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SUMMARY
The various vision-based tactile sensors have been developed for robotic perception in recent years.
In this paper, the novel soft robotic finger embedded with the visual sensor is proposed for per-
ception. It consists of a colored soft inner chamber, an outer structure, and an endoscope camera.
The bending perception algorithm based on image preprocessing and deep learning is proposed. The
boundary of color regions and the position of marker dots are extracted from the inner chamber
image and label image, respectively. Then the convolutional neural network with multi-task learning
is trained to obtain bending states of the finger. Finally, the experiments are implemented to verify
the effectiveness of the proposed method.

KEYWORDS: Soft robotic finger; Visual sensor; Multi-task learning; Convolutional neural net-
work.

1. Introduction
Nowadays, the robotic hands are gradually required to be highly flexible and absolutely security for
the human–robot interaction. The traditional rigid robotic hand1, 2 hardly meets the requirements.
However, the soft robotic hand has remarkable advantages in the operation of fragile objects and in
collaboration with human beings. Additionally, they have several advantages, such as lightweight,
inexpensive, easily fabricated, and simply controlling.

In order to determine real-time states of the soft hand, the sensors are essential. However, due to the
large deformation of the soft hand, the traditional sensing devices are easily damaged or difficult to fit
closely with the finger. Therefore, the flexible sensors, which can adapt to the bending and stretching
characteristics of the soft hand, are gradually developed. The most commonly used flexible sensors
are resistive sensors,3, 4 whose resistance of specific material changes linearly as bending. Besides,
optical fiber, magnet, and hall sensors are also used to measure the bending degree of soft finger.5, 6

However, the above sensors have the same limitation that they only measure bending curvature in
single bending direction.

The visual sensor has wide vision and high resolution. Hence, it would get more information
such as extrusion deformation and bending state of the soft finger. There have been many studies
on the acquisition of contact force, texture, and other information based on visual sensor.7–9 The
sensors consist of a CCD camera, acrylic plate, and elastic body. On the surface of elastomers, some
markers are added at random distribution or uniform distribution. Based on the displacement of
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Fig. 1. The proposed soft finger with visual sensor. (a) Structure of the proposed soft finger. (b) Prototype.

the markers, the detection of tactile and the distribution of force can be obtained.10, 11 While some
researchers focused on the detection of slip, shear force,12, 13 and texture recognition,14, 15 besides the
other researchers studied on perceiving edge of object,16–18 which used pins to replace markers in
sensors. However, the visual sensors mentioned above are mostly fixed on the fingertip of the rigid
hand, which means the perception area is limited to the fingertips. Therefore, in order to apply visual
sensors in the soft hand, it is necessary to change the conventional sensing mode of visual sensors. In
this paper, a novel visual sensing mode is proposed. The elastomers are made as the inner chamber
of soft finger with three colors. The bending states of the soft finger are obtained by recognizing the
changing of the color regions.

The rest of this paper is organized as follows. Design of soft robotic finger is described in
Section 2, while Section 3 introduces our proposed perception algorithm. Section 4 explains
experiment scheme and results. Finally, future work and conclusions are described in Section 5.

2. Soft Robotic Finger Design
The proposed soft robotic finger consists of an outer structure, a colored inner chamber, a sealing
device, an endoscope camera, and a pneumatic valve. The outer chamber has a certain hardness to
support the soft finger. The inner chamber is relatively soft to realize the pneumatic bending function
of the finger. Meanwhile, the inner chamber is used for sensing by identifying different color regions.
Based on the inspiration of human fingers, the soft finger is divided into three sections. In order to
distinguish each section and facilitate image segmentation, different colors are adopted. Three colors
(red, blue, and yellow) are used to present different sections. Referring to the color selection, the
RGB values of color regions require to be distinctly different for identification. For example, when
red channel value is highest, color is absolutely recognized as red. Besides, the inner chamber is in
close contact with the outer chamber to prevent expansion cracking. When the soft finger is bending,
the camera embedded into the sealing device is used to capture the images of the deformation of
the inner chamber. The camera’s resolution is 640 × 480 and the frame rate is as high as 30 fps.
Referring to human’s finger, the length of inner chamber is selected as 10 cm. And the length of each
color region is divided as follows: 4 cm for red region, 3 cm for blue region, and 3 cm for yellow
region. The proposed soft finger is shown in Fig. 1.

3. Algorithm
In this section, the perception algorithm based on image preprocessing and deep learning is proposed.
We extract boundary of color regions from inner chamber image and get position of marker dots
from label image by image preprocessing. The bending state of finger is predicted from boundary by
convolutional neural network (CNN). The proposal of the algorithm is shown in Fig. 2.
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Fig. 2. The overview of algorithm flow. (a) Label image is captured by outer camera. Four dots are marked on
the surface of finger. (b) Marker dots are extracted after image binarization. (c) Coordinates of marker dots are
obtained from (b). (d) The fourth marker dot is unchanged. We select it as reference marker dot and realize
coordinates normalization. (e) For original inner chamber image that is captured by embedded camera, we
present two methods to process. Method B is introduced first: (f) Color regions are obtained via binarization.
(g) Boundaries of color regions are extracted from (f). (h) Process boundary image with segmentation and
scaling. The size is reduced from 640 × 480 to 224 × 115. In this step, method B is finished. (i) Method A is
that directly process original inner chamber image referring to step (h). Different from method B, method A get
boundary via CNN, which is possible to be affected by difference of pixel values. (j) Two methods share the
structure of CNN. We adopt multi-task learning to realize regression task and classification task at same time.
Loss weight is appended to adjust training difficulties of tasks.

3.1. Image preprocessing
The inner chamber image is captured by embedded camera to infer bending state of finger. The pixel
values of color regions cannot represent the bending state of finger effectively. However, the boundary
of color regions can represent the bending state. The size of boundary reflects the bending degree of
finger, and the relative position of boundary reflects bending direction. In order to get boundary, we
cut out and scale the inner chamber image. Then, CNN is used to get boundary information (method
A). However, due to the difference of pixel values of same color region, they are possible to mistake
as boundary. Therefore, we present another method that boundary is extracted manually by image
preprocessing before using CNN (method B). The image preprocessing is as follows:

(1) Image binarization. Due to obvious difference between RGB values, the image can be divided
into different regions by setting threshold value. Thus, the original image is turned into binary
image completely.

(2) Denoising. There are still noises in the image after the step 1. In order to get rid of the noises,
dilatation and corrosion transformation is performed on the binary image with 3 × 3 core twice.

(3) Edge detection. Using the edge detection function of OpenCV, the boundary of each color region
is obtained.

(4) Image segmentation and scaling. The large image would increase the number of network param-
eters. Therefore, the boundary image requires segmentation and scaling from 640 × 480 to
224 × 115.

Meanwhile, we use positions of joints and fingertip, referring to human finger (see Fig. 3(a)). Four
marker dots are used to represent joints and fingertip (see Fig. 3(b)), which can fit bending curve of
finger. The positions of marker dots are captured by outer camera as label image, which is processed
in above steps as well.
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Fig. 3. The soft robotic finger referring to human finger. (a) Prototype of the human finger. (b) Prototype of
the proposed soft robotic finger. Referring to human finger, marker dots represent the joints and fingertip. Via
marker dots, we can fit bending curve to represent finger state.

3.2. Algorithm of CNN
After image processing, the processed images require to be normalized. For method A, the pixel
values of scaled inner chamber image divide by 255. For method B, the pixel values of boundary
(see Fig. 2(h)) are set as 1 and the others are set as 0, which is as normalization equivalently. Besides,
the form of normalization of marker dots coordinates is as follows:

(x, y) =
(

x − xre

lx
,

y − yre

ly

)
(1)

where (xre, yre) is coordinate of reference marker dot. lx and L y are scale coefficient. Via
normalization, convergence speed is faster and errors are decreased effectively.

Then CNN19, 20 is applied for recognizing the inner chamber image. Because the features of the
boundary information are obvious, so the simple CNN can easily recognize them. The structure
of CNN is shown in Fig. 3(j). Each convolutional layer is followed by an activation layer, where
rectified linear unit (ReLU)21, 22 is selected as activation function instead of Sigmoid22 and Tanh23

function. Since their gradient in the saturated region is close to 0, which is easy to cause the problem
of vanishing gradient and reduce the convergence speed. On the contrary, ReLU’s gradient is equal
to 1 when value is more than 0, which is helpful to solve the convergence problem of network.

In order to realize classification and regression, different classifiers and loss functions are used.
Softmax24 is selected as classifier to recognize directions (up, down, left, and right). The classification
output is more intuitive with the form of the normalized probability. Before softmax, each direction
score has been computed firstly. Hence assume score vector is s = (s1, s2, s3, s4). While some scores
are possibly negative so that they cannot reflect relative size. It is precisly because of characteristic
of exponential function, whose value is invariably positive and monotonically increasing. We make
score vector map to it (es = (es1, es2, es3, es4)). The definition of softmax is as follows:

fi (s) = esyi∑4
j=1 es j

(2)

where syi is score of ground category of i th sample, while s j represents score of all categories of i th
sample.

For the ground category, its score is supposed to be highest. When softmax output is less than 1, it
requires to be punished. Furthermore, for smaller output, punishment requires to be increased largely,
which means loss is boosted largely as well. Therefore, the negative logarithm is used to meet these
requirements. The softmax loss function24 is defined as:
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Lc = − log
esyi∑4
j=1 es j

(3)

Via regression task, the predicted coordinates of marker dots can be estimated. Because the fourth
marker dot is fixed, it can be set as reference dot. Hence, we only require relative coordinates of
the other three marker dots. Different with softmax loss, regression loss consists of the difference
between the ground and predicted values. The specific form is as follows:

Lr =
3∑

i=1

Lri =
3∑

i=1

{(xi − x̂i )
2 + (yi − ŷi )

2} (4)

where Lr and Lri are called mean square error25 loss function. Lri represents regression loss of each
marker dot. (xi , yi ) is predicted relative coordinates, and (x̂i , ŷi ) is ground relative coordinates.

If different CNN is used to respectively realize classification and regression task, it would waste
the computing resources and increase run time. Thus, we adopt multi-task learning to simultaneously
realize both tasks, which share one network. The total loss is the weight sum of the classification and
regression loss.

Lt = βi

3∑
i=1

Lri + λLc (5)

where βi and λ are loss weights.
The loss weights are determined by difficulty degree of tasks. Compared with regression task,

classification task is easier. So λ is less than βi . On the regression task, marker dots locate different
distance from reference marker dot. So the distance is further, the changing range is wider, and the
learning difficulty is higher. Therefore, the relation of loss weight is β1 > β2 > β3 >> λ.

For optimizer selection, Batch Gradient Descent (BGD),26 Stochastic Gradient Descent (SGD),27

Momentum,28 Nesterov Accelerated Gradient (NAG),29 Adaptive Gradient Algorithm (Adagrad),30

An Adaptive Learning Rate Method (AdaDelta),31 RMSprop,32 and Adaptive Moment Estimation
(Adam)33 are common optimizer. Compared with BGD, SGD, Momentum, and NAG whose learning
rate is set manually, the others adopt adaptive learning to promote network convergence faster. In
addition, Adam combines the advantages of RMSprop, Momentum, and Adagrad to achieve better
adaptive learning. To sum up, we prefer to select Adam.

3.3. Bending state presentation
Via regression task, the positions of three marker dots are determined. Then four dots including fixed
reference marker dot represent finger state with Bẽzier curve.34 Bẽzier curve is a parametric curve
frequently used in computer graphics and related fields, which can be fit by four points that are the
starting point p0, the ending point p1, and two separate intermediate points p2 and p3. The parametric
form of the curve is as follows:

B(t) = (1 − t)3 p0 + 3t (1 − t)2 p1 + 3t2(1 − t)p2 + t3 p3, t ∈ [0, 1] (6)

4. Experiments
In order to verify the effectiveness of the proposed algorithm, the data sets are built and the
experiments are designed.

4.1. Data sets
We collect data sets in four bending directions. The inner chamber images in down bending direction
are taken as example. Figure 4(a) shows original inner chamber images in different bending states.
The data sets consist of scaled inner chamber images (see Fig. 4(b)) via method A or boundary images
(see Fig. 4(c)) via method B, positions of marker dots (see Fig. 4(d)), and four bending directions (up,
down, left, and right). In order to collect enough data at the same time, we record the bending process
forming as videos via embedded and outer cameras, which are later cut into images frame-by-frame.
We use 2200 samples, 10% of them are used as test samples.
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Fig. 4. Example of data sets of two methods in down bending direction. (a) The original inner chamber images.
(b) The scaled inner chamber images are obtained via method A. (c) The boundary images are obtained via
method B. We enlarge (b) and (c) images to show clearly. Their actual size is 224 × 115. (d) The label images
are captured during down bending, which includes positions of marker dots. (e) The predicted marker dots are
fitted with Bẽzier curve to represent bending curve. Blue and red curves represent the ground and predicted
bending curves, respectively. In the first figure of (e), there are some errors in the first marker dot. In the other
figures, the predicted curves are so close to ground curves.

Fig. 5. Relationship between accuracy and loss weight λ. When the loss weight βi are fixed, as increasing λ,
the accuracy is boosted. However, when λ is up to a certain value, effect tends to be saturated. Additionally, the
larger λ is possible to affect regression task.

4.2. Classification and regression
The scaled inner chamber images are selected firstly. The CNN is built with Pytorch 1.0 (Facebook AI
Research, Menlo Park, California, USA) and Python 3.6 (Python Software Foundation, Beaverton,
Oregon, USA). In Pytorch, weight initialization is realized automatically. Due to select Adam opti-
mizer, learning rate is recommended as 0.003, which has verified that the effect of this learning rate
for Adam is best in numerous test experiments. The initial regularization weight is set as 0.01, we
can adjust values based on training situation. For loss weight λ, we select different values to test
effect (see Fig. 5). As increasing λ, the maximum accuracy is increased and tends to stabilize. When
λ = 1, the maximum accuracy is steadily close to 100% and accuracy curve is smooth. The accuracy
of each direction is shown in Fig. 6.

https://doi.org/10.1017/S0263574720000429 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000429


384 Soft robotic finger embedded with visual sensor

Fig. 6. Accuracy distribution of each bending direction.

For regression task, scheme A (βi = 1, 1, 1; λ = 1) is used to experiment firstly. Via training,
Fig. 7 reflects distribution of marker dots in different directions. When bending up and down, bend-
ing does not happen in x-axis direction. In order to visualization, we transform the distribution of
marker dots from three-dimensional coordinate to y–z plane. Similarly, in the left and right direc-
tions, the distribution is shown in x–y plane. Figure 7(a) and (b) shows that the degree of dispersion
of predicted dots is larger, especially the first marker dots are distinct than the others. In Fig. 8, the
bar chart and error bars reflect the mean and distribution of the errors of the marker dots. In order to
decrease the errors of marker dots, loss weight is adjusted as 10, 5, 3, and 1 (scheme B).

As shown in Fig. 7(c) and (d), the degree of dispersion of the first predicted dots is significantly
decreased, which are closer to the ground dots. Besides, the mean errors of the first marker dot are
decreased about 50% (see Fig. 8), while the errors of the other marker dots are decreased in different
degrees.

4.3. Experimental results
We get acceptable results by the method A. However, the errors of marker dots are expected to
decrease further. Because manually extracting boundary in method B can improve boundary preci-
sion to decrease recognition errors. In order to test method B, similarly, we select 2200 boundary
images, where 10% images are as test sets. The structure of CNN and the most parameter settings
are unchanged, except for channel parameter because the channel of boundary image is one rather
than three. In Fig. 9, obviously, the errors of marker dots are decreased further. Besides, the ranges
of errors are reduced as shown in error bar. This suggests that the precise boundary information
improves effect of recognition. Thus, compared with method A, method B is more effective.

In order to test robustness of two methods, we collect samples in different light environments. As
shown in Fig. 10(a), the inner chamber images are captured in the initial states of finger, which are
in the dark, a bit dark, common, and bright environment, respectively. The red and blue represent
predicted and ground values of dots, respectively, as shown in Fig. 10(b) and (c).

The results show that the predicted marker dots with method B are closer to ground marker dots
than method A in the conditions of bright, common, and a bit dark. In the bright and a bit dark
environment, pixel values of same color region have huge difference, which results in mistaking to
recognize as boundary with method A. On the contrast, method B avoids these mistakes via extracting
boundary manually because method B does not care about the size of RGB values but concerns with
the size relationship between each channel. For example, red only satisfies that the values of red
channel are larger than the others, regardless of values size. Because boundary is extracted with
some deviations in different environments, it is reasonable that there are a few errors in method B.
However, in the dark environment, low brightness has serious influence on extracting boundary. In
Fig. 11(d), the boundary of yellow region is divided into several parts, and boundary lines of each
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Fig. 7. Distribution of marker dots in different bending directions. We present distribution in a two-dimensional
plane. The coordinate system represents relative location of marker dots. (a) and (b) The result of Scheme A,
whose loss weights are all set as 1, shows large dispersion degree of predicted dots. (c) and (d) We present
scheme B that adjusts loss weight as 10, 5, 3, and 1. It is found that the dispersion degree is decreased
significantly.

region are rough. Because pixel values in the dark are small and in proximity to each other, resulting
in that the relationship of each channel does not match the ground color. As shown in part of green
circle in Fig. 11(d), some regions are shown as yellow, but the values of blue channel are the largest.
Thus, some parts of yellow regions are recognized as blue. Besides, there are many other similar
reasons resulting in errors, such as unsmooth boundary lines. While the effect of method A is better
than method B in the dark environment, the difference of the small pixel values is tiny. In Fig. 11,
it is found that the brightness is more adequate, boundary is clearer to extract. In order to reduce
brightness interference, outer light can be appended to adjust environment brightness. Via above
experiments, errors of marker dots are decreased effectively. With Bẽzier curve, we can get bending
curve accurately. As shown in Fig. 4(e), the predicted curve and the ground curve are nearly the same.
Due to errors of some first marker dots, the predicted bending curves have a few difference from
ground bending curves, as shown in first figure of Fig. 4(e). Mostly, bending curves are predicted
accurately. We adopt a better CPU (Intel core i7-8700) to test efficiency. According to 1000 tests, the
result shows run time of CNN focus on 0–15 ms. The run time of image processing is about 10 ms.
The sum of them ranges between 0 and 25 ms. For the camera (due to increase in imaging quality,
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Fig. 8. Contrast of scheme A and B about distribution of mean errors of marker dots in different bending
directions. (a)–(d) respectively show errors distribution in bending direction of up, down, left, and right. The
blue bars show mean errors with loss weight βi = 10, 5, 3 and λ = 1, and green bars show mean errors with loss
weight βi = 1, 1, 1 and λ = 1. The error bars are calculated with standard deviation. As loss weight increased,
the errors decreased.

Fig. 9. Contrast of method A and B about distribution of mean errors of marker dots in different bending
directions. (a)–(d) respectively show errors distribution in bending direction of up, down, left, and right. The
green bars represent the mean errors with method A and blue bars represent mean errors with method B. The
result shows that the difference of RGB values affects recognition precision of method A.
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Fig. 10. The results of fitting bending curves with method A and B in different environments. (a) We select
the conditions of bright, common, a bit dark, and dark to test robustness of two methods. The inner chamber
images of initial state are captured as test data. (b) Represent the results of fitting bending curves with method
A. There are larger errors in bright and a bit dark environment. (c) Represent the results of method B to fit
bending curves. There are more errors appearing in the dark.

fps is 16), the interval between the previous frame and the next frame is about 50–65 ms, which is
larger than the sum of run time of CNN and image processing. It means that the algorithm can realize
real-time recognition.

4.4. Discussion
The classification accuracy can be close to 100%. With loss weight, the errors and dispersion degree
are decreased effectively. Due to that the length of the soft finger is 10 cm and the mean errors of
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Fig. 11. Extracted boundary in different brightness environments. (a) Boundary is accurately extracted in bright
environment. Because the RGB values are obviously different between each RGB channel. (b) In common
environment, the RGB values are decreased resulting in that the difference is diminished. (c) In a bit dark
environment, some channel values start to approach. The boundary lines are gradually unsmooth and errors
of extracted boundary are increased. (d) Some regions are mistaken to recognize in the dark environment. As
shown in part of green circle, the value of blue channel is the largest so that yellow is recognized as blue
incorrectly. And the boundary is terribly rough.

marker dots are about 0.05 cm, which is reasonable. The results show that errors are mainly con-
tributed by the first marker dots. From the distribution range of marker dots, the first marker dots
have the maximum bending range, whose probability of error is naturally higher than other dots.
According to the contrast experiment, method B can overcome different environment brightness via
appending outer light. Besides, we can append noise in the captured inner chamber images randomly,
which is helpful to increase recognition robustness.

5. Conclusions
In this paper, we design the perception algorithm for soft finger that is integrated with visual sensor.
The inner chamber image has abundant bending character information, which can be used without
complicated processing. Based on multi-task learning, the bending state is acquired accurately. In
order to improve recognition effect of CNN, loss weights are appended. Additionally, increasing the
color contrast of the inner chamber and the resolution of the camera can be helpful to accurately
extract boundary further. The results of experiments verify that the extracted feature images are more
effective than original images to recognize. For further study, we will continue to expand perceptual
functions like tactile and sliding perception for more manipulation tasks.
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