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Given a locally finite connected infinite graph G, let the interval [pmin(G), pmax(G)] be the

smallest interval such that if p > pmax(G), then every 1-independent bond percolation model

on G with bond probability p percolates, and for p < pmin(G) none does. We determine this

interval for trees in terms of the branching number of the tree. We also give some general

bounds for other graphs G, in particular for lattices.

1. Introduction

Let G be a locally finite connected infinite graph. A (bond) percolation model on G is a

probability measure on the subgraphs of G. We call an edge open if it belongs to our

random subgraph, and closed otherwise. In an independent percolation measure, the edges

are open or closed independently of the states of all the other edges. A weaker condition

is that of 1-independence. We say a model is 1-independent if, for any two disjoint sets

of edges S1 and S2 that are at distance at least 1 in G, the states of the edges in S1 are

independent of the states of the edges in S2. (This is sometimes referred to in the literature

as 1-dependent percolation.) We say that the model percolates if, with positive probability,

there is an infinite component in our random subgraph, i.e., there is an infinite connected

subgraph consisting of open edges of G.

The interest in 1-independent models stems from the fact that they naturally arise

from renormalizing independent models, or more generally, models with limited range
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dependencies. As such, 1-independent models have become a key tool in establishing

bounds on critical probabilities (see for example [2, sections 3.5 and 6.2]). Given this, it

is perhaps surprising that some of the most basic questions about 1-independent models

are open.

Our main interest in this paper is in the case when G is a tree. Let T be a locally finite

tree and fix a root v0 ∈ V (T ). We define the level �(v) of a vertex v ∈ V (T ) to be the

distance in T from v to v0. If T is infinite, define a flow on T to be a non-negative function

f : V (T ) → R such that, for each vertex v, f(v) =
∑

i f(vi), where vi are the children of v,

i.e., �(vi) = �(v) + 1 and vvi ∈ E(T ). (One can equivalently, and perhaps more naturally,

define f on the edges of T , so that f(uv) = f(v) where v is a child of u.) We say that a

flow f is non-trivial if f(v0) > 0. Define the branching number of T by

br(T ) = sup{ b : ∃ a non-trivial flow f such that b�(v)f(v) is bounded}.

Note that for any infinite tree, br(T ) � 1, and for a regular tree of degree k + 1, br(T ) = k.

Furthermore, br(T ) is independent of the choice of the root. The following result was

proved by Lyons [5, Theorem 6.2] in 1990.

Theorem 1.1. If each edge of a locally finite infinite tree T is declared to be open with

probability p, independently of the states of all other edges, then if p < 1/br(T ) there is

almost surely no infinite open path from v0, and if p > 1/br(T ) then an infinite open path

from v0 exists with positive probability.

We wish to extend this result to the class of 1-independent models. Since we have no

fixed model in mind, there will be a range of values of p for which some models will

percolate and some do not. However, if p is sufficiently large one would expect percolation

in all 1-independent models, and if p is sufficiently small, no 1-independent model should

percolate. Define D�p(G) to be the class of 1-independent bond percolation models on G

for which each edge is open with probability at least p. Define D�p(G) similarly. We write

pmax(G) = sup{p : ∃ a model in D�p(G) that does not percolate},
pmin(G) = inf{p : ∃ a model in D�p(G) that does percolate}.

In the definitions of pmax(G) and pmin(G), it is equivalent to consider 1-independent

models in which each edge probability is exactly p. Indeed, in any non-percolating model

in D�p(G), edges which occur with probability p′ > p can be deleted independently with

probability 1 − p/p′, resulting in a non-percolating 1-independent model whose edges

are open with probability p. Similarly, for percolating models in D�p(G), edges can be

independently added so as to ensure all edges are open with probability exactly p.

If G has a finite maximum degree, then a result of Liggett, Schonmann and Stacey [4]

shows that every model in D�p(G) stochastically dominates an independent bond per-

colation model with probability f(p), where f(p) → 1 as p → 1. As a consequence, if the

vertices of G have finite maximum degree and the independent bond percolation model

on G percolates for some p < 1, then pmax(G) < 1.

Our main result is the following.

https://doi.org/10.1017/S0963548311000538 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000538


Critical Probabilities of 1-Independent Percolation Models 13

Theorem 1.2. Consider a 1-independent model on a tree T in which each edge is open

with probability at least p. If br(T ) > 2, suppose that p � 3
4
; if br(T ) � 2, suppose that

p > 1 − br(T )−1
br(T )2

. Then with positive probability there exists an infinite open path from the

root.

We shall also show that this result is essentially best possible by proving the following.

Theorem 1.3. Let T be a tree with br(T ) < 2. If p < 1 − br(T )−1
br(T )2

then there exists a 1-

independent model on T for which each edge is open with probability at least p, and such

that T almost surely does not have an infinite open path starting at the root. For any tree T

and p < 3
4
, there is a 1-independent model on T for which each edge is open with probability

at least p, but all open components have uniformly bounded depth.

Combining Theorems 1.2 and 1.3, we see that for any locally finite tree T

pmax(T ) =

{
1 − br(T )−1

br(T )2
br(T ) < 2,

3
4

br(T ) � 2.

Note that in contrast to Theorem 1.1, one can have 1-independent models with edge

probabilities close to 3
4

which still fail to percolate, even for trees with very large branching

numbers.

For general graphs we prove the following weaker result.

Theorem 1.4. Suppose G is a locally finite connected infinite graph. Then there is a 1-

independent process on G in which each edge is open with probability at least 1
2
, but there

is almost surely no infinite open component.

Hence pmax(G) � 1
2

holds for any graph G. Surprisingly enough, this bound is best

possible.

Theorem 1.5. There exists a locally finite connected infinite graph G with pmax(G) = 1
2
.

Theorems 1.2 and 1.3 will be proved in Section 2, while Theorems 1.4 and 1.5 will be

proved in Section 3. We give some results for pmin(G) for trees and general graphs in

Section 4. Finally, in Section 5 we discuss the important special case when G is a lattice.

2. Determining pmax for trees

We start this section by showing how to construct a 1-independent model on a tree in

which the probability of a path existing from the root to level N is as small as possible.

Fix p and N, and for i = N,N − 1, . . . , 0, define ci inductively by setting

ci =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = N,

1 − q/ci+1 if i < N, ci+1 > q,

0 if i < N, ci+1 � q,

(2.1)
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where q = 1 − p. Let T be a finite tree with root v0 and depth N. Let Ti be the set

of nodes at level i, i = 0, . . . , N. Define the following 1-independent model on T . Assign

independent 0–1 Bernoulli variables Xv to the vertices v ∈ V (T ) so that P(Xv = 1) = ci
when v ∈ Ti. Now declare an edge uv with u ∈ Ti, v ∈ Ti+1, to be closed if Xu = 0 and

Xv = 1. Note that this model is clearly 1-independent, and the probability of an edge

being closed is (1 − ci)ci+1 � q. Hence each edge is open with probability at least p. Let

η0
v = η0

v (T ) be the probability that, in this model, there is no open path in T starting from

v that goes down to level N (without passing through any vertex of level less than �(v)).

Theorem 2.1. Consider any 1-independent model on T in which each edge is open with

probability at least p. Then the probability that there is a path in T from v down to level N

is at least 1 − η0
v (T ).

Proof. For each vertex v ∈ V (T ), let Fv be the event that a path exists from v down to

level N, and let ηv = P(Fc
v ) be the probability that there is no such path. Fix a vertex v

and let the children of v be vi, i = 1, . . . , r, and their children be vij , j = 1, . . . , ri. Denote

the edges between these vertices by ei = vvi and eij = vivij . Let Ee be the event that the

edge e is closed. By decomposing Fc
v according to the first i for which Fvi holds (if any)

and noting that if Fv fails but Fvi holds then ei must be closed, one obtains

Fc
v ⊆ (Fv1 ∩ Ee1

) ∪
(
Fc
v1

∩ Fv2 ∩ Ee2

)
∪

(
Fc
v1

∩ Fc
v2

∩ Fv3 ∩ Ee3

)
∪ · · ·

∪
(
Fc
v1

∩ · · · ∩ Fc
vr−1

∩ Fvr ∩ Eer

)
∪

(
Fc
v1

∩ · · · ∩ Fc
vr

)
.

However, Fvi ⊆
⋃

j Fvij , and the events Fv1 , . . . , Fvi−1
, Eei , and Fvij are all independent. Hence

P
(
Fc
v1

∩ · · · ∩ Fc
vi−1

∩ Fvi ∩ Eei

)
� P

(
Fc
v1

∩ · · · ∩ Fc
vi−1

∩
(⋃

jFvij

)
∩ Eei

)
� qηv1 · · · ηvi−1

(
1 −

∏
jηvij

)
.

Consequently we have

ηv � q
(
1 −

∏
jη1j) + qηv1

(
1 −

∏
jη2j

)
+ qηv1ηv2

(
1 −

∏
jη3j

)
+ · · ·

+ qηv1 · · · ηvr−1

(
1 −

∏
jηrj

)
+ ηv1 · · · ηvr . (2.2)

Define ci as in (2.1). We claim that

1 − ηv � ci
(
1 −

∏
jηvj

)
. (2.3)

We prove this claim by reverse induction on the level i. At level N it is clear as ηv = 0.

Now, assuming that the result holds at level i + 1 and v is a vertex at level i, (2.2) and

(2.3) imply that

ci+1ηv � q(1 − ηv1 ) + qηv1 (1 − ηv2 ) + qηv1ηv2 (1 − ηv3 ) + · · ·
+ qηv1 · · · ηvr−1

(1 − ηvr ) + ci+1ηv1 · · · ηvr
= q + (ci+1 − q)ηv1 · · · ηvr

But then ci+1(1 − ηv) � (ci+1 − q)(1 −
∏

ηvi ). The claim follows since either ci = 0, or

ci+1 > q and ci = (ci+1 − q)/ci+1.
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For the model defined at the beginning of this section, we have equality throughout,

so 1 − η0
v = ci(1 −

∏
η0
vi
). One can check this by checking for equality at each step of

the above argument, or one can obtain the result more directly as follows. At level N,

Xv = 1, so if at level �, Xv = 0, one definitely does not have a path to level N since

on that path there would be a 0–1 transition which would result in a closed edge. On

the other hand, if �(v) = � and Xv = 1, then all edges to level � + 1 are open, and the

probability that there is no path to level N is just the probability of no path from any of

the children vi of v to N. These events are independent and have probability η0
vi
, so one

obtains 1 − η0
v = P(Xv = 0)0 + P(Xv = 1)(1 −

∏
η0
vi
) = ci(1 −

∏
η0
vi
) as required.

We now prove by reverse induction on the level that ηv � η0
v . If v is at level N then

ηv = η0
v = 0, and if it is at level i < N then

1 − ηv � ci
(
1 −

∏
jηvj

)
� ci

(
1 −

∏
jη

0
vj

)
= 1 − η0

v .

The result follows.

Proof of Theorem 1.2. By compactness it suffices to show that the probability that there

is a path from level 0 to level N is bounded below by some ε > 0, independently of N.

Fix N and consider the finite tree consisting of all vertices v of T of level at most N.

Assume that p � 3
4

and write

c∗ = (1 +
√

1 − 4q)/2, (2.4)

where q = 1 − p. Note that c∗ ∈ [ 1
2
, 1], c∗ > 1

4
� q, and c∗ is the largest solution of the

equation

c∗ = 1 − q/c∗.

Note also that if br(T ) � 2 and p > 1 − br(T )−1
br(T )2

then c∗ > 1/br(T ), while if br(T ) > 2 and

p � 3
4

then c∗ � 1
2
> 1/br(T ). With the ci and ηv defined as in the proof of Theorem 2.1,

we see by induction that ci � c∗ for all i. Hence, by (2.3),

1 − ηv � c∗
(
1 −

∏
jηvj

)
(2.5)

holds for all v.

We now use the definition of br(T ). Let f be a non-trivial flow on T with b�(v)f(v) � 1

where c−1
∗ < b < br(T ). We show by induction on the level that ηv � 1 − εb�(v)f(v) for

some fixed ε > 0. At level N we require εb�(v)f(v) � 1, which will hold for all ε � 1. Now

assuming �(v) = i and the result holds at level i + 1, (2.5) gives

1 − ηv � c∗
(
1 −

∏
j(1 − εbi+1f(vj))

)
� c∗

(
1 − exp(−

∑
jεb

i+1f(vj))
)

= c∗(1 − exp(−bεbif(v)))

� c∗bεb
if(v)/(1 + bεbif(v))

� c∗bεb
if(v)/(1 + bε),

where we have used 1/(1 + x) � e−x � 1 − x for x � 0, and bif(v) � 1. Now if we choose ε

sufficiently small that c∗b � 1 + bε, we have 1 − ηv � εbif(v), so ηv � 1 − εb�(v)f(v). Finally,
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16 P. Balister and B. Bollobás

for v = v0, we have ηv0 � 1 − εf(v0), which is bounded away from 1, independently of N.

Hence 1 − ηv0 � εf(v0) is bounded away from zero, as required.

Proof of Theorem 1.3. Assume first that br(T ) < 2 and 3
4

� p < 1 − br(T )−1
br(T )2

. Define c∗
as in (2.4), so that p = 1 − c∗(1 − c∗) and note that c∗ < 1/br(T ). Construct a model

by assigning independent 0–1 Bernoulli variables Xv to each vertex v which are 1 with

probability c∗. An edge uv is closed if Xu = 0 and Xv = 1, where �(v) = �(u) + 1. Note that

each edge is closed with probability c∗(1 − c∗) = 1 − p, and the model is 1-independent.

Suppose that an infinite open component exists. Then there is an infinite path v0v1 . . .

such that the sequence Xv0 , Xv1 , . . . never contains a 1 followed by a 0. But then the Xvi

must be eventually constant, and so the site percolation model determined by the Xv must

have an infinite component of 1s, or an infinite component of 0s. Neither is possible since

1 − c∗ � c∗ < 1/br(T ). (The critical probability for independent site percolation on a tree

is the same as for independent bond percolation, which is 1/br(T ) by Theorem 1.1.)

Now assume p < 3
4
. If N is large enough, then the sequence ci defined in (2.1) is

zero at i = 0. Indeed, by the arithmetic–geometric mean inequality 2
√
q � q/c + c, so

1 − q/c � c − (2
√
q − 1). Hence for q > 1

4
, ci decreases at each step by at least 2

√
q − 1 > 0

until it becomes zero. Now on the infinite tree, define ci as ci mod (N+1), and assign 0–1

Bernoulli variables Xv to each vertex as in Section 2 so that at level i, P(Xv = 1) = ci.

Once again, declare an edge uv closed if Xu = 0 and Xv = 1, where �(v) = �(u) + 1. The

probability that an edge is closed is at most q when �(u) �≡ N mod (N + 1), and zero when

�(u) ≡ N mod (N + 1). Also, there is no open path from any vertex at level k(N + 1) to

level k(N + 1) + N. Hence any open component is of uniformly bounded depth.

3. Bounds on pmax for arbitrary graphs

Proof of Theorem 1.4. Fix a vertex v0 of G and a (deterministic) vertex labelling

c : V (G) → [0, 1] defined by

c(v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if d(v, v0) ≡ 0 mod 4,

1 if d(v, v0) ≡ 2 mod 4,
1
2

if d(v, v0) ≡ 1, 3 mod 4,

where d(v, v0) is the graph distance from v to v0. Now define independent 0–1 Bernoulli

random variables Xv for each v ∈ V (G) so that

P(Xv = 1) = c(v).

Declare a bond uv of G to be open if Xu = Xv . Then the process on bonds is 1-

independent and the probability of an edge being open is at least 1
2
. Indeed, if c(u) = 1

2

then P(Xu = s) = 1
2

for either s ∈ {0, 1}, so the bond is open with probability 1
2
; and

similarly if c(v) = 1
2
. If c(u), c(v) ∈ {0, 1} then c(u) = c(v), since no vertex with c(w) = 0 is

adjacent to any vertex with c(w) = 1. Then uv is open with probability 1.

Any open cluster in G must consist of sites with the same value of Xw . Thus the

distances from v0 of the vertices of this cluster cannot cross between 4k + 1 and 4k + 3

https://doi.org/10.1017/S0963548311000538 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000538


Critical Probabilities of 1-Independent Percolation Models 17

if Xw = 0, or between 4k + 3 and 4k + 5 if Xw = 1. Thus the points of the cluster have

bounded distance from v0. Thus all open clusters are finite.

To prove Theorem 1.5 we shall use the following.

Lemma 3.1. Let ε > 0. Then for sufficiently large n the following holds. Given any 1-

independent model on the complete bipartite graph Kn,n in which each edge is open with

probability at least 1
2

+ ε, then with probability at least 1 − ε there exists an open component

containing at least a fraction 1
2

+ ε
2

of both bipartite classes.

Proof. Decompose the edge set of G = Kn,n as the union of n perfect matchings

M1, . . . ,Mn and let mi be the number of open edges in Mi. Then, as the edges in Mi

are independent, mi stochastically dominates a binomial random variable with parameters

n and 1
2

+ ε. Thus, by Hoeffding’s inequality,

P
(
mi <

(
1
2

+ ε
2

)
n
)
< exp(−ε2n/2).

Thus, if m is the total number of open edges in G,

P
(
m <

(
1
2

+ ε
2

)
n2

)
� P

(
∃i : mi <

(
1
2

+ ε
2

)
n
)

� n exp(−ε2n/2),

which is at most ε when n is sufficiently large.

Now suppose that m � ( 1
2

+ ε
2
)n2. Let the bipartite classes of G be A and B and suppose

the open components are Ci = G[Ai ∪ Bi], i = 1, . . . , c, where {Ai : i = 1, . . . , c, Ai �= ∅} and

{Bi : i = 1, . . . , c, Bi �= ∅} are partitions of A and B respectively. Let ai = |Ai| and bi = |Bi|.
Then m �

∑
aibi.

Suppose first that ai < ( 1
2

+ ε
2
)n for every i. Then m < ( 1

2
+ ε

2
)n

∑
bi = (1

2
+ ε

2
)n2, a

contradiction. Thus, without loss of generality, we may assume that a1 � ( 1
2

+ ε
2
)n.

Similarly we may assume that bj � ( 1
2

+ ε
2
)n for some j. If j = 1 we are done, so without

loss of generality assume j = 2. As ai � n − a1 < a1 for all i > 1,
∑

i�=2 aibi � a1(n − b2),

while a2b2 � (n − a1)b2. Hence

m � a1(n − b2) + (n − a1)b2 = n2

2
− 2

(
a1 − n

2

)(
b2 − n

2

)
< n2

2
,

a contradiction. Hence there exists an open component meeting at least a fraction 1
2

+ ε
2

of both bipartite classes.

Proof of Theorem 1.5. By Theorem 1.4 it is enough to give an example of a graph G

such that for any p > 1
2
, every model in D�p(G) percolates.

Let T be the infinite binary tree, and let G be obtained by replacing each vertex v of

T by �(v) copies v1, . . . , v�(v), and each edge uv by a complete bipartite graph consisting of

all edges uivj , 1 � i � �(u), 1 � j � �(v).

Consider a model in D�p(G), where p = 1/2 + ε > 1/2. We proceed by renormalizing

this model to give a model on T . Specifically, for each edge uv in T , declare uv to be open if

there exists an open component in the complete bipartite graph G[{u1, . . . , u�(u), v1, . . . , v�(v)}]
which contains more than �(u)/2 of the vertices u1, . . . , u�(u) and more than �(v)/2 of the
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18 P. Balister and B. Bollobás

vertices v1, . . . , v�(v). This clearly gives a 1-independent model on T . Moreover, the existence

of an infinite open path in T implies the existence of an infinite open component in G.

Now assume u and v are at levels n and n + 1, where n is sufficiently large. Then the

graph G[{u1, . . . , u�(u), v1, . . . , v�(v)}] is isomorphic to Kn,n+1. Ignoring one of the vertices

in the larger class, Lemma 3.1 implies that this subgraph will have an open component

meeting more than (n + 1)/2 vertices of each bipartite class with probability at least 1 − ε.

Thus for ε < 1
4
, uv will be open with probability more than 3

4
. Theorem 1.2 then implies

that there is percolation in (a sufficiently deep subtree of) T and hence there is percolation

in G.

One might imagine that choosing a tree with higher branching number might help in

the proof of Theorem 1.5, but in fact any tree T with br(T ) > 1 will work.

4. Bounds on pmin

First we prove an upper bound on pmin(G) that applies to an arbitrary locally finite

graph G.

Proposition 4.1. If G is a locally finite connected infinite graph then pmin(G) � psite(G)2,

where psite(G) is the critical probability for independent site percolation on G.

Proof. Consider the model which declares each site open independently with probabil-

ity
√
p, and then declares each bond open if it joins two open sites. Each bond is open

with probability p, and the bonds are 1-independent. The bonds form infinite open clusters

precisely when the sites do, so this model percolates for p > psite(G)2.

For trees we show that the above bound is in fact sharp.

Theorem 4.2. For any locally finite tree T , pmin(T ) = 1/br(T )2.

Proof. By Proposition 4.1, pmin(T ) � psite(T )2. As site percolation is equivalent to bond

percolation on trees, Theorem 1.1 implies pmin(T ) � 1/br(T )2.

For the converse, consider a 1-independent model with edge probability at most p.

Assume v ∈ V (T ) has children vi, and their children are vij . If we let ζv be the probability

that an infinite open path exists from v downwards, then we may assume for contradiction

that ζv is non-zero when v = v0. Also, if an infinite path exists from v then at least one

of the edges vvi must be open and at least one of the vij must have an infinite open path

from it. Since the openness of vvi is independent of the existence of an open path from

vij , we have

ζv �
∑

i,jpζvij .
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Now define a flow f : V (T ) → R on T . We set f(v0) = ζv0 , and inductively define f on

vertices at even levels by

f(vij) =
ζvij∑
klζvkl

f(v).

(If
∑

kl ζvkl = 0 then ζv = 0, so f(v) = 0, and we take f(vij) = 0.) To complete the definition

of f, we define f at odd levels by

f(vi) =
∑

jf(vij).

It is clear that f is a flow on T . We also note that at even levels

f(vij) =
ζvij∑
klζvkl

f(v) �
ζvij

ζv
pf(v),

so by induction f(v) � ζvp
�(v)/2 � p�(v)/2. For odd levels f(vi) � f(v) � p(�(vi)−1)/2. Thus, if

ζv0 > 0 then p−1/2 � br(T ) and so p � 1/br(T )2. As this holds for any 1-independent

model that percolates, pmin(T ) � 1/br(T )2.

We finish this section by noting that the inequality in Proposition 4.1 may be strict.

Indeed, this is clear as pmin(G) � pbond(G), where pbond(G) is the critical probability for

independent bond percolation, and there are examples of graphs G for which pbond(G) = 0

but psite(G) = 1. We now present an even more dramatic example.

Theorem 4.3. There exists a locally finite connected infinite graph G with pmin(G) = 0, but

pbond(G) = psite(G) = 1.

Proof. Define G to be a bipartite graph with one vertex class {v1, v2, . . .} and the other

vertex class a union of sets of vertices U1, U2, . . .. Join every vertex in Uk to both vk and

vk+1 (see Figure 1). Assume |Uk| = q2
k + qk + 1, where qk is a prime power; in a moment

we shall consider each Uk as the set of vertices of a projective plane. We shall assume

qk → ∞ sufficiently slowly so that |Uk| = o(log k).

It is clear that psite(G) = 1. Indeed pbond(G) = 1, since if each edge is open independently

with probability p < 1, then the probability of an infinite open component containing vk
is

∏
i�k(1 − (1 − p2)|Ui|) =

∏
i�k(1 − eλ|Ui|) for some λ > 0. However, as |Uk| = o(log k),

eλ|Ui| = Ω(1/i), so this product converges to zero for any p < 1.

We now show that pmin(G) = 0. Fix p > 0. If (qk + 1)/(q2
k + qk + 1) > p, declare all edges

incident to Uk closed. If (qk + 1)/(q2
k + qk + 1) � p, declare open all edges from vk to a

projective line in Uk chosen uniformly at random from the set of projective lines in Uk .

Similarly, declare open all edges from vk+1 to an independently chosen projective line

in Uk . Note that this model is 1-independent and each edge is open with probability at

most p. As any two lines in Uk intersect, there will be an open path from vk to vk+1 for

all sufficiently large k, and hence there will always be an infinite open component. Since

p > 0 was arbitrary, pmin(G) = 0.
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Figure 1. Graph G with pmin(G) = 0 but pbond(G) = psite(G) = 1.

5. 1-independent percolation on lattices

In this section we discuss 1-independent percolation on lattices. Let Z
d denote the

d-dimensional lattice with vertex set Z
d and edges joining pairs of vertices that are

(Euclidean) distance 1 apart. It is easy to see that pmax(Z
d) < 1, but giving a good upper

bound for pmax(Z
d) is surprisingly difficult. In [1, Theorem 2] the following was proved.

Theorem 5.1. For the lattice Z
2, pmax(Z

2) � 0.8639.

We now give an example found by Chuck Newman (see [6]) of a 1-independent model

on Z
2, which shows that

pmax(Z
2) � psite(Z

2)2 + (1 − psite(Z
2))2 > 1

2
.

Consider an independent site percolation with sites open with probability ρ. Declare a

bond to be open if it joins two sites in the same state (either both open or both closed).

Then each bond is open with probability p = ρ2 + (1 − ρ)2. An infinite open cluster would

give either an infinite cluster of open sites or an infinite cluster of closed sites in the site

percolation model. Thus, if psite(Z
2) > ρ > 0.5 the 1-independent model will not percolate.

Thus we have a model that does not percolate for p below psite(Z
2)2 + (1 − psite(Z

2))2.

Since 0.556 � psite � 0.679492 [3, 8], we obtain

0.5062 � pmax(Z
2) � 0.8639.

Using the (non-rigorous) estimate psite ≈ 0.592746 [9, 1], the lower bound can be improved

to pmax(Z
2) � 0.5172. As the upper and lower bounds for pmax(Z

2) are still far apart, we

pose the following question.

Question 1. What is the value of pmax(Z
2)?

For Z
d we note that pmax(Z

d) is a decreasing function of d since absence of percolation

in Z
d implies absence of percolation in any Z

d−1 subspace. Thus pmax(Z
d) tends to a limit

as d → ∞, which is at least 1
2

by Theorem 1.4. This suggests another question.

Question 2. What is the limit of pmax(Z
d) as d → ∞?
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We now consider pmin(G). It is easy to prove a lower bound for every lattice in terms

of the connective constant μ, which is defined by the requirement that the number cn of

self-avoiding walks of length n starting from a given vertex is given by cn = (μ + o(1))n.

Proposition 5.2. For any locally finite connected infinite graph G for which the connective

constant μ exists, pmin(G) � 1/μ2.

Proof. If there is an infinite open cluster then, with positive probability, there must

be an infinite open cluster containing a given vertex O. Thus there must be an infinite

induced path starting at O in the subgraph consisting of open edges. Assume p < 1/μ2,

where μ is the connective constant. Fix any self-avoiding walk P of the lattice of edge

length 2n. By taking every other edge of P , we get a set of independent edges of size n.

Thus the probability that P is open is at most pn. But if c2n is the number of such walks

then c2n = (μ + o(1))2n. Thus the expected number of open self-avoiding walks is at most

(pμ2 + o(1))n. Since p < 1/μ2, this tends to 0. So the probability of an infinite open path

starting at O is zero.

We note that Proposition 5.2 applies in much more generality than just for the graphs Z
d.

For example, it suffices to assume that the graph G has a vertex-transitive automorphism

group.

For Z
2, Pönitz and Tittman [7] proved that μ � 2.679192495, giving the bound

pmin(Z
2) � 0.1393. Proposition 4.1 shows that pmin(Z

2) � psite(Z
2). Using the known bounds

on psite(Z
2) we obtain pmin(Z

2) � 0.3514 (non-rigorously) or pmin(Z
2) � 0.4618 (rigorously).

For large d, μ(Zd)−1 ∼ psite(Z
d) ∼ 1

2d
, so Propositions 4.1 and 5.2 give pmin(Z

d) ∼ 1
4d2 as

d → ∞. In this case the upper and lower bounds are fairly close.

We do not believe that the lower bound 1/μ2 is best possible. To give a heuristic

argument, consider the lattice Z
2 and assume the 1-independent model is invariant under

translation and rotation by 90◦. Each edge now has the same probability p of being open.

Consider the probabilities of the following four events (where dotted lines indicate closed

edges and solid lines indicate open edges):
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.................................................................................................

E0 E1 E2 E3

Clearly
∑

P(Ei) = p2, since
⋃
Ei is the event that two independent vertical edges are open.

However, P(E1) = P(E2) by symmetry, so P(E1) = P(E2) � p2/2. Following the proof of

Proposition 5.2, consider the event that a self-avoiding walk P = (e1, . . . , e2n) is an induced

path in the subgraph of open edges. Inductively remove edges e2k from P unless the edges

e2k−1, e2k, e2k+1 form 3 edges of a unit square. In this case remove e2k+2 and continue with

edge e2k+4. In this way we decompose a subgraph of P into n − 2r independent edges

and r paths of length 3. If P is induced, then the fourth edges must be closed in all the

squares made from the paths of length 3. The probability that P is open and induced is

therefore at most pn−2r(p2/2)r = pn/2r . It is easy to show that there is some ε > 0 such that

there are at most (μ − ε + o(1))2n self-avoiding walks P with r < εn. Thus the expected
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number of induced open paths P is at most

pn(μ − ε + o(1))2n + (p/2ε)n(μ + o(1))2n � (pμ2 − ε′ + o(1))n

for some ε′ > 0. Thus for percolation we would need p � (1 + ε′)/μ2.

Needless to say, questions can be asked about pmin(G) and pmax(G) for many other

graphs G. It is worth noting that all the examples given in this paper are not just

1-independent, but are two-block factor models as defined by Liggett, Schonmann and

Stacey [4]. It would be interesting to know if there are examples of graphs for which

pmin(G) or pmax(G) change if we restrict the set of models considered to just two-block

factor models.
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