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Flow-induced forces in sphere doublets
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Motivated by applications in solids formation and handling processes we numerically
investigate the force and torque required for maintaining a fixed contact between two
equally sized solid spheres immersed in fluid flow. The direct numerical procedure
applied is based on solving the Navier–Stokes equations by means of the lattice-
Boltzmann method, with no-slip conditions at the surfaces of the moving spheres. It
is validated by means of the analytical results due to Nir & Acrivos (1973) for sphere
doublets in creeping flow. Subsequently, doublets are released in turbulent flows. In
these cases, the contact force and torque strongly fluctuate, with peak levels much
higher than would follow from simple dimensional analysis. The force fluctuation
levels have been quantified by a linear relation in the ratio of sphere radius over
Kolmogorov length scale.

1. Introduction
In many processes involving solid-particle formation or solids handling, particles

have a tendency to stick together. Moisture can form liquid bridges gluing powder
particles (Gopalkrishnana, Manas-Zloczowera & Fekeb 2005). In crystallization
processes crystals tend to agglomerate because of the supersaturated environment
they are in (Hounslow et al. 2001; Hollander et al. 2001). Suspension polymerization
processes go through a ‘sticky-phase’ with significant agglomeration levels (Guerrero-
Sanchez et al. 2006). In colloidal systems Van der Waals interactions can induce
agglomeration. In biological applications (e.g. blood flow) agglomeration is also
highly relevant (Mody et al. 2005).

Sometimes agglomeration is wanted to effectively grow particles making separation
easier, e.g. in cyclone separators (Obermair et al. 2005) or filtration processes. However
it is also a mechanism that potentially destroys a narrow particle size distribution,
and as a result could reduce product quality. Much effort goes into preventing or
promoting agglomeration, and into repairing the harm agglomeration has done (e.g. in
grinding and milling process steps, Kwade & Schwedes 2002). Whether agglomeration
is wanted or unwanted, it is relevant to assess the stability and the integrity of the bond
holding the primary particles together. Agglomerates can break as a result of a variety
of mechanisms: collisions with other particles or with the interior of a process vessel;
dissolution of their bond due to a changing chemical environment; change of particle
surface properties. Also the flow of fluid surrounding an agglomerate is a potentially
destabilizing factor: Velocity gradients induce forces on and in agglomerates that
could make them break.

Understanding and modelling breakage as a result of fluid flow is largely based
on relatively simple concepts involving estimating shear rates and semi-empirical
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correlations for breakage statistics. In recent papers on the broader subject of
population balance modelling of colloidal dispersions (Soos, Sefcik & Morbidelli
2006; Marchisio et al. 2006), the physical descriptions of breakage due to flow date
back quite some time (Delichatsios & Probstein 1976; Kusters 1991), and are subject
to refinement in terms of improving the (statistics of the) hydrodynamic environment
of agglomerates, and in terms of estimating the hydrodynamic forces in agglomerates
immersed in complex flow.

In turbulent flows, the shear (or more properly rate of strain) experienced by an
agglomerate is strongly fluctuating. Given the suspected nonlinear coupling between
rate of strain and breakage probability, working with an average (in time and/or
space) or effective rate of strain is a critical simplification. Furthermore, agglomerates
with sizes comparable to or bigger than the smallest turbulent scales (these typically
are non-colloidal but still can be sub-millimetre-size agglomerates) do not experience
homogeneous rate of strain. The deformation rate varies over their surface. This
influences the forces in (and on) the agglomerate induced by the flow.

With the above in mind it is clear that it is impossible to formulate a generic way
of estimating the flow-induced forces in agglomerates. The parameter space is simply
too large. The morphology of the agglomerate, the shape of the primary particles,
the material properties of the solid and liquid involved, and the structure of the flow
at the scale of the agglomerate all play their role. Focusing on the fluid dynamics,
we specifically anticipate complications when the smallest flow scales are comparable
to or smaller than the size of the agglomerate. In this case the flow around the
agglomerate is inhomogeneous and cannot be characterized by a single shear rate, or
a single rate-of-strain tensor. What can be done, however, is to assess the role of the
non-ideal factors in the flow-induced forces in agglomerates. For this I have chosen to
first consider virtually the simplest agglomerate possible: two equally sized spheres,
rigidly constrained together at their (single) point of contact. The two spheres are
touching; they have zero separation. There is sufficient reason for considering this
simple case first. It allows us to develop and test a methodology based on numerical
simulation of the fluid flow around the agglomerate, and the way the agglomerate
responds to the flow. The specific case of a sphere doublet allows validation of the
numerical procedure against analytical results due to Nir & Acrivos (1973) who
considered the creeping motion of two touching spheres in a linear shear field. After
validating our numerical procedure, we release sphere doublets in turbulent flow with
flow structures of a size comparable to the size of the spheres, and with Reynolds
numbers (based on sphere size and slip velocities, or based on (local) deformation
rates) well above unity, i.e. a situation beyond the validity of Nir & Acrivos’ analytical
approach. We show highly intermittent behaviour of the force needed to hold the
two spheres together. The peaks in this force are typically one order of magnitude
higher than the force one would estimate based on an effective turbulent shear (e.g.
γ̇ =

√
ε/ν with ε the energy dissipation rate, and ν the kinematic viscosity).

The aim of this paper is to present and validate a numerical procedure for
calculating flow-induced internal forces in agglomerates, and to show the level of
these forces as a function of turbulence intensity. The motivation is using the insights
gained to devise breakage models, and for the design of process equipment where
breaking (or not breaking) agglomerates is critical.

The organization of this paper is as follows. We first describe our computational
methodology which is based on directly solving the motion of a sphere doublet and
the fluid in its vicinity (the latter with the lattice-Boltzmann method). We do not
consider actual breakage of the doublets. Instead we determine at all times the forces
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and torques needed to maintain the bond between the spheres. We subsequently
discuss simulations of a doublet in a simple shear field at low Reynolds number.
Results of these simulations are compared to the analytical results due to Nir &
Acrivos (1973), and show good agreement. Then we immerse the doublet in turbulent
fields, keep track of the forces and torques in the doublet, and interpret the results.
The final section summarizes the main conclusions.

2. Numerical methodology
In the simulations, two spheres attached to one another are placed in a liquid-filled

domain. The motion of the spheres and the liquid are fully coupled, i.e. the fluid
flow sets the sphere doublet in motion; the motion of the sphere doublet on its
turn induces fluid flow. We solve the fluid flow with the lattice-Boltzmann method
(LBM). For flows in complexly shaped domains and/or with moving boundaries,
this method has proven its usefulness (see e.g. the review article by Chen & Doolen
1998). In the LBM, the computational domain is discretized into a number of lattice
nodes on a uniform, cubic grid. Fluid parcels move from each node to its neighbours
according to prescribed rules. It can be proven by means of a Chapman–Enskog
expansion that, with the proper grid topology and collision rules, this system obeys,
in the low Mach number limit, the incompressible Navier–Stokes equations (Chen &
Doolen 1998; Succi 2001). The specific implementation used in our simulations has
been described by Somers (1993), which is a variant of the widely used lattice BGK
scheme to handle the collision integral (e.g. see Qian, d’Humieres & Lallemand 1992).
We use the scheme due to Somers, as it manifests a more stable behaviour at low
viscosities compared to LBGK. A lattice-Boltzmann fluid is a compressible fluid. In
order to mimic incompressible flow, as is done in this paper, the Mach number must
be sufficiently low. In the simulations presented here the local Mach number never
exceeded 0.04.

The fluid flow and the motion of the spheres are coupled by demanding that at the
surface of each of the two spheres forming the doublet the fluid velocity matches the
local velocity of the surface (that is the sum of the linear velocity vp and Ωp × (r − rp)
with Ωp the angular velocity of the sphere, rp the centre position of the sphere, and r
a point on its surface); in the forcing scheme that is applied here this is accomplished
by imposing additional forces on the fluid at the surface of the solid sphere (which
are then distributed to the lattice nodes in the vicinity of the particle surface). The
details of the implementation can be found elsewhere (Goldstein, Handler & Sirovich
1993; Derksen & Van den Akker 1999; Ten Cate et al. 2002). The collection of
forces acting on the fluid at the sphere’s surface and its interior is subsequently used
to determine the hydrodynamic force and torque acting on the sphere (action =
−reaction) (Derksen & Sundaresan 2007).

In our simulations, the radius of each spherical particle is specified and input
radius refers to this radius scaled by the lattice spacing. In the LBM simulations,
as the spherical particle is represented by forces that are confined to a cubic grid,
the input radius does not reflect the actual radius of the particle. A calibration
procedure to estimate the effective radius of this object (commonly referred to as
the hydrodynamic radius) was introduced by Ladd (1994). We apply his scheme
to estimate the hydrodynamic radius of the particles. The hydrodynamic radius
is denoted as a and is given in lattice units. In this study radii in the range
a =6–12 have been used. Typically the input radius turns out to be some 10%
smaller than the hydrodynamic radius.
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At this stage of the simulation procedure, the two spheres forming the doublet
are considered independent entities. For each sphere we determine the hydrodynamic
force (Fh1 and Fh2), and torque (Th1 and Th2) acting on it. In order to maintain
the contact point, we introduce an interaction force Fi , and interaction torque Ti ,
acting at the contact point. The convention taken here is that the force Fi acts on
sphere 1, and –Fi acts on sphere 2. Similarly Ti acts on sphere 1, –Ti on sphere 2. The
conditions to maintain the contact point between the spheres provide the equations
to solve for Fi and Ti . These conditions are

dvc1

dt
=

dvc2

dt
and Ωp1 = Ωp2 ≡ Ωp (1)

with

vc1 = vp1 + 1
2
Ωp1 × �r and vc2 = vp2 − 1

2
Ωp2 × �r (2)

the velocity of the contact point from the perspective of sphere 1 and sphere 2
respectively. The vector �r connects the centres of the two spheres. Equation (1)
provides the six conditions to solve the (in total six) components of Fi and Ti . In the
Appendix we give the derivation for solving Fi and Ti in full detail.

Once the interaction force and torque have been determined, we know the total
force and torque on each of the two spheres, and numerically solve their equations
of linear and rotational motion. The updated sphere velocities and positions are then
communicated to the fluid flow part of the simulation procedure and used to solve
for the fluid flow in the next time step; and so on.

We have chosen an approach involving solving for the motion of the two spheres
separately, instead of solving the equation of motion for a sphere doublet as a whole,
as the former directly provides us with the interaction force and torque. Since these
are necessary to maintain the integrity of the doublet, they can be directly compared
to the strength of a bond in order to assess if the flow would be able to break the
bond.

Verification: creeping flow
In a seminal article, Nir & Acrivos (1973) analytically solved the problem of the

motion of a sphere doublet (with each sphere of arbitrary size) in a linear shear field
at creeping flow conditions. Their analysis includes the force acting on the spheres.
The expression for the force FNA (components FNAα, α = x, y, z) exerted on one of the
two spheres that they give is

FNAα = πμa2(h1eαβpβ + h2eγβpγ pβpα) (3)

with μ the dynamic viscosity of the working fluid. The force exerted on the other
sphere has the same size and opposite direction. In (3) the parameters h1 and h2

are functions of the ratio of the radii of the spheres involved. In the case of two
equally sized spheres h1 = 4.463, and h2 = 7.767. The vector p is the unit vector in
the direction of the line connecting the two sphere centres ( p = �r/|�r | in terms of
figure 15 (in the Appendix));

eαβ =
1

2

(
∂uα

∂xβ

+
∂uβ

∂xα

)
is the rate-of-strain tensor of the undisturbed flow field in which the doublet is
immersed. For creeping flow the interaction force Fi is equivalent to FNA. We use
this to verify our numerical procedure.
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x

z

θ

u0

–u0

H

Figure 1. Doublet in simple shear flow. Shear is generated by moving two flat plates in
opposite directions.

The case we single out is a doublet of equally sized spheres in a simple shear
flow; see figure 1 (which also serves to define the coordinate system). If this doublet
is placed with its separation vector �r in the wall-normal direction (z-direction),
it will start rotating about the y-axis. For this configuration the only non-zero
components of the rate-of-strain tensor are exz = ezx = 1

2
γ̇ with γ̇ ≡ 2u0/H . With

[px, py, pz] = [sin θ, 0, cos θ ] it follows from (3) that the analytical expression for
the normal force (the component of the interaction force in the direction of the line
connecting the sphere centres) F n

NA ≡ FNA · p in this case is

F n
NA = πμ

a2

2
γ̇ (h1 + h2) sin (2θ ) (4)

where we have taken the convention of a tensile normal force being positive, and a
compressive force negative. In the θ-range 0 . . . 1

2
π (modulo π) the normal force is

tensile; for θ = 1
2
π . . . π (modulo π) the normal force is compressive. Extreme values

of the force occur at θ = 1
4
π (modulo 1

2
π).

Nir & Acrivos (1973) also give a general expression for the rotation rate of the
doublet in a linear shear field. Applying this expression to the case of equally sized
spheres in simple shear results in

Ωpy =
dθ

dt
=

1

2
γ̇ (1 + C cos (2θ )) . (5)

With C a constant equal to 0.594 (in the terminology of Nir & Acrivos C =
(r2

e − 1)/(r2
e + 1) with re = 1.982 for two equally sized spheres). Given the choice of

the coordinate system and geometry, Ωpy is always positive, with minimum rotation
rate when the doublet is aligned with the flow, and maximum rotation rate when
perpendicular to the flow.

In the numerical simulations we consider a flow domain with size nx × ny × nz
in the x-, y-, and z-direction respectively. The upper and lower walls (z = 0 and
z = nz) are no-slip walls with respective velocities –u0 and u0 in the x-direction. As
a result γ̇ = 2u0/nz. The conditions at the other bounding walls are periodic. In the
centre of this domain we place a doublet consisting of two equally sized spheres with
radius a. We define the Reynolds number as Re = γ̇ a2/ν; in order to compare with
the analytical solution we demand Re � 1 (creeping flow). The solid over fluid density
ratio is kept constant at ρs/ρf = 4.0.
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⋅tγ
0 10 15 20 25 30

0

16

–16

8

–8

24

–24

5

——–
μγ a2⋅

F n

Figure 2. Interaction force in the normal direction (Fn) as a function of time. The
parameters for this simulation are: a = 6, nx × ny × nz= 96 × 144 × 144, Re= 0.06.

At time t = 0 (the doublet then has a θ = 0 orientation) we start moving the upper
and lower plates. A time series of the normal component of the interaction force is
given in figure 2. We see that after a short startup phase, the force fluctuates in a
periodic manner with constant amplitude. The slight noise in the force signal is due
to the fixed grid over which the spherical particles move; higher spatial resolution
reduces this noise (see also Ten Cate et al. 2002). Plotting the force as a function of
the doublet orientation θ as is done in figure 3 allows a direct comparison with the
analytical result as given in (4). In figure 3(a), we plot our ‘raw’ computational signal
along with the analytical result. This signal contains a startup part with reduced
force amplitude. Once the signal is steady, we observe good agreement with the
analytical result. The agreement improves if we correct for the centrifugal force as
shown in figure 3(b). Here we have subtracted an amount mΩ2

pya (with m = 4
3
πρsa

3

the mass of one sphere) from the computed force in the normal direction, with the
instantaneous value of Ωpy taken from the simulations. The phase shift between
simulation and analytical results is approximately 0.015π; the deviation in amplitude
of the corrected (for the centrifugal force) computational result from the analytical
result is approximately 1 %. It should be noted that the results shown above require
sufficiently large spacing nz between the two bounding walls, see figure 4. For nz � 90
the force amplitude is practically independent of nz for spheres with a = 6.

We speculate that the small difference between the analytical and numerical result
as observed in figure 3(b) is due to finite Reynolds number effects, with the Saffman lift
force (Saffman 1965, 1968) playing a significant role since it is proportional to

√
Re. In

the current configuration the Saffman lift force is strongest if the doublet is at the θ = 0
(modulo π) orientation since then the slip velocity in the direction of the shear field
is highest. At this orientation the doublet’s rotation rate is Ωpy = 1

2
γ̇ (1 + C) ≈ 0.8γ̇

(see (5)). As a result, the slip velocity (defined as the fluid velocity of the undisturbed
shear flow at the sphere centre minus the sphere velocity) of the upper sphere is
V ≈ 0.2γ̇ a, and of the lower sphere it is V ≈ −0.2γ̇ a. An estimate of the Saffman
force (based on the single-sphere Saffman expression) then is

FSl,θ=0 = 6.46 · 0.2μa2γ̇
√

Re = 1.29μa2γ̇
√

Re. (6)

On the upper sphere it acts in the positive z-direction and on the lower sphere in the
negative z-direction, and thus results in an extra tensile (positive) interaction force.
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0 π 2π

(a)

(b)

θ

0

16

–16

8

–8

24

–24

F n
——–
μγ a2⋅

0

16

–16

8

–8

24

–24

Fn
——–
μγ a2⋅

Figure 3. Interaction force in the normal direction (Fn) as a function of the orientation angle
θ of the doublet. Same parameters as in figure 2. (a) Closely spaced symbols: numerical results;
dashed curve: analytical result (4). The arrow indicates the starting point of the simulation
and the direction in which it evolves. (b) Closely spaced symbols: numerical results in fully
developed flow corrected for the centrifugal force; dashed curve: analytical result (4).

nz = 144
90
56
40

0 π 2π

θ

0

16

–16

8

–8

24

–24

F n
——–
μγ a2⋅

Figure 4. Interaction force Fn (corrected for centrifugal effects) as a function of θ ; influence
of the domain size in the z-direction. Thin curve: same as results shown in figure 3b (nz=144);
dotted curve: nz= 90; dashed curve: nz= 56; thick curve: nz= 40.
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Re = 4
0.06
0.03

0 π 2π

θ

0

16

–16

8

–8

24

–24

F n
——–
μγ a2⋅

Figure 5. Interaction force Fn (corrected for centrifugal effects) as a function of θ ; influence
of the Reynolds number. a = 6, nx × ny × nz= 96 × 56 × 56.

π 2π
θ

⋅
Ωpy
—–
γ

0

0.25

0.50

0.75

Figure 6. Rotation rate of the doublet along the y-axis as a function of the orientation angle
θ . Same simulation parameters as in figure 2. Closely spaced symbols: numerical results; curve:
analytical result (5). The arrow indicates the starting point of the simulation and the direction
in which it evolves. a = 6, nx × ny × nz= 96 × 144 × 144, Re= 0.06.

In figure 5 we show results for three different Reynolds numbers. We see a small
reduction of the tensile force (corrected for centrifugal effects) at θ =0 (modulo π) if
we reduce Re from 0.06 to 0.03. The values of the tensile force at θ = 0 (modulo π)
are 0.5μa2γ̇ for Re = 0.03, and 0.9μa2γ̇ for Re = 0.06 (with typically an accuracy
of 0.1μa2γ̇ given the slight noise in the force signal). The estimates of the Saffman
force using (6) yield 0.22μa2γ̇ and 0.32μa2γ̇ for Re = 0.03 and 0.06 respectively.
A significant portion of the tensile force at θ = 0 (modulo π) can be attributed to
Saffman lift. If we strongly increase the Reynolds number (to Re = 4), inertia induces
a large phase shift and a clear top–bottom asymmetry (tensile forces getting much
stronger than compressive forces), see again figure 5.

We checked the rotation rate as a function of θ at creeping flow conditions. After
reaching fully developed state, the rotation rate along the y-axis as simulated agrees
very well with the analytical result as expressed in (5), see figure 6.

Results presented so far are for a spatial resolution such that the sphere radius
a =6 lattice spacings. Taking nz= 56 and Re =0.06 as a base case, we checked the
impact of the spatial resolution by performing two additional simulations with a = 8
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a = 6

8

12

0 π 2π

θ

0

16

–16

8

–8

24

–24

F n
——–
μγ a2⋅

Figure 7. Interaction force Fn (corrected for centrifugal effects) as a function of θ ; influence
of the spatial resolution of the simulations in terms of a (the number of lattice spacings per
particle radius). Conditions: see text.

and a = 12 while keeping the dimensionless numbers (aspect ratios, Reynolds number,
and density ratio) the same as in the base case. The results in terms of the normal
interaction force can hardly be distinguished, the major difference being the noise
level that becomes smaller for higher resolution (see figure 7).

In conclusion this validation study shows good agreement between computational
and analytical results, and grid independence for a � 6. It should be noted that in
order to obtain these results we used the concept of a hydrodynamic radius, i.e. we
calibrated the spheres such that a single sphere experiences the correct drag under
creeping flow conditions. This has been a commonly used concept in this type of
simulation since its introduction by Ladd (1994). In the remainder of this paper we
will apply the computational procedure to study forces in sphere doublets immersed
in turbulent flow, with the doublet size not small compared to the Kolmogorov length
scale.

3. Doublets in turbulent flow
A single doublet consisting of two equally sized spheres is placed in a three-

dimensional cubic fully periodic domain. The domain size is 1283 lattice nodes. The
spheres forming the doublet have radius a = 6 or a = 8 lattice spacings (in the previous
section it was shown that such resolutions were sufficient for correctly resolving the
interaction force in the doublet). We limit consideration to systems with a fixed
solid over fluid density ratio ρs/ρf = 4.0. In the computational domain we create
a homogeneous, isotropic turbulent flow by linear forcing (Rosales & Meneveau
2005). This flow is characterized by its time- and space- averaged energy dissipation
rate ε̄ and root-mean-square velocity urms. From these quantities measures for the
Kolmogorov scales and relevant Reynolds numbers,

Rerms =
urmsa

ν
, Reε =

a2
√

ε̄/ν

ν

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

23
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002309


346 J. J. Derksen
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10–8

PSD (lu)

Figure 8. Power spectral density (PSD) as a function of wavenumber (both in lattice units)
for three simulated cases, all on a 1283 grid. Solid curve: a/ηK =2.1 and a = 6, long-dashed
curve a/ηK = 6.1 and a = 8, short-dashed curve a/ηK =16 and a = 8. The thick line indicates
the − 5

3
slope.

are derived. Our main interest is in the effect non-uniform rate of that strain around
the doublet has on the interaction force and torque. As the primary independent
variable, therefore, the ratio a/ηK is considered, with the Kolmogorov length scale
ηK = (ν3/ε̄)1/4. In terms of this dimensionless variable we would like to cover as
large a range as possible. Both at the low end and the high end we are, however,
limited by computational restraints. At the high end of a/ηK there is a need for
large computational domains, and large values of a (in terms of lattice spacings) to
accurately resolve the flow around the spheres. At the low end we are limited by
the need to resolve the spheres with at least a = 6 resolution (our methodology was
validated for this resolution) implying the need for ηK significantly bigger than the
lattice spacing and again the need for large overall domains to develop turbulent
structures covering a significant range of scales. In this study a/ηK ranges roughly
from 2 to 20. It should be acknowledged, however, that for the lower end of this
range turbulence was not fully developed as can be seen from the spectra given in
figure 8. At the high end of the range we approach the limits of properly resolving
turbulence with the computational grid. At the highest a/ηK (being 21.4), we had
a =8 (lattice units) and thus ηK = 0.37. The maximum wavenumber resolved in the
simulations is kmax = π (in lattice units). As a result ηKkmax is close to, but still above,
1 which is generally considered sufficient spatial resolution (see e.g. Overholt & Pope
1998).

As the doublet moves through the computational domain, we track its position
and orientation, its linear and angular velocity, its direct hydrodynamic environment,
and the interaction force and torque between the two spheres forming it. Typical
time series for the normal force, the shear force (the projection of the interaction
force on a plane normal to the vector connecting the two spheres), the torsion (the
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Figure 9. Time series of the interaction force Fn, the absolute value of the shear force Fs ,
the absolute torsion Tt , and the absolute bending torque Tb of a doublet in turbulent flow as
a function of time. The turbulence conditions are such that a/ηK = 8.3, and Rerms =27. The
resolution is such that a = 8.

torque along the vector connecting the two sphere centres), and bending torque are
given in figure 9. We observe highly intermittent behaviour. Fluctuations have a time
scale of 1 − 10 times the Kolmogorov time τK =

√
ν/ε̄. In figure 9 the forces have

been scaled in a manner consistent with the way we scaled the forces in simple shear
(with γ̇ = 1/τK ). The time-averaged normal force is positive, i.e. tensile. As we will
demonstrate below, this is partly due to the centrifugal force. The peak levels of the
shear force are generally somewhat smaller than those of the normal force. Torsion
and bending torque fluctuate at similar levels. Their frequencies are comparable to
those of the force fluctuations.

In what follows, we will limit to the normal force, and the way it relates to the
turbulence properties. A comprehensive description of the statistics of all force and
torque components is beyond the scope and aim of this article which is to develop tools
for demonstrating and quantifying the effects of the direct hydrodynamic environment
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FnτK/μa2
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Figure 10. Probability density function (PDF) of the interaction force Fn. Symbols:
computational results; curves: by-the-eye fits of an exponential distribution (straight line),
and a Gaussian distribution (parabola). The dashed line indicates the average. The turbulence
conditions are such that a/ηK = 8.3, and Rerms =27. The resolution is a =8.

on forces in agglomerates. If we are considering a particular solid material for which
the shear forces or torques are more critical for breakage, the methodology for
determining their (statistical) behaviour is available.

The probability density function (PDF) for an extended version of the time series
of the normal force as given in figure 9 is given in figure 10. It has an asymmetric
shape. The decay on the negative side (compressive forces) is approximately linear
on a linear-logarithmic scale (exponential decay). On the positive side (tensile forces)
the decay fits a Gaussian fairly well. This is akin to the shape of the PDF of the
relative radial velocity of two closely spaced points in a single- phase homogenous
isotropic turbulent flow (Wang, Wexler & Zhou 2000; Ten Cate et al. 2004): Gaussian
for positive (separating) radial velocities, and exponential for negative (approaching)
velocities. The radial velocity PDF has its maximum for velocity values greater than
zero, its average being zero by definition. The interaction force showing a similarly
shaped PDF reflects velocity differences experienced by the two spheres causing
differences in drag resulting in the interaction force.

We further reduce the normal force data by only considering the first two moments
of its PDF, i.e. the average normal force and its standard deviation, where our main
interest is in assessing and modelling the fluctuation levels. Averages were all taken
over simulations running for 100 000 time steps. Measured in units of the Kolmogorov
time scale, the minimum length of a simulation was 200τK . With respect to the typical
time scale of the force fluctuations (of the order of τK to 10τK ) this is sufficient. The
extreme events as seen in figure 9, however, have much longer time intervals and make
the estimates of the first and second moment uncertain. Running over significantly
longer time spans would solve this problem but quickly becomes unpractical if we also
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Figure 11. (a) Average Fn and (b) root-mean-square Fn′
normal force in the sphere doublet

at various turbulence conditions, characterized by the ratio a/ηK . The square symbols in (a)
are the total average normal force; the triangles indicate the contribution of the centrifugal
force. The trend line in the bottom panel (equation (7)), see text) has intercept α = 11 ± 2 and
slope β = 1.5 ± 0.2.

want to capture a broad range of turbulence conditions (i.e. do many simulations).
We have instead chosen to replicate a few 105 time-step simulations and this way
assess the level of statistical uncertainty in the moments of the normal force PDF.

In figure 11(a) we plot the average force F n scaled with μa2/τK as a function
of the ratio of the primary particle radius a over the Kolmogorov length scale
a/ηK = a(ε̄/ν3)1/4 for a number of simulations. In the same figure we also plot
the contribution of the centrifugal force to this average, the latter being equal to
F c = m|Ω p|2a. The average normal force data show significant scatter. Different
points at the same a/ηK ratio are duplications, indicating the statistical contribution
to the scatter. The overall trend is higher average forces for higher a/ηK ratios. The
average normal force is systematically larger (by a factor 2 to 3 for a/ηK > 5) than
the average centrifugal force. Apparently the latter cannot fully explain why the
average normal force is always positive (tensile). An additional contribution to the
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average tensile force is probably due to the asymmetric shape of the PDF of the
radial velocity, inducing an additional (on average) tensile force.

In figure 11(b) the standard deviation of the normal force (F n′
) is plotted. It shows a

more consistent trend with a/ηK than the average force data. The standard deviation
is generally larger than the average, making it more relevant for assessing doublet
breakage. The computational data for the systems studied here roughly fit a linear
function:

F n′
τK

μa2
= α + β

a

ηK

(7)

with α = 11 ± 2 and β = 1.5 ± 0.2. The intercept α is the root-mean-square normal
force in the limit a/ηK → 0. In this limit the doublet is immersed in a continuously
changing linear shear field. For specific a this limit can only be reached by letting
ηK → ∞ and thus Reε → 0. In this limit Nir & Acrivos’ (1973) analytical result
(equation (3)) applies. A crude model for estimating F n′

in the limit a/ηK → 0 based
on (3) is to determine the root-mean-square normal force for a randomly oriented
doublet immersed in simple shear flow with γ̇ =

√
ε̄/ν. Applying (3) and averaging

over all possible doublet orientations gives F n′
τK/(μa2) = 1

4
π (h1 + h2) = 9.61. This

value is within the range of the intercept α as estimated from the linear fit. However,
the model highly simplifies the situation in the sense that the spectrum of flow
conditions experienced by the doublet is much richer than only simple shear.

An alternative and potentially more refined way to apply the Nir & Acrivos (1973)
result to estimate forces in doublets in turbulent flow is to use the results of the
simulations on the hydrodynamic environment of the doublet. For each time step
during the various simulations we kept track of the rate-of-strain tensor averaged
over a spherical volume around the centre of the doublet. These data together with
the doublet orientation are substituted in (3) to determine at each time step the
normal force in the doublet if it were immersed in a linear shear field with the
instantaneous rate-of-strain tensor. As was already pointed out, since the doublet
is usually larger than the Kolmogorov length scale, its hydrodynamic environment
is non-homogeneous and a single rate-of-strain tensor around the doublet does not
exist. The deviations between the actual force, and the force calculated via (3) are
indicative of the role of inertia and of flow inhomogeneities around the doublet.
The impact of the size of the averaging volume in determining the deformation rate
around the doublet has been investigated; we present data for (spherical) averaging
volumes with radius 3a and 2a.

In figure 12 we show part of the time series we showed in figure 9 (a) along with
the results from applying (3). There clearly is a correlation between the actual normal
force signal and the ones modelled via (3). The correlation improves if we narrow
the averaging volume from 3a to 2a radius, indicating that details regarding the
flow around the doublet are important for the forces. However, peak levels of the
actual signal are generally much larger than those based on modelling with (3) (note
the different vertical scales in the panels of figure 12). Also, the higher frequency
fluctuations in the actual signal are smoothed in the modelled signals. Figure 12(c)
shows the level at which the centrifugal force contributes to F n, and the way it
fluctuates. A similar set of times series but now for a smaller a/ηK ratio are shown in
figure 13. The picture changes quite drastically. The force as modelled with (3) now
clearly follows the actual force much better. Peak levels of the modelled force time
series are sometimes larger than those of the actual force.
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Figure 12. Time series of the normal force for the same case as figure 9 (a/ηK = 8.3, and
Rerms = 27). (a) Actual normal force time series; (b) normal force calculated by substituting
in (3) the orientation of the doublet and the average rate-of-strain tensor around the doublet
(solid line: averaging volume with radius 2a, dashed line: averaging volume with radius 3a);
(c) contribution of the centrifugal force to the normal force.

In figure 14 we condense the modelled force data and plot them (similar to figure 11
for the actual force levels) as a function of a/ηK . The modelled force fluctuation levels
(figure 14b) clearly depend on the size of the averaging domain around the doublet.
Their trend with respect to a/ηK is opposite to the trend for the actual force fluctuation
levels: a decrease for increasing a/ηK . Apparently, averaging the inhomogeneous flow
around the doublet smooths out the details that induce high force levels, an effect
that gets stronger as a/ηK increases, making modeling the interaction force in highly
turbulent flow a difficult task. A similar remark applies to the average force. The
modelled average force (figure 14a) decreases with increasing a/ηK ; the actual average
force increases (figure 11a).

4. Conclusions
Motivated by the potential role of fluid flow in breaking agglomerates we

numerically investigated the force and torque required to maintain a fixed contact
between equally sized solid spheres immersed in a flow. The direct numerical approach,
which is based on solving the fluid flow by means of the lattice-Boltzmann method,
was able to accurately reproduce the analytical results due to Nir & Acrivos (1973)
for the case of a doublet in simple shear at creeping flow conditions. The minor
deviations of the numerical from the analytical results could be largely attributed to
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Figure 13. Same as figure 12, but for the case with a/ηK = 2.1, and Rerms = 4.1.

physical effects: finite Reynolds number (including Saffman lift), domain size, and
centrifugal force. The numerical results were virtually independent of the resolution
of the simulations in the range a = 6 to 12, with a the sphere radius expressed in the
number of grid spacings it spans.

After this validation study, the sphere doublet was immersed in turbulent flow.
In a fully periodic domain, turbulence was generated by linear forcing. The force
and torque to keep the two spheres attached now strongly fluctuates. The normal
force peak levels typically are an order of magnitude higher than the maximum
force attained if the doublet were immersed in a simple shear flow with γ̇ = 1/τK

(with τK the Kolmogorov time scale of the turbulent flow). On average the doublet
experiences a tensile normal force. Partly, this is due to the centrifugal force always
being tensile, and partly to the probability density function of radial relative velocity
in turbulent flow being skewed, with its maximum at positive (separating) radial
velocity.

The fluctuation levels of the normal force are generally larger than the average
normal force, making the former more relevant for assessing doublet breakage.
The fluctuation levels of the normalized normal interaction force have been shown to
correlate with the ratio of sphere radius over Kolmogorov length scale a/ηK according
to a linear relation. For a solid over fluid density ratio of 4.0 we found

F n′
τK

μa2
= α + β

a

ηK

with α = 11 ± 2 and β = 1.5 ± 0.2.
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Figure 14. (a) The average (Fn) and (b) root-mean-square normal force (Fn′
) as estimated

by means of (3) with the average deformation rate in the direct vicinity of the doublet. The
square symbols relate to a spherical averaging volume with radius 3a, the triangles one with
radius 2a. The line in (b) is (7) (see text).

The success of modeling the normal force in turbulent flow with Nir & Acrivos’
(1973) analytical result depends highly on the size of the doublet in relation to the
Kolmogorov length scale ηK . For roughly a/ηK � 5 the fluctuations levels of the
normal force as estimated by means of the analytical result are comparable to the
actual fluctuation levels. For higher a/ηK ratios, the agreement quickly deteriorates,
caused by inertial effects and the inhomogeneity of the rate-of-strain tensor around
the doublet.

Future work will focus on practical applications of the methodology developed here
to assess flow-induced forces in agglomerates, a prominent one being the design of
microfluidic layouts for effectively breaking agglomerates with specific bond strength.
Also the solid over liquid density ratio (kept fixed at 4.0 in this study) deserves
further attention. It plays a potentially complicated role. Heavier agglomerates will
experience more centrifugal force on one side, and are less sensitive to quick changes
in their hydrodynamic environment on the other. Furthermore we will consider bigger
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Figure 15. Definitions of interaction force Fi , torque Ti , and separation vector �r .

agglomerates (in terms of the number of primary particles), extending the parameter
space with the morphology of agglomerates.

I thank one of the reviewers for pointing out me to the role of the Saffman lift
force in the shear flow simulations, and an error in my derivation of the interaction
torque.

Appendix. Derivation of interaction force and torque
The conditions for maintaining fixed contact between the two spheres forming the

doublet are given by (1). In figure 15 we define the doublet geometry including the
forces and torques acting at the point of contact.

The time derivative of the velocity of the contact point is a result of the linear
acceleration of the sphere and the time derivative of the contribution from rotation
of the sphere:

dvc1

dt
=

dvp1

dt
+

d

dt

(
Ωp1 × 1

2
�r

)
, (A 1)

dvc2

dt
=

dvp2

dt
− d

dt

(
Ωp2 × 1

2
�r

)
. (A 2)

The linear acceleration of the spheres is due to the hydrodynamic force and the
interaction force:

dvp1

dt
=

Fh1 + Fi

m
and

dvp2

dt
=

Fh2 − Fi

m
(A 3)

with m the mass of one sphere. Fh1 and Fh2 are known from the hydrodynamics
part of the simulation procedure. Since dvc1/dt = dvc2/dt and Ωp1 = Ωp2 ≡ Ωp,

subtracting (A 2) from (A 1), and substituting (A 3) leads to an expression for the
interaction force:

Fi = −1

2
(Fh1 − Fh2) − 1

2
m

d

dt
(Ωp × �r). (A 4)
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The angular acceleration dΩp/dt is a result of the torques applied on the spheres.
There are three contributions to the torque: (i) the hydrodynamic torque (Th1 for
sphere 1, Th2 for sphere 2, both quantities being known from the hydrodynamics part
of the simulation procedure), (ii) the torque induced by the interaction force (see
figure 15), (iii) the interaction torque Ti . For sphere 1:

I
dΩp

dt
= Th1 +

1

2
Fi × �r + Ti (A 5)

For sphere 2:

I
dΩp

dt
= Th2 +

1

2
Fi × �r − Ti (A 6)

with I the moment of inertia around the centre of the sphere (I = 2
5
a2m).

Subtracting (A 6) from (A 5) directly gives an expression for the interaction torque:

Ti =
1

2
(Th2 − Th1). (A 7)

In order to determine the interaction force from (A 4), the term

d

dt
(Ωp × �r) =

d

dt
(Ωp) × �r + Ωp × d

dt
(�r)

needs to be determined. Adding (A 5) and (A 6) results in an expression for the
angular acceleration:

dΩp

dt
=

1

2I
(Th1 + Th2 + Fi × �r). (A 8)

Furthermore
d

dt
(�r) = Ωp × �r. (A 9)

Substituting (A 8) and (A 9) in (A 4) gives

Fi = −1

2
(Fh1 − Fh2) − 1

2
m

[
1

2I
(Th1 + Th2 + Fi × �r) × �r + Ωp ×

(
Ωp × �r

)]
.

(A 10)

This equation can be cast in the form A · Fi = b with A and b a known tensor and
vector respectively. Solving for the three components of Fi then requires solving a
linear 3 × 3 system.
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