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Abstract
People search can be reformulated as submodular maximization problems to achieve solutions with theoretical
guarantees. However, the number of submodular function outcome is 2N from N sets. Compressing functions via
nonlinear Fourier transform and spraying out sets are two ways to overcome this issue. This research proposed the
submodular deep compressed sensing of convolutional sparse coding (SDCS-CSC) and applied the Topological
Fourier Sparse Set (TFSS) algorithms to solve people search problems. The TFSS is based on topological and
compressed sensing techniques, while the CSC is based on DCS techniques. Both algorithms enable an unmanned
aerial vehicle to search for the people in environments. Experiments demonstrate that the algorithms can search for
the people more efficiently than the benchmark approaches. This research also suggests how to select CSC or TFSS
algorithms for different search problems.

1. Introduction
People search problems involve in the interaction between the people, robot, and environments. Assume
the people are static and their probability distribution is uniform. Given N subgoals (sets), to find an
optimal path for maximizing the environmental coverage is a NP-hard problem [1]. Due to the sub-
modularity of the problems, greedy algorithms could give theoretical guarantees of these submodular
maximization problems [1]. Furthermore, greedy algorithms generate near-optimal solutions [2]. The
theoretical guarantees of the problems depend on the constraints are cardinality [1], budget [3], and
routing [4].

Since the robot needs to query the set functions for coverage values, the set functions need to be
learned or computed. However, how to learn submodular functions is still a challenge in machine learn-
ing fields [5], since the number of function outcome is 2N from N sets. The most promising approach is to
learn submodular functions via compressed sensing techniques [6]. Nevertheless, the number of Fourier
bases is still 2N . In ref. [7], the authors found the sparsity of submodular functions in the Fourier domain.
If there is no sensing overlap between sets, the corresponding Fourier coefficient is zero. This property
enables robots to learn submodular functions if the sets spread out. However, if the sets are dense, the
number of Fourier bases could be close to 2N . This issue makes learning submodular functions difficult
for people search applications.

The goal of this research is to enable an unmanned aerial vehicle (UAV) to search for people in
known or unknown environments. To solve aforementioned issues, there are two promising ways. First,
carefully selecting the ground set of submodular functions, which makes the submodular functions
sparse in the Fourier domain. Second, compressing the submodular functions via nonlinear trans-
forms instead of linear transforms (e.g., Hadamard transform) could have compact data in the Fourier
domain. Therefore, this research applied two approaches to overcome the aforementioned issue. The first
approach, Topological Fourier Sparse Set (TFSS), is to dynamic expand the ground set, which makes
the sets spread out via interacting with environments and dramatically reduce the number of Fourier
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(a) (b)

TFSS CSC

Figure 1. Illustration of the TFSS and CSC approaches. There are two stages, exploration and exploita-
tion stages, in both approaches. Assume the field of view (FOV) and the range of the sensor are 360◦ and
3.5 m, respectively. The environment is a 10 × 10 m2 map and the person (simile face) locates in the map.
The goal of the algorithms is to detect the person. (a) Exploration: there are 10 explored subgoals. The
decimal number represents the number of the visiting sequence. The blue arrows and orange arrows rep-
resent the hexagonal directions and the selected explored directions, respectively. In the TFSS approach,
the robot explore 10 subgoals via hexagonal packing algorithms. Exploitation: there are 10 explored
subgoals. The white decimal numbers represent the index of subgoals. In this case, there are three visited
subgoals (subgoal#1 ∼ 3). The robot has to decide the next subgoal. Learning f via compressed sensing
and select subgoals via F: F represented the m sampling coverage values. f is learned after compressed
sensing. Once f is learned, F′ denotes the predicted coverage values of selecting subgoal#4 ∼ 10. In
this case, the robot selected subgoal#5, which has the maximal coverage. (b) Exploration: in the TFSS
approach, the robot cannot explore the map via interacting with the environment. Hence, the subgoals
are assigned manually. There are nine assigned subgoals. Exploration: there are nine explored sub-
goals. In this case, there are three visited subgoals (subgoal#1 ∼ 3). The robot has to decide the next
subgoal. Exploitation: F represented the m sampling coverage values. f is learned after compressed
sensing. Once f is learned, F′ denotes the predicted coverage values of selecting subgoal#4 ∼ 9. In this
case, the robot selected subgoal#6, which has the maximal coverage.

bases. The second approach, convolutional sparse coding (CSC), is to compress submodular functions
via deep neural networks, which transfer the data through nonlinear transformations.

Figure 1 illustrates the concept of TFSS and CSC for search problems, There are two stages for TFSS,
exploration and exploitation stages. The exploration stage is to explore the subgoals, while the exploita-
tion stage is to learn the submodular functions and select subgoals. As Fig. 1(a) shows, in the exploration
stage, the robot explores 10 subgoals via interacting with environments. In the exploitation stage, the
robot selected subgoal#1, 2, and 3. It needs to select the next subgoal with the maximal coverage. Hence,
the robot has to predict the coverage of subgoal#4 to #10. The robot batches the sampling data (F) and
learns the coverage function in the Fourier domain (f ) via compressed sensing. Once the f is learned,
the robot can predicts the coverage values (F ′) of the subgoal#4 to #10. Since selecting the subgoal#5
will have the maximal coverage, the robot chooses the subgoal#5 as the next subgoal. The robot keeps
selecting the next subgoal until it detects the person. There are two stages for CSC, exploration and
exploitation stages. As Fig. 1(b) shows, in the exploration stage, the nine subgoals are assigned manu-
ally. In the exploitation stage, the processing is similar to the TFSS. The major difference is that CSC
adopts deep compressed sensing (DCS) instead of compressed sensing.

The contributions of this research are as follows: first, the submodular deep compressed sensing of
convolutional sparse coding (SDCS-CSC) is a deep compressed sensing-based appraoch. It is the first
approach to apply DCS to people search problems. Second, the advantages and disadvantages of TFSS
and SDCS-CSC are discussed. The guideline of how to select the suitable approach is highlighted. Third,
experiments conducted with these algorithms demonstrate that the TFSS and SDCS-CSC algorithms can
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search for the person more efficiently than the benchmark approaches (e.g., spatial Fourier sparse set
(SFSS) and SDCS-CNN).

The paper is organized as follows. Section 2 describes the related work. Section 3 introduces the
background knowledge. Section 4 describes the proposed search algorithms. Section 5 describes the
experiments. Section 6 discusses the advantages and disadvantages of the proposed algorithms. Finally,
Section 7 concludes the paper with a summary of the work.

2. Related work
This section first discusses the prior work of spatial search. Since the search problems are reformulated
as submodular maximization problems, the prior work of submodularity and how to learn submodular
functions are reviewed. Since learning submodular function via compressed sensing techniques is a
promising approach, DCS techniques are reviewed. Finally, topological motion planning is reviewed for
spatial search in unknown environments.

2.1. Spatial search
How the spatial search problems are solved depends on assumptions about the interactions between
the target(s), searcher(s), and environments. Searching in a probabilistic environment (Bayesian search)
assumes that the target motion and searcher’s sensing information are probabilistic. The goal is to find
the path with the maximal probability to detection [8]. Finding the optimal solutions of probabilistic
search is NP-hard [9].

To take advantages of Bayesian models and the submodularity in coverage problems, the grid map
approach was proposed [10]: coverage is computed combining the measurements from sensor positions,
real sensing scans, and a known grid map. This problem was shown to be NP-hard [1]. Since maximizing
coverage is a submodular maximization problem, greedy algorithms are able to achieve solutions over
(1 − 1/e) of the optimum. The advantage of this approach is that it provides a near optimal guarantee
using real sensor specifications (e.g., range and angle) and works even in cluttered environments.

2.2. Submodularity
Submodularity is that set functions satisfy the diminishing returns property. Greedy algorithms can give
solutions with theoretical guarantees for submodular maximization problems under different constraints
(e.g., cardinality [1], knapsack [3], and routing [4]). The applications include collecting lake information
using multiple robots [11], search in indoor environments via graphical models [12], search in indoor
environments via probabilistic models [10], search for humans [13], and collecting wireless information
using UAVs [14].

2.3. Learning submodular functions
The key assumption of aforementioned approaches is that the submodular functions are known. If
the submodular functions are unknown, the robot has to learn them online through training samples.
However, it is a challenge to learn a submodular function since the number of function outcome from N
sets is 2N . In ref. [15], the researchers proved that it is impossible to approximate submodular functions
accurately within polynomial samples via linear classifiers.

A feasible approach is to learn submodular functions in the Fourier domain [6]. However, the number
of Fourier bases is still 2N . To solve this issues, wisely selecting the ground set in the spatial domain
will have sparsity in the Fourier domain [16]. In other words, the number of Fourier bases could be
polynomial if there is a few sensing overlaps. This approach makes learning submodular functions pos-
sible [7]. Nevertheless, when the sensing overlaps are more, the number of Fourier bases is closer to 2N .
Therefore, spreading the sensors/sets out and adopting DCS are two ways for the basis issue.
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2.4. Deep compressed sensing
Due to the successfully applications of deep learning in image classification [17] and learning to play
Atari games [18], the DCS algorithms have recently been proposed. There are three classes of the DCS
approaches.

The first one is the network-based approach. The fully connected and convolution neural networks
are applied in DCS. The original signal can be reconstructed with blocks by a deep fully connected
neural network [19]. There are several models of convolutional neural network (CNN) reconstruct-
ing the image data from low-dimensional measurements to overcome the disadvantages of traditional
compressed sensing methods. For example, designing the sampling matrix and performing optimal sig-
nal recovery are challenges. In ref. [20], deep neural networks are proposed to overcome two issues.
Reconnet, a non-iterative approach, is proposed to speed up the computation with a novel CNN archi-
tecture [21]. Deep Residual Reconstruction Network (DR2-Net) speeds up its computation by adding
several residual learning blocks to enhance the preliminary image [22]. Multi-scale DCS convolutional
neural network (MS-DCSNet) is proposed to sampling signal with different scales [23]. Since the real-
world data could be not exactly sparse in a fixed basis and recovery algorithms are slow to converge,
DeepInverse is proposed to overcome these issues via a deep convolutional network [24]. In ref. [25], a
stacked denoizing autoencoder with a deep fully connected network is to learn the representation from
training data and to reconstruct test data from their CS measurements.

The second one is the frame-based approach. The parameters of iterative soft thresholding algo-
rithm (ISTA) are learned. In ref. [26], the parameters of the encoder and layer-dependent threshold are
learnable. In ref. [27], the learned parameter is the step size.

The third one combines the above two classes. Iterative soft thresholding algorithm-network (ISTA-
Net) [28] utilizes the advantages of network-based and optimization approaches to design a learnable
deep network framework. Instead of handcrafting, the parameters of the autoencoder and networks are
learned through the ISTA-Net. In ref. [29], the submodular function is successfully reconstructed by
SDCS. The authors proposed a model of deep neural networks to predict the submodular function,
which has 2N outcome from N sets.

2.5. Topological motion planning
Due to the popularity of topological data analysis, the robotics community has been paying more atten-
tion to algebraic topology recently. Although the data vary in the spatial space, the data in the topology
has invariant diagrams (so-called persistence homology) [30]. Utilizing the persistence homology of
different trajectories or subgoals/sets could propose different algorithms in motion planning.

Goal-directed path planning in probabilistic maps is one of the robotic problems. Given a probabilis-
tic map, the robot seeks trajectories with persistence homology [31]. How to assign decisions for the
cooperative search of a human–robot team is a challenge. The authors proposed algorithms to ensure
humans and robots pursue different homotopy classes [32].

Topology is one of the analysis approaches for coverage problems. To analyze the properties of a
sensor network, the researchers proposed Rips complex to detect the holes of the uncovered area [33]. If
the sensor network is for surveyance applications, the evasion path exists when the moving intruder can
avoid the covered area. The aforementioned topological analysis for coverage problems are obstacle-
free environments. To consider the coverage problems with obstacles, the researchers show that Rips
complex-based algorithms can deploy a swarm of mobile robots and attain complete sensor coverage
[34]. To further consider map exploration in unknown environment, the TFSS was proposed [35]. These
successful examples demonstrated that topological tools (e.g., persistence homology) can help analyze
robotic problems.

3. Background knowledge
This section first introduces the background of submodular functions. Learning submodular functions
via deep learning is described to compress Fourier bases. Topological complexes are introduced for
deducing the Fourier bases
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Figure 2. Illustration of the submodularity of coverage functions [16]. The decimal number represents
the selected sensor. The blue and white colors represent the covered and uncovered areas, respectively.
(a) F(SA) represents the covered area by SA, where SA = {1}. (b) F(SB) represents the covered area by SB,
where SB = {1, 2}. (c) The red dash lines represent the submodular gain after adding s, where s = {3}.
Left figure shows the F(SA ∪ s) − F(SA) and right figure shows that F(SB ∪ s) − F(SB).

3.1. Submodularity of people search problems
The submodularity is defined as follows:

Definition 1: Submodularity [1]. Given a finite set S={1,2,. . .,n}, a submodular function is a set func-
tion F : 2n →R which satisfies the diminishing return property. For every SA, SB ⊆ S with SA ⊆ SB and
every s ⊆ S, F(SA ∪ s) − F(SA) ≥ F(SB ∪ s) − F(SB) holds.

To illustrate the concept of submodularity, an example of environmental coverage is shown in Fig. 2.
There are three ground sets (S = {1, 2, 3}). SA = {1} and SB = {1, 2} represent the selected two sets,
respectively. The set SB = {1, 2} means that the sensors are selected at location 1 and 2. F(SA) and F(SB)
mean the coverage of the sensor(s) at location 1 and {1, 2} (see Fig. 2(a) and (b)), respectively. The
submodular gain of SA and SB after adding a set s = {3} is represented by the red dashing lines (see
Fig. 2(c)). It is obvious that the coverage function satisfies the diminishing return property. In other
words, the objective function of coverage functions is submodular. Greedy approaches can generate
near-optimal solutions even if this is a NP-hard problem [2].

Although the submodularity provides theoretical guarantees, coverage functions of unknown envi-
ronments are not accessible. Hence, the robot has to learn the submodular functions while exploring the
environment. This raised another issue – How to learn a submodular function which has 2N outcomes?

3.2. Learning submodular functions via compressed sensing
Since submodular functions are set functions, the outcome of submodular functions is 2N from N sets,
which is a challenging problem in machine learning [15]. In ref. [6], the researchers first proposed
Fourier sparse set (FSS) to learn submodular function using compressed sensing techniques [36].

As Fig. 3(a) shows, suppose there are N sets and the submodular function is F(n,1), where n = 2N .
The robot first acquires a signal from F(n,1) via a sensing matrix �(m,n) and collects FM(m,1) for learning,
where m << n. The robot has to predict the submodular function F(n,1) (see Fig. 3b). Notice that this
is an ill-conditioned linear inverse problem. However, if the signal is sparse in certain domains, the
system can recover F(n,1) via sparse regression [37]. As Fig. 3(c) shows, F(n,1) is the inner product of the
transform matrix �(n,n) (e.g., Fourier transform) and coefficient fB(n,1). The fB(n,1) has only k nonzero values
(so-called k-sparse). Since � and � are known, the reconstruction matrix � can be computed. Although
directly recovering F(n,1) is impossible, the robot can recover fB(n,1) if k < m, and then reconstruct F(n,1).
The learning of submodular functions is given as:

f̂B = arg min
fB

1

2
||FM − �fB||2 + λ||fB||1
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Figure 3. Illustration of the compressed sensing concept [16]. (a) FM(m,1) is collected by the robot after
taking measurements from a signal F(n,1). The color cells represent real values and black/white cells
represent binary values (0 and 1 in � while 1 and -1 in �.) (b) The robot has FM(m,1) and tries to recover
F(n,1). (c) The signal F is sparse in the Fourier domain. In this example, m is 8, n is 16, and k is 4. Given
�m,n and FM(m,1), it is impossible to recover F(n,1) (m < n). But, given �(m,n) and FM(m,1), fB(n, 1) can be
recovered (k < m).

where fB is the submodular function in the Fourier domain, FM is a measurement vector of the submod-
ular function, � is a reconstruction matrix (so called dictionary), � = ��, and � is a sensing matrix
and � is a inverse Fourier transform matrix.

However, the size of the Fourier transform matrix is 2N by 2N , and it is infeasible to compute all
of the spectrum. In ref. [7], the researchers proved that if there is no sensing overlap between sets, the
coefficients of the corresponding Fourier basis are zero (see Theorem 1). This approach is called SFSS
[16]. The SFSS approach utilizes the sparsity of submodular functions in the Fourier domain to learn
submodular functions efficiently.

Theorem 1: Sparsity of submodular function in the Fourier domain [7]. If there is no sensing inter-
section of the sets, the coefficient of the sets’ corresponding Fourier basis is zero. Mathematically, if
F(S∩) = 0, f (S∪) = 0, where S∩ denotes the intersection of sets and S∪ denotes the union of sets.

To illustrate the Theorem 1, as Fig. 4 shows, there are four sets (e.g., sensors) in the environments.
The number of submodular function values is 24. There are two cases of the ground set in Fig. 4(a) and
(b). The order of set is defined as the number of selected sets. The number of nth order terms is CN

n , where
N is the total number of sets. Hence, the numbers of 0th, 1st, 2nd, 3rd, and 4th order terms are 1, 4, 6, 4, and
1, respectively. In Fig. 4(a), only sets 2 and 3 have sensing overlapping. Hence, only f2,3 of the 2nd order
terms is nonzero. There is no overlap between the third and fourth order sets, so the Fourier coefficients
of 3rd and 4th orders are zero. Therefore, the number of nonzero coefficients in case A is 1 + 4 + 1 = 6.
In case B, there is sensing overlapping between all sets. Hence the number of nonzero coefficients in
case B is 1 + 4 + 6 + 4 + 1 = 16. This example demonstrates that utilizing the intersection relationship
can dramatically reduce the number of Fourier bases from 2N to polynomial numbers if there are a few
sensing overlaps between sets.

The major assumption of SFSS is that if there are a few overlapping sets, the number of Fourier bases
can be dramatically reduced. If most sets have sensing overlapping, the number of Fourier basis is still
close to 2N . Since the SFSS approach adopts Hadamard transform, this transform limits the possibility of
Fourier basis selections. To solve this issue, there are two ways. First, spreading the sensors/sets out can
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(a) (b)

Figure 4. Illustration of the sparsity of submodular functions in the Fourier domain. The black and
white areas are obstacles and unoccupied grids, respectively. The black circles and lines represent the
robot position and heading, respectively. The blue dash lines are the covered area of the corresponding
set/sensor. The colorful and white cells in the bars represent nonzero and zero values, respectively.

dramatically reduce the number of Fourier bases. Hence, proposing a topological algorithm to spread
out the sets via is a way. Second, applying nonlinear transform could lead to different sparsity in certain
domains. Therefore, designing deep neural networks to compress the functions is another way.

3.3. Learning submodular functions via DCS
Most prior work of DCS is applied to fixed-size signals (e.g., images or videos). For example, to process
very high-dimensional images and videos, block-based CS with a fully connected network is proposed
as a lightweight method [19]. Due to the slow processing of sparse coding, in ref. [26], the fast algorithm
producing approximate estimation is proposed. ISTA-net is proposed to take the advantages of optimiza-
tion and network methods [28]. Trainable iterative soft thresholding algorithm (TISTA) is propose to
improve ISTA-net [27]. The challenge of DCS techniques for submodular functions is that the networks
must avoid processing the original signal since its size is 2N . In ref. [29], the researchers first proposed
the new network model to learn submodular functions using DCS techniques. Two definitions [29] of
learning submodular functions via DCS are as follows:

Definition 3: Learning submodular functions in the Fourier domain. Given a finite set S={1,2,. . .,N},
submodular data (y), and corresponding set data (X), the learning coefficient of the submodular function
in the Fouier domain (f) is f̂ = minf ||�(X, f ) − y||2

2 + λ||f ||1, where � is a reconstruction function, λ > 0
is the parameter to tune the sparsity of f, || · ||2 is the L2 norm, and || · ||1 is the L1 norm.

For example, let N = 3, y = {0.4, 0.6}, and X = {0, 0, 1;0, 1, 1}. It means there are three sets. X rep-
resents the two selected sets and y represents the corresponding submodular values. When the second
and third sets are selected (X = {0, 1, 1}), its submodular value is 0.6 (y = 0.6). In fact, this is an ill-
conditioned case, since the number of the unknown variable is 23 and the number of measurements is 2.
If the submodular function in the Fourier domain is sparse, it is possible to learn it in the Fourier domain
first and then reconstruct it in the spatial domain. Hence, the goal is to find submodular functions in the
Fourier domain (f ) first through the given X and y.

Definition 4: Reconstruction of submodular functions in the spatial domain. Given a finite set
S={1,2,. . .,N} and corresponding set data (X), the reconstruction of submodular functions in the spatial
domain (y) is y = �(X, f ).

For example, N = 3, f = {0.7, 0.1, 0, 0.2, 0, 0, 0, 0}, and X = {0, 0, 1;0, 1, 0}. The submodular values
of correspnding set X can be reconstructed through the given f and � function.

The major issues of learning and reconstruction of submodular functions are as follows: first, what is
the transform (�) that makes the submodule function sparse? Second, what is the transferred submodular
function values (f )? Third, how to reconstruct the submodular function (F) through (f )? In order to solve
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Figure 5. The schematic diagram of �0,∞-norm.

these issues, the researchers proposed SDCS algorithm to learn submodular functions [29]. There are
three stages of SDCS: transformation learning, Fourier coefficient learning, and reconstruction.

In the transformation learning stage, the goal is to train the autoencoder model. The network input
data is the measured submodular function values in different maps (F1:M

m ), where m is the size of mea-
surements and M is the number of different environments. The parameters of first and output layers
are generated by another little fully connected network (named by weight network W ). The input of
weight network is the corresponding combination sets of measurements. The Fourier coefficients (f )
is the output of the encoder while it is the input of decoder. Mathematically, the transformation is
F̂1:M

m = W(X, θ (f )) = �(X, f ), where � is the reconstruction function, which reconstructs the submodular
values given the corresponding f and X. The objective function of transformation learning stage is

minθ ,W ||W(X, θ (f )) − F1:M
m ||2

2 (1)

In the learning Fourier coefficients (f ) stage, the algorithm is inspired by ISTA. The trained decoder
model is chosen as �. There is a random initial f . The back-propagation updates f as γt and the soft
thresholding function fix γt as the input f in next iteration. The loss function of this stage is

minf ||�(X, f ) − y||2
2 + λ||f ||1 (2)

In the reconstruction stages, the learned Fourier coefficients (f ) are decoded by the decoder �.
The decoded data �(f ) and the weighting networks (W ) with combinational input (X) generate the
reconstruction data (y):

y = W(X, �(f )) = �(X, f ) (3)

To improve the theoretical guarantees, SDCS-CSC is proposed in this research.

3.4. Learning submodular function via multilayer CSC
The assumption of CSC is that the signal has local sparsity in the Fourier domain. The first layer of
SDCS-CSC is a fully matrix generated by the input combinations. This structure is similar to the first
layer of the SDCS [38]. For the CSC model, the sparsity representation is captured through the �0,∞-norm
(see Fig. 5). This norm represents the local sparsity of the signal.

Definition 5: �0,∞-norm [39]. The �0,∞-norm of a global signal 	 is defined as follows:

||	||s
0,∞ = max

i
||γi||0

where γi represents the ith stripe vector of 	, and || · ||0 denotes the number of nonzero elements.
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There are two parts of SDCS-CSC, sparse coding and dictionary learning. The definition of sparse
coding [40] is as follows:

Definition 6: Submodular deep coding problem. Given a measurement signal Y, the corresponding set
data (X), a set of convolutional dictionaries {Di}K

i=1, where D1 is generated by X (i.e., D1(X)), sparse
parameters (λ), and error parameters (ε), the definition of the deep coding problem (DCP). DCPε

λ
is

defined as:

(DCPε

λ
): find {	i}K

i=1 s.t.

||Y − D1	1|| ≤ ε0, ||	1||s
0,∞ ≤ λ1

||	1 − D2	2|| ≤ ε1, ||	2||s
0,∞ ≤ λ2

... ...

||	K−1 − DK	K|| ≤ εK−1, ||	K||s
0,∞ ≤ λK

The sparse coding finds the representation (	i) through the given dictionary (Di). The definition of
learning dictionary [41] is as follows:

Definition 7: Multilayered dictionary learning. Given a set of measurement signals {Ym}M
m=1 and the

corresponding set data ({Xm}M
m=1), the objective function of learning dictionary is formulated as:

min
{	m

K },{Di}K
i=1

M∑

m=1

||Ym − D1(X)D2...DK	m
K ||2

2

Layered-ISTA is introduced in the Algorithm section for solving DCPε
λ
.

3.5. Hexagonal packing and rips complex
Instead of compressing submodular functions via DCS, another way is to expand the ground set, which
has a fewer sensing overlaps. The expanding sets should satisfy two requirements. First, they should
cover the environment completely. Second, the number of their sensing overlaps should be as fewer as
possible. Assume the sensor range is a disk within r distance in an obstacle-free environment. In ref.
[33], the researchers proved that when the distance between sets equals to

√
3r, the configuration of sets

is the optimal solution with the less overlaps and without holes. Generating sets with
√

3r distance is
called hexagonal packing [42]. The Rips complex represents the geometric properties (e.g., holes). Its
definition is as follows:

Definition 8: Rips complex [43]. Given a finite set X ⊆ Y in a metric space (e.g., Rn) and r > 0. Rips
complex R(X, Y;r) has

1. vertex set X.
2. finite simplex σ when diameter(σ ) ≤ 2r.

To illustrate the concept of hexagonal packing and Rips complex, assume there is a robot with a sensor
covering r distance. The goal is to expand sets via hexagonal packing. As Fig. 6(a) shows, the robot
locates at the subgoal#0 and expands subgoals from #1 to #6. Its Rips complex is shown in Fig. 6(b).
Since the coverage of each set overlaps with the other two sets, there are six 2-simplex. As Fig. 6(a) shows
that there is no hole between seven sets. There is no intersection between three sets, which implies the
maximal order is 2. However, the major assumption of aforementioned approach is that the environment
is obstacle-free. In ref. [42], the researchers proposed a modified hexagonal packing algorithm to expand
sets in environments with obstacles. If there is any obstacle along the path, the robot will move back a
fixed distance. This approach can be applied to find the ground set of submodular functions in unknown
environments.
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Algorithm 1. TFSS algorithm.

(a)

Hexagonal packing Rips complex

(b)

Figure 6. Illustration of Hexagonal packing and Rips complex. (a) The robot locates at set#0 and
is expanding six sets via the hexagonal packing. The black nodes and blue areas represent sets and
their coverage, respectively. The dark blue areas are the overlapping areas. The orange arrows and
the numbers represent the hexagonal packing direction and the ordering of selected sets, respectively.
(b)The blue lines and yellow triangle represent 1-simplex and 2-simplex, respectively.

4. Algorithms
In this section, two algorithms are described. The first algorithm, TFSS, is to expand subgoals and
then learn the coverage functions via compressed sensing for selecting the next subgoal. The second
algorithm, CSC, is to assign subgoals and then learn the coverage functions via DCS for selecting the
next subgoal.

4.1. TFSS algorithms
The overall of TFSS algorithms is illustrated as Fig. 1(a) and Algorithm 1. In the exploration stage, the
robot expands the subgoals via the hexagonal packing algorithm (Algorithm 2 and Fig. 6(a)). In the
exploitation stage, the robot needs to learn the coverage function and select the next subgoal for finding
the person. The robot acquires and saves the sensing data in the database. It samples the coverage data
(FM) from the database and learn the coverage function (f ) in the Fourier domain. To select the next
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Algorithm 2. ubgoal expansion algorithm.

subgoal with the maximal coverage, the robot needs to predict the coverage values of subgoal candidates.
The robot reconstructs the coverage values (F ′) of subgoal candidates and selects the subgoal with the
maximal coverage until finding the person or the cost is over the budget.

The details of TFSS algorithms are as follows: Algorithm 1 shows the TFSS algorithm. Lines
4–6 show the exploration stage. The robot expands subgoals until the environment is explored (see
the exploration in Fig. 1(a) and Fig. 6(a)). Lines 8–18 show the exploitation stage (see the exploitation
in Fig. 1(a)). Lines 8 shows the robot keeps moving to subgoals until the number of subgoal (|SG|) is
over the G. Lines 11–13 show the robot saves the explored subgoals to the database. Line 14 shows that
the robot randomly generates A and FM data during its flight, where A is the measurement sets and FM is
the corresponding coverage data of A. These data are based on the robot’s point cloud data from the Red
Green Blue Depth (RGBD) sensor. Hence, A and FM data will be used to learn the coverage function in
this environment. Line 16 shows once the robot arrives at the subgoals, it will call SFSS_subgoal func-
tion to compute the next subgoal. Finally, if the robot detects the person or the cost is over the budget,
the robot terminates its search.

Algorithm 2 shows the subgoal expansion algorithm. Lines 2–4 show the initialization of S and f .
Lines 6–7 show the hexagonal packing (see Fig. 6). The robot will expand explored nodes through six
directions. Lines 8–10 show the hexagonal packing when there is any obstacle. The robot will move
back a fixed distance (ε) from the original explored subgoal. Lines 11–14 show the new S and f are
saved. After running this algorithm, the robot explored subgoals in the boundary (BO).

The initialization of f is as follows: since the map is unknown in exploration problems, it is difficult to
compute the values of f . In ref. [7], the author proved the sparsity of submodular function in the Fourier
domain and further show that the f in an empty map can be used for the initial values of f in any maps.

In other words, the robot can predict initial values of f without any map information. Therefore, the
initial f is set as the values of f0 in an empty map.

Algorithm 3 shows the SFSS_subgoal algorithm. Lines 3–7 show the basis matrix (�) is computed
according to A and B, where A is the sets of sampling data and B is the sets of Fourier basis. Line 9 shows
that the submodular function in the Fourier domain f̂ is computed via sparse regression. Lines 12–13
show that the submodular function in the spatial domain F(S) is reconstructed. Lines 14–16 show if the
cost is satisfied, the set with maximal coverage rate will be selected. Line 19 shows that the algorithm
returns the next subgoal SG,k+1 and the updated f̂B.
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Algorithm 3. SFSS subgoal algorithm.

4.2. Submodular deep compressed sensing of convolutional sparse coding algorithms
The overall of the proposed SDCS-CSC algorithms is illustrated as Fig. 1(b). In the exploration stage, the
subgoals are assigned manually. In the exploitation stage, the robot needs to learn the coverage function
and select the next subgoal for finding the person. The robot acquires and saves the sensing data in the
database. It samples the coverage data (FM) from the database and learn the submodular function (f )
in the Fourier domain via neural networks. To select the next subgoal with the maximal coverage, the
robot needs to predict the coverage values of subgoal candidates via the forward propagation. The robot
reconstructs the coverage values (F ′) of subgoal candidates and selects the subgoal with the maximal
coverage until finding the person or the cost is over the budget.

This algorithm combines the model of ref. [29] and the method framework of ref. [40]. There are two
algorithms for learning sparse coefficients and dictionary: layered-ISTA and convolutional dictionary
learning. In the layered-ISTA (Algorithm 4), the goal is to compute the sets of sparse representations,
{	i}K

i=1, through training data. The training data are the coverage data from a measurement set (y). Line 3
is to set the measurements (y) as 	̂0. Line 4–14 show that the sparse representations are computed layer
by layer. Line 4–8 are similar to Line 10–14. Since D1 is generated by X, the notation is different. Line 10
is to set the sparse representation as 0. Line 11–13 run the gradient descent with a given dictionary and
soft-thresholding for epoch times. The sparse representation of this layer is adopted to find the sparse
representation of the next layer.

The goal of Algorithm 5 is to find suitable dictionaries, which is similar to � matrix in TFSS. The
layered-ISTA computes the set sparse representations of each layer with given dictionaries. Line 5 is
computed the sparse representation for each layer by Algorithm 4. Line 6–13 show the dictionaries are
updated from the last to the first layer.

Algorithm 6 shows the CSC_subgoal algorithm for one iteration. In this algorithm, the dictionary
is trained by training data and the sparse coefficient is learned. In Line 4, the sparse coefficients is
learned by the measurement got in this iteration, while the initial value is the learned coefficients in
last iteration. Line 6 shows that the coverage function is reconstructed by X (depends on S), learned
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Algorithm 4. The layered iterative soft thresholding.

Algorithm 5. Convolutional dictionary learning.

Algorithm 6. CSC subgoal algorithm.
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Map-0

(a) (b) (c)

Map-1 Configuration

Figure 7. The experimental environments. The black and white grids represent the occupied and unoc-
cupied grids, respectively. (a) A grid map built in a Lab environment. (b) A grid map without any
obstacles. (c) The subgoal configuration in the experiment. The red points represent the subgoal loca-
tions. The black and white grids represent the occupied and unoccupied grids, respectively. The blue
areas and red lines represent the areas covered and field of view, respectively. The sensor-covered radius
is 75 and the distance between subgoals is 20.

dictionary ({Di}L
i=1), and sparse coefficients. Line 7–8 show that the argument maximum is found to

do greedy algorithm. After this algorithm, the robot can get the selected subgoal. If the Line 16 in
Algorithm 1 is replaced by CSC_subgoal, it is the search algortihm via SDCS-CSC.

5. Experiments
To evaluate the performance of proposed algorithms, there are three major experiments in this research.
EX1, the reconstruction experiment, evaluates the learning performance of the proposed algorithms
SDCS-CSC and the prior works (e.g., SFSS [16] and SDCS-CNN [29]). EX2 and EX3 are evaluated
by the expected time to detection (ETTD) [44] and success rate. EX2, search with dense subgoals,
evaluates the search performance when subgoals are close. The performance of SDCS-CSC, and SFSS
is compared in a Gazebo simulator and a real-world environment. EX3, search with sparse subgoals,
evaluates the search performance when subgoals are explored by TFSS. The performances of SDCS-
CSC and TFSS are compared in a Gazebo simulator and a real-world environment. In other words, EX2
and EX3 are compared with the SDCS-CSC and SFSS performance when the subgoals’ distributions
are different.

5.1. Experimental setup
In EX1, the maps and subgoals configurations are as follows: The experimental environments are 300 ×
300 grid maps (see Fig. 7). The Map-1 is adopted for training �. Map-0 is adopted for training f and
testing reconstruction results. The subgoal configuration is shown in Fig. 7(c). The range and field of
view for each subgoal are 75 and 60◦, respectively. There are nine subgoals with six directions for each
subgoal (i.e., there are 54(9 × 6) subgoals). The distance of two adjacent subgoals is 20 units.

The training data are collected by 3000 set combinations, which are randomly selected. The distri-
butions of each subgoal’s frequency and the order of the combinations are shown in Fig. 8. There are
500 different training maps (see Fig. 9) which are randomly generated obstacles in Map-1. The random
selected 100 different training maps in each batch. The input dimension of the transformation learning
stage is 100 × 3000 in every batch.

Since the network structures of the Fourier coefficient learning and reconstructions stages are similar
to that of the transformation learning stage, the network structures of the transformation learning stage
are explained as follows (see Fig. 10): this stage includes an autoencoder, weighting networks (W ), and
combinational networks. The autoencoder is implemented by the CNN.
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Figure 8. The distribution of 3000 test data. The subgoal is chosen uniformly, and the order is normal
distribution.

Figure 9. The training data for the transformation learning stage. The black areas represent different
obstacles in each map.

Figure 10. Convolutional neural network (CNN) [29]. The frameworks of the transformation learning.
This stage includes an autoencoder, weighting networks (W), and combinational networks.

The structure of the SDCS-CNN autoencoder [29] is as follows (see Fig. 10): the first layer and the
output layer are fully connected. There are four convolution layers in the encoder and four deconvolution
layers in the decoder. In each hidden layer, the filter size of a channel is 1 × 6 and the stride is 1 × 4.
The activation functions in the output layer of encoder and decoder are soft threshold functions with
λ = 0.01 and sigmoid function, respectively. The numbers of filters in each layer in the encoder are 16,
32, 64, and 64.

The structure of the SDCS-CSC is as follows (see Fig. 11): D0 is fully connected matrix. There are
three convolution layers (D1, D2, D3). In each convolution layer, the stride is 1 × 5. In the first and third
layers, the filter size of a channel is 1 × 7, while the filter size of a channel is 1 × 5 in the second
layer. The numbers of filters in each layer in the encoder are 1, 8, 16, and 32. The prediction errors are
computed by 5000 different set combinations (Fig. 12) in Map-0.
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Figure 11. The framework of the SDCS-CSC model.
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Figure 12. The distribution of 5000 test data. The subgoals are chosen uniformly, and the order of
subgoals is normal distribution.

5.2. EX1: Reconstruction experiments
The performance metrics are the mean error of estimated coverage, the results of the greedy algorithm,
and the number of Fourier support (nonzero coefficients). For each approach, the number of all subgoals
(|S|) is 54. Selecting the optimal solutions of three approaches is infeasible, since it needs to compute
|54|G solutions where G is the number of selected subgoals. The coverage of selected subgoals of four
approaches is compared with G = 15. Hence, the greedy algorithms are adopted for the three approaches
to finding near-optimal solutions [2].

In this experiment, the distance between two adjacent subgoals is 20, and the number of Fourier basis
(b) of SFSS is 9852; it is decided by the algorithms in ref. [16]. The number of bases (|f |) of SDCS-CNN
is 384. The different thresholds (λ) are tested to get the reconstruction in the Fourier coefficient learning
stage. The thresholds are set as follows: SDCS-CNN: [1e-5, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.3, 0.6];
SDCS-CSC: [1e-10,1e-9,1e-8,1e-7,1e-4]; and SFSS: [1e-5, 0.001, 0.0015, 0.002, 0.0035, 0.005, 0.01].

5.2.1. Reconstruction results versus sparsity
As Fig. 13 shows, when the number of nonzero elements in f is lower than 400, the mean error of SDCS-
CSC is lower than that of SDCS-CNN and SFSS. In addition, the mean error of SDCS-CSC is lower
than that of SFSS even the nonzero elements of SFSS is more than 1000. These experiments demonstrate
that SDCS-CSC approach is able to reconstruct submodular functions using fewer Fourier bases than
the SFSS approach and the SDCS-CNN does.

5.2.2. Greedy results versus sparsity
The reconstruction results with lower errors does not mean that the coverage of selected subgoals (so-
called greedy results) is higher. The k is defined as the number of Fourier supports. The test data are 1000
measurements in Map-0 (see Fig. 14). The reconstruction error and greedy results of three approaches
are further compared with different λ parameters.
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(a) (b)

Figure 13. When the distances of two adjacent subgoals are 20, the figure shows the k-sparse in
transferred coefficient versus mean error between reconstructed result and ground truth in Map-0 and
two different numbers of measurements. The reconstruction resulted in 500 and 1000 measurements in
Map-0 (Fig. 7(a)).

(a)

(b)

Figure 14. Comparisons of results of three approaches.

As Fig. 14(a) shows, when the reconstruction error of three approaches is around 0.009, their greedy
results are similar. The number of nonzero elements of SDCS-CSC is just 3, which is smaller than that
of SDCS-CNN and SFSS. The coverage area in the Map-0 of each approach is shown in Fig. 15. The
greedy results of SDCS-CSC approach are similar to those of SDCS-CNN and SFSS, while the k of
SDCS-CSC is lower than that of SDCS-CSC and SFSS (3 vs. 45 vs. 408). The error of SDCS-CSC is
around 0.009, but the greedy result is similar to ground truth (see Fig. 16(d)) and other approaches.

As Fig. 14(b) shows, the performances of the three approaches with the smallest λ values in
Section 5.2.1 is compared. The reconstruction error of SDCS-CSC is less than that of SFSS and SDCS-
CNN, while the greedy results are similar. This experiment demonstrates that SFSS and SDCS-CNN
can be replaced by SDCS-CSC (see Fig. 16).
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(a) (b) (c)

Figure 15. Coverage area is shown in Map-0 with Fig. 14(a). The black and white grids represent the
occupied and unoccupied grids, respectively. The blue grids represent the coverage area of the sensor.
The grid being dark blue means that this grid is covered by at least two sensors. The green circle and
red cross represent the subgoal being selected or not.

(a) (b) (c) (d)

Figure 16. Coverage area is shown in Map-0 with Fig. 14(b).

Figure 17. Computational time of three approaches

5.2.3. Computational time
The execution time for the three approaches is calculated. All approaches are implemented via Python on
a workstation. The execution time includes learning the Fourier coefficients and reconstruction. The time
of training transform and collecting the training data in SDCS and the time of finding the basis in SFSS
are not considered. The time finding 30 subgoals is calculated via the greedy algorithm to represent the
reconstruction time. There are seven different thresholds (1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, and 1e-4)
for SDCS-CSC, while those of other two methods are (1e-5, 0.0001, 0.0005, 0.001, 0.005, 0.01, and
0.05). For each approach with each threshold, the execution time for 10 times, mean and the variance
are calculated. Figure 17 shows that SFSS needs more time to find the coefficient and do reconstruction.
Since the � matrix is computed by sampling and basis combination where the number of SFSS basis
is 9852 in this experiment, SDCS is faster than SFSS. This experiment shows that SDCS approaches
are more efficient than SFSS when most of the sets’ sensing areas are overlapped. Among them, the
SDCS-CSC model is the most efficient one in the computational time.

https://doi.org/10.1017/S0263574721001661 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001661


2338 Bing-Xian Lu et al.

Table I. Experimental parameters.

|S| G Pth R200 range R200 FOV
114 20 0.9 3.5 (m) 60◦ × 46◦ × 70◦

The Gazebo environment.

(a) (b)

The real world environment.

Figure 18. The experiment environment is 13 × 10 (m2). (a) The red stars and blue smile faces represent
the subgoal and person locations, respectively. (b) The subgoals’ and persons’ locations are same as
Gazebo.

5.3. EX2: Search with dense subgoals
The SFSS approach in ref. [16] and SDCS-CNN approach in ref. [38] are adopted as the bench-
mark to compare with the proposed algorithm (SDCS-CSC) in the Gazebo simulator and real-world
environment. To compare the ETTD for three approaches, the target is a person who appeared at five
different locations (see Fig. 18(a)). For each search, the number of total subgoals (|S|) is 114 and the
number of selected subgoals (G) is 20. Greedy algorithms are adopted for the two approaches to finding
near-optimal solutions. For each approach, the robot searches for the person 10 times in one epoch. For
the first five times, the robot searches with exploration via ε-greedy where ε is set as 0.4 (i.e., the subgoal
is uniform randomly selected with the probability 0.4). The training f data are generated by all visited
subgoal in the epoch. Then the ETTD is compared in the last five times which solution is selected by
the greedy algorithm, since the goal of the first five times is to learn the f . There are three epochs in the
Gazebo simulator and two epochs in the real-world environment.

5.3.1. Experimental setup
The experimental environments of the Gazebo simulator and real-world maps are shown in Fig. 18.
The Gazebo environment is generated with reference to the real environment. The dimension of the
environment is 13 m × 10 m. The experimental parameters are as follows (see Table I). The number of
subgoal ground set (|S|) and selected subgoal(G) are 114 (19 × 6) and 20, respectively. The number
of SFSS Fourier basis is 7840. In this experiment, the training data of SDCS-CNN autoencoder model
and SDCS-CSC model are collected by 6000 set combinations, which are randomly selected. The 1000
training 3D maps are randomly generated obstacles in the empty map which dimension is same as the
experimental environment. The structures of CNN autoencoder and CSC model are same as Section 5.2.
In the Gazebo simulator, the robot platform is a 3DR IRIS drone model with an R200 RGBD sensor.
In the real-world environment, it is an Intel Ready to Fly Drone. The RGBD sensor is to access the
real-time RGB image for detecting the person via an Intel neural stick which detects persons through
the MobileNetSSD model (see Fig. 19).

The search processing is as follows: the drone takes off and moves to the 1st subgoal. Once the drone
arrives at the 1st subgoal, it will hover for 5 s. The Bayes filter updates the probabilty of the person (T ) in
this image P(T = 1) at 20 Hz based on the detection outcome. If the person is not found (P(T = 1) < Pth),
the drone will move to the next subgoal. Once the person is found (P(T = 1) ≥ Pth) or cannot find the
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Table II. Gazebo environment with dense subgoals.

(a) Experimental details

Person 1 Person 2 Person 3 Person 4 Person 5
Epoch 1 SFSS 105.6 111.8 41.8 78.5 403.9

SDCS-CNN 63.8 376.9 95.3 439.8 345.4
SDCS-CSC 190.3 134.2 75.3 422.2 220.7

Epoch 2 SFSS 295.8 142.9 63.7 118.5 178.3
SDCS-CNN 31.3 270.6 97.3 246.1 146.7
SDCS-CSC 46.3 187.8 31.9 43.3 103.9

Epoch 3 SFSS 353.3 120.2 85.9 414.3 65.5
SDCS-CNN 87.2 146.5 89.7 293.3 69.3
SDCS-CSC 48.6 45.4 105.6 417.6 89.5

(b) Experimental results

E[TTD] Std Successful rate TLP(μ/std)
SFSS 172.0 (s) 128.5 (s) 86.6 % 39.26 (s)/0.21 (s)
SDCS-CNN 186.6 (s) 130.7 (s) 93.3 % 1.75 (s)/0.02 (s)
SDCS-CSC 144.2 (s) 126.5 (s) 93.3 % 0.70 (s)/0.01 (s)

Gazebo simulator experiment. Real world experiment.

(a) (b)

Figure 19. The detected images. The green rectangles and decimal numbers represent the detected area
and corresponding probability, respectively.

person after arriving at the 20th subgoal, the search is terminated and the drone will land on the ground.
The search time (time to detection) is defined as the time between taking off and landing. After a search
processing, the f is trained by 500 set combinations which is random generated by all visited subgoal in
the epoch.

5.3.2. Expected time to detection and successful rate
The experimental results in the Gazebo simulator are summarized in Table IIb. The ETTD of the SDCS-
CSC is 16% faster than that of the SFSS algorithm, and the time of learning f and prediction (TLP)
of the SDCS-CSC is 98% faster than that of the benchmark algorithm. Although the ETTD of the
SDCS-CNN is 7% more than that of the benchmark algorithm, the time of learning f and prediction
(TLP) of the SDCS-CNN is 96% faster than that of the benchmark algorithm. The successful rate of the
proposed algorithms is 6% more than that of the benchmark algorithm. In Fig. 20(a), the coverage of
subgoals selected by SDCS-CSC and SDCS-CNN are higher than that of SFSS when the measurements
are generated by visited subgoals.
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Table III. Real-world enviornment with dense subgoals.

(a) Experimental details

Person 1 Person 2 Person 3 Person 4 Person 5
Epoch 1 SFSS 42.4 57.8 26.3 123.1 146.2

SDCS-CSC 42.7 25.0 26.0 27.7 115.6
Epoch 2 SFSS 39.5 27.0 27.0 290.3 70.7

SDCS-CSC 35.6 24.7 26.8 106.0 85.2

(b) Experimental results

E[TTD] Std successful rate TLP(μ/std)
SFSS 85.0 (s) 83.2 (s) 100 % 38.98 (s)/0.26 (s)
SDCS-CSC 51.5 (s) 36.2 (s) 100 % 0.49 (s)/0.04 (s)
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Figure 20. The greedy results with dense subgoals.

The experimental results in the real-world environment are summarized in Table IIIb. The ETTD of
the SDCS-CSC is 40% faster than that of the SFSS algorithm, and the time of learning f and prediction
(TLP) of the SDCS-CSC is 98% faster than that of the benchmark algorithm. In Fig. 20(b), the coverage
of subgoals selected by SDCS-CSC is higher than that of SFSS when the measurements are generated
by visited subgoals.

These experiments demonstrate the following facts: first, the time of learning f and predicting cov-
erage of SDCS-CSC is faster than that of the SFSS algorithm and the greedy results are better than the
SFSS, while the search performances of three algorithms are similar. Second, the recovery performance
of the SDCS-CSC is higher than that of the SFSS in the simulator and real-world environment under
dense subgoals cases.

5.4. EX3: Search with sparse subgoals
The TFSS and SDCS-CSC approaches are compared in the Gazebo simulator and real-world environ-
ment. In this experiment, the numbers of total subgoals (|S|) in Gazebo and real world are 42 and 36,
respectively. The number of selected subgoals (G) is 20. The subgoals and persons’ locations are shown
in Fig. 18 For each approach, the robot searches for the person 10 times in one epoch. For the first five
times, the robot searches with exploration via ε-greedy where ε is set as 0.4. The training f data are
generated by all visited subgoal in the epoch. Then, the ETTD is compared in the last five times which
solution is selected by the greedy algorithm, since the goal of the first five times is to learn the f . The
search processing is same as Section 5.3.
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Table IV. Gazebo enviornment with sparse subgoals.

(a) Experimental details

Person 1 Person 2 Person 3 Person 4 Person 5
Epoch 1 TFSS 16.0 6.0 22.0 152.0 213.0

SDCS-CSC 81.6 150.6 170.4 120.0 209.1
Epoch 2 TFSS 11.0 81.0 6.0 122.0 108.0

SDCS-CSC 123.7 285.3 89.1 166.2 362.6
Epoch 3 TFSS 6.0 17.0 6.0 108.0 89.0

SDCS-CSC 57.1 68.4 158.3 73.4 133.1

(b) Experimental results

E[TTD] Std Successful rate TLP(μ/std)
TFSS 64.2 (s) 65.8 (s) 100 % –
SDCS-CSC 150.0(s) 84.2 (s) 100 % 0.352 (s)/0.005(s)

(a)

The Gazebo environment The real world environment

(b)

Figure 21. The experiment environment is 13 × 10 (m2). (a) The red stars and blue smile faces represent
the subgoal and person locations, respectively. (b) It is is same as Fig. 18(b). The real-world subgoals’
configuration is shown in the Gazebo environment.

5.4.1. Experimental setup
The experimental environments of the Gazebo simulator and real-world maps are shown in Fig. 21.
The dimension of the environment is 13 m × 10 m. The experimental parameters are as follows: the
subgoals are explored by hexagonal packing (Algorithm 2). Therefore, the configurations of subgoals
in Gazebo and real world are different. The numbers of subgoal ground set (|S|) of Gazebo and real
world are 42 (7 × 6) and 36 (6 × 6), respectively. The number of selected subgoal(G) is 20. The SFSS
Fourier basis size is 64. In this experiment, the training data of SDCS-CSC model is collected by 3000
set combinations, which are randomly selected. The 3D maps, robot platform, and all sensors are same
as Section 5.3.

5.4.2. Expected time to detection and successful rate
The experimental results in the Gazebo simulator are summarized in Table IVb. The ETTD of the TFSS
is 57% faster than that of the SDCS-CSC algorithm. The successful rate of the SDCS-CSC and the SFSS
algorithm are 100%. Since the number of Fourier basis is just 64, the time of learning f and predicting
coverage of TFSS is as fast as SDCS-CSC while the performance of TFSS is better.
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Table V. Real-world environment with sparse subgoals.

(a) Experimental details

Person 1 Person 2 Person 3 Person 4 Person 5
Epoch 1 TFSS 46.4 30.0 30.5 105.0 46.2

SDCS-CSC 87.2 42.1 26.0 171.4 26.1
Epoch 2 TFSS 53.1 50.0 32.4 50.7 50.8

SDCS-CSC 41.9 27.8 26.2 82.8 30.8

(b) Experimental results

E[TTD] Std Successful rate TLP(μ/std)
TFSS 50.0 (s) 21.5 (s) 100 % 0.27 (s)/0.02 (s)
SDCS-CSC 56.2 (s) 46.6 (s) 100 % 0.36 (s)/0.01(s)

Figure 22. The greedy results of SDCS-CSC and TFSS with sparse subgoals.

The experimental results in the real-world environment are summarized in Table Vb. The E[TTD]
of the TFSS is 11% faster than that of the SDCS-CSC algorithm, and the time of learning f and pre-
diction (TLP) of the SDCS-CSC is similar as that of the TFSS algorithm. In Fig. 22, the coverage of
subgoals selected by SDCS-CSC and TFSS are similar when the measurements are generated by visited
subgoals.

These experiments demonstrate that the recovery performance of the SDCS-CSC is similar to that of
the TFSS in the real-world environment under sparse subgoals cases. Due to the coverage performance
(see Fig. 22), the search performance of TFSS is better than that of SDCS-CSC.

5.5. Comparison with algorithms
The SFSS was proposed for learning submodular functions and applied to search problems [16].
However, when there are more overlapping between sensing areas, the number of Fourier support
increases exponentially [7]. To overcome this issue, there are two ways, spreading out the subgoals in
the spatial domain and compressing the submodular functions in the Fourier domain. The first approach
is TFSS via topology, while the second one is CSC via deep learning.

The accuracy of submodular function is the major factor affecting the search behavior. Hence, the
recovery performance of SFSS, TFSS, and CSC is discussed under three cases, full Fourier support,
dense subgoals, and sparse subgoals. In the full Fourier support, each approach has all Fourier support.
The recovery performance of SFSS and TFSS is exact recovery. However, even if CSC has full Fourier
support, it cannot exactly recover submodular functions due to the nonlinear and lossy compression.
Therefore, in this case, their recovery error is eCSC > eTFSS = eSFSS ∼ 0.
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In the dense subgoals case, the SFSS needs to discard parts of Fourier support for alleviating com-
putational issues, so its accuracy degrades. The CSC can compressed the submodular function even if
the subgoals have a lot of overlapping areas. The TFSS automatically decides the distance between sub-
goals. Hence, there is no dense subgoal case for the TFSS. Hence, in this case, their recovery error is
eSFSS > eCSC.

In the sparse subgoals case, the SFSS has all Fourier support. It can exactly recover submodular
functions. The CSC is a nonlinear and lossy compression approach, so it cannot exactly recover them.
The TFSS can have all Fourier support. Hence, it can exactly recover them also. In this case, their
recovery error is eCSC > eTFSS = eSFSS ∼ 0. To further analyze the search behavior of the CSC and TFSS,
locations of their subgoals are important. Since TFSS is based on the hexagonal expansion, generating
the minimal Fourier support, the number of TFSS Fourier support is less than or equal to that of SFSS
Fourier support. This leads to fast computation of TFSS. Since the number of TFSS subgoals is less
than or equal to that of SFSS subgoals, the UAV with TFSS could fly to far subgoals and then detect the
target. Hence, the search behavior of TFSS could lead to slower search speed.

6. Discussion
The TFSS and CSC are based on compressed sensing techniques. This section discusses their advan-
tages, disadvantages, and potential applciations.

6.1. Selecting CSC or topological Fourier sparse
Since the TFSS and CSC are based on topology and deep learning, respectively, they have different
advantages and disadvantages. To help users for selecting TFSS or CSC, a guideline is described in this
subsection.

6.1.1. Advantages and disadvantages of topological Fourier sparse for people search
The advantages of TFSS are as follows: first, it can generate dynamic subgoals via interacting with
environments. Hence, it can be applied to search problems in unknown environments. Second, since it is
based on linear transform (e.g., Hadamard transform), the Fourier bases can be computed via the sensing
overlaps of subgoals offline. Third, it can exactly recover coverage functions if all Fourier supports (|f |)
are kept for compressed sensing algorithms [7].

The disadvantages of TFSS are as follows: first, the number of Fourier bases increases when the
sensing overlaps of subgoals increases. Hence, the number of Fourier bases could be close to 2N , which is
infeasible for online computations. Second, if the number of Fourier bases is too large to run algorithms
online, the users can discard parts of Fourier bases. However, the accuracy of submodular functions will
be decreased if |f | is smaller.

6.1.2. Advantages and disadvantages of CSC for people search
The advantages of CSC are as follows: first, it can compress submodular functions with a fixed number
of Fourier bases (|f |). Second, since its |f | is small (e.g., 200 ∼ 400), its reconstruction computation
(forward propagation) is fast.

The disadvantages of CSC are as follows: first, the ground set (S) needs to be fixed. Once the set
in S is changed, the parameters of CSC need to be retrained. Hence, it is only applied to the given
maps. Second, since the parameters of CSC are more than that of TFSS, it needs more data and time
for pre-train. Third, it is one kind of distortion compression algorithms, which means it cannot exactly
reconstruct the submodular functions.
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Figure 23. The flowchart of selecting TSSS or CSC.

6.1.3. The guideline of selecting CSC or TFSS
The guideline of selecting TFSS or CSC for people search problems is as follows (see Fig. 23): first,
if the map is not given, selecting TFSS to generate subgoals/sets of coverage functions. If the map is
given, the next step is to assign the subgoals and generate Fourier bases. Second, if the number of Fourier
bases (|f |)is over than NB, the computation of compressed sensing cannot run online. For example, for
a 2.6 GHz CPU, if |f | is over 3000, the computational time could over 1 s, which is impractical for
real-time search processes. Therefore, if |f | > NB, the users need to reassign the subgoals, which are
spread out so that the coverage functions are sparse in the Fourier domain. After reassigning subgoals
and regenerating Fourier bases, if |f | > NB, selecting CSC to compress the submodular functions with
a fixed |f |. If |f | ≤ NB, the users should select TFSS to get more accurate approximation of submodular
functions.

6.2. Links between problems, experiments, and conclusion
The outcome of submodular functions for N sets is 2N in the spatial domain. SFSS transfers functions
to the frequency domain, which compressed the data to a computable level. However, the number of
Fourier coefficients increases when the subgoal/set distribution is closed. To solve this issue, there are
two ways. The first way is to compress submodular functions in the Fourier domain via the nonlin-
ear transform methods. The second way is to spread subgoals/sets out in the spatial domain via the
topological methods.

SDCS-CSC is to compress submodular functions by deep neural networks. The number of Fourier
coefficients compressed by SDCS-CSC is fewer than that by SFSS. The fewer number of Fourier coef-
ficients makes the reconstruction of SDCS-CSC faster than that of SFSS. Hence, SDCS-CSC can
outperform SFSS when the subgoal distribution is desne (EX2).

TFSS is to spread subgoals out via Rip complexes and the hexagonal packing algorithm. The hexag-
onal structure of subgoals lets sensors cover the environment completely, and the number of sensing
overlaps is as few as possible if there is no obstacle. The subgoal distribution generated by TFSS has
fewer Fourier bases than that generated by manual. The fewer number of Fourier coefficients makes the
reconstruction of TFSS faster than that of SFSS. Hence, TFSS can outperform SFSS when the subgoal
distribution is sparse (EX3).
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Search for fire ants

(a) (b)

Search for sick plants

Figure 24. Illustration of two applications. The red areas and blue points represent the target and the
subgoals, respectively.

6.3. Potential applications
Proposed algorithms can be applied in scenarios, while objective functions of the applications satisfy
submodularity. For example, the invasive fire ants have expanded their territories in Asia and affect the
original ecosystem. They are also harmful for humans. UAVs are suitable platforms for detecting them.
As Fig. 24(a) shows, there is a 3D map and predefined subgoals. Given a fixed budget (e.g., time), the
UAV has to find the fire ants as soon as possible. TFSS and CSC can be applied to search for the fire
ants.

To give another example, normalized difference vegetation index (NDVI) is adopted to measure the
healthy status of plants. However, to build a complete NDVI image by humans is difficult. Hence, letting
a UAV collect the NDVI information is a promising way. As Fig. 24(a) shows, there is a farm and
predefined subgoals. Given a fixed budget (e.g., time), the UAV has to find the sick plant as soon as
possible via NDVI. TFSS and CSC can be applied to search for the plant.

6.4. Tuning the parameters
The framework of deep neural network is based on the method in ref. [28]. Each parameter in the network
are tuned, while other parameters are fixed. First, the learning rate (β) is tuned by the bisection method.
Second, the activation function is chosen after testing all major functions (e.g., tanh, sigmoid, etc.).
Third, the distance (d) between adjacent subgoals is decided depending on the sensor range and the
number of overlap.

6.5. Applying algorithms to a new environment
Each environment has its own sparse representation sets. Hence, the sparse representations (	) need to
be retrained with trained nerual network (Algorithm 6) once the new environment was involved. There
are three steps of SDCS-CSC. The first step is to train the dictionary (D). The dictionary is trained by
many different environments’ coverage functions. The second step is to learn the sparse representations
(	). Sparse representations of the new environment are learned by trained dictionaries and collected
data. Sparse representations are learned when the agent explores the new environment. The third step
is to reconstruct the coverage function by learned sparse representations. After training, the coverage
function of the new environment can be predicted by learned sparse representations.

7. Conclusions
This research proposed SDCS-CSC and applies TFSS to people search problems. These algorithms
include two stages, exploration and exploration. The exploration is to find the subgoals in the map,
while the exploitation is to learn the coverage functions for selecting the next subgoals until finding
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the person. Since the TFSS is based on topological and compressed sensing techniques, it can dynam-
ically generate subgoals via interacting the environments. On the contrary, the SDCS-CSC is based
on DCS techniques. Therefore, it can compress the submodular functions to a fixed number of the
spectrum. Experiments show that TFSS and SDCS-CSC can search for the person more efficiently than
the benchmark approaches (e.g., SFSS and SDCS-CNN).

The future work is as follows: first, state-of-the-art DCS techniques cannot be applied to dynamic sub-
goals of submodular functions (e.g., TFSS). If the spatial relationships of subgoals in the deep neural
networks are explored, the SDCS-CSC approach could be applied to search problems in unknown envi-
ronments. Second, learning submodular functions via deep neural networks is still a challenge [38] and
needs a lot of data and time. If the transfer learning of deep learning is explored for learning submodular
functions, it could reduce the preprocess (e.g., basis generator) and be applied to various applications.
Finally, since humans are able to explore environments efficiently, exploring how humans solve explo-
ration problems is another way to investigate search problems. A promising approach is to let human
subjects remotely control the robot and search for the person [45]. These data could be adopted to com-
pare human and robot performance [46]. The coordination patterns between gaze and control in human
spatial search can be further analyzed [47]. To analyze 3D search behavior, a UAV is remotely controlled
by the human subject for collecting data [48]. The collected human data can be also adopted for deep
inverse reinforcement learning [49]. If the search behavior is learned, the deep neural networks can be
applied to autonomous search.
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