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ABSTRACT

Target benefit (TB) plans that incorporate intergenerational risk sharing have
been demonstrated to be welfare improving over the long term. However, there
has been little discussion of the short-term benefits for members in a defined
benefit (DB) plan that is transitioning to TB. In this paper, we adopt a two-
step approach that is designed to ensure the long-term sustainability of the
new plan, without unduly sacrificing the benefit security of current retirees. We
propose a cohort-based transition plan for reducing intergenerational inequity.
Our study is based on simulations using an economic scenario generator with
some theoretical results under simplified settings.
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1. INTRODUCTION

Over the past two decades, the rising costs of traditional defined benefit (DB)
pension plans have led to significant numbers of DB plan closures, and a
growth in defined contribution (DC) plan membership. However, there is
growing recognition that DC plans may not be fit for purpose, due to the lack
of assurance that the resulting pension will be adequate, and the invidious bur-
den placed on the individual, with respect to the management of investment
and longevity risk (Cooper, 2013).

DB and DC plans can be seen as two extremes on a spectrum of potential
plan designs; traditional DB plans carry cost risk but no benefit risk, other
than from insolvency. Traditional DC plans carry benefit risk but no cost
risk. The fact that both DB and DC are unsatisfactory to many stakehold-
ers leads us to consider non-corner solutions. Target benefit (TB) plans (also
known as defined ambition, or intergenerational risk-sharing plans) are hybrid
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plans, which are designed to incorporate the best features of both DB and DC
plans. The term ‘Target Benefit’ covers a wide range of plans, but all have
the common feature that risk is shared across generations, which means that
benefits in payment are adjustable. Contributions may be fixed or variable. If
contributions are fixed, then the TB plan has some mechanism to hold back
surplus in good times to support benefits in lean times (otherwise it would be
a DC plan). If both contributions and benefits are variable, then some mecha-
nism must be implemented to share surplus and deficits between workers and
retirees.

Compared to a DB plan, the ability to adjust benefits allows for better risk
sharing across generations (e.g., younger workers are not fully responsible to
make up deficits caused by inadequate contributions paid by the previous gen-
erations). It also means that the default risk (particularly relevant for private
sector plans) is much reduced, compared with traditional DB plans, and that
intergenerational transfers are better controlled. In addition, TB plans can pro-
vide smoother and more predictable retirement income than conventional DC
plans.

Various forms of TB plans have been proposed or implemented in vari-
ous countries including the UK (Davies, 2014; Thurley, 2019), the Netherlands
(Kortleve, 2013), the US (Bovenberg et al., 2016) and Canada (Leech and
McNish, 2015). For a general discussion of the TB plans, see the pub-
lished reports by the Canadian Institute of Actuaries and the Society of
Actuaries, Sanders (2015) and (2016). There has also been considerable theo-
retical research interest including Cui et al. (2011), Gollier (2008), Khorasanee
(2012), Bams et al. (2016), Chen et al. (2017), Wang et al. (2018) and Zhu et al.
(2020). Each of these research papers concluded that TB plans are preferred
to both DB and DC plans, based on some objective function; the papers differ
in their assumed benefit structure, objective functions and solution methods.
However, all of these papers study optimality on a collective basis, which leads
to a natural question on how to balance group optimality and individual opti-
mality. Pioneered by Hoevenaars and Ponds (2008), a value-based approach
is often used to evaluate the gains and losses for each generation. In partic-
ular, Hoevenaars and Ponds (2008) and Yi et al. (2020) compared the value
transfer across generations between DB plans and risk-sharing pension plans.
The value-based approach is clearly a zero-sum game, where some cohorts
benefit and some suffer, which suggests that not every cohort favours the TB
design.

However, our study demonstrates that pension reform is not a zero-sum
game if the following factors are taken into consideration. First, the default
risk in the DB plan is often neglected in the literature, leading to significant
overestimation of the value of the DB plan for each member. This is not a triv-
ial detail; in practice, DB plan failures have caused misery to millions of plan
members who believed their pensions were ‘gold standard’. Second, the value-
based approach ignores individual cohort priorities; the risks that are most
important to younger generations will differ from older generations. Lastly,
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none of the aforementioned papers have incorporated any transition proce-
dure; the comparison is made by assuming all members will be moved into the
new plan. In this paper, we propose a phased transition strategy from a DB to
a TB plan that benefits all cohorts when default risk and time-varying prefer-
ence are taken into account. We illustrate that a commonly adopted strategy
in practice, letting the older workers and retirees stay in the (closed) DB plan
while younger workers are transferred to the new plan, is a special case of our
phased transition approach.

To assess the effectiveness of the phased transition quantitatively, we adopt
a simple linear risk-sharing structure for the TB design, where both contri-
butions and benefits are adjustable based on the plan’s funding level. The
optimal transition strategy is obtained by separating the objectives of pension
reform into long-term and short-term goals. Solving for long-term optimal-
ity provides the risk-sharing parameters for future cohorts. Then, solving
for short-term optimality, we devise parameters for a phased transition for
older members at the time of transition. We illustrate the model and develop
solutions numerically using Monte Carlo simulation.

The remainder of the paper is structured as follows. Section 2 introduces
our model. Section 3 discusses the choice of objective functions in pension
reform. Section 4 provides numerical results. Section 5 concludes.

2. MODEL

Our study focuses on the transition from DB to TB, therefore, it is necessary to
set up models for both the DB plan and TB plan, and highlight their structural
differences. For both plans, members have a risk from pension plan deficits.
However, the TB plan applies ongoing risk sharing between generations, while
the DB plan tends to transfer deficit risk ahead. Ultimately, the DB plan may
be forced to terminate, in which case the then-current members will lose some
or all of their accrued benefit, absorbing all that risk transferred forward from
previous cohorts.

We describe the model for the population and economy in Sections 2.1 and
2.2. The dynamics of the pension assets are defined in Section 2.3, and the
liability calculation is given in Section 2.6. We assume the liabilities for TB
are defined-benefit-like, and so they use the same valuation formula as the
DB benefits. The stylised DB and TB designs are described in Sections 2.4
and 2.5.

2.1. Overlapping generations

We adopt the multiperiod overlapping generations (OLG) model to project
the performance of the TB plan. We assume homogeneity for all employees,
such that they start their career at entry age xe and retire at age xr, with a

https://doi.org/10.1017/asb.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.17


876 X. ZHU, M. HARDY AND D. SAUNDERS

maximum age of ω. In the numerical examples, in later sections, we set xe = 25,
xr = 65 and ω= 115. Let tpx denote the probability that an individual aged x
survives for t years, and let lx(t) denote the number of lives aged x at time t.
For simplicity, we ignore longevity risk, and assume that the pension plan is
large enough such that the mortality risk is fully diversifiable. We also assume
that the number of new entries to the plan is the same each year. By unitising
the population, we have lx(t)= lx = xpxe . Mortality is assumed to follow the
Canadian Insured Payout Mortality 2014 (CIP2014, male), so the population
consists of roughly 39 active workers and 19 retirees, representing an old-age
dependency ratio of 50%.

We assume homogeneity in the population such that all employees earn one
unit of currency in real terms. Therefore, the same cohorts are earning the same
nominal amount at each time. The consumable income that active workers
receive is their nominal income reduced by their assigned pension contribu-
tions. For retirees, the individuals receive no income other than their pensions.
In addition, we assume there is no death benefit.

2.2. Economic assumptions

Analysing pension plans requires a long-run projection of financial risk factors
and economic variables. Economic scenario generators (ESGs) are a popular
choice in the application of actuarial risk management. Here we adopt the
famous Wilkie ESG, (Wilkie, 1984) as developed and fitted in Zhang et al.
(2018b). The following economic variables are generated:

1. Inflation Index It. Note that salaries are assumed to grow at the inflation
rate.

2. Equity Index St.
3. Long-term bond rates Rt.
4. Short rates rt.1

An outline of the model with parameter values, is given in the Appendix A.
It is important to point out that the simplicity of the structure of Wilkie’s

model inevitably has some disadvantages, as noted through the backtesting
exercise in Zhang et al. (2018b). For example, the model tends to overestimate
inflation and underestimate the total return on stocks. However, many ESGs
are not fully disclosed, and even for models that are open access, there is a
lack of maintenance to update the parameters. Some other ESGs that appear
in the academic literature include: the Vector Autoregressive Model (VAR), as
studied in Hoevenaars and Ponds (2008) and Platanakis and Sutcliffe (2016),
the Generic ESG constructed in Zhang et al. (2018b) and the Exponential
Regressive Conditional Heteroscedasticity (ERCH) model proposed in Sherris
and Zhang (2009).
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2.3. Pension assets

We denote by At the value of the pension assets at time t, which we assume
to be invested in three securities: 1-year Treasury Bills, long-term bonds and
an equity index fund (e.g., tracking the S&P 500 index). Let bt and ct denote
the actual benefit and actual contribution for each individual at time t. The

aggregate amount of contribution received at t is
xr−1∑
x=xe

lx × ct and the aggregate

amount of benefit paid at t is
ω−1∑
x=xr

lx × bt.

Since the focus of the paper is on intergenerational risk sharing, we exclude
sponsor contributions and implicitly assume the pension is fully funded by
reducing employee salaries.

The evolution of At is

At+1 =
(
At +

xr−1∑
x=xe

lx × ct −
ω−1∑
x=xr

lx × bt

)(
πS
St+1

St
+ πBeRt + (1− πS − πB)ert

)

where πS and πB are the weights of the portfolio invested in equity and
long-term corporate bonds, which are assumed to be constant. The default
investment strategy is an equity allocation of πS = 60%, a long-term bond allo-
cation of πB = 30%, and the remainder is allocated to 1-year Treasuries. This
meets the commonly applied ‘60/40’ rule of thumb for pension investments.
To model the dynamics of St, Rt, rt and other economic variables, we use the
Wilkie ESG (see Appendix A).

2.4. Contributions and benefits – DB plan

As we are evaluating a transition from a DB plan to a TB plan, the details of
the DB plan are relevant only insofar as we want to ensure that current retirees
at transition are no worse off in the TB plan than they would be in the DB
plan, and in order to compare default risk for retirees under the two plans.

We assume that the existing DB plan has defined benefits that are fixed in
real terms, so that, if the plan is not wound up, the actual benefit paid at t,
denoted bt, is based on a fixed real rate of benefit, b∗, rolled up for inflation.
That is, bt = b∗ × It where It is the inflation index generated using the Wilkie
ESG. This benefit is funded by contributions from active employees, which are
set at a rate of c∗ for all employees, in real terms. The actual contribution at t
is ct = c∗ × It.

For a given b∗, the value of c∗ is determined through a specified actuarial
pricing principle. In Section 4, we set the target real contribution rate to be
c∗ = 15%, and determine b∗ such that the median long-term funding level of
the DB plan is equal to 1.0, which gives a replacement rate of b∗ = 70%.
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If the DB plan becomes severely underfunded, it will be wound up. We
set a funding ratio of At/Lt = 40% as the wind-up threshold for our numer-
ical illustrations, where Lt is the actuarial value of the pension liability at t
(see Section 2.6).2 After deducting wind-up expenses of (ep ×At), the remain-
ing asset balance will be used to purchase annuities at market consistent prices.
In our numerical illustrations, we set ep = 10%.

For retirees, the reduced benefit payable at t+ k, given wind-up at t, for
k= 0, 1, . . ., is

bt+k = (1− u)× (1− ep)×At∑ω−1
x=xr lx ×∑ω−1

y=x y−xpx × (1+ it)−(y−x)

where 1−u is the proportion of assets allocated to the retirees, and it is the
valuation interest rate for the plan at time t (see Section 2.6).

To better compare the structural difference between DB and TB designs, we
exclude regulatory interventions such as Pension Benefit Guarantee payouts.

2.5. Contributions and benefits – TB plan

The TB structure in our study has target benefits and contributions, which are
identical to the benefits and contributions of the DB plan. The risk-sharing
mechanism is based on Cui et al. (2011), Zhu et al. (2020) and Chen and Rach
(2020), where the risk-sharing formula uses a linear allocation of the surplus
or deficit to the active and retired members. The model is similar to Chen and
Rach (2020), but with separate risk-sharing parameters depending on whether
the plan is in surplus or deficit. This more realistically considers management of
funding levels based on a corridor of acceptable values, with adjustments only
applying when the funding level moves outside the corridor, and with surplus
management being a different issue than deficit management.

We specify the surplus and deficit sharing as follows. The target values at
t for the contributions and benefits are denoted c∗

t and b∗
t , respectively, and

are assumed to be equal to the DB plan benefits and contributions; that is,
c∗
t = c∗ × It and b∗

t = b∗ × It.
The actual contributions and benefits at t are denoted as ct and bt, and are

adjusted from the target values to allow for sharing of any surplus or deficit. In
particular, we have

ct = c∗
t − αs

(At −ψ s ×Lt)+

xr−1∑
x=xe

lx

+ αd
(ψd ×Lt −At)+

xr−1∑
x=xe

lx

bt = b∗
t + βs

(At −ψ s ×Lt)+

ω−1∑
x=xr

lx

− βd
(ψd ×Lt −At)+

ω−1∑
x=xr

lx

,
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where Lt is the value at t of the pension liabilities (see Section 2.6), ψ s is the
funding level at which surplus will start to be distributed to retirees and active
employees and ψd is the funding level at which a funding deficit will be recov-
ered through contribution and benefit adjustments. These are assumed to be
externally imposed, and may be based on regulatory constraints. The α and
β parameters represent the percentage of surplus or loss that is distributed to
active employees and retirees, respectively, with values that may differ if the
plan is in surplus (αs, βs), or in deficit (αd , βd). The default TB design in this
paper uses ψ s =ψd = 1, and αs �= αd and βs �= βd . Notice that if we assume
additionally that αs = αd and βs = βd , we recover the TB design of Cui et al.
(2011).

We have not proposed any constraints on ct and bt, which means we
are allowing unlimited surplus distribution for active workers, and unlimited
deficit sharing for retirees. In principle, this could lead to negative income for
active workers, whose income at t is It − ct, or to negative income for retirees,
whose income is bt. In practice negative income did not arise in any of our
simulations; if it had we would have imposed a lower bound of zero.

Although the linear risk-sharing structure is simple, it does have theoretical
support. Wang et al. (2018) and Zhu et al. (2020) formulate the risk-sharing
plan as an optimal control problem in a continuous setting (albeit simpler than
used here) and both derived optimal risk-sharing structures in linear form.

2.6. The pension liabilities

As our TB plan is very similar to the existing DB plan, we use identical lia-
bility valuation methods for both. We follow the traditional unit credit (TUC)
approach, which means that only the accrued benefits at t are included in the
liability valuation. Let Lt denote the liability value at time t, then

Lt =Et

[
xr−1∑
x=xe

lx︸ ︷︷ ︸
Active Workers

(
x− xe
xr − xe

b∗
t︸ ︷︷ ︸

Accrued Benefit

ω−1∑
y=xr

y−xpx v
(y−x)
it︸ ︷︷ ︸

Actuarial value of annuity

)]

+Et

[
ω−1∑
x=xr

lx︸ ︷︷ ︸
Retirees

b∗
t

(
ω−1∑
y=x

y−xpx v
(y−x)
it

)
︸ ︷︷ ︸
Actuarial value of annuity

]
,

where Et is the expectation at t, conditional on the filtration generated by the
ESG. The interest rate, it (vit = 1

1+it ), depends on the type of valuation; for
going concern valuations, it is often chosen to be the current long-term cor-
porate bond rate; for wind-up or solvency valuations, it is usually close to the
risk-free rate. In this paper, we set the interest rate to be the long-term bond
rate plus 2% for going concern liability (loosely representing a corporate bond
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yield), and the short rate plus 2% (capped at the long-term bond rate) for the
wind-up liability. See Ma (2018) and Ma (2017) for a short discussion on the
liability valuation techniques and discounting rate selection from a practitioner
perspective.

3. TRANSITION FROM DB TO TB

The flexible nature of the target benefit plan allows a range of risk allocations,
through the parameters α and β. Cui et al. (2011) and Chen and Rach (2020)
maximise the utility of the plan participant, while Cui et al. (2011) focus on
the optimal plan structure that improves the overall welfare of all participants,
and Chen and Rach (2020) focus on the optimal pension allocation between
a TB plan and an annuity for each individual. In addition, Wang et al. (2018)
minimise the benefit risk, while constraining the insolvency risk of the pen-
sion fund. All papers demonstrate the necessity of including TB plans in the
retirement portfolio. However, those studies have not addressed the potential
conflict between group optimality and individual cohort optimality. Zhu et al.
(2020) demonstrate that an unconstrained optimal control solution will sac-
rifice the interest of nearby generations for the benefit of generations in the
distant future. This unfairness is amplified as the time horizon increases. They
also demonstrate that a constrained problem may mitigate the unfairness, but
does not eliminate the problem; certain cohorts may still suffer from lack of ex
ante fairness in the TB plan design, in the sense that the optimisation allocates
significant risk to them, in order to build up (on average) sufficient funds to
eliminate risk for future generations. The objective of this paper is to explore
whether this ex ante unfairness can be mitigated through design of the TB plan,
and through allowing short-term adjustments to the TB plan for members in
force or in retirement at the time of transition.

This objective suggests a two-stage procedure, with the first stage focusing
on long-term optimality, and the second adjusting for the short-term transition
effects.

3.1. Long-term optimality

For long-term optimality, we adopt an objective function similar toWang et al.
(2018) and Zhu et al. (2020), under which we minimise the squared deviation
between the actual and the benchmark income, and solve for the risk-sharing
parameters, αs, αd , βs and βd . The squared deviation objective function places
value on predictability and smoothness of income. High-side deviations are
treated the same as low-side deviations, which means that efficiency of funding
is also captured, as high income values reflect the distribution of excess surplus.
Note that, as we are not using a utility-based optimisation, it is not necessary
to assume that individuals consume all their income, but for convenience we
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will use the term ‘target consumption’ to mean the individual’s preferred target
income.

The income of active workers in our model is the salary (modelled by the
inflation index) minus the contribution, that is, It − ct. The income of retirees
is bt.

Let Cw and Cr denote the target consumption, in real terms, for active
workers and retirees. The inflation adjusted target consumption at t is then
Cw
t =Cw × It for workers, and Cr

t =Cr × It for retirees. If the target consump-
tionmatches the TB targets, then we haveCw

t = It − c∗
t andC

r
t = b∗

t . However, it
is also possible that the target consumption may differ from the targets within
the pension plan, and we allow for the possibility of treating Cw and Cr as
external inputs to the plan design.

The optimal TB plan parameters are set by minimising the squared differ-
ence between the target consumption and the actual income, in real terms, over
a horizon of T years, with respect to the parameter set θ = {αd , αs, βd , βs} ∈�,
where � is the parameter space.

Consider all generations born before time T (so that all are deceased by
time T +ω). The optimal TB plan is determined in the general case, without
assuming population stationarity, as3

arg inf
θ∈�

1
T
E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω−1∑
x=xe−T

ω−1−x∑
t=max (xr−x,0)

lx+t(t)
(
bt −Cr

t

It

)2

︸ ︷︷ ︸
retirement income for person born before T

+
xr−1∑

x=xe−T

xr−x−1∑
t=max (xe−x,0)

lx+t(t)
(
It − ct −Cw

t

It

)2

︸ ︷︷ ︸
contribution for person born before T

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

As T → ∞, if the population structure is stationary, the optimal TB plan
design is

arg inf
θ∈�

lim
T→∞

1
T

T∑
t=0

E

{(
ω−1∑
x=xr

lx

) (
bt −Cr

t

It

)2

+
(
xr−1∑
x=xe

lx

) (
It − ct −Cw

t

It

)2
}
.

(3.2)

The derivation of this formula is given in Appendix C.
Wang et al. (2018) used a horizon of T = 20 years, with an additional

penalty term at the terminal date. The penalty is the squared deviation between
the actual asset level and the target, which represents a weighting function
between current generations and future generations. We find that the choice of
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the penalty function has a significant impact on the results. We can avoid this
subjectivity by solving for the limiting case, when T → ∞. Numerical results in
Section 4 demonstrate that for our examples, the optimal pension design does
converge in time, with all economic variables and the asset level stabilised in
the long run. The convergence speed depends on the initial states of the eco-
nomic variables; usually a projection period of at least 100 years is required.
To ensure convergence, we approximate the infinite time horizon study using
standard Monte Carlo methods.

We note that the current workers and retirees are irrelevant in Equation
(3.2). This points to the importance of adding another stage in the optimisation,
targeting their interests to achieve a fair transition.

3.2. Relation between optimal α and β

It is interesting to explore the relationship between the risk-sharing parame-
ters for workers and retirees. In this section, we simplify the model by setting
αs = αd = α, βs = βd = β and letting Cw

t = It − c∗
t and Cr

t = b∗
t . This allows us

to to derive analytic results that can be compared with the numerical results
determined for the full model.

Proposition 1. Let α and β denote the risk-sharing parameters for workers and
retirees, respectively. Then the optimal risk-sharing parameters, α̂ and β̂ satisfy:

α̂

	W
= β̂

	R
, (3.3)

where 	W =
xr−1∑
x=xe

lx is the number of workers in force at any time and 	R =
ω−1∑
x=xr

lx

is the number of retirees.

Proof: See Appendix B.
The proposition provides an intuitive result that for an optimal TB plan,

the amount of risk borne by any group is proportional to the group population
size.

Notice that α = β = 0 is a trivial solution to the optimisation problem, as
the objective function is equal to its minimum value of 0 throughout. However,
with no risk sharing the long-term funding level will go to either infinity or neg-
ative infinity, which is clearly infeasible. Therefore, we construct a constrained
space for the risk-sharing parameters such that �= {α > 0, β > 0}.4

The graph of the objective function as a function of α and β is given in
Figure 1, using the benchmark parameters outlined in Section 4. Note that the
objective function does not decrease as α and β approach zero. This is because
no matter how small the risk-sharing parameters are, as long as they are strictly
above zero, the divergence of the asset (after inflation adjustment) eventually
increases the value of the objective function.
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FIGURE 1: Objective function for different α and β.

3.3. The short-term problem: a fair transition criterion

The optimal plan design determined by Equation (3.2), in general, results in
non-zero values for βd and βs. This means that, in the long term, intergenera-
tional risk sharing does benefit members. For future entrants, the advantage is
measured over the total impact on income through the full working and retired
lifetimes of the members. Compared to the DB plan, the TB plan offers more
stable contributions, and better protection against default. However, for those
members who have already retired at the time of transition, it is too late to
benefit from the reduced contribution volatility, and the enhanced protection
from default will have little value to older members, as default is unlikely dur-
ing their remaining lifetimes. Hence, retirees have little incentive to move to the
TB plan; to force them to do so would not be permitted in many jurisdictions,
and would be unfair in any jurisdiction. However, it is possible to structure the
transition without disadvantaging any groups if transition is phased in for cur-
rent retirees, to take into account the different impact of the new risk-sharing
structure on different cohorts at transition.

In this section, we consider how to ensure a fair transition from DB to TB,
where we define fair to mean that no single cohort is worse off, and at least
some are better off, after the change.5

We interpret the ‘not worse off’ criterion based on the downside risk associ-
ated with aggregate future retirement income after transition. In the DB plan,
all downside risk comes from default on wind-up. In the TB plan, there is much
less default risk, but there is ongoing downside risk from deficit sharing, based
on the parameter βd . In the long term, all retirees share the same value of βd ,
derived from optimising the objective function in Equation (3.2). For the short
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term, in order to ensure a fair transition for all cohorts, we derive different
values of βd for each retirement age group. Let βdx denote the deficit sharing
parameter for retirees aged x at transition, where xr ≤ x<ω. Our objective
is to determine βdx such that the downside risk measure for each age group at
transition, under the TB plan, is less than or equal to the downside risk measure
under the DB plan.

Mathematically, let E(x;βdx ) denote the downside risk measure for retirees
aged x at the transition date, based on the downside risk-sharing parameter βdx ;
we omit βdx for simplicity when there is no confusion. Then we seek

{
βdx
}
xr≤x<ω

such that {
βdx : ETB(x;βdx )≤ EDB(x), for all xr ≤ x<ω

}
. (3.4)

There may exist infinitely many transition strategies satisfying the inequal-
ity, so we consider the most sustainable one, which is the boundary case that
solves the equations:

βdx =min
{
β ′
x

∣∣∣∣EDB(x)= ETB(x;β ′
x), β

′
x ≥ 0

}
∧ βd , xr ≤ x<ω, (3.5)

where retirees will never share more deficit than with future generations, that
is, βdx ≤ βd , and since we assume no default risk in the TB plan, EDB(x)≥
ETB(x;βdx = 0), which ensures that the transition strategy is guaranteed to be
beneficial to the retirees.

For the downside risk measure E(x), we use the expected remaining lifetime
downside squared deviation:

E(x)=
ω−1−x∑
t=0

tpx E

[(
(bt −Cr

t )−
It

)2
]
. (3.6)

Additionally, in Appendix D, we derive analytic results using the expected
remaining lifetime downside deviation:

E(x)=
ω−1−x∑
t=0

tpx E
[(

(bt −Cr
t )−

It

)]
. (3.7)

We note that there exist other reasonable choices for E(x). Examples
include the lower quantiles of the retirement income, the conditional tail expec-
tation of benefit loss or a weighted average for expected surplus and loss. The
common idea is to introduce a phased transition where the oldest cohorts are
protected from risk through partial enrolment in the new plan, where the def-
inition of ‘protected’ depends on the specific metric chosen. The metric used
in this paper seems a reasonable choice, as retirees value downside stability,
and this measure penalises large drops in income more severely than a series of
smaller movements (Zhang et al., 2018a).
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A different approach that is sometimes seen in practice is to introduce the
new pension scheme to all cohorts younger than the retirement age, but leave
all retirees in the DB plan. This is a special case of phased transition, which
is equivalent to setting βdx = 0 for all xr ≤ x<ω. We refer to this as the ‘cut-
off’ strategy. It clearly satisfies condition (3.4). In Section 4, we will compare
the two strategies and highlight the sustainability improvement of the phased
transition approach.

Note that our approach involves phasing in only for the retiree group at
transition; we assume that younger members are automatically fully enrolled
into the TB plan. We could extend the optimisation to include workers who
are near to retirement at transition, but in our numerical experiments it was
not necessary to do so, as we have shown in Section 4.3.

4. NUMERICAL ANALYSIS

In this section, we develop numerical results to illustrate the optimal phased
transition strategy described in the previous section. In Section 4.1, we discuss
the choice of target contribution and target benefit level. Section 4.2 displays
the optimal TB design in the long run. In Section 4.3 we demonstrate the
effectiveness of phased transition.

4.1. The target benefit level (b∗)

Given the target contribution level c∗ = 15%, the target benefit b∗ = 70% is
determined such that the long-term median funding ratio (Asset/Liability) of
the DB plan is equal to 1.0. We assume the same targets for the TB plan, by
making before-and-after comparisons more transparent. We note, however,
that given the different levels of risk involved, it may be appropriate to set dif-
ferent targets for the TB plan. For a sensitivity study, we include other benefit
targets such that the long-run probability of full funding is (i) 90%, (ii) 95%
and (iii) 99%. The corresponding b∗ are (i) 0.54, (ii) 0.52, (iii) 0.47.

The optimisation results depend on the choice of forecasting horizon T . We
found that 100 years is sufficiently long for the optimal values to converge.

4.2. Long-term optimal TB plan design

Table 1 presents the optimal long-term TB plan design for a range of val-
ues of b∗, and where Cr = b∗, which means that the desired consumption
matches the target benefit income in retirement. All other assumptions remain
unchanged.

We notice monotone relationships between b∗ and each optimal risk-
sharing parameter. The overall surplus share (αs + βs) is between 10% and
20%, and the overall deficit share (αd + βd) is between 3% and 7%. Although
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TABLE 1

OPTIMAL TB PLAN STRUCTURE UNDER LONG-TERM OBJECTIVE; Cr = b∗.

b∗ βs βd αs αd

0.6984 0.0348 0.0225 0.0704 0.0455
0.5447 0.0537 0.0143 0.1086 0.0289
0.5165 0.0594 0.0131 0.1201 0.0264
0.4701 0.0667 0.0105 0.1348 0.0213

TABLE 2

OPTIMAL TB PLAN STRUCTURE UNDER LONG-TERM OBJECTIVE; Cr = 0.6984.

b∗ βs βd αs αd

0.6984 0.0348 0.0225 0.0704 0.0455
0.5447 0.0629 0.0000 0.0481 0.0517
0.5165 0.0669 0.0000 0.0426 0.0553
0.4701 0.0726 0.0000 0.0345 0.1034

we choose different α and β for surplus and deficit shares, Proposition 1 still
roughly holds, that is

αd

βd
≈ αs

βs
≈ 	W

	R
≈ 2.

We emphasise that it is not necessary for Cr and b∗ to be the same. Table 2
assumes the desired retirement income (replacement rate) is Cr = 69.84%, but
the target benefit b∗ differs. Again, we see monotone relationships between b∗
and each risk-sharing parameter. We also see that when b∗ is smaller than Cr,
the surplus sharing parameters, βs, are driven upwards, to try to recover more
income to meet the desired income of Cr, and the deficit sharing parameters,
βd fall to zero. The deficit risk then falls wholly on the active employees, who
also receive a smaller share of the surplus.

More sensitivity tests for the optimal TB design over different c∗ and b∗

are given in Figure 2. We have also conducted sensitivity tests for the portfo-
lio mix, with results shown in Figure 3. The main highlight observed in both
graphs is that the optimal TB design is rather robust. Only under extreme sce-
narios, where the target contribution c∗ is high and the target benefit b∗ is
low, does the optimal TB plan collapse to a DB-like design. In other words,
when the contribution is far more than enough to cover the promised pen-
sion, the fund will be sustainable without any need to distribute its deficit, and
βd = αd = 0.

The projected median benefit level, contribution rate, funding levels and
default risk are shown in Figure 4. We have displayed simulation results for 50
years ahead, which is as long a horizon as most actuaries would consider rele-
vant, but some values have not yet converged to their long-run levels. Consider,
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FIGURE 2: The optimal risk-sharing parameters for different c∗ = 1−Cw and b∗ =Cr.

for example, b∗ = 0.6984. For this case, the long-term median funding lev-
els, benefit and contributions are 0.92, 0.68 and 0.2, respectively. At the first
glance, it seems that the TB plan underperforms the DB plan, since the long-
term DB metrics are 1.0, 0.7 and 0.15 for funding, benefit and contributions,
respectively. However, this is explained by the fact that the TB plan reduces the
default risk by holding back surplus and reducing deficits; the impact is that the
payouts are lower than under the DB plan, most of the time, but the default
risk is significantly smaller, reducing the chance of catastrophic reduction in
benefits.

As expected, the long-term median funding level is a decreasing function
of b∗. Even though the long-term median funding level when b∗ = 0.6984 falls
below 90%, the probability of default (At < 0.4Lt) remains very small. In addi-
tion, although we did not display it here, we notice that in the long run
(T > 200), the overall median consumption level (allowing for salary minus
contributions for workers, and pension income for retirees) remains similar for
different target benefit designs; if Q0.5 denotes the median function, then the
median total population income at t is

Q0.5(bt)×	R +Q0.5(1− ct)×	W ,

and this value is roughly the same for different b∗. The choice of b∗ reflects the
consumption balance for pre- and post-retirement periods.

We note that the median benefit level is not a consistent measure with
respect to our objective function, which reflects the deviations between the tar-
get and actual income. We present the median values because they roughly
match the behaviour of our objective, and the median function is more easily
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b∗ =Cr = 0.6984.

interpretable than the objective function. We note also that the sustainability
advantage of the TB plan is not fully reflected in this analysis, as we have not
allowed for the fact that the defined benefit is a contractual obligation, unlike
the target benefit which is fully adjustable. Ways of allowing for this might
include adjusting the default threshold to a lower value for the TB plan, or
adjusting the liability valuation assumptions for a less conservative valuation
of the TB benefits. Such questions are interesting, but beyond the scope of this
paper, where we use the similarity of the benefits, thresholds and valuation
assumptions to highlight the different risks and rewards from the TB and DB
plans.

For the remaining analysis in this section, the benchmark long-term TB
design is based on Cr = b∗ = 0.6984 and Cw = 1− c∗ = 1− 0.15= 0.85.

4.3. Cohort-based transition

In this section, we develop a fair, cohort-based transition from the DB plan
to the TB plan. We measure pension sustainability for each cohort, using
the expected probability of funding insolvency for that cohort, where insol-
vency is defined as having assets of less than 40% of liabilities. We denote the
probability for the cohort age x at transition as DPx, so that:
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DPx =
ω−x∑
t=0

tpx E
[
1At≤0.4×Lt

∣∣As > 0.4×Ls, ∀s< t
]
. (4.1)

We emphasise that DPx is a downside risk measure, based on a subjective
‘insolvency’ threshold, chosen to represent a practical lower bound for the
funding level of the TB plan.

4.3.1. Comparison of TB and DB default risk, phased transition.
In Figure 5(a), the horizontal line is the optimal βd obtained from the long-term
optimisation, which would determine deficit sharing for all future retirees, but
which would not necessarily be suitable for those who have already retired at
transition. For current retirees, different values of βdx are determined, where x is
the age at transition, based on the downside risk measure criterion in Equation
(3.6). These values depend on the default risk of the DB plan, which in turn
depends on the funding level at transition. The two curves shown indicate val-
ues for βdx for (i) a plan which is fully funded at transition and (ii) a plan which
is 70% funded at transition. When βdx is equal to the long-term value, then
lives aged x at transition should optimally transfer fully to the TB plan. Where
βdx is close to zero, then lives aged x at transition should retain their DB plan
benefits, including the possibility of default. We see that members of a highly
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FIGURE 5: Transition by cohort; risk-sharing parameters (βdx ) and lifetime default risks; b∗ =Cr = 0.6984;
100% or 70% initial funding level. (a) Default risk-sharing parameters by age at transition, βdx . (b) Lifetime

default probability by age at transition.

underfunded DB plan will have more incentive to participate in the TB plan, as
they would significantly reduce the risk of catastrophic default which is inher-
ent in the DB plan. Based on our assumptions, for a 70% funded plan, full
participation in the TB plan is optimal for all cohorts except the very oldest.
When the DB plan is 100% funded at transition, partial participation in the
TB plan is recommended for retirees aged 80 and above, with full transition
indicated for all retirees below the age of 80.

In Figure 5(b), we show the lifetime plan default risk by age at transi-
tion. This demonstrates that a phased transition to the TB plan significantly
enhances benefit security for all retirees, where the DB plan is only 70% funded,
but as the default risk is low, it provides little benefit for lives over age 80 where
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FIGURE 6: Transition by cohort for the model of Cui et al. (2011); risk-sharing parameters (βdx ) and lifetime
default risks; 100% or 70% initial funding level. (a) Default risk-sharing parameters by age at transition, βdx .

(b) Lifetime default probability by age at transition.

the plan is fully funded at transition. That explains why partial participation
for these lives is optimal.

To demonstrate that the phased transition strategy is still applicable for
other TB structures, in Figure 6, we show the same results for the the optimal
TB structure derived in Cui et al. (2011), where αs = αd = 0.06, βs = βd = 0.02,
c∗ = 0.14 and b∗ = 0.66. The graphs show very similar results to those for the
TB plan of this paper, with phased transition for the very highest ages for 70%
initial funding level, and for ages over 82 when the initial funding level is 100%.

4.3.2. Comparison to cut-off transition
A more straightforward way to differentiate the interests of different genera-
tions is to adopt a cut-off strategy. Current retirees retain their full DB benefits,

https://doi.org/10.1017/asb.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.17


892 X. ZHU, M. HARDY AND D. SAUNDERS

65 70 75 80 85 90 95 100 105 110

Cohort

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
D

ef
au

lt 
R

is
k

Cut-off (100% Funded
Smooth (100% Funded)
Cut-off (70% Funded
Smooth (70% Funded)

FIGURE 7: Cut-off strategy – the probability of lifetime future default for each cohort, b∗ =Cr = 0.6366.

while all active members move to the new TB plan. In this section, we com-
pare the efficiency of a phased transition as shown in Figure 5, with the cut-off
strategy, where the cut-off point is age 65, the retirement age.

Figure 7 presents the sustainability of the two transition methods. If the
plan is fully funded at transition, there is little difference in default risk between
the cut-off and phased transition. However, when the plan is significantly
underfunded at transition, excluding the current retirees from the risk-sharing
design exposes the plan to significant default risk.

The cut-off strategy may be optimal if the target benefit level b∗ is much
smaller than the target consumption level Cr. Recall that for the cases when
b∗ ≤ 0.55 where Cr = 0.6984 in Table 2, the optimal loss sharing for retirees is
βd = 0.

4.4. Alternative phased transition strategies

Here, we demonstrate that the phased transition idea can be applied in alter-
native ways by setting other parameters to be cohort-based. In the previous
analysis, the funding ratio thresholds for both profit and deficit shares are
assumed to be 1.0, but in reality, alternative risk-sharing thresholds exist. For
example, the inflation indexation for Dutch pension funds will be reduced if
the funding level is below 130%. Here, we first perform a sensitivity test for the
optimal TB design with respect to different sets of funding thresholds, to check
whether a cohort-based ψd is reasonable, see Figure 8.

Immediately we notice that the profit sharing parameters (αs and βs) are
barely affected by the choice ofψd , and similarly that the deficit sharing param-
eters are not sensitive to the choice of ψ s. The TB parameters are monotone
with respect to the choice of funding threshold, such that increases in ψ s reduce
the overall distribution of surplus. Therefore, to maintain the same level of
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FIGURE 8: The optimal risk-sharing parameters for different sets of ψ . The upper layer represents αs and αd

and the lower layer represents βs and βd .

benefit and contribution stability, the optimal TB design will increase the profit
sharing parameters, and similarly for the deficit case. The ratios between the
risk-sharing parameters (αs/βs and αd/βd) are also roughly equal to the ratio
between population sizes of retirees and active workers. The overall surplus
sharing rate is kept between 10% and 15%, and the overall deficit sharing rate
is between 3% and 15%.

The monotone behaviour shown in Figure 8 suggests that a cohort-based
risk-sharing threshold ψd

x is also a monotone function of x, where x is the age
of the retiree. For the same deficit sharing parameter βd but with lower ψd

x ,
it would be intuitive to expect that a retiree aged x will be less involved in
the deficit sharing. To ensure that the transition to TB will be beneficial to
all retirees, we set a short-term transition objective using an age-based deficit
threshold,

ψd
x =max

{
ψ ′
x

∣∣∣∣EDB(x)= ETB(x;ψ ′
x)
}

∧ψd , xr ≤ x<ω, (4.2)

where we set the upper bound of ψd
x as ψd , which is equal to 1.0 in our numeri-

cal illustrations; the constraint ∧ψd ensures that current retirees will not take a
larger share of deficits than future generations. The objective function E is cho-
sen to be the same as Equation (3.6). The transition strategy results are shown
in Figure 9.

The interpretation of the transition strategy is similar to that for Figure 5,
in that full participation in the TB plan is optimal for ages below 80, for initial
funding of 70% and below 95 for initial funding of 100%. However, we also see
thatψd

x behaves differently from βdx , and in that the oldest generations are more
involved in the new TB plan. This is due to the fact that under the TB plan, the
sustainability of the fund has been greatly improved, and the probability of

https://doi.org/10.1017/asb.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.17


894 X. ZHU, M. HARDY AND D. SAUNDERS

65 70 75 80 85 90 95 100 105 110

Cohort

0.7

0.75

0.8

0.85

0.9

0.95

1
d x

Fully Funded Initially
70% Funded Initially

FIGURE 9: ψd
x under different initial funding levels, b∗ =Cr = 0.6984. The horizontal dotted line is the value
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extremely low funding levels can be neglected in the short run. For a TB plan
that is 100% funded initially, there is virtually no benefit risk for the oldest
generations with ψd

x < 0.75.

5. CONCLUSION

The actuarial literature on risk-sharing pension plans has generally assumed
very simple risk-sharing structures and interest rate and investment returns. In
this paper, we have loosened those assumptions to create a model that, while
still highly simplified, at least allows for some of the assumptions and inputs to
better reflect the real world. In particular:

(1) We allow the risk-sharing parameters to differ depending on whether the
plan is in surplus or deficit.

(2) We have incorporated different valuations for funding (going concern) and
wind-up, and allowed for additional expenses in the event of insolvency.

(3) We have used an ESG, which allow us to include dependent models of
equity returns, inflation and long- and short-term interest rates.

(4) We have specifically addressed the issue of fairness to retiree cohorts at the
transition date.

We find that the results are consistent with those from the simpler models,
including, for example, Zhu et al. (2020). The linear risk-sharing structure pro-
posed has some desirable properties, including long-term convergence, as well
as being very transparent for members.
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Phasing in the deficit risk sharing for older cohorts at transition can achieve
a fair result with respect to downside deviation measures.

The plan demographics, benefit structures and valuation methods in this
paper are still highly simplified. Nevertheless, the results are sufficiently
promising that it will be worthwhile to continue exploring the linear risk-
sharing hybrid pension design in a more realistic setting.
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NOTES

1. The short rate is not included in Zhang et al. (2018b); we adopt the original version of
Wilkie’s model (Wilkie, 1984).

2. It would be very difficult for a DB plan to recover from such a funding level as low as 40%;
see, for example, Cheng and Uzelac (2018); ep = 10% represents a 10% expense rate on default, or
the market cost for annuitisation.

3. In Wang et al. (2018), the authors add a linear penalty terms (i.e., 
r × (Cr
t − bt)). It is easy

to show that in this case including the penalty is equivalent to changing the target consumption
Cr
t .
4. One may consider a smaller feasible set by incorporating regulatory constraints, as

suggested by Zhu et al. (2020).
5. This is consistent with the criteria reported by Prinzen (2017) from a small sample interview

with younger generations in the US.
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APPENDIX A. ECONOMIC SCENARIO
GENERATOR

The Wilkie ESG is described in detail in Wilkie (1984, 1995) and Zhang et al. (2018b). It is a
cascade model with annual time steps. The cascade structure that we have used is shown in
Figure A.1.

The inflation model uses an AR(1) structure for the continuously compounded force of
inflation. We have used this to generate the inflation index, It. The long interest rate series,
R(t), is used to model the yield to maturity on the long-term bond part of the pension assets.
The short rate, r(t) is used to model the return on short-term fixed interest investments. The
interest rate processes,R(t) and r(t), are also used to determine the pension valuation interest
rates through the Monte Carlo projections. The dividend growth process and dividend yield
process are combined to create a stock price process, which is used to model the return on
the stock part of the pension assets.

Updated parameters using the US data, together with a discussion of the model fit, are
given in Zhang et al. (2018b). We have used the following parameters from the US 1926
to 2014 data. For an interpretation of these parameters, see Zhang et al. (2018b) or Wilkie
(1984).

Inflation:μq = 0.0307, aq = 0.5731, σq = 0.0337
Dividend yield: μy = 0.0309, ay = 0.9368, σy = 0.1632, wy = 0.0
Dividend growth:μd = 0.0129, dd = 0.38, bd ,= −0.6004, σd = 0.1581, yd = 0.0
Long bond rate:μc = 0.0238, dc = 0.058, ac = 0.9175, σc = 0.2832, cmin = 0.005, yc =
0.0
Short rate:μl = 0.6516, al = 0.8966, σl = 0.3843

We define the probability space (�,F , P) on which Z(t)= [zq(t), zy(t), zd (t), zc(t), zl(t)],
and denote the filtration as F= {Ft = σ (Z(s) : 0≤ s≤ t)|t≥ 0}. The expectation conditional
on the filtration is denoted as Et[ · ]=E[ · |Ft].
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Inflation
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Dividend
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Dividend
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dt

Long Rates
Rt

Short Rates
rt

FIGURE A.1: The Wilkie ESG, reduced form from Zhang et al. (2018b), with short rate extension from
Wilkie (1995).

APPENDIX B. PROOF OF PROPOSITION 1

At+1 =
⎡
⎣At + xr−1∑

x=xe
lx

(
c∗t − α

At −Lt∑xr−1
x=xe lx

)
−

ω∑
x=xr

lx

(
b∗
t + β

At −Lt∑ω
x=xr lx

)⎤⎦Zt+1

=
[
At(1− α− β)+	Wc∗t −	Rb∗

t + (α + β)Lt

]
Zt+1

= (1− α− β)t+1A0

t+1∏
s=1

Zs +
t∑

u=0

(1− α− β)t−u
(
	Wc∗u −	Rb∗

u + (α+ β)Lu
) t+1∏
s=u+1

Zs.

Since Cw
t = It − c∗t , the long-term objective function can be simplified as

1
T
E

[ T∑
t=0

	W
(
It − ct −Cw

t

It

)2

+	R
(
bt −Cr

t

It

)2
]

= 1
T
E

[ T∑
t=0

1
	W

(
α
At −Lt

It

)2

+ 1
	R

(
β
At −Lt

It

)2
]
.

Notice that only At depends on the risk-sharing parameters α and β; Lt and It do not.
Taking the derivative with respect to α we have

1
T
E

[ T∑
t=0

2
1
	W

(
α

(
At −Lt

It

)2

+ α2
∂At
∂α

1
It

At −Lt
It

)
+ 2

1
	R β

2
(
At −Lt

It

)
∂At
∂α

1
It

]
,

https://doi.org/10.1017/asb.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.17


FAIR TRANSITION FROM DEFINED BENEFIT TO TARGET BENEFIT 899

and since
∂At
∂α

= ∂At
∂β

, for the derivative with respect to β, we have

1
T
E

[ T∑
t=0

2
1
	W α2

∂At
∂α

1
It

At −Lt
It

+ 2
1
	R

(
β

(
At −Lt

It

)2

+ β2
(
At −Lt

It

)
∂At
∂α

1
It

)]
.

Setting both derivatives to zero gives:

E

[ T∑
t=0

(
α

	W − β

	R

)(
At −Lt

It

)2
]

= 0 =⇒ α

	W = β

	R .

APPENDIX C. PROOF OF EQUATION (3.2)

Here we simplify the first part of Equation (3.1), by focusing the on the future benefit pay-
ment; the second part can be simplified similarly. Assume a stationary population such that
lx(t)= lx:

lim
T→∞

1
T
E

⎧⎨
⎩

ω−1∑
x=xe−T

ω−1−x∑
t=max (xr−x,0)

lx+t(t)
(
bt −Cr

t

It

)2
⎫⎬
⎭

= lim
T→∞

1
T
E

⎧⎨
⎩
⎛
⎝ xr∑
x=xe−T

ω−1−x∑
t=xr−x

+
ω−1∑

x=xr+1

ω−1−x∑
t=0

⎞
⎠ lx+t

(
bt −Cr

t

It

)2
⎫⎬
⎭

= lim
T→∞

1
T
E

⎧⎨
⎩

xr∑
x=xe−T

ω−1−x∑
t=xr−x

lx+t
(
bt −Cr

t

It

)2
⎫⎬
⎭

+ lim
T→∞

1
T
E

⎧⎨
⎩

ω−1∑
x=xr+1

ω−1−x∑
t=0

lx+t
(
bt −Cr

t

It

)2
⎫⎬
⎭︸ ︷︷ ︸

=0

= lim
T→∞

1
T
E

{
ω−1−xe+T∑

t=0

ω−1−t∑
x=xr−t︸ ︷︷ ︸

interchange summation

lx+t
(
bt −Cr

t

It

)2
}

= lim
T→∞

1
T
E

⎧⎨
⎩
ω−1−xe+T∑

t=0

ω−1∑
z=xr

lz

(
bt −Cr

t

It

)2
⎫⎬
⎭

= lim
T→∞

1
T
E

{ T∑
t=0

ω−1∑
x=xr

lx

(
bt −Cr

t

It

)2
}

+ lim
T→∞

1
T
E

⎧⎨
⎩
T+1+ω−2−xe∑

t=T+1

ω−1∑
x=xr

lz

(
bt −Cr

t

It

)2
⎫⎬
⎭︸ ︷︷ ︸

=0

= lim
T→∞

1
T

T∑
t=0

E

{(
ω−1∑
x=xr

lx

)(
bt −Cr

t

It

)2
}
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APPENDIX D. THEORETICAL ANALYSIS IN A
SIMPLIFIED SETTING

Equation (3.5) outlines the procedure in obtaining a phased transition from a DB plan to
a TB plan that ensures some benefit for all cohorts. However, the complexity makes the
problem analytically intractable. In this appendix, we simplify some of the assumptions,
by allowing us to develop theoretical support when the objective function is the expected
remaining lifetime downside payment, as defined in Equation (3.7), and repeated here for
convenience:

E(x)=
ω−1−x∑
t=0

tpx E
[(

(bt − b∗
t )−

It

)]
.

We also use the following assumptions and notation:

• We assume the liability is a constant Lt ≡L× It. This is equivalent to an ideal situation
where the discount rate used for liability calculation is robust with respect to the market
condition, that is, dt ≡ d̂ is a constant.

• We denote the portfolio return from period t−1 to t by Zt, and we assume Zt and the
inflation rate, It/It−1 − 1 are Markov processes.

• αs = αd = 0, and βs = βd = β, that is, the contribution is fixed, and we have the same risk-
sharing for surplus and loss. This is how a typical Canadian TB plan is structured (see,
e.g., Wang et al., 2018).

• We denote the real portfolio return index byRt =E

[
Zt

It/It−1

]
, withR0 = 1, andRt > 0 to

have an overall positive expected return.

Proposition 2. Consider a set of risk-sharing parameters βx = {βj , xr ≤ j<ω} that satisfies
condition (3.4) for a retiree aged x. Denote another set of risk-sharing parameters β̂x that is
the same as βx, except β̂x <βx. Then⎡

⎣ω−x∏
j=1

1
Rj

− β̂x∑
x lx

ω−x∑
j=1

jpx
ω−x∏
i=j+1

1
Ri

⎤
⎦> 0 =⇒ Eβx (x)− E β̂x (x)≥ 0, (D1)

where Eβx (x) is the objective function (3.7) under the set of risk-sharing parameters βx.

Proof. We prove the proposition through induction. For any arbitrary age x ∈ [xr,ω),
let At be the asset process where the risk sharing for retirees is based on βx and Ât with
risk-sharing strategy β̂x. Then, it is easy to show that:

Ât =At + ξt ×Zt, t≥ 1,

where

ξ1 = lx
(
βx − β̂x

) A0 −L× I0∑
x lx

,

ξt+1 = ξtZt

⎛
⎝1−

∑
j

lj
βj∑
x lx

+ lx+t(βx − β̂x)
1∑
x lx

⎞
⎠+ lx+t(βx − β̂x)

At −L× It∑
x lx

.
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To simplify the notation, we denote 	l =
∑

x lx and 	B =∑j lj
βj∑
x lx

.

Next, denote by Eβx,T (x) the loss function:

Eβx,T (x)=
T∑
t=0

tpxE
[
(bt(x)− bt(x)∗)−

It

]
, T <ω− x.

Then for T = 0, we have

Eβx,0(x)− E β̂x,0(x)= 0px
(
βx − β̂x

) (A0 −L× I0)−
	lI0

≥ 0.

For T = 1, we have

Eβx,1(x)− E β̂x,1(x)

= 0px

[(
βx − β̂x

) (A0 −L)−
	lI0

]
+ 1pxE

[
βx

(
(A1 −L× I1)−

	lI1

)
− β̂x

(
(Â1 −L× I1)−

	lI1

)]

≥ 0px
−ξ1
I0lx

1ξ1<0 + 1pxE
{
β̂x

[(
(A1 −L× I1)−

	lI1

)
−
(
(A1 + ξ1Z1 −L× I1)−

	lI1

)]
1ξ1<0

}

+ 1pxE
[
(βx − β̂x)

(
(A1 −L× I1)−

	lI1

)]

≥E

{[
0px

−ξ1
I0lx

+ 1pxβ̂x
ξ1Z1

	lI1

]
1ξ1<0

}
+ 1pxE

[
(βx − β̂x)

(
(A1 −L× I1)−

	lI1

)]

≥E

{
−ξ1

[
0px
I0lx

− 1pxβ̂x
Z1

	lI1

]
1ξ1<0

}
+ 1pxE

[
(βx − β̂x)

(
(A1 −L× I1)−

	lI1

)]

=E

[−ξ1
I0

1ξ1<0

]
E

⎡
⎣ 0px
lx

− 1pxβ̂x
Z1

	l
I1
I0

⎤
⎦+ 1pxE

[
(βx − β̂x)

(
(A1 −L× I1)−

	lI1

)]
,

which is greater than zero if

0px
I0lx

− 1pxβ̂xE
[
Z1

	lI1

]
> 0.

Our conjecture is that, for any t ∈ [1,ω− x], if⎡
⎣ t∏
j=1

1
Rj

− β̂x

	l

t∑
j=1

jpx
t∏

i=j+1

1
Ri

⎤
⎦> 0. (D2)

Then

Eβx,t(x)−E β̂x,t(x)≥E
[−ξt1ξt<0]×Rt ×

⎛
⎝ t∏
j=1

1
Rj

− β̂x

	l

t∑
j=1

t∏
i=j+1

jpx
Ri

⎞
⎠

+ tpxE
[(
βx − β̂x

) (At −L× It)−
	lIt

]
≥ 0.
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Clearly for t= 1, we have

Eβx,1(x)− E β̂x,1(x)≥E
[−ξ11ξ1<0]

(
1− 1px

β̂x

	l
×Rt

)

+ 1pxE
[
(βx − β̂x)

(
(A1 −L× I1)−

	lI1

)]
,

which satisfies the conjecture.
Now suppose the statement is true for 1, · · · , t, then for t+1, we have

Eβx,t+1(x)− E β̂x,t+1(x)

≥E
[−ξt1ξt<0]×Rt ×E

⎡
⎣ t∏
j=1

1
Rj

− β̂x

	l

t∑
j=1

jpx
t∏

i=j+1

1
Ri

⎤
⎦

+ tpxE
[
(βx − β̂x)

(
(At −L× It)−

	lIt

)]
+ t+1pxE

[
(βx − β̂x)

(
(At+1 −L× It+1)−

	lIt+1

)]

+ t+1pxE
[
β̂x

(
(At+1 −L× It+1)−

	lIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 −L× It+1)−

	lIt+1

)]
.

Clearly, the first three terms are always positive. For the fourth term (third line), we
consider four cases:

• ξt > 0∩At >L× It =⇒ ξt+1 > 0, which implies that:

t+1pxE
{[
β̂x

(
(At+1 −L× It+1)−

	lIt+1

)

−β̂x
(
(At+1 + ξt+1Zt+1 −L× It+1)−

	lIt+1

)]
1ξt>0∩At>L×It

}
≥ 0.

• ξt > 0∩At <L× It =⇒ ξt+1 > lx+t(βx − β̂x)
At−L×It

	l
(we have the constraint such that

the participants will not share more than the portfolio risk (1−	B) > 0). Next, we
combine with the second term to have:

E

{[
tpx(βx − β̂x)

(
(At −L× It)−

	lIt

)

+t+1pxβ̂x

⎛
⎝ lx+t(βx − β̂x)

At−L×It
	l

	lIt+1
Zt+1

⎞
⎠
⎤
⎦ 1ξt>0∩At<L×It

⎫⎬
⎭

=E

{
(βx − β̂x)

(At −L× It)−
	l

(
tpx
It

− t+1pxlx+tβ̂x
	lIt+1

Zt+1

)
1ξt>0∩At<L×It

}

=E

[(
βx − β̂x

) (At −L× It)−
	lIt

1ξt>0∩At<L×It
]

×Rt+1 ×
(

tpx
Rt+1

− t+1pxlx+tβ̂x
	l

)

≥E
[
max (− ξt+1, 0)1ξt>0∩At<L×It

]×Rt+1 ×
⎛
⎝t+1∏
j=1

1
Rj

− β̂x

	l

t+1∑
j=1

jpx
t+1∏
i=j+1

1
Ri

⎞
⎠ .
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The last line is due to the fact thatRt > 0 for all t such that

(
tpx
Rt+1

− t+1pxlx+tβ̂x
	l

)
>

⎛
⎝t+1∏
j=1

1
Rj

− β̂x

	l

t+1∑
j=1

jpx
t+1∏
i=j+1

1
Ri

⎞
⎠ .

• ξt < 0∩At >L× It, implies that:

t+1pxE
{[
β̂x

(
(At+1 −L× It)−

	lIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 −L× It)−

	lIt+1

)]
1ξt<0∩At>L×It

}

≥ t+1pxE

⎧⎪⎨
⎪⎩
⎡
⎢⎣β̂x ξtZtZt+1

(
1−	B + lx+t βx−β̂x	l

)
	lIt+1

⎤
⎥⎦ 1ξt<0∩At>L

⎫⎪⎬
⎪⎭ .

Combining with the first term we have:

E

⎡
⎣−ξtZt

It

⎛
⎝ t∏
j=1

1
Rj

− β̂x

	l

t∑
j=1

t∏
i=j+1

jpx
Ri

−t+1pxβ̂x
Zt+1

(
1−	B + lx+t βx−β̂x	l

)
	lIt+1/It

⎞
⎟⎠ 1ξt<0∩At>L×It

⎤
⎥⎦

≥E

⎧⎨
⎩
⎡
⎣−ξtZt

It

⎛
⎝ t∏
j=1

1
Rj

− β̂x

	l

t∑
j=1

t∏
i=j+1

jpx
Ri

− t+1pxβ̂x
Zt+1

	lIt+1/It

⎞
⎠
⎤
⎦ 1ξt<0∩At>L×It

⎫⎬
⎭

≥E
{
max (− ξt+1, 0)1ξt<0∩At>L×It

}×Rt+1 ×
⎛
⎝t+1∏
j=1

1
Rj

− β̂x

	l

t+1∑
j=1

jpx
t+1∏
i=j+1

1
Ri

⎞
⎠ .

• ξt < 0∩At <L× It =⇒ ξt+1 < 0, implies that:

t+1pxE
{[
β̂x

(
(At+1 −L× It)−

	lIt+1

)
− β̂x

(
(At+1 + ξt+1Zt+1 −L× It)−

	lIt+1

)]
1ξt<0∩At<L×It

}

≥E

{
t+1pxβ̂x

ξt+1Zt+1

	lIt+1
1ξt<0∩At<L×It

}
.

Combined with first and second terms we have

E

⎧⎨
⎩
⎡
⎣−ξtZt

It

⎛
⎝ t∏
j=1

1
Rj

− β̂x

	l

t∑
j=1

t∏
i=j+1

jpx
Ri

−t+1pxβ̂x
Zt+1

(
1−	B + lx+t βx−β̂x	l

)
	lIt+1/It

⎞
⎟⎠
⎤
⎥⎦ 1ξt<0∩At<L×It

⎫⎪⎬
⎪⎭

+E

{
(βx − β̂x)

(At −L)−
	lIt

(
tpx − t+1pxlx+tβ̂x

	lIt+1/It
Zt+1

)
1ξt<0∩At<L×It

}
,
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where the second line is positive as we have proved for the case ξt > 0∩At <L× It, and
the first time is shown to be

≥E
{−ξt+11ξt<0∩At<L×It

}×Rt+1 ×
⎛
⎝t+1∏
j=1

1
Rj

− β̂x

	l

t+1∑
j=1

jpx
t+1∏
i=j+1

1
Ri

⎞
⎠ .

Notice that since

E
[−ξt+11ξt<0∩At<L×It

]+E
[
max (− ξt+1, 0)1ξt<0∩At>L×It

]
+E

[
max (− ξt+1, 0)1ξt>0∩At<L×It

]
=E

[−ξt+11ξt+1<0
]
,

together with the third term, we have:

Eβx,t+1(x)− E β̂x,t+1(x)≥E
{−ξt+11ξt+1<0

}×Rt+1 ×
⎛
⎝t+1∏
j=1

1
Rj

− β̂x

	l

t+1∑
j=1

jpx
t+1∏
i=j+1

1
Ri

⎞
⎠

+ t+1px ×E

[
(βx − β̂x)

(
(At+1 −L)−
	lIt+1

)]
.

�

The proposition shows that, if β̂x satisfies Equation (3.4), then any βx ≥ β̂x would also satisfy
the objective. In other words, a retiree aged xwill always benefit when his/her corresponding
deficit sharing parameter βx is reduced. Of course this comes at a cost to other cohorts, as
the risk is shared between a smaller number of cohorts, but the monotonicity enables us to
recursively solve Equation (3.5) for each age.
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