different
positive constants, if there is no special explanation, which depend at most on Ω,
T , χ, g1, g2, μ, ∇ϕ.
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In this section, we show the existence of nontrivial time periodic solutions in
dimension 2. We define an operator F as follows

F : G × [0, 1] → G,

F(û, n̂, η) = (u, n),

where

G = {(u, n);u ∈ L4
T (R+;L4

σ(Ω)), n ∈ L∞
T (R+;L2(Ω)) ∩ L2

T (R+;H1(Ω))}

endowed with the norm

‖(u, n)‖G =

(∫ T

0

‖u(·, t)‖4
L4

)1/4

+

(∫ T

0

‖n(·, t)‖2
H1 dt

)1/2

+ sup
t

‖n(·, t)‖L2 ,

u, n are the time periodic solutions of (3.2) and (3.11) respectively, and c̃ is defined
by (3.4). By lemmas 3.1 and 3.3, we have (u, n) ∈ D, where

D = {(u, n) ∈ W 2,1
2 (QT );u ∈ L∞

T (R+;H1
σ(Ω)), n ∈ L∞

T (R+;H1(Ω))}.

By Aubin–Lions lemma [2,21],

D ↪→ G,

and the embedding is compact, it is also easy to show that the operator F is
continuous. Thus, we have

Lemma 4.1. The operator F is completely continuous.

We see that solving problem (3.1) is equivalent to solving the equation

U −F(U, 1) = 0; U = (u, n) ∈ G.

Next, we show energy estimates to the solutions (u, n, η) of the problem (u, n) −
F(n, u, η) = 0.

Lemma 4.2. Let (u, n, η) be a time periodic solution of (u, n) −F(n, u, η) = 0. Then
there exists a constant C such that

sup
t

‖n(·, t)‖L1 +
∫ T

0

‖n(·, t)‖2
L2 dt � C, (4.1)

sup
t

‖u(·, t)‖2
H1 +

∫ T

0

(‖u(·, t)‖2
H2 + ‖ut(·, t)‖2

L2) dt � C. (4.2)

Proof. Noticing that n � 0 by lemma 3.3, replacing n̂+ by n in (3.11), and by a
direct integration, we obtain (4.1). Replacing û, n̂ with u, n in (3.2), multiplying
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this equation by u, then integrating it over Ω × (t0, t) for any t0 < t, and using
Poincaré inequality, we obtain

1
2

∫
Ω

|u(x, t)|2 dx − 1
2

∫
Ω

|u(x, t0)|2 dx +
∫ t

t0

∫
Ω

|∇u|2 dxds

� η

∫ t

t0

‖∇ϕ‖L∞‖n‖L2‖u‖L2 ds

� C

∫ t

t0

‖n‖L2‖∇u‖L2 ds � 1
2

∫ t

t0

‖∇u‖2
L2 ds + C

∫ t

t0

‖n‖2
L2 ds.

Using lemma 2.1, we obtain

sup
t

∫
Ω

|u|2 dx +
∫ T

0

∫
Ω

|∇u|2 dxdt � C̃

∫ T

0

‖n‖2
L2 dt. (4.3)

By Gagliardo–Nirenberg interpolation inequality, we see that

‖u‖4
L4 � C1‖u‖2

L2‖∇u‖2
L2 + C2‖u‖4

L2 ,

then by (4.3), we get ∫ T

0

∫
Ω

|u|4 dxdt � C.

Recalling lemma 3.1, then we have (4.2). �

Lemma 4.3. Let (u, n, η) be a time periodic solution of (u, n) −F(n, u, η) = 0, and
c̃ is the solution of (3.4). Then there exists a constant C such that

sup
t

(‖c̃(·, t)‖2
H2 + ‖c̃t(·, t)‖2

L2) +
∫ T

0

‖c̃(·, t)‖2
H3 dt � C, (4.4)

sup
t

‖n(·, t)‖2
H1 +

∫ T

0

(‖n(·, t)‖2
H2 + ‖nt(·, t)‖2

L2) dt � C. (4.5)

Proof. By the proof of lemma 3.2, we see that when n ∈ L2(QT ), we have

sup
t∈(0,T )

‖c̃‖L∞ + ‖c̃‖2
H1 +

∫ T

0

∫
Ω

(|c̃t|2 + |Δc̃|2) dxdt � C. (4.6)

By Gagliardo–Nirenberg interpolation inequality, we see that

‖∇c̃‖4
L4 � C1‖∇c̃‖2

L2‖Δc̃‖2
L2 + C2‖∇c̃‖4

L2 ,

which implies that ∫ T

0

‖∇c̃(·, t)‖4
L4 dt � C. (4.7)
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Multiplying the first equation of (3.11) by n, and integrating it over Ω × (t0, t),
then using (4.6) and Gagliardo–Nirenberg interpolation inequality, we see that

1
2

∫
Ω

n2(x, t) dx − 1
2

∫
Ω

n2(x, t0) dx +
∫ t

t0

∫
Ω

|∇n|2 dx + μ

∫ t

t0

∫
Ω

n3 dxds

� ηχ

∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)n∇ndxds + ημ

∫ t

t0

∫
Ω

an2 dxds

� C

∫ t

t0

‖∇c̃‖L4‖n‖L4‖∇n‖L2 ds + C

∫ t

t0

(
‖n‖L2‖∇n‖L2 + ‖n‖2

L2

)
ds

� C1

∫ t

t0

(‖∇c̃‖L4‖n‖1/2
L2 ‖∇n‖3/2

L2

+ ‖∇c̃‖L4‖n‖L2‖∇n‖L2 + ‖n‖L2‖∇n‖L2 + ‖n‖2
L2) ds

� 1
2

∫ t

t0

‖∇n‖2
L2 ds + C2

∫ t

t0

‖∇c̃‖4
L4‖n‖2

L2 ds

+ C3

∫ t

t0

‖∇c̃‖2
L4‖n‖2

L2 ds +
μ

2

∫ t

t0

‖n‖3
L3 ds + C4. (4.8)

Taking advantage of (4.7) and lemma 2.2, we obtain

sup
t

∫
Ω

n2 dx +
∫ T

0

∫
Ω

(|∇n|2 + n3) dxdt � C. (4.9)

Using (4.9), combining with lemmas 3.2 and 3.3, we obtain (4.4) and (4.5). �

Lemma 4.4. Let (u, n, η) be the time periodic solution of (u, n) −F(n, u, η) = 0,
and c̃ is the solution of (3.4). Then

sup
t

‖c̃(·, t)‖W 1,∞ � C, (4.10)

sup
t

‖n(·, t)‖L∞ � C sup
t

‖n(·, t)‖L2 . (4.11)

Proof. Recalling (3.4), we see that

c̃t − Δc̃ + c̃ = F (n, c̃, u),

where

F (n, c̃, u) = −(u − 2η∇g1) · ∇c̃ + (η − n)c̃ + η(η|∇g1|2 + Δg1 − u∇g1 − g1t)c̃.

Noticing that the time periodic solution of (3.4) can be expressed as follows

c̃ =
∫ t

−∞
e(s−t)e−(s−t)ΔF ds, (4.12)

where {etΔ}t�0 is the Neumann heat semigroup in Ω, for more properties of Neu-
mann heat semigroup, please refer to [27]. By lemmas 4.2 and 4.3, clearly we
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have

sup
t

‖F‖L3 � C.

Then

‖∇c̃‖L∞ �
∫ t

−∞
e(s−t)‖e−(s−t)ΔF‖L∞ ds

� C1

∫ t

−∞
e−(t−s)(t − s)−1/3−1/2‖F‖L3 ds

� C2

∫ t

−∞
e−(t−s)(t − s)−5/6 ds

= C2

∫ ∞

0

e−ss−5/6 ds � C̃.

Replacing n̂ with n in (3.11), multiplying it by rnr−1 with r � 2, then integrating
it over Ω × (t0, t), and using (4.10), we see that∫

Ω

nr(x, t) dx −
∫

Ω

nr(x, t0) dx + r(r − 1)
∫ t

t0

∫
Ω

nr−2|∇n|2 dxds

+
∫ t

t0

∫
Ω

(μrnr+1 + nr) dxds

� ηχr(r − 1)
∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)nr−1∇ndxds

+
∫ t

t0

∫
Ω

(ηrμa + 1)nr dxds

� r(r − 1)
4

∫ t

t0

∫
Ω

nr−2|∇n|2 dxds + Cr2

∫ t

t0

∫
Ω

nr dxds. (4.13)

Noticing that

‖n‖r
Lr = ‖nr/2‖2

L2 � C1‖∇nr/2‖L2‖nr/2‖L1 + C2‖nr/2‖2
L1 ,

then

Cr2

∫ t

t0

∫
Ω

nr dxds � r(r − 1)
4

∫ t

t0

∫
Ω

nr−2|∇n|2 dxds + Cr4

∫ t

t0

(∫
Ω

nr/2 dx

)2

ds.

Substituting it into (4.13) yields∫
Ω

nr(x, t) dx −
∫

Ω

nr(x, t0) dx +
∫ t

t0

∫
Ω

nr dxds � Cr4

∫ t

t0

(∫
Ω

nr/2 dx

)2

ds.

(4.14)
Noticing that n is periodic, by a direct calculation, we obtain

sup
t

‖n‖r
Lr � Cr4 sup

t
‖n‖r

Lr/2.
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Let rj = 2j , Mj = supt ‖n‖Lrj . Then

Mj � C
∑ j

k=2(1/2k)2
∑ j

k=2(4k/2k)M1.

Letting j → ∞, and (4.11) is obtained. �

Next, let us consider the following problem

⎧⎪⎪⎨
⎪⎪⎩

nt + u · ∇n + An = Δn − χ∇ · (eg1n∇c̃ + eg1nc̃∇g1 + n∇g2)
+(μa(x, t) + A)n̂+ − μn̂+n + γ, in Q,

∂n
∂ν − χeg1nc̃∂g1

∂ν

∣∣∣
∂Ω

= 0.

(4.15)

Similar to the discussion in lemma 3.3, for given û ∈ L4
T (R+, L4

σ(Ω)), n̂ ∈
L∞

T (R+;L2(Ω)) ∩ L2
T (R+;H1(Ω)), γ ∈ [0, 1], γ ∈ [0, 1], the problem (3.2), (3.4) and

(4.15) admits a unique nonnegative time periodic solution (u, n) ∈ D. Define

T : G × [0, 1] → G,

T (û, n̂, γ) = (u, n).

Clearly, the operator T is completely continuous.

Lemma 4.5. Assume that a(x, t) > ρ > 0. Then there exists a sufficiently small
constant σ > 0 such that the problem I − T (·, γ) = 0 admits no solution (u, n) ∈ G
with

0 < ‖(u, n)‖G � σ.

In particular, there is no solution such that ‖(u, n)‖G � σ for any γ ∈ (0, 1], and
there is only zero solution with ‖(u, n)‖G � σ for γ = 0.

Proof. Suppose the contrary, there exists a solution (u, n) such that

0 < ‖(u, n)‖G � σ,

which implies

sup
t

‖n(·, t)‖L2 � σ. (4.16)

By lemmas 4.2–4.4, we also have u ∈ L∞
T (R+;H1

σ(Ω)) ∩ W 2,1
2 (QT ), ∇c̃ ∈

W 1,∞(QT ), n ∈ L∞
T (R+;H1(Ω)) ∩ W 2,1

2 (QT ).
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Replacing n̂ by n in (4.15), multiplying it by rnr−1 with r � 2, then integrating
it over Ω × (t0, t) for any t0 < t, and using (4.10), we see that∫

Ω

nr(x, t) dx −
∫

Ω

nr(x, t0) dx + r(r − 1)
∫ t

t0

∫
Ω

nr−2|∇n|2 dxds

+
∫ t

t0

∫
Ω

(μrnr+1 + nr) dxds

� ηχr(r − 1)
∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)nr−1∇ndxds

+
∫ t

t0

∫
Ω

((ηrμa + 1)nr + γrnr−1) dxds

� r(r − 1)
4

∫ t

t0

∫
Ω

nr−2|∇n|2 dxds + Cr2

∫ t

t0

∫
Ω

nr dxds + γr

∫ t

t0

∫
Ω

nr−1 dxds.

Using Gagliardo–Nirenberg interpolation inequality, we see that

Cr2‖n‖r
Lr = Cr2‖nr/2‖2

L2 � C1r
2‖∇nr/2‖L2‖nr/2‖L1 + C2r

2‖nr/2‖2
L1

and

‖n‖r−1
Lr−1 = ‖nr/2‖2(r−1)/r

L2(r−1)/r � C3‖∇nr/2‖(r−2)/r
L2 ‖nr/2‖L1 + C4‖n‖r−1

Lr/2 ,

then we have∫
Ω

nr(x, t) dx −
∫

Ω

nr(x, t0) dx +
3(r − 1)

r

∫ t

t0

∫
Ω

|∇nr/2|2 dxds

+
∫ t

t0

∫
Ω

(μrnr+1 + nr) dxds

� 1
2

∫ t

t0

‖∇nr/2‖2
L2 ds + Cr4

∫ t

t0

‖n‖r
Lr/2 ds

+ Cr2

∫ t

t0

‖n‖r2/(r+2)

Lr/2 ds + Cr

∫ t

t0

‖n‖r−1
Lr/2 ds

� 1
2

∫ t

t0

‖∇nr/2‖2
L2 ds + C̃r4

∫ t

t0

‖n‖r
Lr/2 ds + C̃r2

∫ t

t0

‖n‖r−2
Lr/2 ds.

Noticing that 3(r − 1)/r � 3/2, the above inequality implies∫
Ω

nr(x, t) dx −
∫

Ω

nr(x, t0) dx +
∫ t

t0

∫
Ω

nr dx

� C̃r4

∫ t

t0

‖n‖r
Lr/2 ds + C̃r2

∫ t

t0

‖n‖r−2
Lr/2 ds.

By a direct calculation, we obtain

sup
t

‖n‖r
Lr � Ĉr4 sup

t
‖n‖r

Lr/2 + Ĉr2‖n‖r−2
Lr/2 . (4.17)
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Let rj = 2j , Mj = max{1, supt ‖n‖Lrj }. Using (4.16) and (4.17), we see that for
every j, Mj is bounded, and we further have

Mj �
(
Ĉr4

j M
rj

j−1 + Ĉr2
j M

rj−2
j−1

)1/rj

� (2Ĉ)1/2j

24j/2j

Mj−1

� (2Ĉ)
∑ j

k=2(1/2k)2
∑ j

k=2(4k/2k)M1.

Noticing that
∑∞

k=2(1/2k) and
∑∞

k=2 4k/2k converge. Letting j → ∞, then we
finally have

sup
t

‖n‖L∞ � C. (4.18)

Substituting (4.18) into (4.17), we also have

sup
t

‖n‖r
Lr � C1r

4 sup
t

‖n‖r−2
Lr/2

with C1 > 1. Let rj = 2j , M̃j = supt ‖n‖Lrj , then

M̃j � C
1/2j

1 24j/2j

M̃
1−1/2j−1

j−1 � C
∑ j

k=2(1/2k)
1 2

∑ j
k=2(4k/2k)M̃

∏ j
k=2(1−1/2k−1)

1 .

Next, we show that

S =
∞∏

k=2

(
1 − 1

2k−1

)
> 0.

Noticing that ln(1/S) =
∑∞

k=2 ln(1 + 1/(2k−1 − 1)) converges, which implies that
0 < S < 1. Letting j → ∞.

sup
t

‖n‖L∞ � C sup
t

‖n‖S
L2 . (4.19)

Combining with (4.16), we obtain that when ‖(u, n)‖G � σ,

sup
t

‖n‖L∞ � C sup
t

‖n‖S
L2 � C̃σS := σ̃. (4.20)

Replacing n̂ by n in (4.15), taking σ sufficiently small such that σ̃ < ρ, and by a
direct integration over Ω × (0, T ), we see that

∫
Ω

n(x, T ) dx −
∫

Ω

n(x, 0) dx =
∫ T

0

∫
Ω

μn(a(x, t) − n) dxdt + γ|Ω|T

�
∫ T

0

∫
Ω

μn(ρ − σ̃) dxdt + γ|Ω|T � γ|Ω|T. (4.21)

which implies that if ‖(u, n)‖G � σ for σ sufficiently small, then there is no periodic
solution for any γ ∈ (0, 1], and there is only zero solution for γ = 0. �

Next, we show the existence of nontrivial time periodic solutions.
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Proof of theorem 1.1. In what follows, we apply the topological degree theory. Let
B̂R be the ball of radius R centred at the origin in G. By lemmas 4.2 and 4.3, there
exists a sufficiently large R > 0 such that if (u, n) −F(u, n, η) = 0, then

‖(u, n)‖G < R.

That is

(I −F(·, η))(∂B̂R) �= 0, η ∈ [0, 1].

Recalling (3.2) and (3.11), it is easy to see that when η = 0, (u, n) = (0, 0). That is
F(·, 0) ≡ 0. Then by the homotopy invariance of topological degree, we have

deg(I −F(·, 1), B̂R, 0) = deg(I −F(·, 0), B̂R, 0) = deg(I, B̂R, 0) = 1. (4.22)

By lemma 4.5, for σ appropriately small, we also have

deg(I −F(·, 1), B̂σ, 0) = deg(I − T (·, 0), B̂σ, 0) = deg(I − T (·, 1), B̂σ, 0) = 0.
(4.23)

Combining (4.22) and (4.23), we see that

deg(I −F(·, 1), B̂R \ B̂σ, 0) = deg(I −F(·, 1), B̂R, 0)

− deg(I −F(·, 1), B̂σ, 0) = 1. (4.24)

It implies that the problem (3.1) admits a time periodic solution (n, c̃, u, π) with
0 � n �= 0, u �= 0. By lemmas 4.2–4.4, we also have

n ∈ L∞
T (Q) ∩ L∞

T (R+,H1(Ω)) ∩ W 2,1
2 (QT ),

c̃ ∈ L∞
T (R+,H2(Ω) ∩ W 1,∞(Ω)) ∩ W 3,1

2 (QT ),

u ∈ L∞
T (R+,H1

σ(Ω)) ∩ W 2,1
2 (QT ),

which implies that (n, c̃, u) is a strong time periodic solution of (3.1).
Recalling (2.1), there exists λ > 0, such that

‖u‖L∞ =
∫ t

−∞
‖e−(t−s)AP (n(s)∇ϕ(s))‖L∞ ds

+
∫ t

−∞
‖e−(t−s)AP (−∇ · (u(s) ⊗ u(s)))‖L∞ ds

�
∫ t

−∞
e−λ(t−s)(t − s)−1/2‖n(s)∇ϕ‖L2 ds

+
∫ t

−∞
e−λ(t−s)(t − s)−1/2−1/4‖u(s) ⊗ u(s)‖L4 ds

� sup
t

‖n‖L2‖∇ϕ‖L∞

∫ t

−∞
e−λ(t−s)(t − s)−1/2 ds

+ sup
t

‖u‖2
L8

∫ t

−∞
e−λ(t−s)(t − s)−3/4 ds

� C.
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For any p > 2, we have

‖A1/2u‖Lp �
∫ t

−∞
‖A1/2e−(t−s)AP (n(s)∇ϕ(s))‖Lp ds

+
∫ t

−∞
‖A1/2e−(t−s)AP (−u(s) · ∇u(s))‖Lp ds

�
∫ t

−∞
e−λ(t−s)(t − s)−1/2‖n(s)∇ϕ‖Lp ds

+
∫ t

−∞
e−λ(t−s)(t − s)−1+1/p‖u(s) · ∇u(s)‖L2 ds

�
∫ t

−∞
e−λ(t−s)(t − s)−1/2‖n(s)∇ϕ‖Lp ds

+
∫ t

−∞
e−λ(t−s)(t − s)−1+1/p‖u(s)‖L∞‖∇u(s)‖L2 ds

� C

∫ +∞

0

e−λss−1/2 ds + C

∫ +∞

0

e−λss−1+1/p ds

� C̃. (4.25)

Combining with (4.2), and we have u ∈ Cβ,β/2(Ω × R
+) for some β ∈ (0, α], see

for example [9]. To use the Neumann heat semigroup theory for the homogeneous
Neumann boundary problem, we let ñ = ne−χc̃eg1 , then ∂ñ/∂ν|∂Ω = 0, and we have

ñt − Δñ + ñ = F1 · ∇ñ + F2, (4.26)

where

F1 = ∇(c̃eg1) − u − χ∇g2,

F2 = −χñu · ∇(c̃eg1) − χñeg1(c̃t + c̃g1t) − χñΔg2 − χ2ñ∇g2∇(c̃eg1).

Thus for any p > 2, we have

‖∇ñ‖Lp �
∫ t

−∞
e−(t−s)‖∇e−(t−s)Δ(F1 · ∇ñ + F2)‖Lp ds

� C

∫ t

−∞
e−(t−s)(t − s)−1+1/p‖(F1 · ∇ñ + F2‖L2 ds

� C

∫ t

−∞
e−(t−s)(t − s)−1+1/p(‖(F1‖L∞‖∇ñ‖L2 + ‖F2‖L2) ds

� C

∫ +∞

0

e−ss−1+1/p ds � Ĉ. (4.27)

which implies that

sup
t

‖∇ñ(·, t)‖Lp � C, for any p > 2.
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Similar to the proof of [9], we have n ∈ Cβ,β/2(Ω × R
+). Recalling (3.1), by the

standard parabolic regularity theory, we successively obtain c̃ ∈ C2+β,1+β/2(Ω ×
R

+), u ∈ C2+β,1+β/2(Ω × R
+), n ∈ C2+β,1+β/2(Ω × R

+). Using these results, and
going back to the equations (3.1), we further have n, c̃, u ∈ C2+α,1+α/2(Ω × R

+),
and theorem 1.1 is proved. �

5. Existence of Time Periodic Solutions in Dimension 3

In this section, we show the existence nontrivial time periodic solutions in dimension
3 for τ = 0. We define an operator F as follows.

F : E × [0, 1] → E ,

F(n̂, η) = n,

where

E = {n;n ∈ L∞
T (R+;L2(Ω)) ∩ L2

T (R+;H1(Ω))},

n is the time periodic solution of (3.11), and u, c̃ are defined by (3.2) and (3.4)
respectively. By lemmas 3.1 and 3.3, we have n ∈ Ẽ , where

Ẽ = {n ∈ L∞
T (R+;H1(Ω)) ∩ W 2,1

2 (QT )}.

Then by Aubin–Lions lemma,

Ẽ ↪→ E .

and the embedding is compact, it is also easy to show that the operator F is
continuous. Thus, we have

Lemma 5.1. The operator F is completely continuous.

We see that solving problem (3.1) is equivalent to solving the equation

n −F(n, 1) = 0, n ∈ E .

Next, we show the energy estimates for the solution (n, η) of the problem
n −F(n, η) = 0.

Lemma 5.2. Let (n, η) be the time periodic solution of n −F(n, η) = 0. Then

∫ T

0

‖n(·, t)‖2
L2 dt � C, (5.1)

sup
t

‖u(·, t)‖2
H1 +

∫ T

0

(‖u(·, t)‖2
H2 + ‖ut(·, t)‖2

L2) dt � C, (5.2)

where the two constants C are independent of μ, χ.
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Proof. Replacing n̂ with n in (3.11), and testing it by 1, we see that

μ

∫ T

0

∫
Ω

n2(x, t) dxdt + A

∫ T

0

∫
Ω

n(x, t) dxdt

= ημ

∫ T

0

∫
Ω

a(x, t)n(x, t) dxdt + ηA

∫ T

0

∫
Ω

n(x, t) dxdt,

which implies that

∫ T

0

∫
Ω

n2(x, t) dxdt � η

∫ T

0

∫
Ω

a(x, t)n(x, t) dxdt � 1
2

∫ T

0

∫
Ω

n2(x, t) dxdt + C,

then we have (5.1). (5.2) is a direct result of lemma 3.1 and (5.1). �

Lemma 5.3. Let (n, η) be the time periodic solution of n −F(n, η) = 0, c̃ be the
solution of (3.4). Then when μ/χ2 is appropriately large, we have

sup
t∈(0,T )

(‖c̃‖L∞ + ‖c̃‖2
H2 + ‖c̃t‖2

L2) +
∫ T

0

‖c̃(·, t)‖2
H3 dt � C, (5.3)

sup
t

‖n(·, t)‖2
H1 +

∫ T

0

(‖n(·, t)‖2
H2 + ‖nt(·, t)‖2

L2) dt � C, (5.4)

where C are positive constants.

Proof. By the proof of lemma 3.2, we see that when n ∈ L2(QT ), we have

sup
t∈(0,T )

(‖c̃‖L∞ + ‖c̃‖2
H1) +

∫ T

0

∫
Ω

(|c̃t|2 + |Δc̃|2) dxdt � C, (5.5)

where C is independent of μ, χ. Recalling (5.1), there exists t0 ∈ [0, T ] such that

∫
Ω

n2(x, t0) dx =
1
T

∫ T

0

∫
Ω

n2(x, t) dxdt � C. (5.6)

Multiplying (3.11) by n, and integrating it over Ω × (t0, t) for any t ∈ (t0, t0 + T ),
we obtain

1
2

∫
Ω

n2(x, t) dx − 1
2

∫
Ω

n2(x, t0) dx +
∫ t

t0

∫
Ω

|∇n|2 dxds +
∫ t

t0

∫
Ω

(μn3 + An2) dxds

= ηχ

∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)n∇ndxds + η

∫ t

t0

∫
Ω

(μa + A)n2 dxds

� 1
2

∫ t

t0

∫
Ω

|∇n|2 dxds +
χ2

2

∫ t

t0

∫
Ω

(eg1∇c̃ + eg1 c̃∇g1 + ∇g2)2n2 dxds
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+ η

∫ t

t0

∫
Ω

(μa + A)n2 dxds

� 1
2

∫ t

t0

∫
Ω

|∇n|2 dxds +
χ2

2

∫ t

t0

∫
Ω

e2g1 |∇c̃|2n2 dxds +
μ

4

∫ t

t0

∫
Ω

n3 dxds

+ ηA

∫ t

t0

∫
Ω

n2 dxds + C

� 1
2

∫ t

t0

∫
Ω

|∇n|2 dxds + C
χ6

μ2

∫ t

t0

∫
Ω

|∇c̃|6 dxds +
μ

2

∫ t

t0

∫
Ω

n3 dxds

+ ηA

∫ t

t0

∫
Ω

n2 dxds + C

� 1
2

∫ t

t0

∫
Ω

|∇n|2 dxds + C1
χ6

μ2
‖c̃‖3

L∞

∫ t

t0

∫
Ω

|Δc̃|3 dxds +
μ

2

∫ t

t0

∫
Ω

n3 dxds

+ ηA

∫ t

t0

∫
Ω

n2 dxds + C2,

where C1 is independent of μ, χ, C2 depends on μ, χ. Taking advantage of (5.5), we
obtain

sup
t

∫
Ω

n2 dx +
∫ T

0

∫
Ω

|∇n|2 dxdt + μ

∫ T

0

∫
Ω

n3 dxdt

� C3
χ6

μ2

∫ T

0

∫
Ω

|Δc̃|3 dx + C4, (5.7)

where C3 is independent of μ, χ, C4 depends on μ, χ. Next, by (3.4) and lemma 2.3,
we also have

∫ T

0

∫
Ω

|Δc̃|3 dx � C

∫ T

0

∫
Ω

|(u − 2η∇g1) · ∇c̃|3 dxdt

+
∫ T

0

∫
Ω

|(η|∇g1|2 + Δg1 − u∇g1 − g1t)c̃|3 dxdt

+
∫ T

0

∫
Ω

|e−ηg1(Δg2 − u∇g2 − ng2 − g2t − g2)|3 dxdt

+
∫ T

0

∫
Ω

(|nc̃|3 + |c̃|3) dxdt

� C

∫ T

0

∫
Ω

n3 dxdt + C

∫ T

0

∫
Ω

|u|3 dxdt

+ C

∫ T

0

(‖u‖3
L6‖∇c̃‖3

L6 + ‖∇c̃‖3
L3) dt + C, (5.8)
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where these constants C are independent of μ, χ. Noting that c̃ is bounded, then in
dimension 3, we have

‖u‖L6 � C‖u‖H1 , ‖∇c̃‖3
L3 � C‖∇c̃‖3/2

L2 ‖Δc̃‖3/2
L2 + C, ‖∇c̃‖3

L6

� C‖c̃‖3/2
L∞‖Δc̃‖3/2

L3 + C,

then by (5.2) and (5.5), we obtain

∫ T

0

∫
Ω

|Δc̃|3 dx � C5

∫ T

0

∫
Ω

n3 dxdt + C6, (5.9)

where C5, C6 are independent of μ, χ. Combining with (5.7), we obtain

sup
t

∫
Ω

n2 dx +
∫ T

0

∫
Ω

|∇n|2 dxdt + μ

∫ T

0

∫
Ω

n3 dxdt � C7
χ6

μ2

∫ T

0

∫
Ω

n3 dx + C8,

(5.10)
where C7 is independent of μ, χ, C8 depends on μ, χ. Taking χ2/μ appropriately
small such that C7(χ6/μ3) � 1/2, and we have

sup
t

∫
Ω

n2 dx +
∫ T

0

∫
Ω

|∇n|2 dxdt + μ

∫ T

0

∫
Ω

n3 dxdt � C9, (5.11)

where C9 depends on μ, χ. Taking advantage of (5.11), and recalling lemmas 3.2
and 3.3, we obtain (5.3)–(5.4). �

Similar to lemma 4.4, we also have

Lemma 5.4. Let (u, n, η) be the time periodic solution of n −F(n, η) = 0, c̃ be the
solution of (3.4). Then when μ/χ2 is appropriately large, we have

sup
t

‖c̃(·, t)‖W 1,∞ � C, (5.12)

sup
t

‖n(·, t)‖L∞ � C sup
t

‖n(·, t)‖S
L2 , (5.13)

where S ∈ (0, 1) is a constant.

Proof. Recalling (4.12), and using (5.2)–(5.4), we see that

‖∇c̃‖L∞ �
∫ t

−∞
e(s−t)‖e−(s−t)ΔF‖L∞ ds

�
∫ t

−∞
e−(t−s)(t − s)−3/8−1/2‖F‖L4 ds
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� C

∫ t

−∞
e−(t−s)(t − s)−7/8

× (‖u‖L6‖∇c̃‖L12 + ‖∇c̃‖L4 + (1 + ‖u‖L6 + ‖n‖L6)‖c̃‖L∞) ds

� C sup
t

(‖∇c̃(·, t)‖L12 + 1)
∫ ∞

0

e−ss−7/8 ds

� C sup
t

(‖∇c̃(·, t)‖1/2
L6 ‖∇c̃(·, t)‖1/2

L∞ + 1)
∫ ∞

0

e−ss−7/8 ds

� C̃

(
1 + sup

t
‖∇c̃(·, t)‖1/2

L∞

)
,

which implies (5.12). Then similar to the proof of (4.11) and (5.13) is obtained. �

Define

T : E × [0, 1] → E , T (n̂, γ) = n,

where n is the solution of (4.15). Similarly, for n̂ ∈ E , we also have n ∈ Ẽ . Thus, T
is completely continuous. Similar to lemma 4.5, we also have

Lemma 5.5. Assume that a(x, t) > ρ > 0. Then there exists a sufficiently small
constant σ > 0 such that the problem I − T (·, γ) = 0 admits no solution n ∈ G with

0 < ‖n‖G � σ.

In particular, there is no solution with ‖n‖G � σ for any γ ∈ (0, 1], and there is
only zero solution with ‖n‖G � σ for γ = 0.

Then completely similar to the proof of theorems 1.1 and 1.2 can be proved.
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