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The cylindrical lock-release laboratory experiments of Sutherland & Nault (J. Fluid
Mech., vol. 586, 2007, pp. 109–118) showed that a radially advancing symmetric
intrusive gravity current spreads not as an expanding annulus (as is the case for
bottom-propagating gravity currents), but rather predominantly along azimuthally
periodic radial ‘spokes’. Here, we investigate whether the spokes are associated
with azimuthal perturbations that undergo ‘optimal’ growth. We use a nonlinear
axisymmetric numerical simulation initialised with the experimental parameters to
compute the time-evolving axisymmetric base state of the collapsing lock fluid. Using
fields from this rapidly evolving base state together with the linearised perturbation
equations and their adjoint, the ‘direct–adjoint looping’ method is employed to
identify, as a function of the azimuthal wavenumber m, the vertical–radial structure
of the set of initial perturbations that exhibit the largest total perturbation energy gain
over a target time T . Of this set of perturbations, the one that extracts energy fastest,
and so is expected to be observed to emerge first from the base flow, has azimuthal
wavenumber comparable to the number of spokes observed in the experiment.

Key words: geophysical and geological flows, gravity currents, instability

1. Introduction

One of the most powerful mathematical tools used to address problems in
hydrodynamic stability is the method of linear normal mode perturbation theory
(Drazin & Reid 1981). Normal modes are readily computed for steady parallel
background flows and, using Floquet theory, for temporally periodic flows. For a
time-varying background flow, one can compute normal modes with meaningful
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interpretation if their evolution is sufficiently fast that the background may be
assumed to be ‘frozen’ in time. Relatively recent developments in computational
power have allowed non-parallel base states to be considered. One successful approach
is to assume that underlying periodicity remains (e.g. see Klaassen & Peltier 1991;
Caulfield & Peltier 2000), which continues to allow efficient spectral methods to be
used. Alternatively, the concept of an unstable mode has been generalised to a ‘global
mode’ (see the reviews of Huerre & Monkewitz 1990; Chomaz 2005) for base flows
that lack translational invariance in any of the relevant coordinate directions. However,
it is now appreciated that normal mode stability theory is by no means always able to
describe the correct onset of perturbation growth or even the existence of instability in
a broad class of flows including the classical problem of pressure-driven pipe flow, for
which the transition to turbulence occurs despite the absence of any linear instabilities.

There has been an explosion of research attempting to describe perturbation growth
in terms of ‘non-modal instabilities’ that result from the underlying non-normality
of the linearised Navier–Stokes operator (see the reviews of Chomaz 2005; Schmid
2007). One robust method, known as ‘direct–adjoint looping’ (DAL), is particularly
well suited to the identification of transient ‘optimal’ perturbations to generic
time-varying base flows (e.g. Schmid 2007; Arratia, Caulfield & Chomaz 2013;
Luchini & Bottaro 2014). This method has a particular attraction when the base
flow is varying sufficiently rapidly so that the abovementioned ‘frozen in time’
assumption is not valid, as normal modal analyses are formally inappropriate for the
examination of infinitesimal perturbations that develop on such a relatively rapidly
evolving basic state. The DAL method has typically been applied to consideration of
perturbation growth in numerically simulated flows. The work presented here is the
first demonstration of the efficacy of the method applied to observations in laboratory
experiments of instability growing on a rapidly varying base flow.

In finite-volume axisymmetric gravity current experiments in which dense fluid
(for example salty water) is released from a hollow cylindrical lock into a less
dense (for example fresh water) ambient, the lock fluid is observed to spread as
an expanding annulus (Hallworth et al. 1996). However, a different structure is
observed in axisymmetric intrusion experiments in which the two-layer ambient has
equal upper- and lower-layer depths and the lock fluid has the average ambient
density. In such a ‘vertically symmetric’ flow, the intrusion still spreads radially
when released from a cylindrical lock. However, its front loses coherence as a
result of growing quasi-periodic azimuthal disturbances which result in the lock fluid
advancing as radially extending spokes (Sutherland & Nault 2007). The results of one
such experiment, illustrated in figure 1, show the azimuthal wavenumber associated
with the spoke structure to lie around m= 12.

Of course, disordered motions are introduced in the immediate vicinity of the
cylindrical lock when it is extracted. If this alone were responsible for perturbations
that evolve to form the observed radial spokes, then one would expect these structures
to also develop for a bottom-propagating current, which is further prone to instability
as a result of viscous stresses where it contacts the bottom boundary (Simpson 1972).
That the radial spoke structure is not observed in the bottom-propagating current
therefore suggests that the particular structure of the vertically symmetric intruding
base flow is prone to a specific different kind of perturbation growth intimately
related to the evolving structure of the base flow.

Because the azimuthal disturbances evolve on the same time scale as the slumping
of the fluid from the lock into the intrusion, this problem is not amenable to a normal
mode stability analysis, but is extremely well suited to the DAL method. In § 2, from
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FIGURE 1. (a) Top view snapshot taken 8.5 s after extraction of the cylindrical lock
released a vertically symmetric intrusive gravity current (adapted from figure 2(c) of
Sutherland & Nault 2007). (b) Circular time series constructed from intensities recorded
around a circle of radius 32 cm, as indicated by the dashed line in (a). (c) Magnitude of
azimuthal Fourier coefficients computed from the light-intensity time series in (b) averaged
for times between 8 s and 12 s. Here, the wavenumbers 0 and 1 have been set to zero to
remove biases in intensity due to dye and uneven overhead lighting, which was towards
one side of the tank. While there is still a non-trivial signal at azimuthal wavenumbers of
m= 2 and 3 as a secondary consequence of these biases, the strongest peak, which occurs
at an azimuthal wavenumber of m= 12, is associated with the radially extending spokes.

the azimuthal perturbation equations we derive the appropriate adjoint perturbation
equations relative to a natural inner product which defines an appropriate total
perturbation energy norm. We also describe how this pair of equations is employed
in the DAL method to identify ‘optimal’ perturbations exhibiting maximal total
perturbation energy gain. Its numerical implementation is described in § 3, wherein
it is applied specifically to examine azimuthal disturbances to an axisymmetric base
flow which simulates the collapse of fluid from a cylindrical lock to form an intrusion
at a density interface. We find that the optimal perturbation that extracts energy from
the base flow at the fastest rate has azimuthal wavenumber consistent with, although
somewhat larger than, that of the spokes observed in experiments. We draw our
conclusions in § 4, and briefly consider possible future directions.

2. Theory

We are interested in the evolution of fully three-dimensional perturbations on a
time-evolving axisymmetric basic state that simulates the sudden release of a cylinder
of uniform-density fluid into an approximately two-layer ambient. Before describing
the use of an appropriate DAL method, we describe the equations and the numerical
approach used to simulate the evolution of the axisymmetric base flow.

2.1. Axisymmetric simulations
The Navier–Stokes equations for stratified Boussinesq flow are given in terms of the
total density, %, and velocity, u= (u, v,w)≡ (ur, uθ , uz),

∂tu=−u · ∇u− 1
ρ00
∇p− g

ρ00
%ẑ+ ν∇2u,

∂t%=−u · ∇%+ κ∇2%,

∇ · u= 0.

 (2.1)
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Here, ρ00 is the characteristic density, g is the gravitational acceleration, ν is the
kinematic viscosity and κ is the diffusivity of the density.

Under the assumption that the flow is axisymmetric, the momentum equations may
be recast in terms of the azimuthal component of vorticity, ζ = (∇× u) · θ̂ , to obtain

∂ζ

∂t
=−Ur

∂

∂r

(
ζ

r

)
−W

∂ζ

∂z
+ g
ρ00

∂ρ̄

∂r
+ ν

(
∇2ζ − ζ

r2

)
. (2.2)

Here, U≡U(r, z, t) and W ≡W(r, z, t) are the radial and vertical velocity components
respectively, and ρ̄ ≡ ρ̄(r, z, t) is the difference in density between the total and the
background hydrostatically balanced density ρ0(z).

Similarly, the axisymmetric form of the internal energy equation is

∂ρ̄

∂t
=−U

∂ρ̄

∂r
−W

∂ρ̄

∂z
−W

dρ0

dz
+ κ∇2ρ̄. (2.3)

These equations are solved using finite-difference methods on a staggered grid
(McMillan & Sutherland 2010). At each time step, the streamfunction, Ψ , is
determined from ζ by inverting the following equation:

∇2Ψ − Ψ
r2
=−ζ . (2.4)

This inversion is done by performing a Fourier–Bessel transform to (2.4), inverting the
resulting algebraic matrix equation, and inverse transforming. Given Ψ , the velocity
components can then be found using

U =−∂Ψ
∂z

and W = 1
r
∂rΨ
∂r

. (2.5a,b)

The simulation is initialised by assuming an approximately two-layer ambient
stratification such that

ρ0(z)= ρ00 +1ρ(1− tanh[(z− z0)/σ ])/2, (2.6)

in which 0 6 z 6 H and z0 = H/2. Here, 1ρ is the density difference between the
lower and upper layers and σ is the half-thickness of the interface. The initial density
perturbation corresponds to uniform density in the lock of radius Rc, such that

ρ̄(r, z, t= 0)=
{
1ρ tanh[(z− z0)/σ ]/2, r 6 Rc,

0, r> Rc.
(2.7)

This simulation describes the time evolution of a doubly symmetric intrusion, since the
ambient fluid is prescribed with equal upper- and lower-layer depths and the density
of the lock fluid is the average ambient density. Furthermore, consistently with the
initial conditions for lock-release experiments, the initial velocity in the domain is set
everywhere to zero, U=W = 0. Since we wish, as much as possible, to replicate the
conditions of the experiment shown in figure 1, we set H= 10 cm, σ = 0.25 cm and
1ρ = 0.0548 g cm−3. As sensitivity tests, simulations were also run with thinner and
thicker interfaces, as prescribed by σ = 0.1 cm and 0.5 cm respectively. The viscosity
is taken to be that of water. Expecting that diffusivity does not play an important role
in the development of axisymmetric instabilities, we set κ = ν. The simulation results
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FIGURE 2. Snapshots of the passive tracer field at times t= 0 (a) and 2 s (b) determined
from a fully nonlinear simulation restricted to be axisymmetric of fluid collapsing into
two-layer ambient with interface thickness σ = 0.25 cm.

in figure 2 show the evolution of a passive tracer field in which the concentration, C,
is set to unity in the lock and zero elsewhere. As the simulation advances in time, the
concentration field is advected by the computed velocity field.

Immediately after the start of the simulation, the lock fluid collapses and the
intrusion front advances radially along the interface of thickness σ = 0.25 cm at
mid-depth in the domain. After 2 s (figure 2b), the lock fluid is drawn into a vortex
dipole with a counterclockwise vortex in the upper layer and a clockwise vortex in
the lower layer. This symmetric evolution is clearly different from the one that would
occur for a bottom-propagating current, supporting our hypothesis that the particular
structure of such a base flow may lead to a new class of growing perturbations. We
store the U, W and ρ̄ fields at regular time steps. It is upon the evolution of these
base flow fields that we wish to evaluate the susceptibility of the axisymmetric flow
to optimal perturbations with non-trivial azimuthal structure.

2.2. Perturbation equations
We now consider the linearised evolution equations for perturbations superimposed
on the time-evolving axisymmetric base flow described above. The total velocity and
density fields may be written as

u=U(r, z, t)+ u(r, θ, z, t),
%= [ρ0(z)+ ρ̄(r, z, t)] + ρ(r, θ, z, t),

}
(2.8)

in which u and ρ represent the perturbation velocity and density respectively.
Substituting (2.8) into (2.1) and neglecting terms that are nonlinear in perturbation

variables, we obtain

∂tu=−U∂ru−W∂zu− ∂rUu− ∂zUw− 1
ρ00
∂rp+ ν∇2u,

∂tw=−U∂rw−W∂zw− ∂rWu− ∂zWw− 1
ρ00
∂zp− g

ρ00
ρ + ν∇2w,

∂tρ =−U∂rρ −W∂zρ − ∂rρ̄u− ∂z(ρ0 + ρ̄)w+ κ∇2ρ.


(2.9)

For an incompressible fluid, the pressure field satisfies

∇2p=−2ρ00

[
∂rU∂ru+ ∂zU∂rw+ ∂rW∂zu+ ∂zW∂zw+ 1

r2
Uu
]
− g∂zρ. (2.10)
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Because U ≡ (U, W) is independent of the azimuthal angle, θ , and azimuthal
velocity, V , the right-hand sides of (2.9) and (2.10) do not involve the perturbation
azimuthal velocity, v. Azimuthal perturbations influence these fields only through the
θ derivatives in the Laplacian on the left-hand side of the pressure equation (2.10).
For this system, the perturbation azimuthal velocity is effectively slaved to the other
two time-evolving velocity components, and is determined directly from them through
the incompressibility condition, ∇ · u= 0.

Equations (2.9) may be thought of as a propagator Φλ(T) of the state variable q(t)=
(u(t), ρ(t)) from its initial values at t= 0 to some target time, T , so that (see Arratia
et al. (2013) for more details)

q(T)=Φλ(T)q(0), (2.11)

in which the sub-index λ represents the parameters of the flow under consideration.
We are interested in identifying the perturbations that exhibit the largest total
perturbation energy gain. For stratified flows, as discussed in more detail in Kaminski,
Caulfield & Taylor (2014), it is natural to consider the total perturbation energy,
i.e. the sum of the perturbation kinetic energy and the perturbation potential energy
densities, here defined as

E(λ, t)= 1
2
|u|2 + gD

2ρ00
2 |ρ|2 =

1
2
〈q(t), q(t)〉, (2.12)

in which D is a characteristic depth scale for the stratification and λ represents any
relevant flow parameters. Such a total energy is a natural norm for the state variable
q(t), associated with an appropriate inner product, here denoted with angled brackets.
For our problem, the natural choice of the scale D is the half-depth, σ , of the interface
between the upper and lower layers along which the intrusion is expected to propagate,
as defined in (2.6).

Therefore, for a given target time T , we are interested in optimising the gain
G(λ, T), defined as

G(λ, T)≡ E(λ, T)
E(λ, 0)

= 〈q(T), q(T)〉
〈q(0), q(0)〉 (2.13a)

= 〈Φλ(T)q(0), Φλ(T)q(0)〉〈q(0), q(0)〉 (2.13b)

= 〈q(0), Φ
†
λ(T)Φλ(T)q(0)〉
〈q(0), q(0)〉 . (2.13c)

Here, as is conventional, the superscript † denotes the adjoint propagator (relative to
this particular inner product), such that

〈q†, Φλq〉 = 〈Φ†
λq

†, q〉 (2.14)

for all appropriately smooth ‘direct’ state variables q and adjoint state variables q†.
The adjoint propagator Φ†

λ(T) may be thought of as the propagator of adjoint
equations from T to 0 (Luchini & Bottaro 2014), which can be determined
straightforwardly in this particular flow to be

∂tu† =−U · ∇u† + (∇U)u† + gD(∇ρ̄)ρ† − 1
ρ00
∇p† − ν∇2u†,

∂tρ
† =−U · ∇ρ† + (ρ00/D)w† − κ∇2ρ†

 (2.15)
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for adjoint perturbation ‘velocity’ u† and ‘density’ ρ†. This field u† is naturally
incompressible, imposed by the adjoint ‘pressure’ p†, which satisfies

1
ρ00
∇2p† =−1

r
∂r(rζw†)+ ∂z(ζu†)+ g

ρ00
ρ†

z + gD
[

1
r
∂r(rρ̄rρ

†)+ ∂z(ρ̄zρ
†)

]
. (2.16)

As in (2.9) and (2.10), these equations decouple from the adjoint perturbation
azimuthal velocity component v†. Azimuthal disturbances to u†, w† and ρ† are
imposed through the θ dependence of the Laplacian acting on p† on the left-hand
side of (2.16). It is clear that these equations also depend on the time-dependent
base flow given by U and ρ̄. The boundary conditions for the adjoint state variable
q† are the same as for the direct state variable q. Due to integration by parts, which
is at the heart of the determination of the adjoint propagator relative to the chosen
inner product, the adjoint equations are well posed when integrated backwards in
time. Furthermore, as is apparent from (2.13), the appropriate ‘initial’ condition for
the adjoint equations is that q†(T)= q(T)=Φλ(T)q(0).

Although the direct propagator Φλ is not self-adjoint, it is clear that the combination
‘loop’ of the direct (forward) propagator and the adjoint (backward) propagator Φ†

λΦλ
is self-adjoint. Remembering that we are interested in determining the perturbation that
attains the maximum gain,

Gmax(λ, T)=max
q(0)
{G(λ, T)}, (2.17)

where the maximisation is over all choices of initial conditions q(0), it is apparent
from (2.13c) that we wish to determine the eigenmode of the operator Φ†

λΦλ with
the largest (inevitably real) eigenvalue. Since we are only interested in this optimal
perturbation, we iterate to determine this ‘optimal’ eigenmode, essentially by repeating
the direct–adjoint loop until the structure of the initial state variable q(0) changes
negligibly, thus being identified as the optimal initial perturbation.

3. Numerical implementation

We apply this power-iteration version of the (linearised) DAL method to examine
the azimuthal perturbations observed in the cylindrical lock-release intrusive gravity
current experiment shown in figure 1. As described in § 2.1, we calculate the time-
varying base flow U, W and ρ using an axisymmetric direct numerical simulation. In
most cases, we choose the target time for our optimisation to be T=2 s, the time over
which the azimuthally periodic perturbation structure was first observed to develop in
the experiment. However, we have also examined optimal perturbations occurring in a
target time T=1.5 s, as it is to be expected that perturbations associated with different
wavenumbers are favoured at different stages of the base flow evolution.

The initial ‘guess’ for the perturbation fields u, w and ρ is random noise in the
Fourier–Bessel decomposition of each field, such that the magnitude of the noise
is inversely proportional to the vertical and radial wavenumber. This noise field is
then inverse transformed into real space and multiplied by r2 exp(−r2/δ2) so that the
noise is zero at the origin and greatest at r=√2δ, mimicking the experimental initial
condition where the fluid is inevitably most turbulent locally where the cylindrical
gate is extracted. We set the length scale δ = 5, so that the peak magnitude of
the noise occurs at a location close to the lock radius, Rc = 6 cm. In most of the
simulations results presented here, we further impose vertical symmetry of the noise
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about the midplane, as we hypothesise that the globally most strongly growing initial
perturbation has such a symmetry, and so imposing this symmetry in the initial
guess aids the convergence of the power-iteration algorithm. As discussed below,
we test this hypothesis by relaxing the imposition of this symmetry in one suite of
calculations. It is important to remember that the DAL method only identifies local
extrema of the objective functional, and so it is necessary to investigate how sensitive
any calculated results are to variation in the structure of the initial ‘guess’.

As the problem of optimising gain is linear, and we are fundamentally interested in
the structure (in particular the azimuthal wavenumber) of the initial perturbation with
the largest gain, we normalise the perturbation every time the iteration goes once
around a complete direct–adjoint loop. Such normalisation also ensures that accuracy
in the calculation is retained even in circumstances where there is substantial gain.
We find that an appropriate way to achieve this normalisation is to divide the
perturbation fields u, w and ρ by a constant chosen so that the volume-integrated
initial perturbation kinetic energy per unit azimuthal angle is

Ek0 ≡
∫∫

1
2
(u2 +w2)r dr dz= 1. (3.1)

We do not include the azimuthal component v explicitly in this scaling for two
reasons. First, as mentioned above, v is effectively ‘slaved’ to the other two velocity
components through the incompressibility condition. Second, it does not appear in
the leading-order perturbation energy equation even when the base flow has non-zero
velocity.

Since the problem of interest is linear in the perturbation variables, it is possible
to identify the optimal perturbation for each choice of the azimuthal wavenumber m
independently using power iteration of the DAL method as described above. As is
apparent from the governing equations (2.9) with (2.10), the base flow U, W and ρ̄

in general varies with time. We integrate the perturbation equations over the interval
[0, T] in steps of 0.0125 s. Similarly to the situation considered by Arratia et al.
(2013), we find that it is satisfactory to save the base flow at a relatively long period
of 0.1 s, and linearly interpolate between these different saved values of the base flow
fields to construct an appropriate approximation to the base flow at each of the time
steps of the direct and adjoint codes, which we integrate in steps of 0.0125 s.

For this particular problem, the power-iteration method converges quite rapidly:
after only three loops (each consisting of forward time-stepping the direct perturbation
equations followed by backward time-stepping the adjoint equations), the perturbation
u, w and ρ fields change by a very small amount in subsequent direct–adjoint loops.
The converged results of the DAL method give the perturbations with the largest gain
in time T of the total perturbation energy, generally defined by the volume integral of
(2.12). However, because the base flow has no azimuthal component, the decoupling
of v from the evolution equations, as in (2.9) and (2.10), shows that the leading-order
dominant contribution to the volume-integrated perturbation energy per unit mass and
azimuthal angle is

Ef ≡
∫∫ [

Uu+Ww+ g
ρ00
ρz
]

r dr dz, (3.2)

in which the terms involving the square of perturbation variables are considered to be
negligible. The expression for Ef , which is not positive definite, effectively represents
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FIGURE 3. Structure of the vertical velocity perturbation associated with maximal total
perturbation energy gain over the time interval [0, T = 2 s] with m = 16 azimuthal
wavenumber at times (a) 0 and (b) 2 s for the DAL calculation initialised in the first
pass with vertically symmetric noise, and at times (c) 0 and (d) 2 s for the calculation
initialised with random noise and no vertical symmetry imposed. The time-evolving
two-dimensional base flow is provided from the axisymmetric simulation for which the
passive tracer field at the start and end times is shown in figure 2.

the change in the total energy, including perturbations and the background energy
associated with the r-, z- and t-dependent background flow. Thus, if Ef is positive,
the perturbed system has more energy than the background alone. In reality, such an
apparent energy gain comes at the expense of an equivalent reduction in the energy of
the background flow. However, in our linear treatment of the perturbation problem, we
assume that the perturbations are small and so neglect formally the influence of this
energy extraction by the developing perturbation on the evolution of the background
flow itself.

In considering the evolution of perturbations with fixed azimuthal wavenumber m,
a particular iteration was considered to be adequately converged for our purposes
when this quantity Ef varied by less than 1 % from the previous iteration. Since Ef
as defined in (3.2) is the dominant contribution to the perturbation energy, we expect
perturbations with the largest value of this particular quantity to be observable in a
laboratory experiment, and so we determine the predicted azimuthal wavenumber by
identifying for which value of m the optimal perturbation has the largest value of Ef
at the target time T .

In figure 3, we plot the initial (t= 0) and final (t= T) states of the vertical velocity
w of the converged optimal perturbation when the azimuthal wavenumber is set at the
value m = 16. As in figure 2, the optimisation is performed for a background state
simulating an axisymmetric intrusion propagating along an interface of thickness σ =
0.25 cm, with optimal perturbations computed between t = 0 and the target time of
T = 2 s.

The vertical velocity fields shown in figure 3(a,b) are computed by performing
the DAL method starting in the first pass with an initial condition of vertically
symmetric noise. By the start of the third pass, the looping procedure has converged
on an optimal initial structure that has even vertical symmetry in w about the
midplane. Although not shown here, at the start and final time the radial component
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Energy versus azimuthal wavenumber

FIGURE 4. Variation with azimuthal wavenumber m of Ef as defined in (3.2) for optimal
initial perturbations computed in five scenarios, as indicated in the legend. Here, T denotes
the end time of the optimisation interval, σ is the thickness of the ambient interface
defined implicitly by (2.6), and ‘asym’ refers to the noise around the model lock having
no vertical symmetry at the start of the DAL computation.

u of the velocity field also has the same sign above and below the height of the
interface at the midplane. The azimuthal velocity field v is (unsurprisingly) weaker
at t= 0, but also exhibits somewhat higher mode vertical structure. At the end time,
all three components of the perturbation velocity field have comparable magnitudes,
with significant amplitude only near the head of the intrusion. Through comparison
of figures 2 and 3(a,b), it is apparent that as the base flow lock fluid collapses to
form an intrusion, the mode-2 optimal perturbation is swept right into the heart of the
evolving intrusion head, and the vertical velocity perturbation, although appreciably
smaller in area, is significantly amplified by the strong toroidal vorticity stretching
occurring in the vicinity of the spreading intrusion head.

As already noted, the DAL method only identifies local extrema of the cost
functional, so it is important to test whether the optimal perturbation that is identified
depends strongly on the choice of initial guess. We find that this is indeed the case.
In figure 3(c,d), we plot the vertical velocity field for the optimal initial perturbation
with the same azimuthal wavenumber m = 16 and its structure at the target time
T = 2 s, computed without imposing vertical symmetry in the initial noise guess in
the DAL method. In this case, it is evident that the DAL method converges to an
optimal perturbation that has odd vertical symmetry in the vertical velocity field. As
we show next, such odd perturbations are globally subdominant, in that the peak
energy gain across all values of m appears to be associated with initial perturbations
exhibiting even symmetry, consistent with our hypothesis.

The amplification of the perturbation energy is a strong function of azimuthal
wavenumber, as shown in figure 4. This figure plots the variation of Ef with m in
five different circumstances determined by the value of the optimisation target time, T ,
the value of the interface thickness, σ , prescribed for the ambient stratification used
by the azimuthally symmetric simulations, and by the vertical structure of the initial
noise. In the case with σ = 0.25 cm and T = 2 s, the optimal initial perturbation with
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the largest value of Ef at t = 2 s occurs for azimuthal wavenumber m = 16. This is
the disturbance with structure at t= 0 and 2 s shown in figure 3. Indeed, this appears
to be close to the minimum wavenumber for perturbation growth: for wavenumbers
less than m = 15, Ef actually decreases for the ‘optimal’ perturbations with T = 2,
suggesting that lower wavenumbers are stable in the sense that the disturbances can
only give up energy to the time-evolving basic state. Furthermore, the variation of Ef
with m appears to be strongly peaked at m= 16, suggesting the possibility of strong
mode selection.

Somewhat unsurprisingly, the peak azimuthal wavenumber does depend upon the
choice of the target time T and the value of σ used to prescribe the interface thickness
in our axisymmetric simulations. Fixing the optimisation time at T = 2 s, we find
a larger and sharper peak in Ef as a function of m if the interface is assumed to
be sharper with σ = 0.1 cm (see figure 4). In this case, and also in the case with a
thicker interface having σ = 0.5 cm, the disturbance with peak energy has azimuthal
wavenumber m= 17. For the thicker interface, we see that the scale selection is much
weaker, with a broader range of wavenumbers with comparable final energy gain.
Similar lack of a clear peak in gain also occurs when we consider a shorter target
time of T = 1.5 s, in which case the peak gain (at m= 25) is smaller than the peak
gain predicted when T = 2 s.

As already noted, we also investigate whether the imposed symmetry of the initial
noise field affects the structure of the initial perturbation identified by the power
iteration. In another sequence of analyses, marked with diamonds in figure 4, we
impose no vertical symmetry on the noise field used as a first guess. For this case,
we once again find that the final energy of the optimal mode is largest for m= 17, but
this is not as strongly peaked as in the corresponding case with vertical symmetry
imposed on the noise field. The peak value of the gain across all wavenumbers
is smaller compared with the calculations with symmetrised noise, but there are
wavenumbers where the predicted gain is larger for the perturbation for this suite of
calculations.

Interestingly, for all cases with initial vertically asymmetric noise, the predicted
optimal initial perturbations have approximately an odd symmetry, demonstrating that
the fully random noise field is converging to a different local maximum of energy gain,
associated with a qualitatively different type of initial perturbation. In figure 3(c,d),
we show an example of this different type of initial perturbation and its final form
at the target time T = 2 s. Such odd perturbations prove to be globally subdominant
to the even perturbations found by initialisation with the symmetric noise field, as is
apparent in figure 4, giving support to our hypothesis that the most preferred form of
perturbation has the imposed up–down symmetry. In all cases, the final energy of the
optimal perturbation is essentially negligible for m< 10.

Although the azimuthal wavenumber of the optimal mode with peak energy does
not agree precisely with the experimental observation of m ' 12, this prediction is
undoubtedly consistent with the experiments, suggesting as it does a preference for
a high azimuthal wavenumber in the perturbations that can grow on such strongly
time-varying base flows. Indeed, it is not entirely unsurprising that there is some
discrepancy for at least two reasons. First, the base flow that we consider does not
correspond in all respects to the experimental flow. For example, we have shown that
the peak energy of the optimal perturbation can vary somewhat depending upon the
initial noise, and interface thickness as well as the target time for optimisation. Second,
the DAL method utilised here is inherently linear, and there is no rigorous reason
why the observed nonlinear structures, fundamentally modifying the ‘base flow’, at a
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given time instant correspond to the linear perturbations, formally infinitesimal at all
times relative to the base flow, which are predicted to have the largest gain relative
to some energetic measure. Nevertheless, the DAL method has managed to predict
key aspects of the observed azimuthally periodic perturbations, confirming that this
approach may be usefully applied to examine instabilities occurring in other rapidly
evolving experimental flows.

4. Conclusions

In this paper, we have derived the forward (direct) and backward (adjoint) linear
operators describing the evolution of azimuthally periodic perturbations on an
axisymmetric arbitrarily rapidly evolving stratified flow corresponding to a slumping
intruding gravity current. We have demonstrated the useful application of the recently
developed DAL method to this flow, motivated by previously unexplained experimental
observations of high-azimuthal-wavenumber perturbations in the form of ‘spokes’
developing on such a flow at finite amplitude. We have found that, at least within a
linear framework, the DAL method typically converges rapidly, for all wavenumbers
we consider, suggesting that at any given wavenumber there is a preferred spatial
structure that exhibits a gain significantly larger than other azimuthally periodic
perturbations with the same wavenumber. This suggests that there is a good chance
that the predicted ‘optimal’ perturbation might actually be observed in the laboratory.

Using an appropriate measure of the total perturbation energy gain, we have found
that the range of strongly growing initial perturbations have azimuthal wavenumbers
only moderately larger than the peak azimuthal wavenumber observed in experiments,
and certainly consistent considering the possible differences between the numerically
considered base flow and the actual experimental flow. It is important to remember
that the base flow that we consider does not correspond in all respects to the
experimental flow. For example, we have shown that the peak energy of the optimal
perturbation can vary somewhat depending upon the initial noise, and interface
thickness as well as the target time for optimisation. We find that perturbations
with an even symmetry in the vertical velocity are predicted to exhibit the largest
gain across all choices of azimuthal wavenumber. Nevertheless, although not entirely
conclusive, the comparison suggests that the observed azimuthally periodic spoke
structure is the nonlinear manifestation of an ‘optimal’ perturbation whose growth
inherently relies upon the ‘rapid’ evolution of the base flow.

In this sense, the DAL method applied to a rapidly evolving base flow presented
here reveals a phenomenon often attributed to classical normal mode analysis of
steady base flows, namely that the experimentally observed periodicity of a nonlinear
structure can be associated with the wavelength of an infinitesimal perturbation that
is the ‘most unstable’ in some appropriately defined sense. It is of great interest to
investigate whether this association is fortuitous, or whether there is some deeper
and more generic connection between the growth of ‘optimal’ perturbations and
nonlinear saturated states. Here, we have presented evidence that a hybrid-numerical
approach using the DAL method provides a foundation upon which to consider this
issue. As three-dimensional time-resolved experimental data become more available
due to advances in data acquisition and assimilation, we hypothesise that the method
presented here, and its nonlinear generalisation (Kerswell, Pringle & Willis 2014), will
be the key approaches that allow the development of an understanding of perturbation
growth in rapidly varying fluid flows.
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