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1. Introduction and description of the results

Let g be a simple finite dimensional Lie algebra over the field of complex numbers and M
be a g-module. The (associative) algebra of all linear endomorphisms of M has various
interesting (associative) subalgebras. One of these is the image of the universal enveloping
algebra U(g), which is naturally isomorphic to U(g)/AnnU(g)(M). The other one is the
algebra L(M,M) of all linear endomorphisms of M, the adjoint action of g on which is
locally finite. The former algebra is a subalgebra of the latter, and so it is natural to ask,
for which M, the inclusion

U(g)/AnnU(g)(M) ↪→ L(M,M)

is an isomorphism.
For a given M, this is known as Kostant’s problem (for M ), as defined and popularized

by Joseph in [13]. It is a well-known and, in general, wide open problem [14]. No com-
plete answer to this problem is known, even for general simple highest weight modules.
However, there are various families of modules for which the answer (sometimes positive
and sometimes negative) is known, see § 3.5 for a historical overview.
The first non-trivial classical family of modules for which the answer to Kostant’s

problem was found is the family of Verma modules. Already in [13], it was shown that,
for all Verma modules, the answer to the Kostant’s problem is positive.
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Verma modules are exactly the standard modules with respect to the (essentially
unique, see [8]) highest weight structure on the Bernstein–Gelfand–Gelfand (BGG) cat-
egory O for g, see [3, 10]. Category O has a number of different generalizations. One of
these, proposed in [30], is called parabolic category O and is associated with the choice
of a parabolic subalgebra p in g. Just like its ancestor, parabolic category O is a highest
weight category. The standard objects with respect to this structure are parabolic Verma
modules.
By construction, parabolic Verma modules are quotients of the usual Verma modules.

In [12, Section 7.32], one can find an argument that shows that Kostant’s problem has a
positive answer for any quotient of a Verma module, provided that the latter is projective
in O. In particular, Kostant’s problem has a positive answer for any parabolic Verma
module that is projective in a regular block of parabolic category O. At this stage, it
is quite natural to wonder what the answer to Kostant’s problem for general parabolic
Verma modules will be.
In small ranks and for specific modules, it is sometimes possible to answer Kostant’s

problem by a direct computation. The smallest non-trivial example of parabolic category
O is for g = sl3, where we take the parabolic subalgebra corresponding to one of the two
simple roots. The regular block of the corresponding parabolic category O contains three
parabolic Verma modules. As we already mentioned above, for the projective parabolic
Verma module, the answer to Kostant’s problem is positive. For the simple parabolic
Verma module, the answer to Kostant’s problem is also known to be positive, see [9]. It
was fairly surprising for us to find out, by a direct computation, that for the (remaining)
third parabolic Verma module, the answer to Kostant’s problem is negative. This was
clear evidence that determining the answer to Kostant’s problem for parabolic Verma
modules is a non-trivial problem as one first has to guess for which parabolic Verma
modules the answer should be positive and for which it should be negative. So far, there
is only one general result in the literature which answers Kostant’s problem for a fairly
natural general family of modules where both the cases of the positive and the negative
answers occur. This is the family of simple highest weight modules over the special linear
Lie algebra indexed by fully commutative permutations, see the recent preprint [22]. The
main result of the present paper is the second one of this kind.
In the present paper, we study Kostant’s problem for parabolic Verma modules over

the special linear Lie algebra in two ‘opposite’ cases. The first case is the case of a mini-
mal parabolic subalgebra, which is the case when the semi-simple part of the parabolic
subalgebra is given by one simple root. In this case, parabolic Verma modules are quo-
tients of Verma modules by Verma submodules. These kinds of quotients were studied in
[19], where the emphasis was made on a description of the socle for such a quotient. This
description is crucial for our proofs. Two other important ingredients in our arguments
are as follows:

• An adaptation of K̊ahrström’s conjectural combinatorial reformulation for
Kostant’s problem, see [20, Conjecture 1.2].

• An appropriate analogue of the 2-representation theoretic reformulation of
Kostant’s problem, see [20, Subsection 8.3].

The second case we consider is that of a maximal parabolic subalgebra, which is the
case when the semi-simple part of the parabolic subalgebra misses exactly one simple
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root. In this case, there is a very explicit diagrammatic description of the corresponding
parabolic category O worked out in [5, 6]. To answer Kostant’s problem for parabolic
Verma modules in this case, we combine this description with the main result of [22].
Surprisingly, in this case, the positive answer is really rare. In fact, there are several
infinite families of examples, where the answer is positive only for two parabolic Verma
modules, namely, for the projective one and for the simple one, for which the answer is
always positive (just like in the sl3 example mentioned above).
The paper is organized as follows: In § 2, we collect all relevant preliminaries on cate-

gory O. In § 3 we give a general perspective on Kostant’s problem and its history. In § 4,
we study the case of a minimal parabolic subalgebra. Our main result here is Theorem 3
which completely answers Kostant’s problem for parabolic Verma modules in this case
and also relates it to K̊ahrströms combinatorial reformulation. This theorem can be found
in § 4.2. In § 5, we study the case of a maximal parabolic subalgebra. Our main result here
is Theorem 5 which completely answers Kostant’s problem for parabolic Verma modules
in this case. This theorem can be found in § 5.5. We finish the paper with some general
observations and speculations in § 6.

2. Category O preliminaries

2.1. Setup

In this paper, we work over the field C of complex numbers.
As already mentioned above, g is a simple finite dimensional complex Lie algebra. We

fix a triangular decomposition

g = n− ⊕ h⊕ n+, (1)

where h is some fixed Cartan subalgebra. Denote by W the Weyl group of g, and by S the
set of simple reflections in W, which corresponds to the triangular decomposition equa-
tion (1) above. As usual, we denote by w0 the longest element of W. Let ≤ denote the
usual Bruhat order on W and ` the length function on W.
In this paper, we will mostly consider g = sln with the standard triangular decompo-

sition given by the upper triangular, the diagonal and the lower triangular matrices. In
this case, we have W ∼= Sn, the symmetric group on {1, 2, . . . , n}, with S being the set
of elementary transpositions.

2.2. Category O

Associated with the triangular decomposition equation (1), we have the BGG category
O defined as the full subcategory of the category of finitely generated g-modules consisting
of all modules on which the action of h is diagonalizable and the action of n+ is locally
finite. We refer to [3, 10] for details.

2.3. Principal block

Consider the principal block O0 of O. This block is defined as the indecomposable
direct summand of O which contains the trivial g-module. The isomorphism classes of
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simple objects in O0 are naturally indexed by the elements of W. For w ∈ W , we have
the corresponding simple highest weight module Lw := L(w · 0). Here, 0 ∈ h∗ denotes
the zero weight and · denotes the dot action of W on h∗. For λ ∈ h∗, the dot action is
defined as follows: w · λ = w(λ+ ρ)− ρ. Here, ρ is the half-sum of positive roots.
Furthermore, for w ∈ W , we have the Verma cover ∆w of Lw and the indecomposable

projective cover Pw of Lw. We denote by A the opposite of the endomorphism algebra of
a multiplicity-free projective generator of O0. The algebra A is a finite dimensional and
associative algebra. Moreover, the category A-mod of all finite dimensional A-modules is
equivalent to the category O0.

2.4. Parabolic category O

Let p be a parabolic subalgebra of g containing h ⊕ n+. The corresponding parabolic
category Op is defined as the full subcategory of O that consists of all objects on which
the action of p is locally finite, see [30]. We further have the principal block Op

0 of Op

defined as O0 ∩ Op.
Let Wp be the parabolic subgroup of W corresponding to p. Denote by W p

short the
set of the shortest representatives in the cosets Wp \ W . The category Op

0 is the Serre
subcategory of O0 generated by the simple objects Lw, where w ∈ W p

short. The category
Op

0 is equivalent to Ap-mod for a certain quotient Ap of A.
For w ∈ W p

short, we denote by ∆p
w the corresponding parabolic Verma module and by

P p
w the corresponding indecomposable projective module in Op

0 .

2.5. Projective functors

Following [4], for every w ∈ W , there is a unique, up to isomorphism, indecomposable
projective endofunctor θw of the category O0 such that θw Pe

∼= Pw. Any indecomposable
projective endofunctor of O0 is isomorphic to θw, for some w ∈ W .
Consider the monoidal category P of all projective endofunctors of O0. By Soergel’s

combinatorial description, see [32], the monoidal category P is monoidally equivalent
to the monoidal category of Soergel bimodules over the coinvariant algebra of the Weyl
group W.

2.6. Twisting functors

For w ∈ W , we denote by >w the corresponding twisting functor, see [1, 18]. For
x, y ∈ W such that `(xy) = `(x)+`(y), we have >x∆y

∼= ∆xy. The main, for us, properties
of twisting functors are that they functorially commute with projective functors, that
they are acyclic on Verma modules and that the corresponding left derived functors are
equivalences, see [1]. In what follows, we denote by L>w the left derived functor of the
functor >w.

2.7. Graded lift

By [31], the algebra A is Koszul, and hence, it is equipped with the corresponding
Koszul Z-grading. We therefore have the category ZO0 of finite dimensional Z-graded
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A-modules. We denote by 〈−〉 the functor which shifts the grading with the convention
that 〈1〉 shifts degree 0 to degree −1.
All structural modules in the category O0 admit graded lifts, see [34] for details. These

graded lifts are unique, up to isomorphism and grading shift, for all indecomposable
modules.
We fix standard graded lifts of all indecomposable structural modules and will use for

these standard graded lifts the same notation as for the corresponding ungraded objects in
O0, abusing notation. Similarly, we have the standard graded lifts of the indecomposable
projective functors, see [34]. We denote by PZ the corresponding monoidal category of
graded projective endofunctors of ZO0.
The algebra Ap is a graded quotient of A, and we have the corresponding graded

analogue ZOp
0 of the category Op

0 .

2.8. Hecke algebra combinatorics

Consider the Hecke algebra H = H(W,S) of W in the normalization of [33]. It is
an algebra over the commutative ring Z[v, v−1]. This algebra has the standard basis
{Hw : w ∈ W} as well as the Kazhdan–Lusztig basis {Hw : w ∈ W}, defined in [17].
The Grothendieck group Gr[ZO0] of the category ZO0 is isomorphic, as a Z[v, v−1]-

module, toH by sending [∆w] to Hw. This isomorphism intertwines 〈1〉 and multiplication
with v−1 and sends [Pw] to Hw, see [2, 7].
The split Grothendieck ring Gr⊕[PZ] of the monoidal category PZ is isomorphic to

the algebra H by sending [θw] to Hw. The defining action of PZ on the category OZ
0

decategorifies to the right regular representation of H, see [32].
Denote by ≤L, ≤R and ≤J the left, right and two-sided Kazhdan-Lusztig preorders on

W, respectively. The equivalence classes associated with these preorders are called left,
right and two-sided cells. Each left and each right cell contains a distinguished involution,
which is called the Duflo involution. For symmetric groups, all involutions are, in fact,
Duflo involutions.
The singletons {e} and {w0} are two-sided cells. Furthermore, we have the small two-

sided cell Js containing all simple reflections. In the case of the symmetric group Sn ,
the small cell contains exactly n − 1 left and n − 1 right cells and consists of all elements
having exactly one unique expression. Multiplying the elements of this small two-sided
cell with w0, we obtain the penultimate two-sided cell Jp (also referred to as the subregular
cell in the literature).
The set W p

short is a union of right cells. If wp
0 is the longest elements of Wp, then W p

short

is the principal ideal with respect to ≤R, generated by the element wp
0w0. Furthermore,

for w ∈ W p
short, the projective module P p(w) is injective if and only if w and wp

0w0 belong
to the same right cell. If p is a minimal parabolic, that is, Wp contains just one simple
reflection s, the element wp

0w0 = sw0 belongs to Jp.

2.9. Bigrassmannian permutations and socles of cokernels of inclusions of

Verma modules

Recall that an element w ∈ W is called bigrassmannian, provided that there is a unique
simple reflection s such that sw <w and there is a unique simple reflection t (note that
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t might be equal to s) such that wt <w. By [19, Theorem 1], in the case of the algebra
sln, for w ∈ Sn, the module ∆e/(∆w〈−`(w)〉) has a simple socle if and only if w is
bigrassmannian.
Furthermore, the map w 7→ Soc(∆e/(∆w〈−`(w)〉)) is a bijection between the set of all

bigrassmannian elements in Sn and graded subquotients of ∆e of the form Lw〈i〉, where
w ∈ Jp. If w ∈ Sn is not bigrassmannian, then the socle of ∆e/(∆w〈−`(w)〉 is given by the
elements that correspond, under the above bijection, to those bigrassmannian elements
in the Bruhat interval [e, w] that are maximal among all bigrassmannian elements in this
interval with respect to the Bruhat order.

3. Kostant’s problem

3.1. Harish–Chandra bimodules

Recall from [12, Kapitel 6], that a g–g-bimodule M is called a Harish–Chandra bimod-
ule provided that it is finitely generated as a bimodule and, additionally, that the
adjoint action of g on M is locally finite with finite multiplicities for composition factors.
For example, for any M ∈ O0, the bimodule U(g)/AnnU(g)(M) is a Harish–Chandra
bimodule.
Another example can be given as follows: for two objects M and N in O0, the space

L(M,N) of all linear maps from M to N on which the adjoint action of g is locally
finite forms a Harish–Chandra bimodule. In the case M =N, we have a natural inclusion
U(g)/AnnU(g)(M) ⊂ L(M,M).

3.2. Classical Kostant’s problem

As we have already mentioned in § 1, for a g-module M, the corresponding Kostant’s
problem, as formulated in [13], is the following:
Kostant’s Problem. Is the embedding

U(g)/AnnU(g)(M) ↪→ L(M,M)

an isomorphism?
We will denote by K(M) ∈ {true, false} the logical value of the claim ‘the embedding

U(g)/AnnU(g)(M) ↪→ L(M,M) is an isomorphism’.

3.3. K̊ahrström’s conjecture

The following conjecture, formulated in [19, Conjecture 1.2], is due to Johan
K̊ahrström:

Conjecture 1. Let d be an involution in the symmetric group Sn. Then, the following
assertions are equivalent:

(1) K(Ld) = true.
(2) For x, y ∈ W such that x 6= y, θxLd 6= 0 and θyLd 6= 0, we have θxLd 6∼= θyLd.
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(3) For x, y ∈ W such that x 6= y, θxLd 6= 0 and θyLd 6= 0, we have [θxLd] 6= [θyLd] in
Gr[OZ

0 ].
(4) For x, y ∈ W such that x 6= y, θxLd 6= 0 and θyLd 6= 0, we have [θxLd] 6= [θyLd] in

Gr[O0].

3.4. Kostant’s problem and 2-representation theory

Recall that the monoidal category P acts on O0. Given M ∈ O0, we can consider
its annihilator AnnP(M). By definition, this is the left monoidal ideal of P consisting
of all morphisms in P whose evaluation at M is zero. The quotient P/AnnP(M) is,
naturally, a birepresentation of P.
Alternatively, the additive closure add(P M) is also a birepresentation of P. Mapping

P 3 θ 7→ θ(M) ∈ add(P M)

defines an injective morphism of birepresentation from P/AnnP(M) to add(P M). The
arguments from [20, Subsection 8.3] show that this morphism is an equivalence if and
only if K(M) = true.
In general, finitary birepresentations of finitary bicategories can be described in terms

of (co)algebra objects in a certain abelianization of the bicategory, see [23]. In the case
of the bicategory P, the abelianization in question is the category of Harish–Chandra
bimodules. Furthermore, the fact that the birepresentation add(P M) of P is given by
the algebra L(M,M) follows from [12, Subsection 6.8]. The principal birepresentation of
P, which is the natural left action of P on P, corresponds to the identity 1-morphism
of P by [23, Formula (4.2)]. In the world of Harish–Chandra bimodules, the algebra
U(g) surjects onto the identity 1-morphism of P. Consequently, the induced action of
P on P/AnnP(M) corresponds to the algebra given by the quotient of the identity 1-
morphism of P (and hence also of U(g)) by the annihilator of M. The algebra embedding
U(g)/AnnU(g)(M) → L(M,M) is a manifestation of the fact that P/AnnP(M) is a sub-
birepresentation of add(P M), and therefore, the positive answer to Kostant’s problem
for M reformulates into the property of this natural embedding being an equivalence.
This reformulation allows us to connect the answers to Kostant’s problem for modules

related by twisting functors.

Lemma 2. Let M ∈ O and w ∈ W be such that L>w(M) ∼= >w(M) ∈ O. Then,
K(M) = K(>w(M)).

Proof. Since >w functorially commutes with projective functors, see § 2.6, under
the assumptions of our lemma, we have AnnP(M) = AnnP(>w(M)) as well as an
equivalence add(PM) ∼= add(P>wM) of birepresentations of P. Therefore, the claim
of the lemma follows from the birepresentation-theoretical reformulation of Kostant’s
problem described above. �

We refer the reader to [24, 27, 28] for more details on representations of finitary
bicategories.
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3.5. Known results on Kostant’s problem

Below, we present a list of the results on Kostant’s problem which we could find in the
existing literature.

• In the case of symmetric groups, the valueK(Lw) is constant on Kazhdan–Lusztig
left cells, as shown in [29, Theorem 61].

• Let wp
0 denote the longest element in Wp. Then, K(L

w
p
0w0

) = true, see [9,

Theorem 4.4] and [12, Section 7.32].
• If s ∈ W p is a simple reflection, then K(L

sw
p
0w0

) = true, see [25, Theorem 1].

• [15, Theorem 1.1] relates the answer to Kostant’s problem for certain highest
weight g-modules to the answer to Kostant’s problem for certain highest weight
modules over the Levi quotients of p.

• [16, Theorem 1] proposes a module-theoretic characterization of the equality
K(Lw) = true.

• In [16, Section 4], one can find a complete answer to Kostant’s problem for simple
highest weight modules over sln, where n = 2, 3, 4, 5, and a partial answer for the
same problem for sl6. Some further sl6-answers were computed in [15, Section 6].
The highest weight sl6-story was completed in [20, Subsection 10.1].

• The paper [22] provides a complete answer to Kostant’s problem for simple highest
weight sln-modules indexed by fully commutative permutations.

4. Main results: minimal parabolic subalgebras

4.1. Preliminaries

For n ≥ 1, we consider the symmetric group Sn . We view elements of Sn as functions
on n := {1, 2, . . . , n} which we compose from right to left.

Fix k ∈ {1, 2, . . . , n− 1}. For 1 ≤ i < j ≤ n, denote by τn,ki,j the unique element of Sn

such that

• τn,ki,j (i) = k;

• τn,ki,j (j) = k + 1;

• for all s < t in n \ {i, j}, we have τn,ki,j (s) < τn,ki,j (t).

We denote by Xn,k the set of all these τn,ki,j . Clearly, |Xn,k| =
(
n
2

)
. We further split Xn,k

into two disjoint subsets: Xn,k = X+
n,k

∐
X−

n,k, where

X+
n,k = {τn,ki,i+1 : i = 1, 2, . . . , n− 1} and X−

n,k = Xn,k \ X+
n,k.

Here is an example for n =4 and k =2, where in the first row, we list all ele-
ments in X+

4,2, and in the second row, we list all elements in X−
4,2 (for convenience,

we colour in magenta the important edges in these graphs which go to k =2 and
k + 1 = 3):
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

We denote by Gk the centralizer of (k, k + 1) in Sn . The group Gk consists of all
elements of Sn , which leave {k, k + 1} invariant; in particular, Gk is the direct product

of the symmetric groups on {k, k+1} and n\{k, k+1}. Hence |Gk| = 2 · (n−2)!. Let Ĝk

denote the subgroup of Gk consisting of all elements which fix both k and k +1. Then,
Ĝk is naturally isomorphic to the symmetric group on n \ {k, k+1} and |Ĝk| = (n− 2)!.

4.2. Formulation

For k ∈ {1, 2, . . . , n−1}, consider the parabolic subalgebra p = pk of sln corresponding
to the simple reflection (k, k + 1). The composition ◦ in Sn gives rise to a bijection

Ĝk ×Xn,k → (Sn)
p
short.

Theorem 3. For w ∈ W p
short, the following assertions are equivalent:

(a) K(∆p
w) = true.

(b) For x, y ∈ W such that x 6= y, θx∆
p
w 6= 0 and θy∆

p
w 6= 0, we have θx∆

p
w 6∼= θy∆

p
w (as

ungraded modules).
(c) For all x, y ∈ W such that x 6= y, θx∆

p
w 6= 0 and θy∆

p
w 6= 0, we have [θx∆

p
w] 6=

[θy∆
p
w]〈i〉, for i ∈ Z, in Gr[OZ

0 ].
(d) For all x, y ∈ W such that x 6= y, θx∆

p
w 6= 0 and θy∆

p
w 6= 0, we have [θx∆

p
w] 6= [θy∆

p
w]

in Gr[O0].

(e) w ∈ Ĝk ◦ X+
n,k.

(f) The annihilator of ∆p
w in U(g) is a primitive ideal.

We would like to point out the subtle difference between Theorem 3(c) and
Conjecture 1(3), namely, the appearance of all possible graded shifts in Theorem 3(c).
Theorem 3 provides a complete answer to Kostant’s problem for parabolic Verma modules
in the above setup.

4.3. Positive cases

Let w ∈ Ĝk ◦ X+
n,k. For this w, we will prove that all assertions in Theorem 3 hold.

Note that Theorem 3(e) is obvious. Also note the obvious implications Theorem 3(d) ⇒
Theorem 3(c) ⇒Theorem 3(b).

Assume that w = σ ◦ τn,ki,i+1, for some σ ∈ Ĝk and some i ∈ {1, 2, . . . , n− 1}. We have
the short exact sequence

0 → ∆(i,i+1) → ∆e → ∆
pi
e → 0.
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Since ∆
pi
e is a quotient of ∆e, we have K(∆

pi
e ) = true by [12, Section 7.32].

Note that τn,ki,i+1 ◦ (i, i+1) = (k, k+1) ◦ τn,ki,i+1 and that σ ◦ (i, i+1) = (i, i+1) ◦σ since

σ ∈ Ĝk. From the definition of Ĝk, it also follows that `((k, k+1)w) = `(w)+1. Therefore,
applying >w to the above short exact sequence, we obtain the isomorphisms >w∆(i,i+1)

∼=
∆(k,k+1)w and >w∆e

∼= ∆w and, additionally, that the non-zero map ∆(i,i+1) ↪→ ∆e is
mapped to a non-zero map ∆(k,k+1)w → ∆w, which is automatically injective as any
non-zero homomorphism between the Verma modules is injective. Therefore, from the
right exactness of >w, we obtain a short exact sequence

0 → ∆(k,k+1)w → ∆w → ∆p
w → 0.

Since >w is acyclic on Verma modules, it follows that ∆p
w

∼= >w∆
pi
e

∼= L>w∆
pi
e .

Therefore, we can now apply Lemma 2 and conclude that K(∆p
w) = true, giving

Theorem 3(a).
The non-zero objects of the form θx ∆

pi
e are exactly the indecomposable projective

objects in Opi
0 . Since the latter category is a highest weight category, it has a finite

global dimension, and thus, the images of the indecomposable projective objects form a
basis in the Grothendieck group of this category. In particular, these images are linearly
independent and therefore different.
As L>w is a derived equivalence, the classes of the non-zero modules of the form

>wθx ∆
pi
e are also linearly independent in the corresponding Grothendieck group. In par-

ticular, they are different, which implies Theorem 3(d) (and thus also both Theorem 3(c)
and Theorem 3(b), see above).
It remains to prove Theorem 3(f). The construction of twisting functors via local-

ization (see [18]) immediately implies that AnnU(g)(>wM) ⊃ AnnU(g)(M). The right
adjoints of twisting functors, which can be realized via Enright completion functors when
acting on Verma modules, have the same property. This means that AnnU(g)(∆

p
w) =

AnnU(g)(∆
pi
e ). The fact that the latter annihilator coincides with the annihilator

of the (simple) socle of ∆
pi
e is a standard fact, for example, it follows from [15,

Proposition 5.1]. Therefore, AnnU(g)(∆
pi
e ) (and thus also AnnU(g)(∆

p
w)) is a primitive

ideal.
This completes the proof of all positive cases.

4.4. Negative cases

Let w ∈ Ĝk ◦ X−
n,k. For this w, we will prove that all assertions in Theorem 3 fail.

Note that ¬Theorem 3(e) is obvious. Also note the obvious implication ¬Theorem 3(b)
⇒ ¬Theorem 3(d).
The argument with twisting functors used in the previous subsection reduces the

present consideration to the case w ∈ X−
n,k, that is, w = τn,ki,j , for some j ≥ i + 2.

We note that this w is not bigrassmannian. Let us use the results of [19] to analyse
the subquotients of ∆p

τ
n,k
i,j

= ∆
τ
n,k
i,j

/∆
(k,k+1)τ

n,k
i,j

of the form Lx, where x ∈ Jp (recall

that Jp denotes the penultimate cell, see § 2.8). We will loosely call such subquotients
penultimate.
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To understand the penultimate subquotients in ∆p

τ
n,k
i,j

, we just need to compare such

subquotients for the modules ∆e/∆
τ
n,k
i,j

and for ∆e/∆
(k,k+1)τ

n,k
i,j

. By [19, Theorem 1],

the difference between these two sets is in bijection with the bigrassmannian elements in
the Bruhat complement [e, (k, k+1)τn,ki,j ] \ [e, τn,ki,j ]. Taking into account the very explicit

forms of τn,ki,j and (k, k + 1)τn,ki,j , we can determine all bigrassmannian elements in this
Bruhat complement. This, however, will require consideration of a number of different
cases.
To simplify our notation, we denote τn,ki,j simply by τ . We also denote the elementary

transposition (l, l + 1) by sl.

4.5. Case 1: k = i

In this case, τ = sk+1sk+2 . . . sj−1 and the Bruhat complement [e, skτ ] \ [e, τ ] contains
the following bigrassmannian elements: sk, sksk+1,. . ., skτ . Note that there are at least
two such elements and that they all have different right descents.
Consequently, the module ∆p

τ
n,k
i,j

contains at least two (pairwise) non-isomorphic penul-

timate subquotients. From [19, Proposition 22], it follows that they appear in different
degrees. Let Lx and Ly be two of them (living in some degrees). Note that both x and
y belong to the same Kazhdan–Lusztig right cell, namely, the unique right cell inside
Jp, which indexes some simples in Op

0 . Since x 6= y, these two elements belong to dif-
ferent Kazhdan–Lusztig left cells. In particular, from [27, Lemma 12], it follows that
θx−1 kills all simples in Op

0 except for Lx, while θy−1 kills all simples in Op
0 except

for Ly.
Therefore, up to graded shift, θx−1∆p

w is isomorphic to θx−1Lx. Similarly, θy−1∆p
w is

isomorphic to θy−1Ly. However, we have θx−1Lx
∼= P p

d
∼= θy−1Ly, where d is the Duflo

involution in the right cell of x, see [26, Section 3]. Note that the latter cell coincides with
the right cell of y. This shows that Theorem 3(b), Theorem 3(c) and Theorem 3(d) fail.
Since Theorem 3(b) fails, the birepresentations P/AnnP(∆p

w) and add(P ∆p
w) cannot

be equivalent, and hence, Theorem 3(a) fails as well.
Finally, since Lx and Ly belong to different left cells inside the same two-sided cell, their

annihilators are incomparable primitive ideals of minimal Gelfand–Kirillov dimension
(among all other primitive ideals for Op

0). Therefore, the annihilator of ∆p
w must be

contained in the intersection of these two ideals and hence cannot be a primitive ideal.
This shows that Theorem 3(f) fails and completes Case 1.

4.6. Case 2: k + 1 = j

This case follows from Case 1 using the symmetry of the root system.

4.7. Case 3: i > k

In this case, τ = sk+1sk+2 . . . sj−1sksk+1 . . . si−1 and the Bruhat complement [e, skτ ] \
[e, τ ] contains the following bigrassmannian elements: sksk+1 . . . si, sksk+1 . . . si+1. . .,
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sksk+1 . . . sj−1. Note that there are at least two such elements (since j 6= i+1). Applying
to them the arguments from Case 1, we complete the proof.

4.8. Case 4: j < k + 1

This case follows from Case 3 using the symmetry of the root system.

4.9. Case 5: i < k and j > k + 1

In this case, τ = sk−1sk−2 . . . sisk+1sk+2 . . . sj−1 and the Bruhat complement [e, skτ ]\
[e, τ ] contains the following bigrassmannian elements: sk, sksk+1,. . ., sksk+1 . . . sj−1,
sksk−1,. . . sksk−1 . . . si. Clearly, there are at least two such elements. Applying to them
the arguments from Case 1, we complete the proof.

4.10. Asymptotic

From Theorem 3, we see that the ratio of positive vs negative cases equals

|X+
n,k|

|X−
n,k|

=
n− 1(

n
2

)
− (n− 1)

.

This goes to 0 when n goes to infinity, which aligns with the results of [22, Section 6]. It
is also an interesting observation that this ratio does not depend on k.

5. Main results: maximal parabolic subalgebras

5.1. Setup

For 1 ≤ k < n, set m = n − k. Let q = qk be the unique parabolic subalgebra of sln
whose Levi factor is slk ⊕ slm, with slk adjusted at the top left corner. This means that
the only simple reflection that is missed by qk is (k, k + 1).

5.2. Weights and oriented cup diagrams

We will now present a concise version of the combinatorial diagrammatic description of
the category Oq

0 from [5, 6], so we refer the reader to these paper for all technical details.
We denote by Wn,k the set of all words of length n in the alphabet with two letters,

∨ and ∧, in which the letter ∧ appears exactly k times. The letter ∨ should be thought
of as the head of an arrow pointing down, while the letter ∧ should be thought of as the
head of an arrow pointing up. For example, we have

W4,2 = {∧ ∧ ∨∨, ∧ ∨ ∧∨, ∧ ∨ ∨∧, ∨ ∧ ∧∨, ∨ ∧ ∨∧, ∨ ∨ ∧∧}.

We call the unique word in Wn,k which starts with k wedges (i.e., ∧) dominant. Hence,
in the above example, the dominant word is ∧ ∧ ∨∨.
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The group Sn acts on Wn,k by permuting the positions of the letters in a word. This
action induces a natural bijection Φ between W q

short and Wn,k, which sends w ∈ W q
short

to the image of the dominant word under w−1.
Given an element λ ∈ Wn,k, we can form an oriented cup diagram by attaching to

letters of λ ends of vertically falling strings and cups that altogether form a planar and
oriented diagram. In particular, the requirement to be oriented means that the two ends
of a cup should be attached to different letters (i.e., one to a ∧ and the other one to a ∨).
For example, here are the six oriented cup diagrams that can be drawn for the elements
∧ ∨ ∧∨:

The degree of an oriented cup diagram is the number of cups oriented clockwise.

5.3. Standard modules

An oriented cup diagram is called admissible, provided that this diagram does not
contain any vertical strand under ∨ to the left of any vertical strand under ∧. For example,
for the element ∧ ∨ ∧∨, out of the six oriented cup diagrams above, all but the first one
(i.e., but the one with four vertical strands) are admissible.
For each λ ∈ Wn,k, there is a unique admissible oriented cup diagram d(λ) for λ

of degree zero. It can be constructed recursively using the following algorithm. If λ
does not contain any ∨ to the left of some ∧, then d(λ) consists of vertical strings.
Otherwise, λ must contain a subword ∨∧ which we connect by a cup which becomes
oriented counterclockwise. We can now remove this cup and proceed recursively.
Conversely, given an unoriented cup diagram d with at most min(k,m) cups, there

is a unique λ ∈ Wn,k such that, removing the orientation from d(λ), we obtain d. In
order to construct λ, we orient each cup in d counterclockwise. After orienting cups, the
admissibility condition will uniquely determine positions of the remaining ∧s and ∨s. For
example, if n =7 and k =3, then, for the diagram,

we get the corresponding element ∨ ∨ ∧ ∧ ∨ ∨ ∧ ∈ W7,3.
The following proposition is a reformulation (with adaptation to our terminology) of

[5, Theorem 5.1].

Proposition 4. Let x, y ∈ W q
short and i ∈ Z≥0. Then, the simple module Ly appears as

a simple subquotient of the parabolic Verma module ∆q
x in degree i (and then, necessarily,

with multiplicity one) if and only if there is an admissible oriented cup diagram of degree
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i for Φ(x) such that the associated unoriented cup diagram coincides with the unoriented
cup diagram associated with d(Φ(y)).

Let us consider the example of n =4 and k =2. In this example, we have

W q
short = {e, s2, s2s1, s2s3, s2s1s3, s2s1s3s2}.

For the element x = e, here are the corresponding admissible oriented cup diagrams:

The corresponding degrees, from left to right, are 0, 1 and 2. For each underlying
unoriented cup diagram, we can now write the corresponding words for which the diagram
becomes of degree zero:

We see that the first word corresponds to e, the second to s2 and the third to s2s1s3s2.
We conclude that ∆q

e has Le in degree 0, and then it has Ls2
in degree 1 and, finally,

Ls2s1s3s2
in degree 2.

For the element x = s2, we saw five admissible oriented cup diagrams in § 5.2. From
this, we conclude that ∆q

s2
has Ls2

in degree 0, then Ls2s1
, Ls2s3

and Ls2s1s3s2
in degree

1 and, finally, Ls2s1s3
in degree 2.

5.4. Thin standard modules

Set a = min(k,m). For w ∈ W q
short, we will say that the module ∆q

w is thin, provided
that there is a unique y ∈ W q

short such that

• Ly is a subquotient of ∆q
w;

• the diagram d(Φ(y)) contains exactly a cups.

We note that, for w ∈ W q
short, the number of cups in d(Φ(w)) coincides with the value of

Lusztig’s a-function on w, see [21]. Hence, the value a is the maximum value which the a-
function attains at the elements of W q

short. By a result of Irving, see [11, Proposition 4.3],
any socular constituent Ly of any ∆q

w, where w ∈ W q
short, has the property that the

diagram d(Φ(y)) contains exactly a cups. Consequently, a thin parabolic Verma module
must have simple socle.
It is easy to check, by a direct computation, that in our running example n =4 and

k =2, the list of all thin parabolic Verma modules looks as follows:

∆q
e, ∆q

s2s1
, ∆q

s2s3
, ∆q

s2s1s3s2
.
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5.5. Formulation

Let n and k be as above. Denote by Yn,k the set of all elements w ∈ W q
short such that

the word Φ(w) has the following property:

• if k < n− k, then all ∨s in w appear next to each other;
• if k > n− k, then all ∧s in w appear next to each other;
• if k = n− k, then either all ∨s or all ∧s in w appear next to each other.

For example, if n =5 and k =2, then k = 2 < 3 = n− k and

Y5,2 = {∧ ∧ ∨ ∨ ∨, ∧ ∨ ∨ ∨ ∧, ∨ ∨ ∨ ∧ ∧}.

At the same time, if n =4 and k =2, then k = n− k and we have

Y4,2 = {∧ ∧ ∨∨, ∧ ∨ ∨∧, ∨ ∧ ∧∨, ∨ ∨ ∧∧}.

We can now formulate our main result for maximal parabolic subalgebras.

Theorem 5. Let n and k be as above.

(a) If k ∈ {1, n − 1, n
2 }, then the only w ∈ W q

short for which K(∆q
w) = true are w= e

and w = wq
0w0.

(b) If k 6= n
2 , then, for w ∈ W q

short, we have K(∆q
w) = true if and only if w ∈ Yn,k.

We note that the case k ∈ {1, n− 1} is covered by both statements of Theorem 5.
The next two subsections are dedicated to prove Theorem 5.

5.6. Non-thin parabolic Verma modules are Kostant negative

If ∆q
w is not thin, for some w ∈ W q

short, then there exist different x, y ∈ W q
short of

maximal a-value such that both Lx and Ly are subquotients of ∆q
w (necessarily with

multiplicity 1). Let d be the unique involution in the Kazhdan–Lusztig right cell of x
(which coincides with the corresponding cell for y). Then,

θx−1∆
q
w
∼= θx−1Lx

∼= θdLd
∼= θy−1Ly

∼= θy−1∆
q
w.

Since θx−1 6∼= θy−1 while θx−1∆q
w
∼= θy−1∆q

w, from § 3.4, it follows that K(∆q
w) = false.

5.7. Kostant’s problem for thin parabolic Verma modules

After the observation in the previous subsection, we are left to consider thin parabolic
Verma modules. We start with a classification of such modules.

Proposition 6. For w ∈ W q
short, the module ∆q

w is thin if and only if w ∈ Yn,k.

Proof. For λ ∈ Wn,k, define the signature of λ as the vector (a1, a2, . . . , al) of positive
integers where
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• λ starts on the left with a1 equal letters ∨ (or ∧);
• λ continues with a2 equal letters ∧ (respectively, ∨); and
• so on.

For example, the signature of ∨ ∧ ∧ ∨ ∧ ∧ ∧ equals (1, 2, 1, 3). The number l will be
called the flip number, which is 4 in our example.
It is straightforward to check that all λ have the flip number at most two index thin

parabolic Verma modules. So, let us take some λ with flip number l > 2. Assume that
there exists 1 < i < l such that ai < ai+1 + ai−1. We claim that in this case, λ indexes a
parabolic Verma module that is not thin.
To prove this, we need to construct at least two different oriented cup diagrams with

min(k, n− k) cups for this λ. Take any connected subword ∧∨ or ∨∧ in which one of the
letters is in the ai-part of λ, connect the two letters in this subword by a cup and remove
it. In this way, we reduce ai by 1 and we also reduce either ai+1 or ai−1 by 1. We can do
this recursively such that we reduce ai to 1 while keeping the new ai±1s positive. This
gives a connected subword of the form either ∨∧∨ or ∧∨∧. Here, we clearly see that we
can connect the middle letter by a cup either to the letter on the right or to the letter
on the left. This gives rise to two different oriented cup diagrams as desired.
So, if λ indexes a thin parabolic Verma module, then ai ≥ ai+1+ai−1, for all 1 < i < l.

In particular, ai ≥ ai+1 and ai ≥ ai−1. Hence, l ≤ 3. As the case l ≤ 2 is already settled,
it remains to consider the case l =3.
In the case a2 < a1+a3, the above argument implies that λ indexes a parabolic Verma

module that is not thin. If a2 ≥ a1 + a3, we get λ ∈ Yn,k by definition. It is easy to see
that such λ do indeed index thin parabolic Verma modules. �

Now, we need to consider two cases. Recall that, to avoid trivial cases, we assume
1 ≤ k ≤ n−1. Let w be such that λ = Φ(w). Note that if the flip number of λ is equal to
2, then either w = e or w = wq

0w0. In the first case, the corresponding parabolic Verma
module is a quotient of the projective Verma module, and hence, it is Kostant positive.
In the second case, the corresponding parabolic Verma module is simple and Kostant
positive by § 3.5, second bullet. Thus, we assume that the flip number of λ is equal to 3.
Case 1. Assume k = n

2 . In this case, we have a2 = a1 + a3. This implies that any
admissible oriented cup diagram for λ with k cups must have two non-nested cups next
to each other. By the main result of [22], the corresponding simple module Lu, which is
the socle of our parabolic Verma module, is Kostant negative.
Let us now analyse the module ∆q

w in more detail. There is a unique admissible oriented
cup diagram for λ with k cups. Any other admissible oriented cup diagrams for λ are
obtained from this one by replacing some outer clockwise oriented cups by vertical strings.
Here is an example, for n =8 and k =4, of an original cup diagram

and the cup diagrams that can be obtained from it by replacing some outer clock-wise
oriented cups:
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In [22, Section 5.5], one can find an explicit construction of two different elements x
and y in W such that θxLu

∼= θyLu. In the case of the above (generic) example, these
elements x and y are given by the following diagrams:

Note the outer right lower cup in x. For all admissible oriented cup diagrams for
λ, except the original one, this cup hits vertical strands. This means that θx kills the
corresponding simple module; in other words, θxLu

∼= θx∆
q
w. Similar arguments apply to

general w leading to the same conclusion θxLu
∼= θx∆

q
w.

Since θxLu
∼= θyLu and θyLu is a submodule of θy∆

q
w, we thus have a non-zero degree

zero morphism from θx∆
q
w to θy∆

q
w. As θx and θy are indecomposable and non-isomorphic

and the endomorphism algebra of projective functors is positively graded, it follows that
this degree zero zero map from θx∆

q
w to θy∆

q
w cannot be the evaluation of some map

from θx to θy at ∆q
w. From § 3.4, we therefore conclude that the answer to Kostant’s

problem for ∆q
w is negative.

Case 2. Assume k 6= n
2 . In this case, we have a2 > a1 + a3. This implies that any

oriented cup diagram for λ with min(k, n − k) cups must have a vertical strand that
separates the two sets of nested cups. By the main result of [22], the corresponding
simple module Lu, which is the socle of our parabolic Verma module, is Kostant positive.
For different x and y in W, we have an injective restriction map from Homg(θx∆

q
w, θy∆

q
w)

to Homg(θxLu, θyLu).
Since Lu is Kostant positive, HomP(θx, θy) surjects on the latter and hence also on

the former. This implies that ∆q
w is Kostant positive.

This completes the proof.

5.8. Example: the extreme maximal parabolic

Consider the parabolic subalgebra p of sln corresponding to the choice of all simple
roots but the first one. Then, the Levi factor of p is isomorphic to sln−1. Setting si =
(i, i+ 1), we have

W p
short = {e, s1, s1s2, . . . , s1s2s3 · · · sn−1}.

It is well-known, see, for example, [35], that the corresponding category Op
0 is equivalent

to the category of modules over the following quiver
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with the following relations:

α1β1 = 0, αiαi+1 = 0, βiβi−1 = 0, αiβi = βi−1αi−1.

Here, the vertex 0 corresponds to e, and, for i > 0, the vertex i corresponds to s1s2 · · · si.
In this relation, the parabolic Verma modules are the standard modules with the

(unique) quasi-hereditary structure.

The a-value of e is zero, while the a-value of all other elements in (Sn)
p
short is 1. It

follows that the only thin parabolic Verma modules are ∆0 and ∆n−1. From Theorem 5,
we obtain that these two parabolic Verma modules are the only Kostant positive parabolic
Verma modules in this case.
In fact, in this case, one can extend Theorem 5 in the following way (which is an

analogue of Theorem 3).

Proposition 7. For w ∈ W p
short, the following assertions are equivalent:

(a) K(∆p
w) = true.

(b) For x, y ∈ W such that x 6= y, θx∆
p
w 6= 0 and θy∆

p
w 6= 0, we have θx∆

p
w 6∼= θy∆

p
w (as

ungraded modules).
(c) For all x, y ∈ W such that x 6= y, θx∆

p
w 6= 0 and θy∆

p
w 6= 0, we have [θx∆

p
w] 6=

[θy∆
p
w]〈i〉, for i ∈ Z, in Gr[OZ

0 ].
(d) For all x, y ∈ W such that x 6= y, θx∆

p
w 6= 0 and θy∆

p
w 6= 0, we have [θx∆

p
w] 6= [θy∆

p
w]

in Gr[O0].
(e) w ∈ {e, s1s2 · · · sn−1}.
(f) The annihilator of ∆p

w in U(g) is a primitive ideal.

Proof. We start with w = e. Then, K(∆p
e) = true by Theorem 5, which gives

Claim (a). Applying (pairwise non-isomorphic) indecomposable projective functors to
∆p

e , one gets either zero or (pairwise non-isomorphic) indecomposable projectives in Op
0 .

As the latter is a highest weight category, the images of these indecomposable projectives
in the (graded) Grothendieck group are linearly independent. This implies Claims (b),
(c) and (d). Since Le is the trivial module, the annihilator of ∆p

e coincides with the
annihilator of Ls1

and hence is a primitive ideal, giving Claim (f).
Next consider w = s1s2 · · · sn−1. Again, K(∆p

w0
) = true by Theorem 5, which gives

Claim (a). Applying (pairwise non-isomorphic) indecomposable projective functors to
L
w
p
0w0

one gets either zero or (pairwise non-isomorphic) indecomposable tilting modules

in Op
0 . As the latter is a highest weight category, the images of these indecomposable

projectives in the (graded) Grothendieck group are linearly independent. This implies
Claims (b), (c) and (d). Since ∆p

w is simple, its annihilator is a primitive ideal, giving
Claim (f).
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For w 6∈ {e, s1s2 · · · sn−1}, the corresponding ∆p
w is not thin. It has top Lw and socle

Lwsi
, for some i. We have θsiLw = 0 and θsi−1

Lwsi
= 0, while θsiLwsi

∼= θsi−1si
Lw. This

implies that Claims (a)–(d) fail. Also, as the annihilators of Lw and Lwsi
are incomparable

primitive ideals, it follows that the annihilator of ∆p
w is contained in the intersection of

these two primitive ideals and hence is not a primitive ideal. Therefore, Claim (f) fails
as well.
This completes the proof. �

5.9. Asymptotic

From Theorem 5, we see that the ratio of positive vs negative cases equals 2

(nk)−2
, for

k = 1, n− 1, n
2 . For k 6= n

2 , this ratio equals

min(k, n− k) + 1(
n
k

)
− (min(k, n− k) + 1)

.

This goes to 0 when n goes to infinity, which again aligns with the results of [22, Section 6].

6. Upshot: general observations and speculations

6.1. Preliminary definitions

For a composition µ |= n, we denote by c(µ) ` n the corresponding partition of n. The
partition c(µ) is obtained from µ by ordering the parts of the latter in a weakly decreasing
order. For two compositions µ, ν |= n, we write µ ∼ ν, provided that c(µ) = c(ν).
There is a natural bijection between compositions of n and parabolic subalgebras of

sln given as follows, for µ = (µ1, µ2, . . . ), the corresponding subalgebra pµ has diagonal
blocks of size µ1, µ2, . . . reading along the main diagonal from north-west to south-east.
For µ = (µ1, µ2, . . . , µk) |= n, define the sets

X1 = {1, 2, . . . , µ1}, X2 = {µ1 + 1, µ1 + 2, . . . , µ1 + µ2} and so on.

We will call these sets the blocks of µ. Denote by Gµ the subgroup of Sn consisting of all
permutations π satisfying the following property: for each i ∈ {1, 2, . . . , k}, there is some
j ∈ {1, 2, . . . , k} such that |Xi| = |Xj | and π sends the elements of Xi to the elements of
Xj preserving the natural order between these elements. Here is an example of an element
in G(2,2,1,2), where X1 = {1, 2}, X2 = {3, 4}, X3 = {5} and X4 = {6, 7}:

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Let µ, ν |= n be two compositions such that µ ∼ ν. Let X1, X2, . . . , XK be the blocks
of µ and Y1, Y2, . . . , YK be the blocks of ν. There is a unique τ ∈ Sk such that

• |Xi| = |Yτ(i)|, for all i ;
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• if i < j and |Xi| = |Xj |, then τ(i) < τ(j).

We denote by ωµ,ν the unique element of Sn which sends, for each i, the elements of Xi

to the elements of Yτ(i) preserving the natural order among these elements. For example,

note that ωµ,νGµ = Gνωµ,ν .
The parabolic subgroup Wµ of Sn corresponding to the composition µ is the product

SX1
× SX2

× · · · × SXk
of symmetric groups.

6.2. Some positive cases

For µ |= n, consider p = pµ.

Proposition 8. For w ∈ (Sn)
p
short, we have K(∆p

w) = true if there is ν |= n such
that µ ∼ ν and w ∈ Gµων,µ.

Proof. The proof is similar to the one in § 4.3. �

Note that, if ν and ν′ are different compositions of n such that µ ∼ µ and ν′ ∼ µ, then
the sets Gµων,µ and Gµων′,µ are disjoint.

6.3. Some negative cases

For µ |= n, consider p = pµ. Let w
µ
0 be the longest element in the parabolic subgroup

of W corresponding to p. Let R denote the right Kazhdan–Lusztig cell of W containing
the element wµ

0w0.
For w ∈ (Sn)

p
short, we say that the parabolic Verma module ∆p

w is thin, provided that
there is a unique u ∈ R such that [∆p

w : Lu] 6= 0; moreover, [∆p
w : Lu] = 1.

The following proposition is a general off-shot from the arguments applied in § 5.

Proposition 9. For w ∈ (Sn)
p
short, we have K(∆p

w) = false provided that ∆p
w is not

thin.

Proof. For u ∈ R, we have θu−1∆p
w is isomorphic to a direct sum of [∆p

w : Lu] copies of
θdLd, where d is the Duflo involution in R. From § 3.4, it follows that Kostant positivity
of ∆p

w implies that θu−1∆p
w is either indecomposable or zero. In particular, we must have

[∆p
w : Lu] ≤ 1, for each such u.
If we have two different u, û ∈ R such that [∆p

w : Lu] = [∆p
w : Lû] = 1, then we have

θu−1∆p
w

∼= θû−1∆p
w, which implies that ∆p

w is Kostant negative, again by § 3.4. This
completes the proof. �
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6.4. Some speculations

The above results reduce the study of Kostant problem for the parabolic Verma module
to the case of thin parabolic Verma modules that are not covered by § 6.2. Each thin
parabolic Verma module has simple socle. The results of § 5 suggest that, for a thin
parabolic Verma module ∆p

w with socle Lu, we have K(∆p
w) = K(Lu). We do not know

whether this is true in general and if yes, how to prove this. In any case, this is only a
reduction to the still open problem of determining K(Lu).
The above results also suggest that classification of thin parabolic Verma modules is

an interesting and important problem.
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(12) J. Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren (German), Ergebnisse der
Mathematik und Ihrer Grenzgebiete (3), Volume 3 (Springer-Verlag, Berlin, 1983).

(13) A. Joseph, Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture, Invent.
Math. 56(3) (1980), 191–213.

(14) Mazorchuk V. The tale of Kostant’s problem, Preprint arXiv:2308.02839.

(15) J. K̊ahrström, Kostant’s problem and parabolic subgroups, Glasg. Math. J. 52(1) (2010),
19–32.

https://doi.org/10.1017/S0013091524000506 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000506


22 V. Mazorchuk and S. Srivastava

(16) J. K̊ahrström and V. Mazorchuk, A new approach to Kostant’s problem, Algebra Number
Theory 4(3) (2010), 231–254.

(17) D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras,
Invent. Math. 53(2) (1979), 165–184.

(18) O. Khomenko and V. Mazorchuk, Structure of modules induced from simple modules
with minimal annihilator, Canad. J. Math. 56(2) (2004), 293–309.

(19) H. Ko; V. Mazorchuk and R. Mrdjen, Bigrassmannian permutations and Verma modules,
Selecta Math. (N.S.) 27(4) (2021), 55.

(20) H. Ko; V. Mazorchuk and R. Mrdjen, Some homological properties of category O, V,
Int. Math. Res. Not. IMRN 2023(4) (2023), 3329–3373.

(21) G. Lusztig, Cells in affine Weyl groups. II, J. Algebra 109(2) (1987), 536–548.

(22) M. Mackaay; V. Mazorchuk and V. Miemietz, Kostant’s problem for fully commutative
permutations, Rev. Mat. Iberoam. 40(2) (2024), 537–563.

(23) M. Mackaay; V. Mazorchuk; V. Miemietz and D. Tubbenhauer, Simple transitive 2-
representations via (co-)algebra 1-morphisms, Indiana Univ. Math. J. 68(1) (2019), 1–33.

(24) M. Mackaay; V. Mazorchuk; V. Miemietz; D. Tubbenhauer and X. Zhang, Finitary
birepresentations of finitary bicategories, Forum Math. 33(5) (2021), 1261–1320.

(25) V. Mazorchuk, A twisted approach to Kostant’s problem, Glasg. Math. J. 47(3) (2005),
549–561.

(26) V. Mazorchuk, Some homological properties of the category O. II, Represent. Theory
14(6) (2010), 249–263.

(27) V. Mazorchuk and V. Miemietz, Cell 2-representations of finitary 2-categories, Compos.
Math. 147(5) (2011), 1519–1545.

(28) V. Mazorchuk and V. Miemietz, Additive versus abelian 2-representations of fiat 2-
categories, Mosc. Math. J. 14(3) (2014), 595–615.

(29) V. Mazorchuk and C. Stroppel, Categorification of (induced) cell modules and the rough
structure of generalised Verma modules, Adv. Math. 219(4) (2008), 1363–1426.

(30) A. Rocha-Caridi, Splitting criteria for g-modules induced from a parabolic and the
Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible g-module,
Trans. Amer. Math. Soc. 262(2) (1980), 335–366.

(31) W. Soergel, Kategorie O, perverse Garben und Moduln über den Koinvarianten zur
Weylgruppe, J. Amer. Math. Soc. 3(2) (1990), 421–445.

(32) W. Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math.
429 (1992), 49–74.

(33) W. Soergel, Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über
Polynomringen (German), J. Inst. Math. Jussieu 6(3) (2007), 501–525.

(34) C. Stroppel, Category O: gradings and translation functors, J. Algebra 268(1) (2003),
301–326.

(35) C. Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobordisms
via projective functors, Duke Math. J. 126(3) (2005), 547–596.

https://doi.org/10.1017/S0013091524000506 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000506

	Kostant's problem for parabolic Verma modules
	1. Introduction and description of the results
	2. Category O preliminaries
	2.1. Setup
	2.2. Category O
	2.3. Principal block
	2.4. Parabolic category O
	2.5. Projective functors
	2.6. Twisting functors
	2.7. Graded lift
	2.8. Hecke algebra combinatorics
	2.9. Bigrassmannian permutations and socles of cokernels of inclusions of Verma modules

	3. Kostant's problem
	3.1. Harish–Chandra bimodules
	3.2. Classical Kostant's problem
	3.3. Kåhrstrm's conjecture
	3.4. Kostant's problem and 2-representation theory
	3.5. Known results on Kostant's problem

	4. Main results: minimal parabolic subalgebras
	4.1. Preliminaries
	4.2. Formulation
	4.3. Positive cases
	4.4. Negative cases
	4.5. Case 1: k=i
	4.6. Case 2: k+1=j
	4.7. Case 3: i>k
	4.8. Case 4: j <k+1
	4.9. Case 5: i<k and j >k+1
	4.10. Asymptotic

	5. Main results: maximal parabolic subalgebras
	5.1. Setup
	5.2. Weights and oriented cup diagrams
	5.3. Standard modules
	5.4. Thin standard modules
	5.5. Formulation
	5.6. Non-thin parabolic Verma modules are Kostant negative
	5.7. Kostant's problem for thin parabolic Verma modules
	5.8. Example: the extreme maximal parabolic
	5.9. Asymptotic

	6. Upshot: general observations and speculations
	6.1. Preliminary definitions
	6.2. Some positive cases
	6.3. Some negative cases
	6.4. Some speculations

	Acknowledgements
	References


