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Abstract We consider the focusing nonlinear Schrödinger equation on the quarter plane. Initial data
vanish at infinity while boundary data are time-periodic. The main goal of this paper is to introduce a
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Keywords: nonlinear Schrödinger equation; inverse scattering; Riemann–Hilbert problem;
initial–boundary-value problem; time-periodic boundary condition

AMS 2000 Mathematics subject classification: Primary 35Q55
Secondary 37K15; 35Q15

1. Introduction

Since the discovery of the inverse (spectral) transform method to solve initial and bound-
ary value (IBV) problems on the whole line with vanishing conditions for the Korteweg–
de Vries (KdV), nonlinear Schrödinger (NLS), sine-Gordon (sG) and other integrable
equations several attempts have been made to extend this method to more difficult IBV
problems: Dirichlet, Neumann, Robin conditions are prescribed on the half-line or on the
interval. The main difficulty associated to this type of IBV problems for nonlinear as
well as linear PDEs is the presence of unknown boundary values [15]. Such a problem
is described by constructing a relation among all boundary values in terms of the given
ones. This relation is called ‘global relation’ and in the nonlinear case this relation takes
the form of a set of nonlinear and non-local equations involving the unknown boundary
values (see [5–9]). This paper is devoted to a complete and rigorous study of an IBV
problem related to integrable focusing nonlinear Schrödinger equation in a quarter plane
x > 0, t > 0 with time periodic boundary data, and initial condition vanishing at infin-
ity. To make this program we use a Riemann–Hilbert approach proposed in [14], where

https://doi.org/10.1017/S1474748007000151 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000151


580 A. Boutet de Monvel and V. Kotlyarov

was developed a new transform method to solve IBV problems for linear and nonlinear
integrable equations based on the fact that these type of equations has a remarkable
property: they possess a Lax pair. The resulting spectral analysis allows the solution
to be represented in a simple form. The initial and boundary conditions must satisfy
a certain global constraint relation for the IBV problem to be well posed (see also the
review [15]) for this method. One of the important advantages of this method is that we
obtain the solution in a very convenient form to study its long-time asymptotics. Using a
steepest descent method [10–12] for oscillatory Riemann–Hilbert problems the long-time
asymptotics of several IBV problems were studied in [16–18,20], under the assumption
that the boundary values at x = 0 vanish for t → +∞. It is necessary to emphasize that
an IBV problem posed on the quarter plane x > 0, t > 0 differs from one posed on a
semi-strip x > 0, 0 < t < T < ∞, because the corresponding Lax operator related to the
t-equation has a spectrum of an essentially different nature in both cases. To the best of
our knowledge such a type of IBV problems has not been considered elsewhere, anyway
in the framework of RH problem. We provide such an implementation for the simplest
periodic boundary data. Fortunately, this simple case contains all the novel ingredients
necessary for the corresponding RH problem with general periodic boundary data.

The Dirichlet IBV problem

We consider the following initial–boundary-value problem for the ‘focusing nonlinear
Schrödinger’ equation:

iqt + qxx + 2|q|2q = 0, with x, t ∈ R+, (1.1 a)

q(x, 0) = q0(x), (1.1 b)

q(0, t) = g0(t) = ae2iωt+iα, (1.1 c)

q0(0) = g0(0) = aeiα, (1.1 d)

where q0(x) vanishes for x → +∞, a > 0, α and ω are real numbers. Let us even assume
q0(x) ∈ S(R+) where S(R+) is the Schwartz space of rapidly decreasing functions on R+:

S(R+) = {u(x) ∈ C∞(R+) | xnu(m)(x) ∈ L∞(R+) for any n, m � 0}.

The Lax pair

The focusing nonlinear Schrödinger equation admits [21] a Lax pair consisting of the
following two eigenvalue equations [1, 13]. For the study of the initial–boundary-value
problem (1.1) we shall use simultaneous spectral analysis of the eigenvalue problems for
the linear x-equation,

Φx + ikσ3Φ = Q(x, t)Φ, (1.2 a)

Q(x, t) :=

(
0 q(x, t)

−q̄(x, t) 0

)
(1.2 b)
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with σ3 = ( 1 0
0 −1 ), and for the linear t-equation,

Φt + 2ik2σ3Φ = Q̃(x, t; k)Φ, (1.3 a)

Q̃(x, t; k) := 2kQ(x, t) − i(Q2(x, t) + Qx(x, t))σ3, (1.3 b)

where Φ(x, t; k) is a 2×2 matrix-valued function, k ∈ C. This is the well-known Zakharov–
Shabat [21] or Ablowitz–Kaup–Newel–Segur [1] system of linear equations, which are
compatible if and only if q(x, t) solves the nonlinear Schrödinger equation (1.1 a).

Floquet solution

The focusing NLS equation (1.1 a) admits the exact solution

qp(x, t) = ae2ibx+2iωt+iα,

ω := a2 − 2b2, a > 0.

Let Q̃p(t; k) = Q̃p(0, t; k) where Q̃p(x, t; k) is defined like Q̃(x, t; k) but starting from
qp(x, t) instead of q(x, t), i.e.

Q̃p(t; k) := 2kQp(t) − i(Q2
p(t) + (Qp)x(t))σ3,

with

Qp(t) := Qp(0, t) =

(
0 ae2iωt+iα

−ae−2iωt−iα 0

)
,

(Qp)x(t) := (Qp)x(0, t) =

(
0 2iabe2iωt+iα

2iabe−2iωt−iα 0

)
,

Qp(x, t) :=

(
0 qp(x, t)

−q̄p(x, t) 0

)
.

Consider now the t-part (1.3 a) of the Lax pair associated with Q̃p(t), i.e.

Ψt(t; k) + 2ik2σ3Ψ(t; k) = Q̃p(t; k)Ψ(t; k), t > 0, k ∈ C, (1.4)

where Ψ(t; k) is 2×2 matrix-valued. A particular (Floquet) solution of (1.4) is given by

Ψ(t; k) = E(t; k)ei(ω−Ω(k))σ3t, (1.5 a)

E(t; k) = eiωσ̂3tE(k) := eiωσ3tE(k)e−iωσ3t, (1.5 b)

E(k) =

⎛
⎜⎜⎜⎜⎝

√
X(k) + k + b

2X(k)
ieiα

√
X(k) − k − b

2X(k)

ie−iα

√
X(k) − k − b

2X(k)

√
X(k) + k + b

2X(k)

⎞
⎟⎟⎟⎟⎠ , (1.5 c)

Ω(k) = 2(k − b)X(k), (1.5 d)

X(k) =
√

(k + b)2 + a2, (1.5 e)

ω := a2 − 2b2. (1.5 f)
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We fix the branches of the square roots by their asymptotics, for k → ∞:

X(k) =
√

(k + b)2 + a2 = k + b + O(k−1), (1.6 a)√
2X(k) =

√
2k + O(1), (1.6 b)

√
k + b ± X(k) =

⎧⎨
⎩

√
2k + O(1),

O

(
1√
k

)
,

(1.6 c)

where
√

2k is positive when arg k = 0.

Assumptions. Throughout the paper except in § 3 we assume that the Dirichlet IBV
problem (1.1) has a global solution q(x, t), sufficiently smooth and with sufficient decay
for x → +∞. We also assume that the Neumann boundary values take the form

qx(0, t) := g1(t) = 2iabe2iωt + v1(t), (1.7 a)

2b2 = a2 − ω > 0 (1.7 b)

with v1(t) ∈ S(R+).
Actually one can consider the Neumann IBV problem:

iqt + qxx + 2|q|2q = 0, with x, t ∈ R+, (1.8 a)

q(x, 0) = q0(x), (1.8 b)

qx(0, t) = g1(t) = 2iabe2iωt+iα, (1.8 c)

q0x(0) = g1(0) = 2iabeiα, (1.8 d)

instead of the Dirichlet problem (1.1). In this case we have to suppose that

q(0, t) = g0(t) = ae2iωt+iα + v0(t), (1.9)

with v0(t) ∈ S(R+).

A justification of these assumptions which can be done by an asymptotic investigation
of the basic Riemann–Hilbert problem formulated in § 2.5 when x = 0 and t tends to
infinity as well as the asymptotic analysis of the whole IBV problem for large time is
now in progress with A. R. Its.

In this paper we restrict our attention to new RH problems connected with the Dirichlet
IBV problem (1.1) or with the Neumann IBV problem (1.8).

Notation. If µ is a 2 × 2 matrix we denote its columns by [µ]1 and [µ]2.

2. Direct scattering problem

We analyse the direct scattering problem associated to a given solution of the considered
initial–boundary-value problem. Let us assume that this solution q(x, t) is C∞, continuous
with all its derivatives up to the boundary {x = 0}∪{t = 0} of the quarter xt-plane and
q(x, t) ∈ S(R+) in x for any fixed t ∈ R+.
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Figure 1. The domains Dj for the case ω < −3a2, a > 0, b > 0.

2.1. Domains of boundedness

We consider
Σ := {k ∈ C | Im Ω(k) = 0}.

If k1 = Re k and k2 = Im k, the equation ImΩ(k) = 0 implies

k2 = 0

or

k1k
2
2 = (k1 − b)(k2

1 + bk1 + 1
2a2) = (k1 − b)(k1 − κ−)(k1 − κ+) with |k1| � |b|.

In what follows we suppose b > 0. The case b < 0 is similar. There are two cases.

Case ω ��� −3a2

If b2 � 2a2, i.e. ω � −3a2, κ± are real and

κ± = − 1
2b ±

√
1
4b2 − 1

2a2,

with −b < κ− � −b/2 � κ+ < 0 (Figures 1 and 2).
In this case, Σ consists of the real axis R, the finite arc γ ∪ γ̄ whose endpoints are the

branch points E = −b + ia and Ē = −b − ia, and the contour Γ ∪ Γ̄ :

Σ = R ∪ γ ∪ γ̄ ∪ Γ ∪ Γ̄ .

The Dj , j = 1, 2, 3, 4, are the following domains:

D1 := {k ∈ C | Im k > 0, Im Ω(k) > 0},

D2 := {k ∈ C | Im k > 0, Im Ω(k) < 0},

D3 := {k ∈ C | Im k < 0, Im Ω(k) > 0},

D4 := {k ∈ C | Im k < 0, Im Ω(k) < 0};

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)
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Figure 2. The domains Dj for the case ω = −3a2, a > 0, b > 0.

and we also define

D+ := D1 ∪ D3 = {k ∈ C | Im Ω(k) > 0},

D− := D2 ∪ D4 = {k ∈ C | Im Ω(k) < 0}.

So we obtain a partition of the complex k-plane C:

D1 ∪ D2 ∪ D3 ∪ D4 ∪ Σ = C.

Case ω > −3a2

If b2 < 2a2, i.e. ω > −3a2, κ± are complex conjugate. In this case, in order to define
D1, . . . , D4 it is necessary to consider the Riemann surface X of genus zero defined by
the algebraic function

z = Ω(k) := 2(k − b)X(k)

with
X(k) =

√
(k + b)2 + a2.

It is a two-sheeted Riemann surface obtained by gluing two copies Cupper and Clower of
the complex plane cut along the contours Γ and Γ̄ where Im Ω(k) = 0 (see Figures 3
and 4).

Let Γ12 = Γ+
1 ∧ Γ−

2 be obtained by gluing the paths Γ+
1 and Γ−

2 , and similarly,
Γ21 = Γ−

1 ∧ Γ+
2 . Let also Γ̄12 = Γ̄+

1 ∧ Γ̄−
2 and Γ̄21 = Γ̄−

1 ∧ Γ̄+
2 . Let ∞1 = ∞+

1 ∧ ∞−
2 ,

∞2 = ∞−
1 ∧ ∞+

2 , E = E1 ∧ E2 and Ē = Ē1 ∧ Ē2.
The contour Σ ⊂ X is as follows:

Σ = Rupper ∪ Rlower ∪ Γ12 ∪ Γ21 ∪ Γ̄12 ∪ Γ̄21.
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Figure 3. Two copies of the Riemann sphere with cuts along Γ ∪ Γ̄ from E to Ē.
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E

E
-

∞1
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D4
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Γ21
-

Γ12 Γ21

Figure 4. The domains Dj on the Riemann surface X for the case ω > −3a2.

The Dj , j = 1, 2, 3, 4, are the following domains:

D1 = {k ∈ X | Im k > 0, Im Ω(k) > 0},

D2 = {k ∈ X | Im k > 0, Im Ω(k) < 0},

D3 = {k ∈ X | Im k < 0, Im Ω(k) > 0},

D4 = {k ∈ X | Im k < 0, Im Ω(k) < 0}.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.2)

The domains D1 = C
upper
+ \(Γ12∪Γ21) and D4 = C

upper
− \(Γ̄12∪Γ̄21) are on the upper sheet

of the Riemann surface X, while D2 = Clower
+ \ (Γ12 ∪ Γ21) and D3 = Clower

− \ (Γ̄12 ∪ Γ̄21)
are on the lower sheet (see Figures 4 and 5).
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So we obtain a partition of the Riemann surface X:

D1 ∪ D2 ∪ D3 ∪ D4 ∪ Σ = X.

We define

D+ = D1 ∪ D3 = {k ∈ X | Im Ω(k) > 0},

D− = D2 ∪ D4 = {k ∈ X | Im Ω(k) < 0}.

2.2. Eigenfunctions

We assume that there exists a unique global solution q(x, t) satisfying (1.1) and
(1.7) and we consider the associated functions Q(x, t) and Q̃(x, t; k) defined by (1.2 b)
and (1.3 b), respectively.

Define the 2×2 matrix-valued functions {µj(x, t; k)}3
j=1 for 0 < x < ∞ and 0 < t < ∞,

as the solutions of the following Volterra integral equations:

µ3(x, t; k) = I −
∫ ∞

x

eik(ξ−x)σ̂3(Qµ3)(ξ, t; k) dξ, (2.3 a)

µ2(x, t; k) = I + e−ikxσ̂3

∫ t

0
e−2ik2(t−τ)σ̂3(Q̃µ2)(0, τ ; k) dτ

+
∫ x

0
e−ik(x−ξ)σ̂3(Qµ2)(ξ, t; k) dξ, (2.3 b)

µ1(x, t; k) = e−ikxσ̂3+iωtσ̂3E(k)

+ e−ikxσ̂3E(t; k)
∫ t

∞
ei[ω−Ω(k)](t−τ)σ̂3E−1(τ ; k)Q̃0(τ ; k)µ1(0, τ ; k) dτ

+
∫ x

0
e−ik(x−ξ)σ̂3(Qµ1)(ξ, t; k) dξ, (2.3 c)

where E(k), E(t; k), and Ω(k) are defined by (1.5 c), (1.5 b), and (1.5 d), respectively, and

Q̃0(t; k) := Q̃(0, t; k) − Q̃p(t; k).

Proposition 2.1. The 2 × 2 matrices {µj(x, t; k)}3
j=1 have the following properties.

(i) For j = 1, 2, 3,

det µj(x, t; k) ≡ 1. (2.4)

(ii) The functions {Φj}3
j=1 defined by

Φ1(x, t; k) := µ1(x, t; k)e−ikxσ3+i[ω−Ω(k)]tσ3 , (2.5)

Φj(x, t; k) := µj(x, t; k)e−ikxσ3−2ik2tσ3 , j = 2, 3, (2.6)

satisfy the Lax pair (1.2), (1.3).
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Figure 5. The domains Dj for the case ω < −3a2, a > 0, b > 0.

(iii) For j = 1, 2, 3,

µj(x, t; k) = I + O

(
1
k

)
, Im k = 0, k → ∞. (2.7)

(iv) Near k = −b ± ia, the matrix µ1(x, t; k) exhibits inverse fourth-root singularities
like those the matrix E(k) has.

(v) The matrix µ1(x, t; k) has different boundary values along a cut connecting the two
points k = −b ± ia, which are the branch points of the function X(k).

(vi) The matrix µ2(x, t; k) is entire in k ∈ C. Furthermore,

µ1 =
(
µ

(2)
1 µ

(3)
1

)
, µ2 =

(
µ

(1)
2 µ

(4)
2

)
, µ3 =

(
µ

(34)
3 µ

(12)
3

)
, (2.8)

where µ
(2)
1 means that the first column vector [µ1(x, t; k)]1 is bounded and analytic

in D2; µ
(3)
1 means that the second column vector [µ1(x, t; k)]2 is bounded and

analytic in D3; µ
(12)
3 means that [µ3(x, t; k)]2 is bounded and analytic in D1 ∪ D2;

etc.

Proof. The matrix-valued function Ψ(t; k) defined in (1.5) is bounded in t ∈ R+ for
k ∈ Σ. The vector functions [Ψ(t; k)]1 and [Ψ(t; k)]2 are bounded in t ∈ R+ for k ∈ Σ.
They are C∞ for t ∈ R+ and k ∈ Σ \ (E ∪ Ē). For k ∈ C \ Σ the matrix-valued function
Ψ(t; k) is unbounded for t ∈ R+. However, its first column [Ψ(t; k)]1 has exponential
decay in D− = D2 ∪ D4 for t → +∞, while the second column [Ψ(t; k)]2 has exponential
decay in D+ = D1 ∪ D3:

[Ψ(t; k)]1,2 = O(e±2ImΩ(k)t), t → +∞.
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τ τ τ

Φ1 Φ2 Φ3

t t t

0 0 0x x x
ξ ξ ξ

Figure 6. Paths of integration for the construction of Φ1, Φ2 and Φ3.

But, both grow exponentially when k ∈ D+ = D1 ∪ D3 and k ∈ D− = D2 ∪ D4, respec-
tively. The matrix elements of the function Ψ(t; k) has inverse fourth-root singularities
at k = −b + ia and k = −b − ia where X(k) vanishes.

We introduce appropriate solutions {Φj(x, t; k)}3
j=1 of the Lax pair which are normal-

ized at the points (0,∞), (0, 0), (∞, t), respectively (Figure 6).
We construct these solutions as follows: the general solution of (1.2) is

eikxσ3Φ(x, t; k) = eikx0σ3Φ(x0, t; k) +
∫ x

x0

eikξσ3(QΦ)(ξ, t; k) dξ. (2.9)

Since equations (1.2) and (1.3) are compatible a necessary and sufficient condition for
Φ(x, t; k) to satisfy equation (1.3) is that Φ(x0, t; k) satisfies (1.3) evaluated at x = x0.

For Φ3(x0, t; k), we choose x0 = ∞. Thus, since Φ(∞, t; k) satisfies (1.3) with Q̃ = 0,
it follows that Φ(∞, t; k) = exp[−2ik2tσ3]C3(k). Letting C3(k) = I we find

Φ3(x, t; k) = e−ik(x+2kt)σ3 −
∫ ∞

x

eik(ξ−x)σ3(QΦ3)(ξ, t; k) dξ. (2.10)

Then the definition (2.5) and (2.10) yield (2.3 a).
For Φ1(x, t; k) and Φ2(x, t; k), since x0 = 0, it follows that these functions satisfy the

equation

d
dt

Φj(0, t; k) + 2ik2σ3Φj(0, t; k) = (Q̃p(t; k) + Q̃0(t; k))Φj(0, t; k), j = 1, 2.

For Φ2(x, t; k) this equation yields

Φ2(x, t; k) = e−ik(x+2kt)σ3

[
C2(k) +

∫ t

0
e2ik2τσ3(Q̃Φ2)(0, τ ; k) dτ

]

+
∫ x

0
eik(ξ−x)σ3(QΦ2)(ξ, t; k) dξ. (2.11)

Using the fact that Ψ(t; k) satisfies (1.4) it follows that

d
dt

(Ψ−1(t; k)Φ1(0, t; k)) = Ψ−1(t; k)Q̃0(t; k)Φ1(0, t; k).
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Solving this equation (with initial point t = ∞) and substituting the expressions for
Φ1(0, t; k) into (2.9) with x0 = 0 we find

Φ1(x, t; k) = e−ikxσ3Ψ(t; k)
[
C1(k) +

∫ t

∞
Ψ−1(τ ; k)Q̃0(τ ; k)Φ1(0, τ ; k) dτ

]

+
∫ x

0
eik(ξ−x)σ3(QΦ1)(ξ, t; k) dξ. (2.12)

We choose C1(k) ≡ C2(k) ≡ I. Substituting these expressions into (2.11) and (2.12), and
using the definitions (2.6) we find equations (2.3 b) and (2.3 c). It is easy to verify that
properties (2.4) and (2.7) hold.

In order to determinate the analytic properties (2.8) of {µj(x, t; k)}3
j=1 with respect

to k we look at the explicit k-dependence of equations (2.3 a) and (2.3 b). Recalling that

eik(ξ−x)σ̂3A =

(
A11 A12e2ik(ξ−x)

A21e−2ik(ξ−x) A22

)

it follows that the second column of µ3 involves e2ik(ξ−x) which is bounded, since ξ−x � 0,
and analytic in k for Im k > 0. Similarly, the second column of µ2 involves e−2ikx,
e2ik(ξ−x), and e−2iΩ(k)(t−τ). Since x > 0, x − ξ � 0, and t − τ � 0 the corresponding
terms are bounded and analytic in k for Im k < 0 and ImΩ(k) < 0. Similar properties
are valid for the matrices {Φj(x, t; k)}3

j=1. Details about eigenfunctions can be found
in [2–4]. �

2.3. Relations among eigenfunctions

Let {Φj}3
j=1 be the 2 × 2 matrix-valued functions defined in Proposition 2.1. Then in

their domains of definition the functions {Φj(x, t; k)}3
j=1 satisfy both equations of the

Lax pair, and their determinants (2.4) do not vanish. Hence they are linearly dependent
and satisfy the following dependence relations:

Φ3(x, t; k) = Φ2(x, t; k)s(k), k ∈ R, (2.13)

Φ1(x, t; k) = Φ2(x, t; k)S(k), k ∈ Σ, (2.14)

where s(k) and S(k) are defined by

s(k) := Φ3(0, 0; k) =:

(
ā(k̄) b(k)

−b̄(k̄) a(k)

)
, (2.15)

S(k) := Φ1(0, 0; k) =:

(
Ā(k̄) B(k)

−B̄(k̄) A(k)

)
. (2.16)

Furthermore, the scattering relations (2.13) and (2.14) yield

Φ1(x, t; k) = Φ3(x, t; k)T (k), (2.17)
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where
T (k) := s−1(k)S(k). (2.18)

We denote by {Tij(k)}2
i,j=1 the entries of the 2 × 2 matrix T (k). Then (2.15), (2.16)

imply:

T11(k) = T̄22(k̄) = a(k)Ā(k̄) + b(k)B̄(k̄), (2.19)

T12(k) = −T̄21(k̄) = a(k)B(k) − b(k)A(k). (2.20)

We define

c(k) :=
T21(k)
T11(k)

− b̄(k̄)
a(k)

= − B̄(k̄)
a(k)T11(k)

, (2.21)

which is analytic and bounded in k ∈ D2 and is O(k−1) as k → ∞. This follows from
the definition of c(k) and from the corresponding properties of the functions a(k), b(k),
A(k), B(k) described in § 3 below.

Notation. Let φ be a scalar function defined in V \ Σ where V is a neighbourhood of
an oriented contour Σ. We denote by φ+(k) and φ−(k) the limiting values of φ(z) as z

approaches k ∈ Σ from the positive and negative sides of Σ, respectively.

Then, we introduce the jump of c(k) over γ:

f(k) := c−(k) − c+(k) =
−ie−iα

T−
11(k)T+

11(k)
. (2.22)

Proposition 2.2. The following relations are valid:

[Φ1(x, t; k)]1
T11(k)

− [Φ2(x, t; k)]1
a(k)

= c(k)[Φ3(x, t; k)]2, for k ∈ Γ, (2.23 a)

[Φ1(x, t; k)]2
T22(k)

− [Φ2(x, t; k)]2
ā(k̄)

= −c̄(k̄)[Φ3(x, t; k)]1, for k ∈ Γ̄ , (2.23 b)

[Φ+
1 (x, t; k)]1
T+

11(k)
− [Φ−

1 (x, t; k)]1
T−

11(k)
= −f(k)[Φ3(x, t; k)]2, for k ∈ γ, (2.23 c)

[Φ+
1 (x, t; k)]2
T+

22(k)
− [Φ−

1 (x, t; k)]2
T−

22(k)
= f̄(k̄)[Φ3(x, t; k)]1, for k ∈ γ̄. (2.23 d)

Proof. Using (2.17) it is easy to find that for the first and second columns we obtain

[Φ1(x, t; k)]1
T11(k)

= [Φ3(x, t; k)]1 + ρ(k)[Φ3(x, t; k)]2,

[Φ1(x, t; k)]2
T22(k)

= [Φ3(x, t; k)]2 − ρ̄(k̄)[Φ3(x, t; k)]1,

⎫⎪⎪⎬
⎪⎪⎭ (2.24)

where

ρ(k) :=
T21(k)
T11(k)

=
b̄(k̄)Ā(k̄) − ā(k̄)B̄(k̄)
a(k)Ā(k̄) + b(k)B̄(k̄)

,

ρ̄(k̄) = −T12(k)
T22(k)

=
b(k)A(k) − a(k)B(k)
ā(k̄)A(k) + b̄(k̄)B(k)

.

⎫⎪⎪⎬
⎪⎪⎭ (2.25)
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In order to prove the jump relation across γ, we note that

[Φ+
1 (x, t; k)]1
T+

11(k)
− [Φ−

1 (x, t; k)]1
T−

11(k)
=

1
T−

11T
+
11

(det([Φ−
1 ]1, [Φ3]2)[Φ+

1 ]1 − det([Φ+
1 ]1, [Φ3]2)[Φ−

1 ]1)

=
det([Φ−

1 ]1, [Φ+
1 ]1)[Φ3]2

T−
11T

+
11

,

where we used
T11(k) = det([Φ1]1, [Φ3]2).

Taking into account that

det([Φ−
1 ]1, [Φ+

1 ]1) = det

(
Ā−(k̄) Ā+(k̄)

−B̄−(k̄) −B̄+(k̄)

)
= det([Ψ−]1, [Ψ+]1) = ie−iα,

we obtain the jump condition (2.23 c). The jump condition (2.23 d) across γ̄ can be
derived in a similar manner.

The scattering relation (2.13) gives

[Φ2(x, t; k)]1
a(k)

= [Φ3(x, t; k)]1 + r(k)[Φ3(x, t; k)]2,

[Φ2(x, t; k)]2
ā(k̄)

= [Φ3(x, t; k)]2 − r̄(k)[Φ3(x, t; k)]1,

⎫⎪⎪⎬
⎪⎪⎭ (2.26)

where

r(k) :=
b̄(k̄)
a(k)

, r̄(k̄) =
b(k)
ā(k̄)

. (2.27)

From (2.26) and (2.24) one can easily find the relations (2.23 a) and (2.23 b) with

c(k) = ρ(k) − r(k) = − B̄(k̄)
a(k)[b(k)B̄(k̄) + a(k)Ā(k̄)]

.

�

Remark. The matrix s(k) = Φ3(x, 0; k)|x=0 (2.15) is uniquely defined in terms of ϕ(x; k)
which is a solution of the Volterra integral equation

ϕ(x; k) = I −
∫ ∞

x

eik(ξ−x)σ3Q0(ξ)ϕ(ξ; k) dξ.

Similarly, the matrix S(k) which is defined by (2.16) can be also defined in terms of

Φ(t; k) = Ψ−1(t; k)Φ2(0, t; k),

which is a solution of the Volterra integral equation

Φ(t; k) = E−1(k) +
∫ t

0
Ψ−1(τ ; k)Q̃0(τ ; k)Ψ(τ ; k)Φ(τ ; k) dτ.
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Thus S(k) can be defined by two different formulae:

S−1(k) = Φ(∞; k) = E−1(k) +
∫ ∞

0
Ψ−1(τ ; k)Q̃0(τ ; k)Ψ(τ ; k)Φ(τ ; k) dτ,

S(k) = Φ1(0, 0; k) = E(k) −
∫ ∞

0
Ψ−1(τ ; k)Q̃0(τ ; k)Φ1(0, τ ; k) dτ.

2.4. The global relation

By evaluating (2.17) at x = 0, t = t0 	 1 and using the definition of T (k) = s−1(k)S(k)
we obtain

S−1(k)s(k) = [Ψ−1(t0; k) + o(1)]Φ3(0, t0; k),

or, since Ψ−1(t0; k) = eiΩ(k)t0σ3E−1(k)e−iωt0σ3 ,

S−1(k)s(k) = eiΩ(k)t0σ3 [E−1(k)e−iωt0σ3 + o(1)]µ3(0, t0; k)e−2ik2t0σ3 .

By putting

C(k, t0) = E−1(k)e−iωt0σ3µ3(0, t0; k)

= E−1(k)e−iωt0σ3

[
I −

∫ ∞

0
eikξσ̂3(Qµ3)(ξ, t0; k) dξ

]
,

we finally find
S−1(k)s(k) = eiΩ(k)t0σ3 [C(k, t0) + o(1)]e−2ik2t0σ3 . (2.28)

By using (2.15) and (2.16) the (2.28)12 component of the relation (2.28) yields

b(k)A(k) − a(k)B(k) = [cE(k, t0) + o(1)]ei(Ω(k)+2k2)t0

with the function cE , defined by

cE(k, t0) = −
∫ ∞

0
q(ξ, t0)[µ3]12(ξ, t0; k)e2ikξ dξ,

which is analytic and bounded in C+ and it is O(1/k) for k → ∞. The left-hand side is
analytic in k ∈ D1. The right-hand side is also analytic in k ∈ D1 and tends to zero for
t0 → +∞ (Im k2 > 0). Thus the ‘global relation’ becomes

b(k)A(k) − a(k)B(k) ≡ 0 for k ∈ D1. (2.29)

The global relation yields that T12(k) ≡ 0 for k ∈ D1 and T21(k) ≡ 0 for k ∈ D4.
In particular, the global relation means that ρ(k) = c(k) + r(k) ≡ 0 for k ∈ [κ+, +∞).
Moreover, it can be shown [3,4] that ρ(k) and all its derivatives have jumps at k = κ−:

dl

dkl
ρ(k)

∣∣∣∣
k=κ−−0

− dl

dkl
ρ(k)

∣∣∣∣
k=κ−+0

=
dl

dkl
f(k)

∣∣∣∣
k=κ−

, l = 1, 2, . . . . (2.30)
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Figure 7. The oriented contour Σ for the case ω < −3a2, a > 0, b > 0.

In view of the global relation and the determinant relations

|a(k)|2 + |b(k)|2 ≡ 1, k ∈ R,

A(k)Ā(k̄) + B(k)B̄(k̄) ≡ 1, k ∈ Σ,

we find

T11(k) = T−1
22 (k) =

a(k)
A(k)

, k ∈ (κ+,∞). (2.31)

Therefore, T11(k) and T22(k) have analytic continuations to the domain D1. Similarly

T11(k) = T−1
22 (k) =

Ā(k̄)
ā(k̄)

(2.32)

for k ∈ D4. As a consequence it follows that

|a(k)| = |A(k)|, k ∈ (κ+,∞), (2.33)

[Φ1(x, t; k)]1
Ā(k̄)

=
[Φ3(x, t; k)]1

ā(k̄)
, k ∈ D4,

[Φ1(x, t; k)]2
A(k)

=
[Φ3(x, t; k)]2

a(k)
, k ∈ D1.

⎫⎪⎪⎬
⎪⎪⎭ (2.34)

2.5. The basic Riemann–Hilbert problem

We will show that the relations (2.13)–(2.20) among Φ1, Φ2, Φ3 can be rewritten in
the form of a Riemann–Hilbert problem RHxt:

M−(x, t; k) = M+(x, t; k)J(x, t; k), k ∈ Σ, (2.35)

where M+(x, t; k) and M−(x, t; k) denote the limiting values of M(x, t; z) as z → k from
the left and right sides of Σ, respectively (see Figures 7–9).

The contour Σ

There are two cases: ω � −3a2 and ω > −3a2.

https://doi.org/10.1017/S1474748007000151 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000151


594 A. Boutet de Monvel and V. Kotlyarov
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Figure 8. The oriented contour Σ for the case ω = −3a2, a > 0, b > 0.
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Rlower

E

E

∞1

∞2

Γ12
-

D4

D1 D2

D3

Γ21
-

Γ12 Γ21

-

Figure 9. The oriented contour Σ for the case ω > −3a2, a > 0, b > 0.

Case ω � −3a2

The Riemann–Hilbert problem RHxt is defined on the complex k-plane C with the
oriented contour (see Figures 7 and 8)

Σ = R ∪ γ ∪ γ̄ ∪ Γ ∪ Γ̄ .

Case ω > −3a2

The Riemann–Hilbert problem RHxt is defined on the two-sheeted Riemann surface X

of genus zero with the oriented contour (see Figure 9)

Σ = Rupper ∪ Rlower ∪ Γ12 ∪ Γ21 ∪ Γ̄12 ∪ Γ̄21.
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The jump matrix J(x, t; k)

Case ω � −3a2

We recall that Σ = R∪Γ ∪ Γ̄ ∪γ ∪ γ̄ (see Figures 7 and 8). The jump matrix J(x, t; k)
is given by six different expressions:

J(x, t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −ρ̄(k)e−2i(kx+(Ω(k)−ω)t)

−ρ(k)e2i(kx+(Ω(k)−ω)t) 1 + |ρ(k)|2

)
, k ∈ (−∞, κ+),

(
1 −r̄(k)e−2i(kx+(Ω(k)−ω)t)

−r(k)e2i(kx+(Ω(k)−ω)t) 1 + |r(k)|2

)
, k ∈ (κ+,∞),

(
1 0

c(k)e2i(kx+(Ω(k)−ω)t) 1

)
, k ∈ Γ,

(
1 c̄(k̄)e−2i(kx+(Ω(k)−ω)t)

0 1

)
, k ∈ Γ̄ ,

(
e−2iΩ+(k)t 0

−f(k)e2i(kx−ωt) e2iΩ+(k)t

)
, k ∈ γ,

(
e−2iΩ+(k)t −f̄(k̄)e−2i(kx−ωt)

0 e2iΩ+(k)t

)
, k ∈ γ̄.

(2.36)

Case ω > −3a2

We recall that
Σ = Rupper ∪ Rlower ∪ Γ12 ∪ Γ̄12 ∪ Γ21 ∪ Γ̄21

(see Figure 9). The jump matrix J(x, t; k) is also given by six different expressions:

J(x, t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −r̄(k)e−2i(kx+(Ω(k)−ω)t)

−r(k)e2i(kx+(Ω(k)−ω)t) 1 + |r(k)|2

)
, k ∈ Rupper,

(
1 −ρ̄(k)e−2i(kx+(Ω(k)−ω)t)

−ρ(k)e2i(kx+(Ω(k)−ω)t) 1 + |ρ(k)|2

)
, k ∈ Rlower,

(
1 0

c+(k)e2i(kx+(Ω(k)−ω)t) 1

)
, k ∈ Γ12,(

1 0

−c−(k)e2i(kx+(Ω(k)−ω)t) 1

)
, k ∈ Γ21,(

1 c̄+(k̄)e−2i(kx+(Ω(k)−ω)t)

0 1

)
, k ∈ Γ̄12,(

1 −c̄−(k̄)e−2i(kx+(Ω(k)−ω)t)

0 1

)
, k ∈ Γ̄21.

(2.37)
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Here c+(k) and c−(k) are boundary values at k of the function c(z) which is analytic in
the domain D2.

Residue conditions

In the presence of eigenvalues the following residue conditions hold:

resk=kj
[M(x, t; k)]1 = im1

je
2i(kjx+(Ω(kj)−ω)t)[M(x, t; kj)]2, kj ∈ D1,

resk=zj
[M(x, t; k)]1 = im2

je
2i(zjx+(Ω(zj)−ω)t)[M(x, t; zj)]2, zj ∈ D2,

resk=z̄j [M(x, t; k)]2 = −im̄2
je

−2i(z̄jx+(Ω(z̄j)−ω)t)[M(x, t; z̄j)]1, z̄j ∈ D3,

resk=k̄j
[M(x, t; k)]2 = −im̄1

je
2i(k̄jx+(Ω(k̄j)−ω)t)[M(x, t; k̄j)]1, k̄j ∈ D4,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.38)

where

m1
j = (ib(kj)ȧ(kj))−1, m2

j = −i resk=zj
c(k),

m̄1
j = (ib̄(k̄j)¯̇a(k̄j))−1, m̄2

j = i resk=z̄j c̄(k̄).

Then the solution q(x, t) of the IBV problem (1.1) for the NLS equation is given by

q(x, t) = 2i lim
k→∞

(kM(x, t; k))12. (2.39)

Explanations. Let us explain how direct analysis motivates the introduction of RHxt.
Let us define a sectionally meromorphic matrix-valued function

M(x, t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
[Φ2(x, t; k)]1

a(k)
ei(kx+(Ω(k)−ω)t) [Φ3(x, t; k)]2e−i(kx+(Ω(k)−ω)t)

)
,

k ∈ D1,

(
[Φ1(x, t; k)]1

T11(k)
ei(kx+(Ω(k)−ω)t) [Φ3(x, t; k)]2e−i(kx+(Ω(k)−ω)t)

)
,

k ∈ D2,

(
[Φ3(x, t; k)]1ei(kx+(Ω(k)−ω)t) [Φ1(x, t; k)]2

T22(k)
e−i(kx+(Ω(k)−ω)t)

)
,

k ∈ D3,

(
[Φ3(x, t; k)]1ei(kx+(Ω(k)−ω)t) [Φ2(x, t; k)]2

ā(k̄)
e−i(kx+(Ω(k)−ω)t)

)
,

k ∈ D4.

In view of (2.4)–(2.7) we have detM(x, t; k) ≡ 1 and M(x, t; k) has the following asymp-
totic behaviour at infinity:

M(x, t; k) = I + O(k−1), as k → ∞.
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By using the scattering relations (2.13)–(2.17) it is easy to check that the jump con-
dition (2.35) is fulfilled, i.e.

M−(x, t; k) = M+(x, t; k)J(x, t; k), k ∈ Σ,

with the jump matrix J(x, t; k) defined by (2.36) or (2.37).
The residue relations (2.38) can be easily found. Indeed, if a(kj) = 0 for kj ∈ D1 then

[Φ2(x, t; kj)]1 = b−1(kj)[Φ3(x, t; kj)]2. Therefore,

resk=kj [M(x, t; k)]1 =
[Φ2(x, t; kj)]1

ȧ(kj)
eiθ(kj)

=
[Φ3(x, t; kj)]2
b(kj)ȧ(kj)

eiθ(kj)

= im1
je

2iθ(kj)[M(x, t; kj)]2

and the first relation in (2.38) is proved. Now, if T11(zj) = 0 for zj ∈ D2 then

[Φ1(x, t; zj)]1 = −B̄(z̄j)a−1(zj)[Φ3(x, t; zj)]2

and

resk=zj [M(x, t; k)]1 =
[Φ1(x, t; zj)]1

Ṫ11(zj)
eiθ(zj)

=
−B̄(z̄j)[Φ3(x, t; kj)]2

a(zj)Ṫ11(zj)
eiθ(zj)

= im2
je

2iθ(zj)[M(x, t; zj)]2,

since c(k) = −B̄(k̄)a−1(k)T−1
11 (k) and resk=zj c(k) = im2

j . Thus the second relation in
(2.38) is also proved. The rest in (2.38) is proved similarly. The proof of the formula
(2.39) for the solution q(x, t) is the same as in [19].

3. Inverse scattering problem

3.1. Inverse x-scattering problem: reconstruction of initial data

Let us define the spectral functions for the x-scattering problem.

Definition of a(k), b(k). Let q0(x) ∈ S(R+). The map

Sx : {q0(x)} → {a(k), b(k)} (3.1)

is defined by (
b(k)
a(k)

)
= ϕ(0; k),

with the vector-valued function ϕ(x; k) satisfying the equation

ϕx(x; k) + ikσ3ϕ(x; k) = Q0(x)ϕ(x; k), 0 < x < ∞, for k ∈ C+,
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and the asymptotic condition

lim
x→+∞

e−ikxϕ(x; k) =

(
0
1

)
,

with Q0(x) given by

Q0(x) =

(
0 q0(x)

−q̄0(x) 0

)
.

Properties of a(k), b(k). The spectral functions a(k) and b(k) satisfy the following
conditions.

(i) a(k), b(k) are analytic and bounded for k ∈ C+.

(ii) a(k), b(k) ∈ C∞(R).

(iii) |a(k)|2 + |b(k)|2 ≡ 1, k ∈ R.

(iv) a(k) = 1 + O(k−1), b(k) = O(k−1), k → ∞.

The Riemann–Hilbert problem RHx is defined as follows.

Definition of RHx. Let a(k) and b(k) be given as above. Denote by k1, . . . , kn the
simple zeros of a(k). Find a 2 × 2 matrix-valued function M (x)(x; k) satisfying (3.2 a)–
(3.2g).

(3.2 a) M (x)(x; k) is sectionally meromorphic in k ∈ C \ R.

(3.2 b) M (x)(x; k) = I + O(1/k), for k → ∞.

(3.2 c) M (x)(x; k) satisfies the jump relation across R:

M
(x)
− (x; k) = M

(x)
+ (x; k)J (x)(x; k) for k ∈ R,

where the jump matrix is given by

J (x)(x; k) =

⎛
⎜⎜⎝

1 − b(k)
ā(k)

e−2ikx

−b̄(k)
a(k)

e2ikx 1
|a(k)|2

⎞
⎟⎟⎠ =

(
1 −r̄(k)e−2ikx

−r(k)e2ikx 1 + |r(k)|2

)
.

(3.2 d)

(3.2 e) The only singularities of the first column [M (x)(x; k)]1 of M (x)(x; k) are possibly
simple poles at k = k1, . . . , kn, and for the second column [M (x)(x; k)]2 the only
singularities are possibly simple poles at k = k̄1, . . . , k̄n. The associated residues
are given by

resk=kj [M
(x)(x; k)]1 =

e2ikjx

ȧ(kj)b(kj)
[M (x)(x; kj)]2, (3.2 f)

resk=k̄j
[M (x)(x; k)]2 =

−e−2ik̄jx

ȧ(k̄j)b(k̄j)
[M (x)(x; k̄j)]1. (3.2 g)
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Explanations. Let us explain briefly how direct analysis motivates the consideration of
RHx. Let us rewrite (2.13) for t = 0 in the form

Φ2(x, 0; k) = Φ3(x, 0; k)s−1(k),

where

s−1(k) =

(
a(k) −b(k)
b̄(k̄) ā(k̄)

)
.

Let us define the sectionally meromorphic matrix M (x)(x; k) by

M (x)(x; k) :=

⎧⎪⎪⎨
⎪⎪⎩

(
[Φ3(x, 0; k)]1eikx [Φ2(x, 0; k)]2

ā(k̄)
e−ikx

)
for k ∈ C−,(

[Φ2(x, 0; k)]1
a(k)

eikx [Φ3(x, 0; k)]2e−ikx

)
for k ∈ C+.

One can then check (see [19, Appendix A.1]) that

• M (x)(x; k) satisfies all properties (3.2) of the Riemann–Hilbert problem RHx;

• we can recover q0(x) from M (x)(x; k) by formula q0(x) = 2i limk→∞ kM
(x)
12 (x; k).

�

Proposition 3.1. The map Sx has an inverse Qx : {a(k), b(k)} 
→ {q0(x)} given by

q0(x) = 2i lim
k→∞

kM
(x)
12 (x; k),

where M (x)(x; k) is the unique solution of the above Riemann–Hilbert problem RHx.

Proof. See also [19, Appendix A.1]. �

3.2. Inverse t-scattering problem: reconstruction of boundary data

Let us define the spectral functions for the t-scattering problem.

Definition of A(k), B(k). Let

g0(t) := q(0, t) = ae2iωt,

g1(t) := qx(0, t) = 2iabe2iωt + v1(t),

where v1(t) ∈ S(R+). The map

St : {g0(t), g1(t)} → {A(k), B(k)} (3.3)

is defined by (
−B(k)
Ā(k̄)

)
= lim

t→+∞
Φ̂(t; k),
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where the vector-valued function Φ̂(t; k) = [Φ(t; k)]2 = [Ψ−1(t; k)Φ2(0, t; k)]2 satisfies the
integral equation

Φ̂(t; k) = [E−1(k)]2 +
∫ t

0
Ψ−1(τ ; k)Q̃0(τ ; k)Ψ(τ ; k)Φ̂(τ ; k) dτ, 0 < t < ∞,

with
Ψ(t; k) = eiωtσ3E(k)e−iΩ(k)tσ3 , Q̃0(t; k) = Q̃(0, t; k) − Q̃p(t; k).

Properties of A(k), B(k). The spectral functions A(k) and B(k) satisfy the following
conditions.

(i) A(k), B(k) are analytic and bounded for k ∈ D+ = D1 ∪ D3.

(ii) A(k), B(k) ∈ C∞(Σ \ {E ∪ Ē}), E = −b + ia, Ē = −b − ia.

(iii) A(k)Ā(k̄) + B(k)B̄(k̄) ≡ 1 for k ∈ Σ.

(iv)

A(k) −

√
X(k) + k + b

2X(k)
and B(k) − ieiα

√
k + b − X(k)

2X(k)

are bounded for k ∈ D̄+.

Moreover, for k → ∞,

A(k) =

√
X(k) + k + b

2X(k)
[1+O(k−1)] and B(k) = ieiα

√
k + b − X(k)

2X(k)
[1+O(k−1)].

The Riemann–Hilbert problem RHt is defined as follows.

Definition of RHt. Let A(k) and B(k) be as above. We denote by κ1, . . . , κm the
simple zeros of A(k) in D+ = D1 ∪ D3. Find a 2 × 2 matrix-valued function M (t)(t; k)
satisfying (3.4 a)–(3.4 i).

(3.4 a) M (t)(t; k) is sectionally meromorphic in k ∈ C \ Σ or k ∈ X \ Σ where the contour
Σ is defined as follows.

• For the case ω � −3a2,
Σ = R ∪ Γ ∪ Γ̄ ∪ γ ∪ γ̄

in the complex plane (see Figures 7 and 8).

• For the case ω > −3a2,

Σ = Rupper ∪ Rlower ∪ Γ12 ∪ Γ21 ∪ Γ̄12 ∪ Γ̄21

in the Riemann surface X (see Figure 9).

(3.4 b) M (t)(t; k) = I + O(1/k), for k → ∞.
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(3.4 c) M (t)(t; k) satisfies the jump relation across Σ:

M
(t)
− (t; k) = M

(t)
+ (t; k)J (t)(t; k) for k ∈ Σ,

where the jump matrix J (t)(t; k) is as follows.

• For the case ω � −3a2,

J (t)(t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1
A(k)Ā(k̄)

−B(k)
A(k)

e−2i(Ω(k)−ω)t

− B̄(k̄)
Ā(k̄)

e2i(Ω(k)−ω)t 1

⎞
⎟⎟⎟⎠ , k ∈ R ∪ Γ ∪ Γ̄ ,

(
e−2iΩ+(k)t 0

−h̄(k̄)e−2iωt e2iΩ+(k)t

)
, k ∈ γ,

(
e−2iΩ+(k)t h(k)e2iωt

0 e2iΩ+(k)t

)
, k ∈ γ̄,

(3.4 d)

where

h(k) :=
(

B(k)
A(k)

)−
−

(
B(k)
A(k)

)+

=
ieiα

A+(k)A−(k)
. (3.4 e)

• For the case ω > −3a2,

J (t)(t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

1
B(k)
A(k)

e−2i(Ω(k)−ω)t

B̄(k̄)
Ā(k̄)

e2i(Ω(k)−ω)t 1
A(k)Ā(k̄)

⎞
⎟⎟⎠ ,

k ∈ Γ12 ∪ Γ̄21 ∪ Rlower,⎛
⎜⎜⎝

1
A(k)Ā(k̄)

−B(k)
A(k)

e−2i(Ω(k)−ω)t

− B̄(k̄)
Ā(k̄)

e2i(Ω(k)−ω)t 1

⎞
⎟⎟⎠ ,

k ∈ Γ21 ∪ Γ̄12 ∪ Rupper.

(3.4 f)

(3.4 g) The first column of M (t)(t; k) can have simple poles at k = κ̄1, . . . , κ̄m, and the
second column of M (t)(t; k) can have simple poles at k = κ1, . . . , κm. The associated
residues are given by

resk=κ̄j [M
(t)(t; k)]1 = −e2i(Ω(κ̄j)−ω)t B̄(κ̄j)

˙̄A(κ̄j)
[M (t)(t; κ̄j)]2, (3.4 h)

resk=κj
[M (t)(t; k)]2 = e−2i(Ω(κj)−ω)t B(κj)

Ȧ(κj)
[M (t)(t; κj)]1. (3.4 i)
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Explanations. Let us explain how direct analysis motivates the consideration of RHt.
The scattering relations of the t-problem are

1
Ā(k̄)

[Φ1(0, t; k)]1 = [Φ2(0, t; k)]1 − B̄(k̄)
Ā(k̄)

[Φ2(0, t; k)]2, (3.5 a)

1
A(k)

[Φ1(0, t; k)]2 =
B(k)
A(k)

[Φ2(0, t; k)]1 + [Φ2(0, t; k)]2, k ∈ Σ, (3.5 b)

where the functions [Φ2(0, t; k)]1,2 are entire, and the functions [Φ1(0, t; k)]1,2 are ana-
lytic in the domains D− = D2 ∪ D4 and D+ = D1 ∪ D3, respectively. Starting from
these scattering relations (3.5) we can define the sectionally meromorphic matrix-valued
function

M (t)(t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
[Φ2(0, t; k)]1ei(Ω(k)−ω)t [Φ1(0, t; k)]2

A(k)
e−i(Ω(k)−ω)t

)
,

k ∈ D+ = D1 ∪ D3,(
[Φ1(0, t; k)]1

Ā(k̄)
ei(Ω(k)−ω)t [Φ2(0, t; k)]2e−i(Ω(k)−ω)t

)
,

k ∈ D− = D2 ∪ D4.

This matrix has unit determinant, and satisfies the asymptotics (3.4 b):

M (t)(t; k) = I + O(k−1) for k → ∞.

Proof of the residue relations. The first column of M (t)(t; k) can have poles at
k = κ̄j , j = 1, . . . , m, where {κ̄j}m

j=1 are the zeros of Ā(k̄), k ∈ D−. For simplicity we
suppose that these zeros are simple. The associated residues are

resk=κ̄j [M
(t)(t; k)]1 =

[Φ1(0, t; κ̄j)]1
˙̄A(κ̄j)

e2i(Ω(κ̄j)−ω)t

= − B̄(κ̄j)
˙̄A(κ̄j)

e2i(Ω(κ̄j)−ω)t[Φ2(0, t; κ̄j)]2

= − B̄(κ̄j)
˙̄A(κ̄j)

e2i(Ω(κ̄j)−ω)t[M (t)(t; κ̄j)]2.

The second column of M (t)(t; k) can have simple poles at k = κj , and

resk=κj [M
(t)(t; k)]2 =

B(κj)
Ȧ(κj)

e−2i(Ω(κj)−ω)t[M (t)(t; κj)]1,

where the set {κ1, κ2, . . . , κm} is the set of simple zeros of A(k) in D+. Thus we have
proved the residue relations (3.4h), (3.4 i).
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Proof of the jump relations. First of all we find the jump of [Φ1(0, t; k)]2/A(k) over
the contour γ̄. Thus we have

[Φ−
1 ]2

A−(k)
− [Φ+

1 ]2
A+(k)

=
1

A+A− [det([Φ2]1, [Φ+
1 ]2)[Φ−

1 ]2 − det([Φ2]1, [Φ−
1 ]2)[Φ+

1 ]2]

=
1

A+A− det([Φ−
1 ]2, [Φ+

1 ]2)[Φ2]1

=
B−A+ − B+A−

A−A+ [Φ2]1

= h(k)[Φ2(0, t; k)]1,

where

h(k) =
(

B(k)
A(k)

)−
−

(
B(k)
A(k)

)+

=
ieiα

A+(k)A−(k)
.

Then it is easy to verify that, for k ∈ γ̄,

(
[Φ2]1eiθ(k)t [Φ1]2

A(k)
e−iθ(k)t

)
−

=
(

[Φ2]1eiθ(k)t [Φ1]2
A(k)

e−iθ(k)t
)
+

(
e−2iΩ+(k)t h(k)e2iωt

0 e2iΩ+(k)t

)
,

with θ(k) = Ω(k) − ω, and similarly, for k ∈ γ,

(
[Φ1]1
Ā(k̄)

eiθ(k)t [Φ2]2e−iθ(k)t
)
−

=
(

[Φ1]1
Ā(k̄)

eiθ(k)t [Φ2]2e−iθ(k)t
)
+

(
e2iΩ+(k)t 0

−h̄(k̄)e−2iωt e−2iΩ+(k)t

)
.

For k ∈ (κ−, +∞) ∪ Γ ∪ Γ̄ or for k ∈ Rupper ∪ Γ21 ∪ Γ̄12 one can find that the relation

(
[Φ1]1
Ā(k̄)

eiθ(k)t [Φ2]2e−iθ(k)t
)
−

=
(

[Φ2]1eiθ(k)t [Φ1]2
A(k)

e−iθ(k)t
)
+

⎛
⎜⎜⎜⎝

1 +
B(k)B̄(k̄)
A(k)Ā(k̄)

−B(k)
A(k)

e−2iθ(k)t

− B̄(k̄)
Ā(k̄)

e2iθ(k)t 1

⎞
⎟⎟⎟⎠

is valid. The rest is proved similarly. These relations give rise to the jump matrix J (t)(t; k)
defined by equations (3.4 d)–(3.4 f).

Thus M (t)(t; k) satisfies all properties (3.4) of the Riemann–Hilbert problem RHt.
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Moreover, one can check that g0(t) and g1(t) can be recovered from M (t)(t; k) by the
following formulae:

g0(t) = 2i lim
k→∞

kM
(t)
12 (t; k),

g1(t) = lim
k→∞

[4k2M
(t)
12 (t; k) + 2ig0(t)kM

(t)
22 (t; k)].

�

Proposition 3.2. The map St has an inverse Qt : {A(k), B(k)} 
→ {g0(t), g1(t)} given
by

g0(t) = 2i lim
k→∞

kM
(t)
12 (t; k),

g1(t) = lim
k→∞

[4k2M
(t)
12 (t; k) + 2ig0(t)kM

(t)
22 (t; k)],

where M (t)(t; k) is the unique solution of the Riemann–Hilbert problem RHt.

Proof. The proof is almost the same as in [19, Appendix A.2]. �

3.3. Inverse xt-scattering problem: reconstruction of the solution q(x, t)

Under the assumption that for the given function q0(x) there exists a function v1(t)
such that the spectral functions A(k) and B(k) of the t-problem together with the spectral
functions a(k) and b(k) of the x-problem satisfy the global relation (2.29), we can prove
that q(x, t) arising from the basic RHxt problem satisfies the NLS equation in the quarter
plane, and that its initial and boundary values coincide with q0(x), g0(t) = ae2iωt and
g1(t) = 2iabe2iωt + v1(t).

The Riemann–Hilbert problem RHxt is defined as follows.

Definition of RHxt. Find a 2×2 matrix-valued function M(x, t; k) satisfying properties
(3.6 a)–(3.6 d):

(3.6 a) M(x, t; k) is sectionally meromorphic in k ∈ C \ Σ or k ∈ X \ Σ.

(3.6 b) Its first column [M(x, t; k)]1 has simple poles at kj ∈ D1 and zj ∈ D2; the second
column [M(x, t; k)]2 has simple poles at k̄j ∈ D4 and z̄j ∈ D3. The associated
residues satisfy the relations (2.38).

(3.6 c) M(x, t; k) satisfies the jump condition

M−(x, t; k) = M+(x, t; k)J(x, t; k), for k ∈ Σ,

where the jump matrix J(x, t; k) is defined in terms of the spectral functions by
(2.36) for the case ω � −3a2 or (2.37) for the case ω > −3a2.

(3.6 d) M(x, t; k) has the asymptotics

M(x, t; k) = I + O

(
1
k

)
, for k → ∞.
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Theorem 3.3. Let q0(x) ∈ S(R+). Suppose that the functions g0(t) = ae2iωt and
g1(t) = 2iabe2iωt + v1(t) are such that the spectral functions {a(k), b(k), A(k), B(k)}
satisfy the global relation (2.29):

b(k)A(k) − a(k)B(k) = 0, k ∈ D1.

Then

(i) the above Riemann–Hilbert problem RHxt has a unique solution M(x, t; k);

(ii) if we define q(x, t) in terms of this solution by

q(x, t) = 2i lim
k→∞

(kM(x, t; k))12, (3.7)

then

(a) q(x, t) solves the NLS equation (1.1 a),

(b) with
q(x, 0) = q0(x), q(0, t) = g0(t) and qx(0, t) = g1(t).

Proof. The ‘singular’ RH problem above can be mapped to a ‘regular’ RH problem
(i.e. to an RH problem for holomorphic functions), coupled with a system of algebraic
equations. The unique solvability of the relevant algebraic equations, the proof of the asso-
ciated vanishing lemma, and therefore, the solvability of the corresponding RH problem
are based on the symmetry properties of J(x, t; k) (see [19]).

Proof that q(x, t) solves the NLS equation. It is straightforward to prove that
if M(x, t; k) solves the above RH problem and if q(x, t) is defined by (3.7) then q(x, t)
solves the NLS equation. This proof is based on ideas of the dressing method [13].

Proof that RHxt |t=0 ∼ RHx. It means that the Riemann–Hilbert problem RHxt |t=0

is equivalent to the problem RHx in the following sense: there exists a sectionally mero-
morphic matrix G(x; k) such that

M (x)(x; k) = M(x, 0; k)G(x; k)

and

G(x; k) = I +
D1

k
+

D2

k2 + · · · + O

(
e−C(k)x

|k|

)
, k → ∞,

where D1, D2, etc., are diagonal and independent on x matrices, and C(k) is positive
and grows for k → ∞.

To prove this equivalence let us put

M̂(x; k) = M(x, 0; k)G(x; k),
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where M(x, 0; k) is defined by (3.6 c), (3.6 d) and

G(x; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

0 1

)
for k ∈ D1 ∪ D4,

(
1 0

−c(k)e2ikx 1

)
for k ∈ D2,

(
1 c̄(k̄)e−2ikx

0 1

)
for k ∈ D3.

We now show that M̂(x; k) is meromorphic in k ∈ C+. Indeed, for k ∈ Γ ,

M̂−(x; k) = M−(x, 0; k)G−(x; k)

= M+(x, 0; k)

(
1 0

c(k)e2ikx 1

) (
1 0

−c(k)e2ikx 1

)

= M+(x, 0; k)

= M̂+(x; k),

and, for k ∈ γ,

M̂−(x; k) = M−(x, 0; k)G−(x; k)

= M−(x, 0; k)

(
1 0

−c−(k)e2ikx 1

)

= M+(x, 0; k)

(
1 0

f(k)e2ikx 1

) (
1 0

−c−(k)e2ikx 1

)

= M̂+(x; k)

(
1 0

c+(k)e2ikx 1

) (
1 0

f(k)e2ikx 1

) (
1 0

−c−(k)e2ikx 1

)

= M̂+(x; k)

(
1 0

(f(k) + c+(k) − c−(k))e2ikx 1

)

= M̂+(x; k),

where we used the definition f(k) := c−(k)−c+(k). Thus M̂(x; k) is continuous in k ∈ C+

with exception of poles, hence it is meromorphic in C+. We now investigate the residue
conditions:

resk=kj M̂(x; k) = im1
je

2ikjxM̂(x; kj), kj ∈ D1,

resk=zj M̂(x; k) = resk=zj [M(x, 0; k) − c(k)e2ikxM(x, 0; k)]

= resk=zj
c(k)e2izjxM(x, 0; zj) − resk=zj

c(k)e2izjxM(x, 0; zj)

= 0, zj ∈ D2,
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resk=kj M̂(x; k) = resk=kj
[M(x, 0; k) − c(k)e2ikxM(x, 0; k)]

= − resk=kj
c(k)e2ikjxM(x, 0; kj)

= im1
je

2ikjxM̂(x; kj), kj ∈ D2,

where we used

resk=kj c(k) = − B̄(k̄j)
T11(kj)ȧ(kj)

= − 1
b(kj)ȧ(kj)

= −im1
j ,

which follows from a(kj) = 0 and

T11(kj) = [Ā(k̄)a(k) + B̄(k̄)b(k)]|k=kj

= B̄(k̄j)b(kj).

Hence M̂(x; k) is meromorphic in k ∈ C+ with poles at k = kj ∈ C+ (a(kj) = 0). By
symmetry M(x; k) is meromorphic in k ∈ C− with poles at k = k̄j . For k ∈ [κ+,∞) the
following jump condition is valid:

M̂−(x; k) = M−(x, 0; k)

= M+(x, 0; k)J(x, 0; k)

= M̂+(x; k)J (x)(x; k).

Similarly, taking into account the relation c(k) − ρ(k) = −r(k), for k ∈ (−∞, κ+),

M̂−(x; k) = M−(x, 0; k)

(
1 c̄(k̄)e−2ikx

0 1

)

= M+(x, 0; k)

(
1 −ρ̄(k̄)e−2ikx

−ρ(k)e2ikx 1 + |ρ(k)|2

) (
1 c̄(k̄)e−2ikx

0 1

)

= M̂+(x; k)

(
1 0

c(k)e2ikx 1

) (
1 −ρ̄(k̄)e−2ikx

−ρ(k)e2ikx 1 + |ρ(k)|2

) (
1 c̄(k̄)e−2ikx

0 1

)

= M̂+(x; k)

(
1 −r̄(k̄)e−2ikx

−r(k)e2ikx 1 + |r(k)|2

)
.

Hence M̂(x; k) ≡ M (x)(x; k) where the sectionally meromorphic matrix M (x)(x; k) is
characterized by all conditions (3.2). This proves that RHxt |t=0 and RHx are equiva-
lent Riemann–Hilbert problems.

Proof that q(x, 0) = q0(x). By using this equivalence RHxt |t=0 ∼ RHx we obtain
the initial condition (1.1 b). Indeed, the equality q(x, 0) = q0(x) follows by comparing the
large k asymptotic formulae for M(x, 0; k) and M (x)(x; k), respectively.
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Proof that RHxt |x=0 ∼ RHt. Now we prove that in an analogous sense as above
RHxt |x=0 is equivalent to RHt under the assumption that the global relation is valid. Let

N(t; k) = M(0, t; k)H(t; k),

where M(0, t; k) is defined by (3.6 c), (3.6 d) and

H(t; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝a(k) 0

0
1

a(k)

⎞
⎟⎠ for k ∈ D1,

⎛
⎜⎜⎜⎝

T11(k)
Ā(k̄)

−b(k)e−2iθ(k)t

0
Ā(k̄)

T11(k)

⎞
⎟⎟⎟⎠ for k ∈ D2,

⎛
⎜⎜⎝

A(k)
T22(k)

0

b̄(k̄)e2iθ(k)t T22(k)
A(k)

⎞
⎟⎟⎠ for k ∈ D3,

⎛
⎜⎝

1
ā(k̄)

0

0 ā(k̄)

⎞
⎟⎠ for k ∈ D4,

where θ(k) := Ω(k)−ω. The following relations between the jump matrices J (t)(t; k) and
J(0, t; k) are easy to check:

J(0, t; k)H2(t; k) = H1(t; k)J (t)(t; k), k ∈ Γ,

H−1
2 (t; k)J−1(0, t; k) = (J (t))−1(t; k)H−1

3 (t; k), k ∈ (−∞, κ+),

J(0, t; k)H2−(t; k) = H2+(t; k)J (t)(t; k), k ∈ γ,

J(0, t; k)H3−(t; k) = H3+(t; k)J (t)(t; k), k ∈ γ̄,

J(0, t; k)H4(t; k) = H3(t; k)J (t)(t; k), k ∈ Γ̄ ,

J(0, t; k)H4(t; k) = H1(t; k)J (t)(t; k), k ∈ (κ+,∞).

It is clear, for example, that the first relation for k ∈ Γ ,

(
1 0

c(k)e2iθ 1

)⎛
⎜⎜⎝

T11(k)
Ā(k̄)

−b(k)e−2iθ(k)t

0
Ā(k̄)

T11(k)

⎞
⎟⎟⎠

=

⎛
⎝a(k) 0

0
1

a(k)

⎞
⎠

⎛
⎜⎜⎜⎝

1
A(k)Ā(k̄)

−B(k)
A(k)

e−2iθ

− B̄(k̄)
Ā(k̄)

e2iθ 1

⎞
⎟⎟⎟⎠ ,
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is satisfied due to the global relation a(k)B(k) − b(k)A(k) = 0 (2.29), the definitions
of the functions c(k) = −B̄(k̄)/a(k)T11(k) (2.21), T11(k) = a(k)Ā(k̄) + b(k)B̄(k̄) =
a(k)/A(k) (2.19), (2.31). One can also verify all other relations by using the definitions
of f(k) (2.22), h(k) (3.4 f), T22(k) (2.20), determinant relations |a(k)|2 + |b(k)|2 = 1,
A(k)Ā(k̄) + B(k)B̄(k̄) = 1 and the equations (2.30)–(2.34). Using the arguments of [19]
it can be verified that N(t; k) has no poles at the points kj . For the points κj it is easy
to obtain the correct relations for the corresponding residues of the matrix N(t; k). We
omit similar considerations in the case of the RH-problem on the Riemann surface X.
This concludes the proof that RHxt |x=0 is equivalent to RHt.

Proof that q(0, t) = g0(t) and q′
x(0, t) = g1(t). Using

M (t)(t; k) = N(t; k) = I +
N1(t)

k
+

N2(t)
k2 + · · · , k → ∞,

as well as

M(x, t; k) = I +
M1(x, t)

k
+

M2(x, t)
k2 + · · · , k → ∞,

it follows that

2g0(t) = 2iN1
12(t),

g1(t) = 4N2
12(t) + 2iv(t)N1

22(t),

q(x, t) = 2iM1
12(x, t),

qx(x, t) = 4M2
12(x, t) + 2iq(x, t)M1

22(x, t).

Using the relations M (t)(t; k) = M(0, t; k)H(t; k), as well as the asymptotic expansion

H(t; k) = I +
D1

k
+

D2

k2 + · · · + O

(
e−C(k)t

|k|

)
,

where D1, D2, etc., are diagonal and independent on t matrices, and C(k) is positive
and grows for k → ∞, we find

N1(t) = M1(0, t) + D1, N2(t) = M2(0, t) + M1(0, t)D1 + D2.

These relations yield the Dirichlet boundary values

g0(t) = 2iN1
12(t) = 2i(M1

12(0, t) + D1
12) = 2iM1

12(0, t) = q(0, t),

as well as the Neumann boundary condition:

g1(t) = 4N2
12(t) + 2ig0(t)N1

22(t)

= 4M2
12(0, t) + 4(M1(0, t)D1)12 + 4D2

12 + 2ig0(t)(M1
22(0, t) + D1

22)

= 4M2
12(0, t) + 2iq(0, t)M1

22(0, t) + 4M1
12(0, t)D1

22 + 2iq(0, t)D1
22

= qx(0, t) + 2i(q(0, t) − 2iM1
12(0, t))D1

22

= qx(0, t).

�
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As was mentioned in the introduction, the justification of the structure of the Dirichlet
to Neumann map will be studied in a forthcoming paper.

Acknowledgements. The authors thank D. Shepelsky for useful remarks.
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