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SUMMARY
This work presents a method based on spherical trigonometry for computing all joint angles of the
spherical metamorphic palm. The spherical palm is segmented into spherical triangles which are then
solved and combined to fully solve the palm configuration. Further, singularity analysis is investigated
with the analysis of each spherical triangle the palm is decomposed. Singularity-avoidance-based
design criteria are then presented. Finally, point clouds are generated that represent the joint space
of the palm as well as the workspace of the hand with the advantage of an articulated palm is shown.
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1. Introduction
Dexterous robotic hands are a topic that attracted a lot of attention since the milestone development
of the Stanford/Jet Propulsion Laboratory (JPL) hand and the Massachusetts Institute of Technology
(MIT)/Utah hand in the early of 1980s.1 Since then, a number of multifingered robotic hands have
been designed and developed all over the world. They include, to name but a few, the prosthetic
hand-based Belgrade/University of Southern California (USC) hand2 which incorporated a thumb
and two more coupled pairs of fingers that adapted to the shape of the grasped object and so the
whole hand needed only four motors while it had five digits; the highly integrated Deutsches Zentrum
für Luft- und Raumfahrt (DLR)-Hand3 incorporating purpose built linear actuators, position sensors
both for the motors and joints, tactile sensors on each finger link, stereo camera on the palm and
two axis torque sensors at the finger tips; the Robonaut hand4, 5 designed to be similar in size
and capability to an astronaut’s hand in a suit as well as withstand the environment of space; the
tendon-driven Shadow Robot Hand6 with a one-Degrees Of Freedom (DOF) articulated palm and a
structure closely resembling the human hand with the option to either use electric motors or pneumatic
artificial muscles; the self-contained three-fingered Barrett hand7 with one finger fixed on the palm
and two fingers able to rotate around the palm; the low-cost easy-to-use Laboratory of Robotics and
Mechatronics in Cassino (LARM) hand8, 9 with three one-DOF fingers having each finger’s joints
coupled by four-bar linkages designed to mimic a human performing a cylindrical grasp; the UB
hand10, 11 which has explored many novel control and actuation concepts including a twisted string
actuator where by twisting two strings a rotary motion is converted to a linear one; the DLR/Harbin
Institute of Technology (HIT) II hand12 which consists of a palm module and finger modules with
actuators and control system integrated in each module, and the Sungkyunkwan University (SKKU)
hand13 which also uses identical finger modules each with its own integrated control system an
motors as well as six-DOF force–torque sensors at the fingertips. All these hands, anthropomorphic
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or non-anthropomorphic, are capable of performing certain degree of dexterous motions. However,
they are either based on a rigid palm, or the degree to which the palm can be articulated is limited to
splitting the palm into two or three pieces such that the workspace and dexterity of these hands are
limited.

In order to reduce the limitations and provide robotic hands with greater workspace and additional
dexterity and versatility, a novel metamorphic robotic hand was invented and developed by Dai and
his colleagues14–17 based on the concept of metamorphosis18 stemming from origami folding.19, 20

The novelty of the metamorphic robotic hand lies in the introduction of an articulated palm which is
formed by a spherical metamorphic linkage that provides the palm capability of changing mobility,
topology and configuration. This articulated palm design enables the new robotic hand to perform
and emulate more complex and sophisticated hand motions. It also allows the hand to be fully folded
to pass through tight spaces and to change its configuration to adapt to various task requirements.
Therefore, a thorough investigation of the articulated palm plays a critical role in the kinematics,
dynamics, control and application of the novel metamorphic hand.

Spherical linkages, the linkages that have the property that every link in the system rotates about
the same fixed point, have been widely investigated and used by mathematicians, mechanicians and
engineers. Liu and Ting21 established rotatability criteria for spherical chains based on rotatability
laws for planar linkages. Gosselin and Hamel22 developed the agile eye based on a spherical parallel
mechanism. In order to investigate the kinematics of spherical mechanisms, Wampler23 formulated
loop equations to solve the kinematics of parallel spherical mechanisms up to three loops. McCarthy24

used structure equations together with trigonometric constraints to analyse the kinematics of serial
and closed-loop spherical linkages. Gupta and Beloiu25 proposed algebraic-geometrical methods to
eliminate branch and circuit defects in the synthesis of spherical four-bar linkages. Chiang26 has
also carried out significant work on the analysis of spherical mechanisms but primarily focuses on
spherical four-bar linkages. Duffy27 used spherical trigonometry to solve geared five-bar linkages of
mobility M = 1 and provided the inspiration that leads to the work presented in this paper.

Using loop equations Cui and Dai,28 and Wei et al.17 investigated kinematics, workspace and
manipulability of the metamorphic robotic hand. However, the work presented in refs. [17–28]
focused only on the direct or forward kinematics of the metamorphic robotic hand. Further, there was
no differentiation of the reflex and non-reflex coupler joint configurations.

By using the spherical trigonometry, a solution for the forward and inverse kinematics of the
metamorphic palm is derived that does not involve solving a system of complicated trigonometry
equations that are difficult to understand intuitively. Thus, the process is less prone to human error
compared to solving a system of a large number of equations, such as the one produced when
using quaternions, the Denavit–Hartenberg (D–H) method or the loop closure method. Further, the
proposed method does not involve quadratic equations which leads to loss of the sign information of
the joint angles thus making identification of the reflex and non-reflex coupler joint configurations
difficult. By using the spherical trigonometry, this paper presents an intuitive method that preserves
joint angle sign information for workspace and joint space analysis of the reconfigurable palm of the
King’s College London (KCL) metamorphic hand. In turn, this provides background work for the
path planning and control of the proposed metamorphic hand.

2. Geometry and Coordinate Systems
The novelty of the metamorphic hand lies in the introduction of the articulated/reconfigurable palm
that enables the multifingered robotic hand to have a greater scope of producing various grasping
poses. Therefore, a thorough investigation of the palm plays a critical role in solving the kinematics,
dynamics, control and application of the whole hand. This paper focuses on the kinematics issue
of the metamorphic hand especially on the kinematics of the articulated palm based on spherical
trigonometry. The method presented herein is mainly based on the cosine and sine laws for spherical
triangles.

Figure 1 shows the skeleton of the spherical five-bar linkage used for the palm. We assume that
the radius of the five-bar linkage is r = 1 so that the length of each link will be expressed by a value
in radiants. This conserves generality since every spherical mechanism can be projected onto the
surface of a unit sphere, performing the calculations as described in this paper leading to the results
with the actual geometry of the mechanism.

https://doi.org/10.1017/S0263574715000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000399


2790 Spherical trigonometry constrained kinematics

Fig. 1. Example of a spherical five-bar linkage.

The mechanism consists of five spherical links with their lengths denoted as a1 to a5. The links
are joined by five revolute joints with their angles denoted as θ1 to θ5 and the rotation axes of all
the revolute joints intersect at point O shown in Fig. 1. θ1 is the crank input joint angle, θ2 is the
crank-coupler joint angle, θ3 is the coupler joint angle, θ4 is the coupler-rocker joint angle and θ5 is
the rocker input joint angle. In the linkage, the joints are numbered such that when all links lie on
the same plane and, the first joint on each link in a counter-clockwise direction shares the same link
number. Each link is assigned a reference frame denoted as FA to FE . The Zi-axis (i stands for A,
B, C, D and E) of each frame originates at the spherical centre O and goes through the pivot axis of
the joint with the same link number. The Xi-axis is on the plane formed by the two link joints and
the spherical centre O and its positive direction is on the half plane that contains the second joint.
The Yi-axis is determined by the right-hand rule and so if the mechanism was to lie on a table with
the links in a counter-clockwise direction. Further, a global(reference) coordinate system {x, y, z}
is established with is origin located at point O, z-axis aligned with axis of joint E, and its y-axis
directed along ZE × ZA.

The method presented focuses on the cosine law for spherical triangles. The spherical mechanism
that is the palm of the hand is decomposed into triangles. Their angles are then combined to compute
the direct and inverse kinematics of the palm. This method is dealing with spherical five-bar kinematic
chains of mobility M = 2 and the following characteristics:

0 < αi < π

where αi with i = 1, 2, 3, 4, 5 are the angles of each link.

3. Reflex and Non-Reflex Joint-Coupler Configurations
The novel contribution of this work, is the ability to differentiate the reflex and non-reflex joint-
coupler configurations. There are three possible configurations for the coupler links. The trivial
straight configuration and the reflex and non-reflex configurations. In the straight configuration, the
coupler joint angle is θ3 = 0. In the reflex configuration, it is π/2 < θ3 < 2π and in the non-reflex
configuration it is 0 < θ3 < π/2. This is accomplished by the application of spherical trigonometry
which allows to solve the kinematics of the palm without the use of quadratic equations, as is done
in previous works.17, 28

3.1. Position analysis and joint axis
Using the spherical five-bar mechanism shown in Fig. 1, it can be shown that each of the three output
joints can be computed by an appropriate spherical triangle segmentation of the mechanism followed
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Fig. 2. A spherical triangle.

by application of the spherical cosine law with an appropriate adaptation of its terms as

cos θc = cos αc − cos αa cos αb

sin αa sin αb

(1)

where, angles αa and αb correspond to the links forming the joint under consideration. Angle αc

corresponds to a third, virtual, link that completes the spherical triangle and angle θc is the (dihedral)
joint angle being calculated, as is shown in Fig. 2.

The lengths of the adjacent links are known by the geometry of the spherical mechanism. The
length of the hypothetical link can be computed by applying Eq. (2) on the chord joining the other
ends of the two links under consideration. The distance between those ends can be computed by the
geometry and configuration of the mechanism.

αc = cos−1

(
1 − t2

c

2

)
(2)

The computation of coupler joint-angle θ3 when the input joints are θ1 and θ5 is a direct application
of Eqs. (1) and (2), as can be seen in Eqs. (11), (26), (29) and (32). However, computing of crank-
coupler joint-angle θ2 and rocker–coupler joint angle θ4 involves dividing the joints into more,
well-defined triangles and then combining them.

So as to construct the formulae based on Eq. (2), the coordinates of the points A, B, C, D and
E as well as joint angles θ2, θ3 and θ4 should be computed first. We start by assuming that point
E is pe = [0, 0, 1]. Then the coordinates of points A, B and D are computed and expressed by the
input joint angles θ5 and θ1. Then, angle θ3 can be computed by applying the cosine law for spherical
triangles on the triangle �BCD. Computing rocker–coupler joint angle θ4 can be done by combining
dihedral angles θeda , θadb, θbdc and subtracting them from π . Crank-coupler joint Angle θ2 can be
computed in a similar way, by combining θabe, θebd , θdbc and subtracting them from π . This indicates
that the chords tbd , tbe and tad have to be computed.

Referring to Fig. 1, the coordinates for points A, B, D and E can be computed by performing the
rotations described as follows.

pa = Ry(α5) k (3)

pb = Ry(α5) Rz(θ1) Ry(α1) k (4)

pd = Rz(−θ5) Ry(−α4) k (5)

pe = k (6)
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where k = [ 0 0 1 ]T . Ry(αi) and Rz(θi) are standard rotation matrices as follows.

Ry(αi) =

⎡
⎢⎣

cos αi 0 sin αi

0 1 0

− sin αi 0 cos αi

⎤
⎥⎦ (7)

Rz(θi) =

⎡
⎢⎣

cos θi − sin θi 0

sin θi cos θi 0

0 0 1

⎤
⎥⎦ (8)

3.2. Position analysis for cords of spherical links
Next, the chords tbd , tbe, tad and the arc angles αbd , αbe and αad can be calculated as follows based on
Eq. (2).

Positions of pb and pd in Eqs. (4) and (5) yields chord tbd as

pbd = pb − pd (9)

tbd =
√

pT
bd pbd (10)

Substituting Eq. (10) into Eq. (2) results in

αbd = cos−1

(
1 − tbd

2

2

)
(11)

Similarly, positions of pb and pe in Eqs. (4) and (6) lead to chord tbe as

pbe = pb − pe (12)

tbe =
√

pT
be pbe (13)

Substituting Eq. (13) into Eq. (2) brings

αbe = cos−1

(
1 − tbe

2

2

)
(14)

Further, positions of pa and pd in Eqs. (3) and (5) yield chord tad as

pad = pa − pd (15)

tad =
√

pT
ad pad (16)

Substituting Eq. (16) into Eq. (2) results in

αad = cos−1

(
1 − tad

2

2

)
(17)

3.3. Spherical segregation
The pivots of the spherical five-bar linkage form a number of spherical triangles. With the values
of arc angles αbd , αbe and αad obtained above, referring to Fig. 1, dihedral angles θeda , θead , θaeb,
θabe, θadb, θebd , θdbc, θbdc and θbcd , which are directly related to the joint angles θ2, θ3 and θ4, can be
formulated.
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First, the cosine law for spherical triangles is applied to every triangle under consideration. If
the magnitude of the cosine of any of the triangle angles evaluates as larger than one, then the
configuration is unsolvable. This would be either due to a singularity or the length of the links of the
mechanism not being large enough. Next, the sine law for spherical triangles is applied. This allows
solving for angles greater than π . Ultimately, the arctangent is used to derive the angle values. It is
important to note that when implemented on a computer, the function Atan2 should be used, which
provides the correct result when the angle is k π, k ∈ N+.

To prepare to solve for the rocker–coupler angle θedc and crank-coupler angle θabc, dihedral angles
θead and θaeb first need to be computed.

θead = Atan2

(
sin α4

sin θ5

sin αad

,
cos α4 − cos α5 cos αad

sin α5 sin αad

)
(18)

θaeb = Atan2

(
sin α1

sin θ1

sin αbe

,
cos α1 − cos α5 cos αbe

sin α5 sin αbe

)
(19)

Next, rocker–coupler angle θedc segments are computed.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θeda = Atan2

(
sin α5

sin θ5

sin αad

,
cos α5 − cos α4 cos αad

sin α4 sin αad

)
(20)

θadb = Atan2

(
sin α1

sin (θ1 − (−θead ))

sin αbd

,
cos α1 − cos αad cos αbd

sin αad sin αbd

)
(21)

θbdc = cos−1

(
cos α2 − cos α3 cos αbd

sin α3 sin αbd

)
(22)

Crank-coupler angle θabc segments are then computed.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θabe = Atan2

(
sin α5

sin θ1

sin αbe

,
cos α5 − cos α1 cos αbe

sin α1 sin αbe

)
(23)

θebd = Atan2

(
sin α4

sin (θ5 − (−θaeb))

sin αbd

,
cos α4 − cos αbe cos αbd

sin αbe sin αbd

)
(24)

θdbc = cos−1

(
cos α3 − cos α2 cos αbd

sin α2 sin αbd

)
(25)

Finally, coupler dihedral angle θbcd is computed.

θbcd = cos−1

(
cos αbd − cos α2 cos α3

sin α2 sin α3

)
(26)

3.4. Reflex and non-reflex coupler-joint configurations
The coupler links can have two distinct configurations, as shown in Fig. 3. Previous works by Cui and
Wei17, 28 presented the workspace of the metamorphic hand but did not differentiate the reflex from
the non-reflex coupler-joint configurations. The difference between the two configurations is with
respect to the value of the coupler joint angle being greater or less than π . In the first case, coupler
joint angle θ3 is less than π and is thus entitled as the coupler non-reflex configuration, as show in
Fig. 3(a). In the case where the coupler joint angle θ3 is larger than π , the mechanism is in the reflex
coupler joint configuration, as shown in Fig. 3(b).
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Fig. 3. Coupler non-reflex and reflex configurations. (a) CAD drawing, coupler non-reflex configuration.
(b) CAD drawing, coupler reflex configuration.

To compute the output joint angles in the reflex configuration, the triangle angles are combined as
follows.

θ4r = π − (θeda + θadb − θbdc) = f4r (θ1, θ5) (27)

θ2r = π − (θabe + θebd − θdbc) = f2r (θ1, θ5) (28)

θ3r = π + θbcd = f3r (θ1, θ5) (29)

In the non-reflex coupler joint configuration, it is

θ4nr = π − (θeda + θadb + θbdc) = f4nr (θ1, θ5) (30)

θ2nr = π − (θabe + θebd + θdbc) = f2nr (θ1, θ5) (31)

θ3nr = π − θbcd = f3nr (θ1, θ5) (32)

where the number in the subscript denotes the angle index number and the letter in the subscript
denotes the reflex or non-reflex coupler joint configuration.

To obtain the inverse kinematics for the palm, the same set of equations is used with a simple
cyclic permutation of the arc and dihedral joint angles, as long as the given dihedral joint angles are
adjacent. For example, if values for θ3 and θ4 are given, the following permutations are necessary.

(
θ3 θ4 θ5 θ1 θ2

θ5 θ1 θ2 θ3 θ4

)

and (
a3 a4 a5 a1 a2

a5 a1 a2 a3 a4

)
where θi are the dihedral joint angles of the mechanism and ai are the arc lengths corresponding to
each link of the mechanism.

4. Singularities
The main contribution of this work in terms of singularity analysis are the cases where the mechanism
is singular, but can still be controlled. Common CAD software fails to simulate the mechanism when
the axis of any of the joints become co-linear. A solution is presented on how to deal with this
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Fig. 4. Singular configuration. (a) Approaching a singularity. (b) Singular configuration. (c) Approaching a
singularity, CAD drawing, coupler-non-reflex-angle. (d) Approaching a singularity, CAD drawing, coupler-
reflex-angle.

problem. First, the singularity conditions are presented, followed by singularity avoidance design
criteria and lastly, the singular but controllable cases are presented with a simple solution.

The singular configurations become apparent when inspecting the outcome of applying the cosine
law to the spherical triangles, as indicated in Section 3. A singularity occurs when two joints axes are
collinear. However, loss of control happens only when both collinear joints are output joints. If the
two joints happen to be one output and one input joint, then the mechanism can still be controllable
as a one-DOF mechanism. Equations (18) to (25) reveal these exact singularities of the linkage.

Figure 4(b) illustrates this singular configuration by using a spherical mechanism with link angles
α4 = α5 = α1 = π

2 and α2 = α3 = π
4 and joint angles θ1 = 90 and θ5 = 90. Link AE is the ground

link. Link AB is the crank and link DE is the rocker. Links BiCi and CiDi are the two possible
configurations for the couplers. At the singular configuration, points B and D overlap, joint angle
θ3 = k π , k ∈ N+ and joint angles θ2 and θ4 are undefined. The normalization in Fig. 4(b) has been
carried out in such a way that all the arcs fall on the unit sphere. This is achieved by multiplying each
link length by ai/ li where ai is the arc angle in radiants of the ith link and li is the length in meters
of the ith link.

4.1. Singularity avoidance based design criteria
In particular, to avoid a singularity all of the following conditions must be met.

sin aAD �= 0 (33)

sin aBE �= 0 (34)

sin aBD �= 0 (35)
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which can be further refined to the next three conditions

tAD �= 0, 2 (36)

tBE �= 0, 2 (37)

tBD �= 0, 2 (38)

However, loss of control only occurs in the case where tBD = 0or2. In order to avoid the possibility
of a singular configuration which can lead to loss of control, the following design criteria must be
met:

α2 �= α3 (39)

α4 + α5 − α1 �= π (40)

α1 + α5 − α4 �= π (41)

α1 + α4 < α5 (42)

α1 + α4 + α5 < 2π (43)

4.2. The one-DOF singular but solveable case
Another contribution of this work is the solution for the case the palm is singular but controllable.
In the case where the two collinear axes are one input and one output axis, the mechanism is still
controllable but reduces to one DOF. In such a case, the following change happens in the kinematics
Eqs. (31), (28), (30), and (27)

θabe + θebd =
{

π − θ5 if tAD = 0
θ5 if tAD = 2

(44)

θeda + θadb =
{

π − θ1 if tBE = 0
θ1 if tBE = 2

(45)

5. Workspace of the Palm of the KCL Multifingered Metamorphic Robotic Hand
The method presented in this paper, is used to visualise the joint space of the KCL metamorphic
hand. The joint space of the KCL Metamorphic hand is generated by varying the two input angles
across all possible angle positions with a step of 2◦. Then all joint angles for the output angles when
the palm is not in a non-singular configuration are recorded.

5.1. Position analysis of the joint-coupler of the palm
Finally, point C can be located by either following the E, D, C path, as seen in Eq. (46), or the E,
A, B, C path as in Eq. (47). The first way is the least computationally intensive, as it involves fewer
terms.

pc = Ry(−α3) Rz(−θ4) Ry(−α4) Rz(−θ5) k (46)

pc = Ry(α2) Rz(θ2) Ry(α1) Rz(θ1) Ry(α5) k (47)

Figure 5(a) shows a model of the metamorphic palm and the spherical triangles used to compute
its kinematics. The palm of the hand, is projected on the surface of a unit sphere. This projection
preserves generality since only angles are considered. The angles θ2, θ3, and θ4 are calculated by
combining the coloured angle segments shown, according to Eqs. (27)–(32).
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Fig. 5. Metamorphic palm triangles. (a) Computer visualisation of metamorphic palm triangles. (b) Computer
rendering of the metamorphic hand.

Fig. 6. Joint space of θ3.

5.2. Joint space of the palm of the KCL metamorphic hand
Of particular interest are the joint-coupler angle θ3 and the coupler–rocker joint angle θ4. Figures 6
and 7 show the joint space for each joint is a manifold in a three-dimensional space where the two
dimensions are the input joint angles the third dimension is the angle of the joint studied. The values
for each joint are shown for both the coupler joint reflex and non-reflex configurations. It can be seen
when one of the two joints is at 0◦, the other input joint can only have the same value. This is the
singular configuration where the palm of the hand is flat.

Figure 6 highlights the ability of the metamorphic palm to provide great flexibility in changing
the relative orientations of the working planes of the index and thumb. It can be seen coupler joint
angle θ3 can reach a great number of different configurations. It is also verified the proposed method
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Fig. 7. Joint space of θ4.

correctly distinguishes both reflex and non-reflex coupler joint configurations by noticing all data
points of θ3nr are contained in the upper half of the graph corresponding to 0 < θ3nr < π and all data
points of θ3r are on the bottom half corresponding to π < θ3nr < 2π . Finally, the planes shown in
grey are where θ3 = 0 and θ3 = π and the coupler joint is singular.

Figure 7 shows the rocker–coupler joint angle θ4 is limited compared to all other joints. The
planes in grey are when the joint is singular. It can be seen that joint θ4 is singular only in the flat
configuration. It is in fact the joint with the least possible attainable joint angles. This feature is
desirable since collisions among fingers need to be avoided. In particular, it can be seen that rocker
input joint angle θ5 can change significantly before rocker–coupler joint angle θ4 starts to deviate from
0 radiants so as to risk collision or significantly change the orientation of the index finger relative to
the middle and little grasping fingers.

Since not all configurations are possible, when motion planning from one configuration to another,
a path can be generated that lies on the surface of the joint space manifold for each joint. This path
planning could be done by setting a starting point and a goal and then using a path planning algorithm
on the point cloud of the appropriate joint space. Once this is done, the path can be projected onto
the actuated joint plane.

6. Workspace and Visualisation of the KCL Metamorphic Multifingered Robotic Hand

6.1. Structure and geometry of a multifingered metamorphic robotic hand
Based on the concept of metamorphosis, four generation of metamorphic robotic hands are presented
in Fig. 8.

Figure 8 illustrates the structure of a multifingered metamorphic robotic hand with an articulated
palm. The palm is formed by a spherical five-bar linkage comprising five links denoted as l1, l2, l3,
l4 and l5 with the base link l5 connected to a wrist that is linked to the forearm. All the fingers are
mounted to the links of the articulated palm. The thumb is mounted to link l2, the index finger is
mounted to link l3 and the rest of the fingers are mounted to link l4. In this robotic hand, except for
the thumb, each of the other fingers contain only three revolute joints with parallel axis of rotation,
that provide only flexion/extension motions but no adduction/abduction motion. The introduction of
the articulated palm compensates for the absence of adduction/abduction motions of the fingers and
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Fig. 8. A multifingered metamorphic robotic hand. (a) A metamorphic hand with hollow palm. (b) A metamorphic
hand with opposable palm.

Fig. 9. Practical configurations of the metamorphic hand. (a) Origami carton folding experiment. (b) Dexterous
deboning experiment.

provides dexterous manipulation and grasping capabilities by adapting the configuration of the hand
for various tasks and different environments.

Figure 9 shows two practical configurations of the hand. Figure 9(a) shows a configuration of the
hand for an origami carton folding experiment carried out during the EU project Topology Based
Motion Synthesis (TOMSY). The sensor wires coming out of the top of the fingers are visible, as well
as the tendon sheaths connected at the base of each finger on the palm. An origami-type crush-lock
carton is being folded to demonstrate the dexterity of the metamorphic robotic hand. Figure 9(b)
shows a configuration where the palm is not hollow to more closely resemble the biomechanical
characteristics of a human palm. In this experiment, the hand is assisting a butcher during a meat
de-boning operation. This is accomplished by grasping and holding pieces of beef as the butchers
separates the pieces by using a knife. The gap at the centre of the palm is covered so the fingers can
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Fig. 10. Hand workspace. (a) Workspace with metamorphic palm. (b) Workspace without metamorphic palm.

oppose the body of the palm and properly grasp the beef. A glove is fitted over the hand for protection
against beef fluids and prevent the entanglement of cables and tendon sheaths.

In order to increase the dexterity of the palm, both human-hand structure from the humanoid point
of view and the rotatability criterion of the spherical linkage21 from the kinematics of mechanisms
point of view as well as the singularity avoidance design criteria presented in this work are considered
and the angles of the links satisfy α1 + α2 + α3 + α4 + α5 = 360◦ and α1 + α2 + α5 > α3 + α4. The
palm itself has two degrees of freedom such that two drives are used to adjust configurations of
the palm with the drive adjacent to link l1 in particular being used to change the structure of the
articulated palm by rotating the crank link, i.e. link l1, so as to form four-bar linkage in instant and
innate metamorphic phases.15

6.2. Simulation and visualisation of the KCL metamorphic hand
To compute the workspace of the metamorphic hand, a slight variation of the method used to obtain
the joint space of the spherical five-bar linkage was used. This procedure is also similar to the one
found in.29 In order to record the hand workspace, the space surrounding the hand is segmented into
cells. This is done by surrounding the hand with a three-dimensional array. Each cell of the array is
a 32 bit word. Each point of interest on the hand is assigned a single bit of the word. In particular,
the least important half bytes are assigned to the thumb, index finger, middle finger, ring finger and
little finger in that order. The bits in each half byte correspond to the ends of the metacarpal (MC),
proximal (P), intermediate (I) and distal (D) phalanges for each finger. The 12 remaining bits of the
word are assigned to the palm joints and the carpal metacarpal joints (CMC).

By using an array to represent the workspace, the number of points to be stored and displayed
is limited to the array size. The array used in the following examples contains 40 × 40 × 40 =
64,000 cells. If the same workspace was to be generated without the array, a much greater number of
points would need to be generated and displayed. In particular, in the case where the two palm joints
are swept over 180◦ ranges and the fingers are swept over 90◦ ranges, both with a 1◦ step, 4′212′400
points are generated in Cartesian space. This is two orders of magnitude more points to store and
draw compared to the array case. It is impractical for common math software to display this large
number of points and allow the user to rotate the graph. Further, most of those points are overlapping
and provide no new information to the user.

Figure 10(a) shows a visualisation of the hand’s workspace with a metamorphic palm, using the
workspace array method. Figure 10(b) shows the workspace of the same finger structure but with a
rigid palm. The fingers are attached on the exact same spots on the palm and the palm geometry is
the same. Just by examining the workspace of the index and thumb fingers and comparing it to the
workspace of the same hand without an articulated palm, it becomes apparent how the metamorphic
palm enhances the workspace of the hand compared to a fixed palm.

Figure 11 is a 3D rendering of the hand presented to the hand’s operator by the control software.
Link geometry information, in the form of triangle vertices, is imported to the software by using a
custom STL file parser. A C++ library containing the kinematic equations described in this paper is
used to compute palm joint angles. These computed joint angles are then used to form homogeneous
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Fig. 11. Hand metamorphosis. (a) 2-DOF dexterous configuration. (b) one-DOF compact configuration.

transform matrices based on the work of Wei.17 These homogeneous transform matrices and vertices
are then fed into a standard C++ / DirectX10 pipeline to render the hand on screen.

Figure 11(a) shows the dexterous operating mode of the hand where no palm joint is singular. In
this motion branch, both palm input motors affect the pose of the hand independently and the hand
shows maximum dexterity. This configuration is useful for manipulating large and complex objects,
including articulated objects as shown in Fig. 9(a). When the crank link α1 folds over ground link
α5, the palm now becomes a one-DOF mechanism. One such configuration is shown in Fig. 11(b).
In this configuration, the hand becomes more compact and can manipulate objects in tight spaces as
well as perform grasps that are more stable since less degrees of freedom need to be controlled. In
such a one-DOF configuration, however, the fingers can easily collide and as a result the possible of
hand poses are limited.

6.3. Numerical examples
Table I shows numerical examples. Rocker input joint angle is limited to ‖θ5‖/leq120◦. Crank input
joint angle is first set to θ1 = 0◦ then to θ1 = 180◦ to first show the home configuration, then to show
the one-DOF compact configuration.

The symmetry of the coupler joint angle θ3nr can be verified when rocker input joint angle θ5

is changed to be reflex and non-reflex. Another feature particular to the non-reflex coupler joint
configuration is when θ1 = 0, the crank coupler joint angle θ2nr and the rocker–coupler joint angle
θ4nr change very slightly while coupler joint angle θ3nr is almost equal to the rocker input angle θ5.
This is because of the decision to be α1 + α2 + α5 ≈ α3 + α4 ≈ π in this particular design.

Table II shows inverse kinematics numerical examples. The coupler joint angle θ3 and the rocker–
coupler joint angle θ4 are given. For ease of comparison, the values are drawn from the first five
rows of Table I. Then, as described in Section 3.4, a cyclic permutation of the dimensions of every
link is performed and the problem is solved with the value of the permuted θ1 corresponded to θ4

of Table I and the value for the permuted θ5 corresponded to θ3 of Table I. After the computations,
the mechanism joint angles are remapped following the inverse cyclic permutation and the results
are presented in Table II. The small numerical deviations are due to the rounding of the values of
the permuted input joints to the second digit. This cross-validation procedure was also used during
the development of the method to insure correctness.

Figure 12 shows four example grasps with corresponding palm joint angle values. In the first
two cases, the crank link is kept flat with the ground link, and the rocker link is set to θ5 = −30◦
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Table I. Forward kinematics numerical examples.

θ5 θ1 θ2nr θ3nr θ4nr

(deg)

0 0 0 0 0
30 0 −1.22 30.59 0.87
60 0 −2.64 61.29 1.88
90 0 −4.61 92.25 3.28
120 0 −8.15 123.98 5.8
90 180 −169.15 62.12 58.13
120 180 153.1 107.05 62.55
−120 180 28.01 107.05 −148.87
−90 180 56.79 62.12 127.4

Table II. Inverse kinematics numerical examples.

θ3nr θ4nr θ5 θ1 θ2nr

(deg)

0 0 0 0 0
30.59 0.87 29.99 0 −1.22
61.29 1.88 60.00 −0.01 −2.64
92.25 3.29 90.00 0 −4.61
123.98 5.80 120.00 −0.01 −8.15

Fig. 12. Grasp examples.

and θ5 = −60◦ respectively. In the −30◦ configuration, the hand is very open and this can be used
to manipulate large objects, like panels of origami cartons or buttons on a device. In the −60◦
configuration, the palm is folded significantly and here in particular the grasping fingers form a
cylindrical grasp and the thumb is free to manipulate the top of the cylindrical object being grasp,
such as the nozzle of a spray can. In the third configuration, it is θ1 = 180◦ and θ5 = −90◦. In this
configuration, the crank is fully folded and the rocker link is at such an angle to allow the full folding
of the crank and position the grasping fingers so the thumb can oppose them. This configuration is
useful for performing a tight grip around a small object such as a small ball or cup filled with a
beverage. Notice the index finger has to be positioned in such a way as to avoid collision with the
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Fig. 13. Hand control user interface.

middle finger. The fourth configuration shown has θ1 = −34◦ and θ5 = −32◦ and shows a pinch
grasp with the palm slightly curved to the inside to resemble a more natural, human-like appearance,
similar to the gesture commonly associated with the English work “OK”, which is a word usually
denoting approval or acknowledgment.

7. Application
The results presented in this paper have been used in the user interface of the control software of
the five-fingered version of the KCL Metamorphic Hand. In terms of computational effort, a C++
implementation on a Windows 7 desktop computer with an Intel Core2 6420 running at 2.13 GHz is
able to complete one full computation of the forward kinematics in 234 μs. By further optimising the
code to reuse variables and use direct memory addressing, the execution time was dropped to 117 μs.

Figure 13 shows a screenshot of the control software user interface. It consists of three windows.
The main window contains sliders to set the joint angles for the palm and hand. The user can either
manipulate the sliders, or type in the desired angle value for each joint and press the “Set” button. The
“Reset” button resets the hand to the home configuration. The user then looks at the second window
showing a visualisation of the hand with the selected joint angles. The visualisation is generated by
using the Direct3D libraries, the kinematics functions presented in this paper and imported vertex
data from CAD STL files. If the pose of the hand is satisfactory, the user can press the “Commit”
button on the first window in order to send the commands to the motors. The third window presents
information related to the control thread of the program such as terminal values for each motor and
the motor nodeID to hand joint map.

8. Conclusions
Spherical trigonometry was used for computing the direct and inverse kinematics of spherical five-bar
linkages, as well as the direct kinematics of the KCL metamorphic robotic hand. The spherical palm is
segmented into spherical triangles which are then solved and their angles combined to fully solve the
palm configuration. The presented method allows differentiation of coupler joint reflex and non-reflex
configurations. The same set of equations can be used for both forward and inverse kinematics, just
by a simple cyclic permutation of the joint and link numbers.

By using spherical trigonometry, singularities become obvious by inspecting the equations of the
angles of each spherical triangles the palm is decomposed into. Singularity-avoidance based design
criteria were presented. Point clouds were generated that represent the joint space of the palm. The
joint space as well as the work space point clouds were generated and stored in a computer using
an efficient method of segmenting the workspace into 32 bit word cells with each bit of each cell
encoded a different point of interest of the hand. This allows displaying the hand’s workspace on
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demand without the need to re-compute it. Comparison of the hand with a metamorphic palm and a
fixed palm was made and two examples of the two-DOF dexterous configuration and the one-DOF
compact configuration were shown that highlight the advantage of an articulated palm equipped
metamorphic hand.
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