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Locomotion of microswimmers near an interface has attracted recent attention and has
several applications related to synthetic swimmers and microorganisms. In this work,
we study the motion of a model swimmer called the ‘squirmer’ with an arbitrary
time-dependent swimming gait near a weakly deforming interface. We first obtain
an exact solution of the governing equations for the motion of the swimmer near a
plane interface using the bipolar coordinate method, and then an approximate solution
using the method of reflections. We thereby derive the velocity of a swimmer due
to small interface deformations using the domain perturbation method and Lorentz
reciprocal theorem. We use our solution to study the dynamics of a swimmer with
steady, as well as time-reversible, squirming gaits. The long-time dynamics of a time-
reversible swimmer is such that it either moves towards or away from the interface.
Thus, we divide its phase space into regions of attraction (repulsion) towards (from)
the interface. The long-time orientation of a time-reversible swimmer that is moving
towards the interface depends on its initial orientation. Additionally, we find that the
method of reflections is accurate to O(1) distances of the swimmer from the interface.

Key words: biological fluid dynamics, micro-organism dynamics, swimming/flying

1. Introduction
The hydrodynamics of swimming microorganisms near interfaces/walls is intriguing

because of its applications in biological systems, so there has been an immense
amount of research in this field (Lighthill 1976; Brennen & Winet 1977; Lauga
& Powers 2009; Li, Karimi & Ardekani 2014; Lauga 2016). For instance, the
reorientation of Escherichia coli (pusher swimmer) near a plane wall and attraction
to the wall was observed and explained theoretically (Berke et al. 2008). Swimming
of bacteria (E. coli) in circles, in a clockwise direction (when viewed from above) near
a plane wall (Lauga et al. 2006) and in a counter-clockwise direction near a plane
air–water interface (Di Leonardo et al. 2011) were also observed. Attraction/repulsion,
reorientation and swimming in circles by microorganisms (mainly pusher swimmers)
near complex interfaces (interfaces covered with surfactant) was studied using far-field
hydrodynamic interactions (Lopez & Lauga 2014). Motion of a two-dimensional
(2-D) treadmilling swimmer near a plane wall was analysed theoretically, with the
observation of nonlinear periodic swimming orbits (Crowdy & Or 2010; Crowdy
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2011). Also, Ferracci et al. (2013) observed the trapping of fresh water ciliates
(Tetrahymena thermophila) near a water–air interface.

Among the few works which focused on the motion of swimmers near a deforming
stress-free interface, Trouilloud et al. (2008) studied the motion of a time-reversible
swimmer near such an interface. Using scaling arguments and experiments, they
reported that the dimensionless time-averaged swimming velocities can be O(1)
(non-dimensionalized using the product of characteristic length scale and actuation
frequency of the deformation of the swimmer) if Ca > 1, where Ca is the capillary
number. They did not study the effect of the interface deformation on the orientational
dynamics of the swimmer. Lee et al. (2008) studied the locomotion of water snails
that crawl beneath the water–air interface using lubrication theory. Later, Crowdy
et al. (2011) analysed the motion of swimmers which propel by performing steady
surface deformations near a stress-free interface. Representing the swimmer by a
2-D stresslet and using complex variables and a conformal mapping approach, they
concluded that such swimmers can swim steadily in a direction parallel to the
undeformed interface. Even though their analysis is valid for arbitrary values of Ca
and interface deformation, their approach is only correct for distances of the swimmer
from the interface that are much larger in comparison to the swimmer’s size. At the
other end of the spectrum, the motion of a rigid sphere near a plane interface is very
well understood (Lee, Chadwick & Leal 1979; Lee & Leal 1980). These solutions
were used to study the force and torque experienced by a sphere due to weak interface
deformations (Berdan & Leal 1982), weak non-Newtonian and weak inertial effects
(Becker, McKinley & Stone 1996). Following the similar analogy, we first derive the
flow field due to the motion of spherical model microorganisms (squirmers) near a
plane interface. Even though one can study the influence of all three above-mentioned
effects on the dynamics of a swimmer, in this work, we focus only on the effect of
weak interface deformations (valid assumption if either Ca� 1 or Ca/Bo� 1, where
Bo is the gravitational Bond number) on the dynamics of a swimmer. We note that
our approach is valid for arbitrary values of the distances of the swimmer from the
interface.

Our mathematical modelling is inspired by the work of Berdan & Leal (1982)
for the motion of a rigid sphere near a weakly deforming interface. Here, we
analyse the motion of the swimmer near a weakly deforming interface using two
approaches: (i) the bipolar coordinate approach (Lee & Leal 1980) and (ii) the
method of reflections (referred to as the Lorentz reciprocal theorem approach in the
original paper) (Lee et al. 1979). Importantly, through such an analysis, one can
estimate the accuracy of the method of reflections (MOR) approach in comparison
to the exact solution. In particular, we identify that MOR is most accurate when the
interface is stress free and forces due to a density difference dominate the interfacial
tension forces. It is to be noted that the MOR used in this work is different from
the method of images (MOI) commonly used in the literature to analyse the motion
of swimmers near boundaries. Notably, the MOI approach has its origins in the
earlier works of Blake & Chwang (1974) on finding the images of a Stokeslet near
a plane wall and Aderogba & Blake (1978) on finding the images of Stokeslet near
a fluid–fluid interface (Aderogba & Blake 1978). On the other hand, the MOR used
in this work is based on the lemma proposed by Lee et al. (1979) which gives
us the solution of Stokes equations near a plane fluid interface if we know the
solution of Stokes equations in an unbounded fluid. As both approaches give the
same solution, it does not matter which approach is used. Even though MOI/MOR is
not accurate when the swimmer is very close to the interface, its simplicity and ability
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to predict experimental observations consistently have made it a popular technique
that has been extensively used in the past. For instance, Berke et al. (2008) studied
the motion of a swimmer near a plane wall. Using MOI, they predicted that the
swimmer reorients itself in such a way that it eventually gets attracted to the wall, in
agreement with their experimental observations. Recent experiments of Takagi et al.
(2014) showed that synthetic swimmers follow complex trajectories in the field of
spherical colloids. In an attempt to understand this, Spagnolie et al. (2015) studied the
motion of swimmers near spherical obstacles using MOI/MOR, thereby estimating the
scaling laws for critical colloid size and basin of attraction for subcritical interactions.
Mathijssen et al. (2016) studied the hydrodynamics of microswimmers in films using
both MOI and exact solutions. There are very few works in the literature which
use other methods such as an exact solution or numerical simulations to estimate
the accuracy of the MOI approach. Spagnolie & Lauga (2012) use the method of
regularized Stokeslets to analyse the motion of a swimmer near a plane wall or a
stress-free interface. They concluded that the MOI is accurate for the distances of
the swimmer from the undeformed interface as small as O(1), thereby proving the
usefulness of MOI. In the spirit of these works, we obtain an exact solution of Stokes
equations using the bipolar coordinate approach (valid for any value of l, where l
is the distance between the centre of the swimmer and the undeformed interface) so
as to eventually estimate the accuracy of MOR (valid for l� 1) for the motion of
swimmer near a deforming interface.

Noting that our analysis is valid for a swimmer with an arbitrary time-dependent
squirming gait, we hereby present the dynamics of a swimmer for two examples:
(i) steady (time independent) and (ii) time-reversible squirming gaits. As the velocity
of swimmer due to the interface deformation is an order of magnitude smaller than
its velocity near a plane interface, we note that the dynamics of a swimmer with
steady squirming gait near a weakly deforming interface is the same as that near a
plane interface as long as the swimmer is far away from the interface. We thereafter
analyse the motion of a swimmer with a time-reversible squirming gait. Analysing the
long-time dynamics of a time-reversible swimmer, we divide its phase space (in terms
of swimmers position and orientation) into regions of attraction towards and repulsion
from the interface. Also, the long-time orientation of a time-reversible swimmer that
is moving towards the interface depends on its initial orientation. We analyse the
time-averaged dynamics of the time-reversible swimmer by either fixing its position
and orientation over one time period (simple approach) (Trouilloud et al. 2008; Yazdi,
Ardekani & Borhan 2014) or by averaging the swimmer’s instantaneous velocity over
one time period (exact approach). We show that the simple time-averaging approach
cannot accurately estimate the long-time dynamics of the swimmer.

This paper is organized as follows. In § 2.1, we explain the governing equations
and boundary conditions for the motion of a spherical swimmer near a weakly
deforming interface. After describing the non-dimensionalization scheme, we explain
the perturbation method providing the O(1) and O(ε) equations and boundary
conditions. In § 2.2, we explain the reciprocal theorem used to obtain the O(ε)
swimmer velocities without explicitly solving the O(ε) flow fields. Finally, we
describe the solution method used for solving the O(1) flow fields using the bipolar
coordinate approach in § 2.3 and method of reflections in § 2.4. In § 3.1, we analyse
the interface deformation for various swimmer orientations, viscosity ratios, various
values of Ca, Ca/Bo and distances of the swimmer from the interface. We thereafter
study the dynamics of a swimmer with steady squirming modes in § 3.2, and with
time-reversible squirming modes in § 3.3, focusing on time-averaged velocities in
§ 3.3.1 and instantaneous velocities in § 3.3.2. We conclude with some discussions in
§ 4, followed by technical derivations in the appendices A–C.
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2. Mathematical model
2.1. Governing equations and boundary conditions

Consider the motion of a swimmer near a weakly deforming fluid–fluid interface, with
the swimmer fully immersed in the lower fluid (fluid 2). The flow field in both fluids
is governed by the Stokes equation and the incompressibility condition

∇p(k) =µ(k)∇2u(k); ∇ · u(k) = 0, (2.1a,b)

where the superscript k= 1 or 2 indicates fluid 1 (z> 0) or 2 (z< 0) and p(k), u(k) and
µ(k) denote the pressure, velocity and the dynamic viscosity of the kth fluid. In this
work, we consider swimmers that propel themselves by means of a slip velocity us
on their surface. Because of this slip velocity, the swimmer moves with a translation
velocity (U) and rotational velocity (Ω), so the boundary condition on its surface is
given by

u(2)(x, t)=U+Ω × xs
+ us(xs, t). (2.2)

In addition, there are hydrodynamic force-free and torque-free constraints on the
swimmer, given by ∫∫

Sp

T (2)
· n dS=

∫∫
Sp

xs
× (T (2)

· n) dS= 0. (2.3)

Here, xs is a position vector from the centre of the swimmer to its surface, T (2)

denotes the stress tensor in fluid 2, Sp denotes the surface of the swimmer, n is the
unit normal vector to the surface of the swimmer that is pointing into the fluid and
dS is an infinitesimal surface area on the surface of the swimmer. For describing
the surface deformation, we use the traditional ‘squirmer’ model (Lighthill 1952;
Blake 1971) which assigns a tangential velocity on the surface of the swimmer as a
manifestation of the metachronal beating of cilia on its surface. A periodic stroke on
the surface of a swimmer can be described using two different approaches: (i) in a
reference frame fixed to the swimmer, we prescribe at each instant, a periodic surface
velocity. This description is referred to as the Eulerian periodic stroke in Michelin
& Lauga (2013). (ii) Otherwise, one can prescribe periodic trajectories of material
surface points. This description is referred to as the Lagrangian periodic stroke in
Michelin & Lauga (2013). Because of its simplicity and its widespread usage in
modelling swimmers with steady surface and flow velocities (Ishikawa, Simmonds &
Pedley 2006; Short et al. 2006; Doostmohammadi, Stocker & Ardekani 2012), we
choose Eulerian periodic strokes to model a swimmer. We truncate the infinite series
in the slip velocity to first two terms (Ishikawa et al. 2006; Li & Ardekani 2014;
Matas-Navarro et al. 2014). This slip velocity is given by

us =

(
e · xs

|xs|

xs

|xs|
− e
) 2∑

n=1

2
n(n+ 1)

Bn(t)P′n

(
e · xs

|xs|

)
. (2.4)

Here, Bn(t) is the swimming gait for the nth squirming mode, while P′n denotes
the derivative of the Legendre polynomial with respect to its argument, e denotes
the direction of the head of the swimmer. If the squirming gait, Bn, is proportional
to sin(ωt), such a swimmer cannot swim on an average according to Purcell’s
scallop theorem (Purcell 1977). However, the nonlinearities due to the interface
deformation break the scallop theorem leading to the motion of a swimmer performing
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Fluid 1
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FIGURE 1. (Colour online) Schematic of the problem. The interface shown is weakly
deforming. ‘O’ is the origin of the Cartesian and cylindrical coordinate systems, both fixed
at the undeformed interface. O′ is the origin of the spherical coordinate system, fixed at
the centre of the sphere. The swimmer is at a distance of l from the undeformed interface.

time-reversible surface deformation. The slip velocity of a squirmer can be written in
terms of the spherical coordinates whose origin is at the centre of the swimmer as

us = usθ iθ + usφiφ
= {[− cos(θ) sin(θz) cos(φ − φx)+ sin(θ) cos(θz)]iθ + sin(φ − φx) sin(θz)iφ}
× {B1(t)+ B2(t)[sin(θ) sin(θz) cos(φ − φx)+ cos(θ) cos(θz)]}. (2.5)

Here, θz is the angle made by the head of the swimmer (e) with the interface-fixed
z-axis (pointing from fluid 2 to fluid 1), while φx is the angle made by the projection
of e in the xy plane (equivalently XY plane) with the x-axis (equivalently X-axis). The
origin of xyz coordinate system is at the undeformed interface, while the origin of
XYZ coordinate system is at the centre of the swimmer. Without loss of generality, we
consider φx = 0. Also, θ and φ are the coordinate variables in spherical coordinates
fixed at the centre of the swimmer, iθ and iφ are the unit vectors in the polar and
azimuthal directions as shown in figure 1. As the swimmer is moving in a quiescent
fluid, the flow field far from the swimmer is given by

u(k)(x→∞)= 0. (2.6)

The shape of the interface is represented by F ≡ z − f (ρ, φ, t; l) = 0, the boundary
conditions at the interface are given by (Leal 2007)

u(1) = u(2), (2.7)

u(1) · n= u(2) · n= κ
∂f
∂t
; κ =

1
|∇F|

, (2.8a,b)

n · (T (1)
− T (2))= σn(∇ · n)+ (ρ(2) − ρ(1))gzn, (2.9)
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where σ is the interfacial tension between the two fluids, g is the acceleration due
to gravity, t is time, ρ(k) denotes the density of the kth fluid, n=∇F/|∇F| denotes
the unit vector normal to the interface, (ρ, φ, z) are the coordinate variables of the
cylindrical coordinate system with the origin fixed at the undeformed interface and l
denotes the distance of the centre of the swimmer from the undeformed interface.

We hereby non-dimensionalize the governing equations and boundary conditions.
For this purpose, we use uref = b1 (assuming Bn = bnβn(t)), lref = R (radius of
the squirmer), p(k)ref = T (k)ref = µ

(k)uref /R and tref = R/uref as the characteristic scales
for velocity, length, stress field and time, respectively. Additionally, any forces
and torques (especially encountered in the complementary Stokes problem of the
reciprocal theorem) are non-dimensionalized by µ(2)uref R and µ(2)uref R2, respectively.
We hereby denote the dimensionless variables by the same symbols as used for the
dimensional ones. All the variables appearing hereafter are dimensionless variables.
The dimensionless governing equations are given as

∇p(k) =∇2u(k); ∇ · u(k) = 0. (2.10a,b)

The boundary conditions on the surface of the swimmer, the force-free and torque-free
conditions and the slip velocity on the surface of the swimmer are given by

u(2)(x, t)=U+Ω × xs
+ us(xs, t), (2.11)∫∫

Sp

T (2)
· n dS=

∫∫
Sp

xs
× (T (2)

· n) dS= 0, (2.12)

us = usθ iθ + usφiφ
= {[−cos(θ) sin(θz) cos(φ − φx)+ sin(θ) cos(θz)]iθ + sin(φ − φx) sin(θz)iφ}
× {β1(t)+Λβ2(t)[sin(θ) sin(θz) cos(φ − φx)+ cos(θ) cos(θz)]}, (2.13)

where Λ= b2/b1. The flow field far from the swimmer is still given by

u(k)(x→∞)= 0. (2.14)

The boundary conditions at the interface are given by (Lee et al. 1979; Lee & Leal
1980; Berdan & Leal 1982; Leal 2007)

u(1) = u(2), (2.15)

u(1) · n= u(2) · n= κ
∂f
∂t
; κ =

1
|∇F|

, (2.16a,b)

n · (λT (1)
− T (2))= βn(∇ · n)+ αf n, (2.17)

where β =Ca−1
= σ/(µ(2)uref ); α= Bo/Ca= (gR2(ρ(2) − ρ(1)))/(µ(2)uref ); λ=µ

(1)/µ(2).
For β � 1 or α� 1, the deformation of the interface is very small, so we define

ε = 1/(α + β) to consider the influence of either α or β. For ε � 1, we can write
f (ρ,φ, t; l)= εf1(ρ,φ; t, l)+ ε2f2(ρ,φ; t, l)+· · · . Expanding all the flow field variables
and the swimmer velocities as a regular perturbation series in ε, we get (Berdan &
Leal 1982)

u(k) = u(k)0 + εu(k)1 + · · · ,

p(k) = p(k)0 + εp(k)1 + · · · ,

T (k)
= T (k)

0 + εT (k)
1 + · · · ,

{U,Ω} = {U0,Ω0} + ε{U1,Ω1} + · · · .

 (2.18)
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Note that the subscript denotes the order of perturbation, whereas the superscript
denotes fluid 1 or 2. For small interface deformations, we write the boundary
conditions at the interface, equations (2.15)–(2.17) as a series of boundary conditions
applied at an undeformed interface using Taylor series expansion about z= 0. We then
substitute the regular perturbation expansion of the flow field variables, equation (2.18)
in the governing equations and the boundary conditions (applied at the undeformed
interface) and we eventually collect the terms at each order of ε (the usual domain
perturbation methodology). At O(1), the boundary condition at the surface of the
swimmer and at the interface are given as (Berdan & Leal 1982)

On the swimmer : u(2)0 (x, t)=U0 +Ω0 × xs
+ us(xs, t). (2.19)

At the undeformed interface,

u(1)0 = u(2)0 , (2.20)

u(1)0 · iz = u(2)0 · iz = 0, (2.21)

λiz · T
(1)
0 − iz · T

(2)
0 = iz{αεf1 − βε∇

2
2 f1}, (2.22)

where ε = 1/(α + β) and ∇2
2 is a 2-D Laplacian in cylindrical coordinates for a

constant z. The normal component of (2.22) is used for finding the leading-order
interface deformation. Assuming that the slip velocity on the surface of the swimmer
is O(1), the boundary conditions at O(ε) on the surface of the swimmer and at the
interface are given as (Berdan & Leal 1982)

On the squirmer : u(2)1 (x, t)=U1 +Ω1 × xs. (2.23)

At the undeformed interface, we have

u(1)1 + f1
∂u(1)0

∂z
= u(2)1 + f1

∂u(2)0

∂z
, (2.24)

iz · u(1)1 + iz · f1
∂u(1)0

∂z
− iρ ·

∂f1

∂ρ
u(1)0 − iφ ·

1
ρ

∂f1

∂φ
u(1)0

= iz · u(2)1 + iz · f1
∂u(2)0

∂z
− iρ ·

∂f1

∂ρ
u(2)0 − iφ ·

1
ρ

∂f1

∂φ
u(2)0 =

∂f1

∂t
, (2.25)

λiz · T
(1)
1 − iz · T

(2)
1 + λf1iz ·

∂T (1)
0

∂z
− f1iz ·

∂T (2)
0

∂z
− λ

∂f1

∂ρ
iρ · T (1)

0 − λ
1
ρ

∂f1

∂ρ
iφ · T (1)

0

+
∂f1

∂ρ
iρ · T (2)

0 +
1
ρ

∂f1

∂ρ
iφ · T (2)

0 = αε

[
−f1

(
∂f1

∂ρ
iρ +

1
ρ

∂f1

∂φ
iφ
)
+ f2iz

]
+βε

[
(∇2

2 f1)

(
∂f1

∂ρ
iρ +

1
ρ

∂f1

∂φ
iφ
)
−∇

2
2 f2iz

]
. (2.26)

It can be seen that the O(1) problem is the motion of the swimmer near a plane
interface. This is a linear problem so if us is time reversible, we expect the swimmer
velocities at this order (U0, Ω0) to also be time reversible, i.e., the time-averaged
swimmer velocities to be zero. Consequently, on an average, the swimmer will not
move, consistent with the predictions of the scallop theorem at O(1). Besides this,
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we need to solve the O(ε) problem to find the leading-order effect of the interface
deformation on the swimmer velocities, (U1,Ω1). This, however, requires the solution
of the O(1) problem as the boundary conditions at O(ε) involve flow variables at
O(1). Before explaining the solution methodology to solve the O(1) problem, we
first describe the reciprocal theorem used for obtaining the O(ε) swimmer velocities
directly without solving for the O(ε) flow fields. This reciprocal theorem is similar
to that obtained for the motion of rigid sphere near a weakly deforming interface
(Berdan & Leal 1982).

2.2. Reciprocal theorem for a swimmer near a deforming interface
We begin with the generalized reciprocal theorem between two Stokes flows
(u′, T ′), (u′′, T ′′) in the same flow geometry given by∫∫

S
n · T ′ · u′′ dS=

∫∫
S

n · T ′′ · u′ dS. (2.27)

As we would like to find the velocity of a squirmer at O(ε) near a weakly deforming
interface using the reciprocal theorem, we define (u′, T ′) ≡ (u(k)1 , T (k)

1 ). We also
consider the auxiliary problem (or the complementary Stokes problem) as the motion
of a rigid sphere near a flat interface, we denote this problem by variables with a
hat over them, (u′′, T ′′)= (û(k), T̂

(k)
). Applying the reciprocal theorem in fluid 1, we

have ∫∫
AF

(T (1)
1 · û

(1)
− T̂

(1)
· u(1)1 ) · n dS= 0, (2.28)

whereas the application of reciprocal theorem in fluid 2 gives∫∫
A2

(T (2)
1 · û

(2)
− T̂

(2)
· u(2)1 ) · n dS= 0, (2.29)

where AF is the area of the flat interface, A2 includes the area of the flat interface and
the area of the sphere (A2=AF + Sp). Multiplying (2.28) with λ and subtracting from
(2.29), we have∫∫

AF

(−λT (1)
1 · û

1
+ λT̂

(1)
· u(1)1 + T (2)

1 · û
(2)
− T̂

(2)
· u(2)1 ) · n dS

=−

∫∫
Sp

(T (2)
1 · û

(2)
− T̂

(2)
· u(2)1 ) · n dS. (2.30)

Using the boundary condition on the surface of the swimmer, u(2)1 =U1 +Ω1 × x, on
the surface of the rigid sphere in the complementary Stokes problem, û(2)= Û+ Ω̂× x
and the boundary conditions at the interface in the complementary Stokes problem,
equation (2.30) can be simplified to∫∫

AF

iz · (T
(2)
1 − λT

(1)
1 ) · û dS+

∫∫
AF

iz · (λT̂
(1)
− T̂

(2)
) · u(1)1 dS

+

∫∫
AF

iz · T̂
(2)
· (u(1)1 − u(2)1 ) dS=−F̂ ·U1 − L̂ ·Ω1, (2.31)
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where û= û(1) = û(2) (on the interface), F̂, L̂ are the force and torque acting on the
rigid sphere in the complementary Stokes problem. Using the boundary conditions at
the interface for O(ε) problem, equations (2.24)–(2.26), along with (2.31), we see that
we only need to know the solution of O(1) problem and complementary Stokes flow
problem to find the swimmer velocity at O(ε).

Below, we outline the methodology used for solving the O(1) problem corresponding
to the motion of a swimmer near a plane interface which is governed by (2.10),
(2.12)–(2.14), (2.19)–(2.22). We use two approaches: (i) the bipolar coordinate
approach and (ii) the method of reflections. Corresponding approaches are used
for solving the complementary Stokes problem of the motion of a rigid sphere near a
plane interface. These complementary Stokes problems were already solved using the
bipolar coordinate approach (Lee & Leal 1980), and also using Lorentz reciprocal
theorem approach (Lee et al. 1979). So, we will not repeat the solution of the
complementary Stokes problem here.

2.3. Swimmer near a plane interface: bipolar coordinate approach
Following the traditional approach (Lauga & Powers 2009), we divide the O(1)
problem into two subproblems. The first subproblem, also known as the thrust
problem, consists of a swimmer fixed in space. As the swimmer is fixed in space, it
will experience a hydrodynamic force and torque (FT, LT). The second subproblem,
also known as the drag problem, consists of the motion of a rigid sphere with
unknown translational and rotational velocities of the swimmer, thereby experiencing
a drag force and torque (FD,LD). As the swimmer itself is force free and torque free,
we have

FD =−FT; LD =−LT . (2.32a,b)

Knowing the force and torque experienced by the swimmer in the drag problem, the
unknown swimmer’s translational and rotational velocities can be found using the
linear relations between forces and velocities given by

FD = K T ·U+ K T
C ·Ω; LD = K C ·U+ K R ·Ω, (2.33a,b)

where K T, K C, K R are second-order tensors known as the resistance tensors. The
appropriate form of these tensors for the motion of a rigid sphere near a plane
interface are given by Lee & Leal (1980) using the bipolar coordinate approach.
Thus, we do not repeat the derivation of these resistance tensors. We rather focus
on deriving the force experienced by the swimmer in the thrust problem using the
bipolar coordinate approach.

For the motion of a sphere near a plane interface, we represent the velocity
field in cylindrical coordinates, which in turn is expressed in terms of bispherical
eigensolutions. The transformation between cylindrical and bipolar coordinates is
given by (Happel & Brenner 1981)

z= c
sinh η

cosh η− cos ξ
; ρ = c

sin ξ
cosh η− cos ξ

, (2.34a,b)

where (ξ , η, φ) are the bispherical coordinate variables. In these coordinates, the
surface of the sphere is at η = η0 = −cosh−1(l), the plane interface is at η = 0 and
c=
√

l2 − 1. A general solution of the Stokes equation for fluid 2 for the motion of
a sphere near a plane interface is given by (even though flow field variables in O(1)
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Motion of a model swimmer near a weakly deforming interface 51

problem are denoted by u(k)0 and p(k)0 , in this section, for the purposes of brevity, we
denote the O(1) flow variables in fluid 2 by u and p)

p=
∞∑

m=0

pm(η, ξ) cos(mφ + αm), (2.35)

pm =
1
c
(cosh η− ζ )1/2

∞∑
n=m

[
Am

n sinh
(

n+
1
2

)
η+ Bm

n cosh
(

n+
1
2

)
η

]
Pm

n (ζ ), (2.36)

u=
ρp
2
+ u0 cos(α0)+

1
2

∞∑
m=1

(γm + χm) cos(mφ + αm), (2.37)

v = v0 sin(α0)+

∞∑
m=1

(γm − χm) sin(mφ + αm), (2.38)

w=
zp
2
+

∞∑
m=0

wm cos(mφ + αm), (2.39)

where (u, v, w) are the ρ, φ, and z components of the velocity field, ζ = cos(ξ), Pm
n

is the associated Legendre polynomial of degree n and order m, while αm are the
constants and

u0 = (cosh η− ζ )1/2
∞∑

n=1

[
E0

n sin
(

n+
1
2

)
η+ F0

n cosh
(

n+
1
2

)
η

]
P1

n(ζ ), (2.40)

v0 = (cosh η− ζ )1/2
∞∑

n=1

[
G0

n sinh
(

n+
1
2

)
η+H0

n cosh
(

n+
1
2

)
η

]
P1

n(ζ ), (2.41)

γm = (cosh η− ζ )1/2
∞∑

n=m+1

[
Em

n sinh
(

n+
1
2

)
η+ Fm

n cosh
(

n+
1
2

)
η

]
Pm+1

n (ζ ),

(2.42)

χm = (cosh η− ζ )1/2
∞∑

n=m−1

[
Gm

n sinh
(

n+
1
2

)
η+Hm

n cosh
(

n+
1
2

)
η

]
Pm−1

n (ζ ),

(2.43)

wm = (cosh η− ζ )1/2
∞∑

n=m

Cm
n sinh

(
n+

1
2

)
η× Pm

n (ζ ). (2.44)

A similar set of equations can also be obtained for the motion of fluid above
the interface, fluid 1. Satisfying the boundary conditions, continuity equation and
boundedness of the flow field provides us with an infinite set of linear algebraic
equations among the constants Am

n , Bm
n , Cm

n , Em
n , Fm

n , Gm
n and Hm

n . As these equations
were already derived by Lee & Leal (1980), we hereby do not repeat them. Since
the order of magnitude of these constants for large values of n is very small, we,
therefore, truncate these infinite series to some finite number N such that the error
in evaluating these constants is O(10−6). As the major difference in this work is due
to the boundary conditions at the surface of the swimmer, we, therefore, proceed to
describe the methodology in applying the boundary conditions at the surface of the
swimmer in the thrust problem, given by

u= us at η= η0. (2.45)
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The surface velocity can be written in terms of bispherical eigenfunctions as

us =
∑

m

um
s (η, ξ) cos(mφ + αm), (2.46)

vs =
∑

m

vm
s (η, ξ) cos(mφ + αm), (2.47)

ws =
∑

m

wm
s (η, ξ) cos(mφ + αm). (2.48)

Hence, for m= 0, we expand u0
s and v0

s as

u0
s = (cosh η0 − ζ )

1/2
∑

X0
n(η)P

1
n(ζ ), (2.49)

v0
s = (cosh η0 − ζ )

1/2
∑

Y0
n (η)P

1
n(ζ ), (2.50)

whereas for m > 1, we have

um
s + v

m
s = (cosh η0 − ζ )

1/2
∑

Xm
n Pm+1

n (ζ ), (2.51)

um
s − v

m
s = (cosh η0 − ζ )

1/2
∑

Ym
n Pm−1

n (ζ ), (2.52)

while for all m, we have

wm
s = (cosh η0 − ζ )

1/2
∑

Zm
n Pm

n (ζ ). (2.53)

The boundary condition on the surface of the swimmer determines the values of
constants Xm

n , Ym
n and Zm

n , which in turn determine the constants Am
n , Bm

n , Cm
n , Em

n , Fm
n ,

Gm
n and Hm

n . We, therefore, describe in detail the derivation of constants Xm
n , Ym

n and
Zm

n for a squirming boundary condition at the surface of the sphere in appendix A.

2.4. Swimmer near a plane interface: method of reflections
In this section we solve the O(1) problem for the motion of the squirmer near a plane
interface up to an accuracy of O(1/l3), using the Lorentz reciprocal theorem. Such a
method was used by Lee et al. (1979) for solving the motion of a rigid sphere near a
plane interface. The authors proposed a lemma using which one can find the solution
of creeping flow equations for the motion of an arbitrarily shaped particle near a plane
interface if one already knows the solution of creeping flow equations for the motion
of the same particle in an unbounded medium. If u and p are the solutions of creeping
flow equations for the motion of a particle in an infinite fluid 2, then the solutions
near a plane interface are given by

u(1) =
1

1+ λ
(u− ũ), p(1) =

1
1+ λ

(p− p̃) for z> 0, (2.54a,b)

u(2) = (u+ u∗)−
λ

1+ λ
(u∗ − ũ∗)

p(2) = (p+ p∗)−
λ

1+ λ
(p∗ − p̃∗)

 for z< 0. (2.55)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

28
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.285


Motion of a model swimmer near a weakly deforming interface 53

For the purposes of brevity, we again denote the flow field variables in the O(1)
problem of motion of a swimmer near a plane interface as u(k) and p(k). Here (ũ, p̃)
is the associated solution of (u, p) and is defined as (Lee et al. 1979)

ũ≡−J · u− 2z∇w+ z2
∇p, (2.56)

p̃≡ p+ 2z
∂p
∂z
− 4

∂w
∂z
, (2.57)

and (u∗, p∗) is the reflected image solution of (u, p) given by

u∗ ≡ J · u(x, y,−z), (2.58)
p∗ ≡ p(x, y,−z), (2.59)

where (ũ∗, p̃∗) is the associated solution of (u∗, p∗). The operator J is defined as Jij≡

δij− 2δi3δj3, where δij is the Kronecker delta. These solutions satisfy the continuity of
velocity, shear stress and zero normal velocity at the plane interface.

The creeping flow equations for the motion of the squirmer in an unbounded fluid
were already solved in the literature (Blake 1971; Ishikawa et al. 2006; Pak & Lauga
2014). For two squirming modes (B1,B2), this solution can be readily written in terms
of point force singularities located at the centre of the squirmer as

u(1)0 = 0; p(1)0 = 0, (2.60a,b)

u(2)0 =
B1

3
uD(x+; e)−

B2

2
uSS(x+; e, e)−

B2

6
uD4(x+; e, e), (2.61)

p(2)0 =−
B2

2
pSS(x+; e, e), (2.62)

where x+ = (x, y, z + l) and uSS, uD, uD4 are the flow fields due to stresslet,
source dipole and source quadrupole, respectively. Their expressions are provided
in appendix B. Here, the subscript denotes the level of approximation in the context
of normal reflection calculation procedure. For instance, u(k)0 denotes the flow field
in an unbounded domain, u(k)1 denotes the (first) reflection from the interface, u(k)2
denotes the (second) reflection from the sphere. Even though these velocity fields
are dimensionless, i.e., B1 = β1(t) and B2 = Λβ2(t), we write them in terms of B1
and B2 to see the correspondence with the dimensional velocities. Using the lemma
and the above solution, one can derive the solution of creeping flow equations for
the motion of a squirmer near a plane interface. After subtracting the flow field in
an unbounded fluid, equations (2.60)–(2.62) from the solution calculated using the
lemma, we obtain the flow field due to the interface (denoted as u(k)1 , p(k)1 ). Using
the Faxen’s laws with the flow field due to the interface in fluid 2 (u(2)1 , p(2)1 ) and
the force-free, torque-free condition on the squirmer, we obtain the corrections to the
swimmer velocity because of the presence of the interface which are given as

Ux =
2
3

B1 sin(θz)

+
3
8

sin(θz)(B2 cos(θz)[l4λ+ (−λ− 1
3)l

2
+

5
9λ] −

2
9 B1l[(λ+ 1

2)l
2
− λ])

l6(1+ λ)
, (2.63)
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FIGURE 2. (Colour online) Velocities of a swimmer moving near a plane interface, (a) Uz
and (b) Ωy for B2/B1= 4, θz= 3π/8, λ= 10−3, 1 and 10. Lines indicate bipolar coordinate
results while symbols denote the method of reflections results.

Uz =
2
3

B1 cos(θz)

+
1

48l6(1+ λ)

(
(27B2 cos(θz)

2
− 9B2)[(λ+

2
3)l

4
+ (− 4

3λ−
1
3)l

2
+

5
9λ]

−16B1l cos(θz)[(λ+
1
4)l

2
−

1
2λ]

)
,

(2.64)

Ωy =−
3

16
sin(θz)[((l2

−
4
3)λ+ l2)B2 cos(θz)−

2
3 B1λl]

l5(1+ λ)
. (2.65)

These expressions in the limit λ→∞ or λ = 0 are identical to the expressions
derived by Spagnolie & Lauga (2012) for the motion of a swimmer (represented
by force dipole, source dipole and source quadrupole) near a plane wall and
plane interface, respectively. In the case of a stresslet near a plane interface, these
expressions reduce to those derived by Lopez & Lauga (2014), for arbitrary values of
viscosity ratios. Additionally, in figure 2, we compare these expressions of swimmer
velocities with the bipolar coordinate results, for various values of viscosity ratios.
The flow field due to the interface in fluid 2 (u(2)1 , p(2)1 ), however, does not satisfy
the boundary conditions on the surface of the squirmer given by U1 + Ω1 × xs.
Consequently, we need to put additional singularities at the centre of the squirmer
to satisfy the boundary conditions on its surface (U1 + Ω1 × xs

− u(2)1 (xs)). We
expand this boundary condition in terms of 1/l, and we choose singularities located
at the centre of the squirmer only to cancel the first term of this boundary condition
expressed in terms of 1/l. The non-zero velocity on the surface of the squirmer
expanded in terms of 1/l is given as

u(2)1 =
1
l3

[
B2(15 cos(θz)

2λ+ 6 cos(θz)
2
− 7λ− 2)x

32+ 32λ
−

9B2 sin(θz) cos(θz)(λ+
1
3 )(z+ l)

16+ 16λ

]

+O
(

1
l4

)
, (2.66)
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v
(2)
1 =

1
l3

[
B2(9 cos(θz)

2λ+ 6 cos(θz)
2
− λ− 2)y

32+ 32λ

]
+O

(
1
l4

)
, (2.67)

w(2)
1 =

1
l3

[
−

9B2 sin(θz) cos(θz)(λ+
1
3)x

16+ 16λ
−

B2(3 cos(θz)
2
− 1)(2λ+ 1)(z+ l)
8+ 8λ

]

+O
(

1
l4

)
. (2.68)

The flow field satisfying these boundary conditions on the surface of the sphere and
the Stokes flow equations can be written as a linear combination of shear flow and
extensional flow past a sphere. A shear flow past a sphere can be represented by a
stresslet, rotlet and a potential quadrupole located at the centre of the sphere, while
an extensional flow past a sphere can be generated by a stresslet and a potential
quadrupole kept at the centre of the sphere (Chwang & Wu 1975). Consequently, we
find that this boundary condition can be satisfied by a suitable combination of stresslet
and a potential quadrupole located at the centre of the squirmer, given by

u(2)2 =
A
l3

[
−

5
2

uSS(x+; iz, iz)−
1
2

uD4(x+; iz, iz)

]
+

C
l3

[
−

5
3

uSS(x+; ix, iz)−
1
3

uD4(x+; ix, iz)

]
+

D
l3

[
5
6

uSS(x+; Γ1, Γ2)+
1
6

uD4(x+; Γ1, Γ2)

]
, (2.69)

p(2)2 =
1
l3

[
−

5A
2

pSS(x+; iz, iz)−
5C
3

pSS(x+; ix, iz)+
5D
6

pSS(x+; Γ1, Γ2)

]
, (2.70)

where Γ1 = ix − iz; Γ2 =
5
6(ix + iz) and

A=
B2(9 cos(θz)

2λ+ 6 cos(θz)
2
− λ− 2)

32(1+ λ)
,

C=
3B2 sin(θz) cos(θz)(3λ+ 1)

16(1+ λ)
,

D=−
3B2λ sin(θz)

2

16(1+ λ)
.


(2.71)

In summary, the singularities required to represent the flow field due to a squirmer
near a plane interface, accurate to O(1/l3), are given by

stresslet : −
B2

2
uSS(x+; e, e)+

1
l3

−
5A
2

uSS(x+; iz, iz)−
5C
3

uSS(x+; ix, iz)

+
5D
6

uSS(x+; Γ1, Γ2)

 ,
source dipole :

B1

3
uD(x+; e),

source quadrupole : −
B2

6
uD4(x+; e, e)+

1
l3

−
A
2

uD4(x+; iz, iz)−
C
3

uD4(x+; ix, iz)

+
D
6

uD4(x+; Γ1, Γ2)

 .


(2.72)
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For simplicity, we will derive the velocity of the squirmer near a weakly deforming
interface, accurate to O(1/l). For this purpose, we will need the flow field due to
the motion of a squirmer near a plane interface, accurate to O(1/l). From the above
expressions, we can clearly see that such a flow field, accurate up to O(1/l), is given
by −(B2/2)uSS(x+; e, e)+ (B1/3)uD(x+; e, e).

3. Results and discussion

We note that the solution derived is valid for the squirming modes, B1(t) and B2(t),
that are arbitrary functions of time. In this section, we analysed two examples of
these solutions: a swimmer with constant squirming modes and a squirmer with time-
reversible squirming modes. The reason for analysing a time-reversible swimmer is
that such a swimmer does not move (in a time-averaged sense) near plane interfaces
but it can move due to the interface deformations (Scallop theorem is broken solely
due to its hydrodynamic interactions with a flexible interface).

3.1. Interface deformation

The leading-order interface shape is given by the solution of differential equation
which is obtained from the O(1) normal stress balance at the interface, given by

−βε

(
∂2f1

∂ρ2
+

1
ρ

∂f1

∂ρ
+

1
ρ2

∂2f1

∂φ2

)
+ αεf1 = (λT

(1)
zz0 − T (2)zz0)

= g0(ρ, t)+ g1(ρ, t) cos(φ)+ g2(ρ, t) cos(2φ). (3.1)

The expressions for g0, g1 and g2 using the method of reflections are given by

g0(ρ, t)= A1(t)
(

2l3
− 3lρ2

(l2 + ρ2)7/2

)
;

A1(t)=−9B2(t) cos(θz)
2l+ 4B1(t) cos(θz)+ 3B2(t)l,

g1(ρ, t)=C1(t)
(
−ρ3
+ 4l2ρ

(l2 + ρ2)7/2

)
; C1(t)= 4 sin(θz)(−3B2(t)l cos(θz)+ B1(t)),

g2(ρ, t)=D1(t)
ρ

(l2 + ρ2)7/2
; D1(t)=−15B2(t)l2 sin(θz)

2.


(3.2)

The solution of equation (3.1) for any arbitrary values of α and β is given by

f1(ρ, φ, t)= [h0(ρ, t)+ h1(ρ, t) cos(φ)+ h2(ρ, t) cos(2φ)],

hm(ρ, t)=
Im(ρ/ρref )

β

∫
∞

ρ

ygm(y, t)Km(y/ρref ) dy

+
Km(ρ/ρref )

β

∫ ρ

0
ygm(y, t)Im(y/ρref ) dy,

 (3.3)

where, m= 0, 1 or 2, ρref =
√
β/α, Im and Km are the modified Bessel functions of

first and second kind of order m. The interface shape for the limiting values of α�β
is given by
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f1(ρ, φ, t) =
1
3

lA1(t)
(l2 + ρ2)3/2

+

[
1
3

ρC1(t)
(l2 + ρ2)3/2

]
cos(φ)

−

[
2
15
((−15l2

− 15ρ2)
√

l2 + ρ2 + l3
+

3
2 lρ2)D1(t)

(l2 + ρ2)3/2lρ2

]
cos(2φ), (3.4)

and for α� β is given by

f1(ρ, φ, t)= g0(ρ, t)+ g1(ρ, t) cos(φ)+ g2(ρ, t) cos(2φ). (3.5)

For the motion of a rigid sphere normal to the undeformed interface, Aderogba &
Blake (1978) remarked that if we set α identically to zero in the differential equation
for the interface deformation, then the interface deformation has a log singularity and
it has no solution which is both finite at the origin and zero as ρ goes to infinity.
Note that when α is identically zero, the flow field is dominated by interfacial
tension. Berdan & Leal (1982) suggested that the interfacial tension can only restrict
the surface curvature but not the surface deformation, thereby allowing the occurrence
of a log singularity as predicted by Aderogba & Blake (1978). We note that there
is no such log singularity in the interface deformation when α is set identically to
zero in (3.1), for the motion of a squirmer near a deforming interface. To generalize,
one cannot find an interface deformation satisfying all the boundary conditions for a
Stokeslet (far-field approximation of a rigid sphere) oriented normal to an undeformed
interface. However, this is not the case for a Stokes dipole (far-field approximation of
a swimmer) oriented normal to an undeformed interface. Such an ill-posed problem
for rigid bodies versus a well-posed problem for swimmers can also be found for
the motion of two-dimensional bodies. For instance, the translational motion of an
infinitely long cylinder in an unbounded fluid is an ill-posed problem (Happel &
Brenner 1981; Guazzelli, Morris & Pic 2011). On the contrary, the motion of a
cylindrical swimmer in an unbounded fluid is a well-posed problem which can also
be solved using a reciprocal theorem framework (Elfring 2015).

In this section, we study the interface deformation for steady squirming modes.
Figure 3 shows the interface deformation for the squirmer orientations of θz =

0,π/2,π and π/3. When θz is 0 or π, the problem is axisymmetric, hence it can be
seen from (3.3) that f1 = h0 (as g1 and g2 are zero, so h1 and h2 are zero). Hence,
the interface shape is the same for these two orientations but the magnitude of the
interface deformation is larger for θz =π due to a corresponding larger magnitude of
A1 when θz =π (note that h0 ∝ g0 ∝ A1).

We hereby study the effect of the relative importance of density difference and
the interfacial tension on the interfacial deformation, i.e., the effect of α/β on f1.
For this purpose, we fix the sum α + β as 20 (equivalent to fixing ε = 0.05) and
study the interfacial deformation as α/β is varied from 0.01 to ∞. We note that
α/β� 1 implies that the physics is determined by the interfacial tension forces while
α/β�1 means that the density difference is the dominating factor. Figure 4 shows the
variation of interfacial deformation with radial coordinate (in cylindrical coordinates)
for α/β=0.01,0.1, 1,10 and ∞, θz=π/6, λ=1, l=3 and B2/B1=4. As deformation
itself is two-dimensional as shown in figure 3, for simplicity, we study the behaviour
of deformation as observed from the equatorial plane (φ= 0,π). It is to be noted that
the behaviour of the interface deformation with α/β is qualitatively the same for all
other combination of parameters not reported here. It can be seen from the figure that
the maximum deformation is obtained when the forces due to the interfacial tension
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FIGURE 3. (Colour online) Interface deformation for various orientations of swimmer at
l = 2, B2/B1 = 4, λ = 1, α/β = 1, α + β = 20. The orientations of the swimmer are (a)
θz = 0, (b) θz = π/3, (c) θz = π/2 and (d) θz = π. Interface shape is axisymmetric when
θz = 0 or π.
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FIGURE 4. (Colour online) The effect of α/β on the interface deformation for the motion
of a squirmer near an interface. The values of parameters are taken as: θz=π/6, α+ β =
20, B2/B1= 4, λ= 1 and l= 3. Lines denote the bipolar coordinate results while symbols
denote the MOR results.
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FIGURE 5. (Colour online) (a) The role of the distance of the squirmer from the
undeformed interface on the interface deformation. The values of the parameters are taken
as α+ β = 20, α/β = 1, θz=π/6, B2/B1= 4, λ= 1, l= 2, 3 and 4. (b) Effect of viscosity
ratio on the interface deformation. The values of most of the parameters are the same as
those of panel (a) except l is fixed at 2 and λ is varied from 10−3 to 104. Again the lines
indicate the bipolar coordinate solutions while symbols indicate the MOR solutions.

are dominant, i.e., α/β � 1 while the minimum deformation is obtained when the
forces due to both interfacial tension and density difference are of the same order
of magnitude, i.e., α/β =O(1). This result needs to be contrasted with the interface
deformation for the motion of a rigid sphere near an interface. In the latter case, the
maximum deformation occurs for α/β� 1 but the minimum deformation is obtained
for α/β� 1. Berdan & Leal (1982) gave a reason for such an observation by saying
that the forces due to the density difference act directly in restricting the interface
deformation (thereby giving a minimum deformation when α/β�1) but the interfacial
tension forces act to restrict the surface curvature but not the deformation (thereby
giving a maximum deformation when α/β� 1). Even though the physical nature of
forces due to the interfacial tension and density difference are still the same in both
problems, the minimum interface deformation occurs when α/β = 1 for the motion
of a squirmer near an interface. As shown in figure 4, the MOR results predict the
interface deformation quite accurately for all values of α/β, for the given parameters
of interest.

Now, we study the effect of distance of the centre of the squirmer from the
undeformed interface on the interfacial deformation as shown in figure 5(a) for
α + β = 20, α/β = 1, θz = π/6, B2/B1 = 4, λ = 1, l = 2, 3 and 4. As expected,
the interface deformation decreases with the distance of the squirmer from the
undeformed interface. It can also be seen in figure 5(a) that the error in predictions
of interface deformation using MOR decreases with the distance of the squirmer from
the interface. This is expected as the MOR results are accurate when the squirmer
is far away from the interface. In figure 5(b), we study the effect of viscosity ratio
on the interface deformation when λ is varied from 10−3 to 104. We note that λ� 1
corresponds to an air–water interface, whereas λ � 1 corresponds to an oil–water
interface (e.g. for a crude oil–water interface, λ = 12). The interface deformation
predicted using bipolar coordinates varies negligibly with the viscosity ratio. On the
other hand, the MOR results predict that the interface deformation is independent
of the viscosity ratio. This can also be seen from the expression for the interface
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deformation, equation (3.3) which does not depend on the viscosity ratio. However,
the MOR results for the motion of a rigid sphere near an interface predict that the
interface deformation does vary, even though slowly with the viscosity ratio. These
different behaviours of interface deformation with the viscosity ratio predicted by
the MOR in the two cases can be understood by looking at the singularities that
occur in the O(1) problem. The singularities that enter into the solution due to the
reflections from the surface of the squirmer (i.e. to satisfy the boundary condition
in (2.66)–(2.68)) are O(1/l3) or lower. Thus, these singularities do not enter into the
O(ε) problem, because of which the interfacial deformation does not depend on the
viscosity ratio as predicted by the MOR. Such a phenomenon does not happen for
the motion of a rigid sphere near an interface.

3.2. Swimming with steady squirming modes
Once the leading-order interface deformation is determined, we can derive the O(ε)
swimming velocities using the reciprocal theorem, equation (2.31). As the swimming
dynamics (attraction/repulsion to the interface and reorientation) near an interface is
governed by Uz and Ωy, we report only these two velocities. In general, the swimming
velocity is of the form

U(z, θz, t) =

velocity of the swimmer near a plane interface︷ ︸︸ ︷
M1(z, θz)B1(t)+M2(z, θz)B2(t)

+ ε

 N1(z, θz)
dB1

dt
+N2(z, θz)

dB2

dt
+K11(z, θz)B1(t)2 +K22(z, θz)B2(t)2 +K12(z, θz)B1(t)B2(t)

,
︸ ︷︷ ︸

velocity of the swimmer due to interface deformations

(3.6)

where the functions M1, M2, N1, N2, K11, K12 and K22 are obtained either from bipolar
coordinate approach or from the method of reflections. Now if B1, B2 ∝ j(t), then the
swimmer velocity is given by U(z, θz, t)=M(z, θz)j(t)+ ε[N(z, θz)(∂j/∂t)+K(z, θz)j2

],
where M = M1 + ΛM2, N = N1 + ΛN2 and K = K11 + ΛK12 + Λ

2K22. Also, if B1
and B2 are constants (independent of time), then the swimmer velocity is given by
U(z, θz, t) =M(z, θz) + εK(z, θz). We note that the velocity of the swimmer located
far away from a plane interface is O(1) while the velocity due to the interface
deformations is O(ε). Hence the dynamics of a swimmer with steady squirming gait
near a weakly deforming interface is similar to that near a plane interface except if
it is very close to the interface.

3.3. Swimming with time-reversible squirming modes
3.3.1. Time-averaged velocities

In this section, we study the dynamics of a swimmer with time-reversible
squirming modes, B1, B2 ∝ sin(t). Here, we use tref = 1/ω, where ω is the
frequency of surface velocity. In this case, the swimming velocity is of the form
U(z, θz, t) = M(z, θz) sin(t) + ε[N(z, θz) cos(t) + K(z, θz) sin2(t)]. In line with the
previous literature on the locomotion of time-reversible swimmers near a wall in
viscoelastic fluids (Yazdi et al. 2014) and near a deforming interface in a Newtonian
fluid (Trouilloud et al. 2008), we investigate the time-averaged velocities in this
section. Specifically, this time average is obtained by fixing z and θz for one time
period and is given by 〈U〉 = (εK(z, θz))/2, where 〈〉 denotes the time-averaged
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FIGURE 6. (Colour online) Vector field of 〈Ω̄y〉 = 〈Ωy〉/
√
〈Ωy〉

2 + 〈Uz〉
2, 〈Ūz〉 =

〈Uz〉/
√
〈Ωy〉

2 + 〈Uz〉
2 for B2/B1 = 4, λ = 1, α/β = 1, α + β = 20. The contour plot

shows the magnitude of the vector (〈Ωy〉, 〈Uz〉), i.e.,
√
〈Ωy〉

2 + 〈Uz〉
2 obtained using (a)

the bipolar coordinates and (b) MOR.

quantity. Clearly, this time-averaged velocity is valid only if z and θz vary slowly
with time. Even though this averaging procedure is very simple, we see that it
captures some of the physics. Later in this section, we report the exact time-averaged
velocity by integrating the instantaneous velocity over the time period of surface
deformation.

Figure 6(a,b) shows the vector fields of time-averaged swimmer velocities for
different positions and orientations of the swimmer along with the contour plot
of the magnitude of the velocity,

√
〈Ωy〉

2 + 〈Uz〉
2. The horizontal component of

the vector denotes 〈Ω̄y〉 = 〈Ωy〉/
√
〈Ωy〉

2 + 〈Uz〉
2, whereas the vertical component

denotes 〈Ūz〉 = 〈Uz〉/
√
〈Ωy〉

2 + 〈Uz〉
2. Figure 6(a) shows the results obtained using

bipolar coordinates whereas figure 6(b) shows the results obtained using MOR. The
results are reported for B2/B1 = 4, λ = 1, α/β = 1, α + β = 20. It can be seen
from figure 6(a) that the 〈Uz〉 velocity is always positive. This indicates that the
time-averaged swimmer velocity is directed towards the interface for all orientations.
This result is a generalization of that predicted by Trouilloud et al. (2008) for the
time-averaged swimming velocity of parallel force dipole near a deforming interface
using the scaling analysis. According to them, the time-averaged velocity of a parallel
force dipole is directed towards the interface when it is oriented either parallel or
perpendicular to the interface. We, however, observe that such a force dipole has a
time-averaged velocity directed towards the interface irrespective of its orientation. It
can also be seen that 〈Ωy〉 � 〈Uz〉. So, the orientation of the swimmer changes by
a very small amount in one time period. Berdan & Leal (1982) reported a similar
observation for the motion of a rigid sphere near an interface. According to them,
the drag force correction due to the interface deformation for either a translation of
sphere parallel to the plane (undeformed) interface or rotation about an axis parallel
to an undeformed interface is much smaller than the drag force correction due to
the translation of sphere normal to the undeformed interface. From the contour plot,
we see that the magnitude of the velocity is large when the swimmer is close to
the interface. The interface deformation increases with the decrease of the distance
between the swimmer and the undeformed interface leading to the increase in the
magnitude of the swimmer velocity.
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FIGURE 7. (Colour online) Variation of time-averaged swimming velocities (a) 〈Uz〉 and
(b) 〈Ωy〉 with the distance of the swimmer from the interface for α/β = 0.01, 0.1, 1 and
10, B2/B1 = 4, λ= 1, α+ β = 20, θz = 3π/8. The lines indicate bipolar coordinate results
whereas the symbols indicate the MOR results. A corresponding plot of the change in the
swimmer’s position and orientation in one time period is given in figure 12 of appendix C.

Figure 7(a,b) shows the variation of time-averaged swimmer velocities with the
distance of the swimmer from the undeformed interface for various values of α/β
ranging from 0.01 to 10 and fixing the values of other parameters at B2/B1 = 4,
λ = 1, α + β = 20 and θz = 3π/8. This figure also quantitatively compares the
MOR and bipolar coordinate results, where lines denote bipolar coordinate results
and symbols denote MOR results. The decrease of interface deformation with the
distance of the squirmer from an undeformed interface causes a decrease in the
magnitude of time-averaged swimming velocities as shown in figure 7(a,b). After
all, a swimmer which is far away from the interface does not cause the interface
to deform, thereby does not swim in a time-averaged sense. For a swimmer far
away from the interface (l ∼ 4), we see that the maximum value of 〈Uz〉 occurs
at a minimum value of α/β = 0.01, while the minimum value of 〈Uz〉 occurs at a
maximum value of α/β = 10. This result of 〈Uz〉 is consistent with that of interface
deformation which is again maximum at α/β = 0.01. Berdan & Leal (1982) also
reported similar result for the drag force correction due to the interface deformation,
due to the motion of a rigid sphere near an interface. They reported that the drag
force is maximum when α/β� 1, while it is minimum when α/β� 1. When we are
close to the interface (l ∼ 1.5), it seems that the value of 〈Uz〉 is insensitive to the
value of α/β as shown in figure 7(a). Additionally, the error in the predictions of 〈Uz〉

velocity by MOR decreases with the distance of the squirmer from the undeformed
interface. Even though MOR, in principle should be valid for the swimmer distances
from the undeformed interface of the order of 10, i.e., l = O(10), we see from
figure 7(a) that MOR predicts 〈Uz〉 velocities quite accurately even when l≈ 3. MOR,
however, fails when l 6 3, overpredicting 〈Uz〉 velocities by large extent (absolute
error = O(0.1)). Spagnolie & Lauga (2012) have also reported a similar observation.
According to them, the velocity of the swimmer moving near a plane wall/stress-free
surface predicted using the method of images is accurate even when l= O(1). Even
though the MOR predicts 〈Uz〉 velocity quite accurately, it seems that the error in
predictions of the 〈Ωy〉 velocity by the MOR depends on α/β. When α/β = 10, the
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FIGURE 8. (Colour online) Variation of time-averaged swimming velocities (a) 〈Uz〉 and
(b) 〈Ωy〉 with the distance of the swimmer from the interface for λ = 10−3, 1, 10 and
104, B2/B1 = 4, α/β = 1, α + β = 20, θz = 3π/8. The lines indicate bipolar coordinate
results and the symbols indicate the MOR results. A corresponding plot of the change
in the swimmer’s position and orientation in one time period is given in figure 13 of
appendix C.

MOR predictions of the 〈Ωy〉 velocity is quite close to that of bipolar coordinates
predictions. However, when α/β = 0.01, these two predictions fall far apart. In
fact, when α/β = 0.01, the MOR predicts 〈Ωy〉 which is of opposite sign to that
predicted by the bipolar coordinate method. In summary, we conclude that the MOR
predicts the swimming velocities accurately when the forces due to density differences
dominate the forces due to the interfacial tension, i.e., when α/β� 1.

Figure 8(a,b) shows the variation of time-averaged swimming velocities with the
viscosity ratio of two fluids. The parameters used in this figure are the same as that
of figure 7 except α/β is fixed at 1 and λ is varied in the range 10−3–104. From
figure 8(a), for a swimmer far away from the interface (l∼ 4), the value of 〈Uz〉 is
minimum at λ=10−3 and its value is insensitive to λ for λ in the range of 1–104. This
result is similar to the corrected drag ratio acting on a sphere translating normal to the
interface as reported by Berdan & Leal (1982). For a swimmer close to the interface
(l ∼ 1.5), the value of 〈Uz〉 does not depend on λ for all values of λ investigated.
We should note that the interface deformation is also independent of viscosity ratio.
For l> 2, the magnitude of 〈Ωy〉 decreases with λ as seen in figure 8(b). The MOR
results are in good agreement with bipolar coordinate results for a swimmer far away
from the interface, as seen from figure 8(a,b). However, the error in the predictions
of the MOR depends on the viscosity ratio, λ. In particular, when λ= 10−3, the error
in the predictions of the MOR are so small that these results are in good agreement
with the bipolar coordinate results even at l= 1.3, as seen in figure 8(a,b). However,
the error in the predictions of the MOR is large when λ = 104. Observations from
figures 7 and 8 conclude that the MOR is quite accurate to study the locomotion of
swimming microorganisms near a stress-free interface (as λ≈ 0) such as an air–water
interface when the interfacial tension between the two fluids is very small compared
to the force due to the density difference (i.e. α/β� 1).
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FIGURE 9. (Colour online) Trajectories of swimmer when released from zin=−2.6, tin= 0
for time duration 1t= 200. The other parameters used in this figure are B2/B1= 4, λ= 1,
α/β = 0.01, α + β = 20. The markers × show the initial position and orientation of the
swimmer. When released at θin = 4π/11, 9π/11 and 10π/11, the swimmer moves away
from the interface in a time-averaged sense.

3.3.2. Instantaneous velocities
In the previous section, we analysed the time-averaged velocities which were

obtained by fixing z and θz while integrating velocities with respect to time. In
this work, we have access to swimmer instantaneous velocities. As a first step to
understand the instantaneous swimmer velocities, we plot in figure 9, trajectories of
the swimmer when released from z = −2.6 for different orientations at time tin = 0
for B2/B1= 4, λ= 1, α/β = 0.01, α+ β = 20. It can be seen from the figure that for
some values of θz = 4π/11, 9π/11 and 10π/11, the swimmer moves away from the
interface in a time-averaged sense. Such an observation of swimmer moving away
from the interface is not captured by the simplified analysis of the previous section
(figure 6a).

Now, we release the swimmer at all possible positions and orientations at time
tin = 0 and plot the vector fields of (1θ̄z, 1z̄) = (1θz/

√
(1θz)2 + (1z)2, 1z/√

(1θz)2 + (1z)2) in figure 10. Here, 1θz denotes a change in the orientation
of the swimmer, while 1z denotes a change in the position of the swimmer
in one time period. Dimensionless time-averaged velocities are calculated as
〈Uz〉 = 1z/(2π), 〈Ωy〉 = 1θz/(2π). Unlike the time-averaged velocities reported
in the previous section, which are only valid under the separation of time scales,
this calculation of time-averaged velocity does not have such a limitation. The white
region in these figures shows that the swimmer goes very close to the interface
(z < 1.1) during one time period when released at that position and orientation. In
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FIGURE 10. (Colour online) Vector fields of (1θ̄z,1z̄) (their definitions being given in the
main text) along with the contours of

√
(1θz)2 + (1z)2 obtained using bipolar coordinates,

for (a) puller swimmer (B2/B1 = 4), (b) pusher swimmer (B2/B1 = −4) and (c) neutral
swimmer (B2/B1 = 0). The values of the parameters used in these plots are α/β = 0.01,
α+ β = 20, λ= 1, tin = 0. A corresponding plot of vector fields obtained using the MOR
is provided in figure 11 of appendix C.

these cases, due to computational cost, we did not calculate 1z, 1θz over one time
period. These plots, in essence, show how the swimmer’s position and orientation
vary over one time period when released at time tin = 0. It can be seen from these
plots that there is no stable fixed point in the phase plane.

We hereby investigate the long-time dynamics of a swimmer near a weakly
deforming interface. From figure 10(a,b), we see that if the initial orientation and
position of the swimmer fall outside the region bounded by the blue curves, it moves
towards the interface, otherwise it moves away from the interface. If the distance
of the centre of the swimmer from the interface after a long time is less than 1.1,
we say it is moving towards the interface. On the other hand, if it is greater than
10, we say it is moving away from the interface. Furthermore, we can investigate
the long-time orientation of a swimmer that is moving towards the interface. In
general, we can write the long-time orientation of the swimmer (θ∞z ) in terms of
its critical orientation (θ c

z ), where θ c
z is the orientation of the swimmer at which

it moves towards the interface with zero angular velocity. For instance, if a puller
(pusher) swimmer is initially oriented towards the interface (0< θz <π/2), its critical
orientation is normal and pointing towards the interface, i.e., θ c

z = 0 (parallel to the
interface, i.e., θ c

z =π/2). On the other hand, if a puller (pusher) swimmer is initially
oriented away from the interface (π/2< θz < π), its critical orientation is parallel to
the interface, i.e., θ c

z =π/2 (normal but pointing away from the interface, i.e., θ c
z =π).

From figure 10(c), it can be seen that if the initial orientation and position of a neutral
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swimmer lie in the region bounded by the blue curve, it moves towards the interface
with a critical orientation that is parallel to the interface, i.e., θ c

z = π/2. Otherwise
it moves away from the interface. Additionally, the width of the region where the
swimmer moves away from the interface increases with the distance of the swimmer
from the interface.

One can compare the long-time swimming dynamics with that of a force dipole
(specifically pusher swimmer) near a plane interface. It was reported that, after long
time, the force dipole aligns parallel to the interface and always moves towards the
interface (Berke et al. 2008). However, we see that the long-time orientation of a time-
reversible swimmer near a weakly deforming interface depends on the type of the
swimmer and even for a given swimmer, it depends on its initial orientation.

4. Conclusions
The motion of swimming microorganisms (swimmers) near an interface can cause

the interface to deform. For instance, in the presence of ultralow interfacial tension
(Rosen et al. 2005) (10−3–10−2 mN m−1), bacteria or protozoa of size O(10–100) µm
(Lauga & Powers 2009) moving with speed O(10–1000) µm s−1 near a surfactant
covered aqueous solution–oil interface correspond to the conditions Ca≈ 10−3–1 and
Ca/Bo≈ 10−4–10, hence the interface deformation can be finite (when Ca∼O(1) and
Ca/Bo∼O(1)). Bacteria and spermatozoa swimming in mucus with a large apparent
viscosity (Clift & Hart 1953) correspond to Ca and Ca/Bo∼O(1), where the interface
deformation can be large. To understand the motion of microorganism near a weakly
deforming interface, we model the microorganism as a spherical squirmer with only
two squirming modes. We thereby provide a methodology to evaluate the velocity
of the swimmer near a weakly deforming interface. This consists of (i) deriving the
flow field due to a swimmer near a plane interface and (ii) applying the reciprocal
theorem with a suitable auxiliary problem. A similar approach can be used to study
the influence of weak inertial and non-Newtonian effects on the dynamics of the
swimmer near a plane interface. We apply this methodology using an exact solution
of Stokes equations (bipolar coordinates approach) and using an approximate solution
(the method of reflections).

Using the instantaneous velocity of the swimmer near a weakly deforming interface,
we explore two examples: steady squirmer as well as a time-reversible squirmer. We
observe that the weak interface deformations do not influence the dynamics of a steady
squirmer if it is far away from the interface. This is not the case for a time-reversible
swimmer. For instance, the long-time dynamics of a time-reversible swimmer is such
that it either moves towards or away from the interface. We thereby divide its phase
space into regions of attraction (repulsion) towards (from) the interface. Also, the long-
time orientation of a time-reversible swimmer that is moving towards the interface
depends on its initial orientation. We further note that the MOR is accurate to capture
the dynamics of a swimmer even if the distance of the centre of the swimmer from
the interface is of the order of the swimmer size. It is of interest to investigate the
role of higher squirming modes in a future work as they can modify the swimming
dynamics close to an interface and the results may be gait specific.
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Appendix A. Squirming boundary condition in bipolar coordinates
A.1. B1 squirming mode

For B1 squirming mode, the boundary condition at the surface of the swimmer is given
by

us
= sin θz{−cos θ cos(φ − φx)iθ + sin(φ − φx)iφ} + cos(θz){sin θ iθ }. (A 1)

We split this into two subproblems, where the boundary condition on the swimmer
for each subproblem is given by

Subproblem 0: us
0 = sin θ iθ ,

Subproblem 1: us
1 =−cos θ cos(φ − φx)iθ + sin(φ − φx)iφ,

}
(A 2)

so that the flow field due to B1 mode is given by

{u, p} = cos θz{u, p}0 + sin θz{u, p}1, (A 3)

where {}k denote the variables corresponding to kth subproblem.

A.1.1. Subproblem 0
In this case, the boundary condition on the swimmer can be rewritten in terms of

cylindrical coordinates as

us = ρ(z+ l), vs = 0, ws =−ρ
2. (A 4a−c)

Thus, the non-zero terms in the general solution are those only with m= 0 and α0= 0.
Using this equation we obtain

X0
n =−

2
√

2
3

sinh η0e(n+(1/2))η0[(2n+ 1) sinh η0 + 3 cosh η0],

Z0
n =

4
√

2
3

sinh η0e(n+(1/2))η0[(n2
+ n+ 1) sinh η0 + (2n+ 1) cosh η0],

Y0
n = 0.

 (A 5)

A.1.2. Subproblem 1
In this case, the boundary condition on the swimmer can be written in terms of

cylindrical coordinates as

us =−(z+ l)2 cos(φ − φx), vs = sin(φ − φx), ws = ρ(z+ l) cos(φ − φx). (A 6a−c)

Thus, the non-zero terms in the general solution are those only with m = 1 and
α1 =−φx. Using this equation, we obtain

X1
n =

4
3

√
2e(n+(1/2))η0 sinh2(η0),

Y1
n =−

4
√

2
3

e(n+(1/2))η0

×

(
(n2
+ n+ 1) cosh2(η0)+ (2n+ 1) sinh(η0) cosh(η0)− n2

− n+
1
2

)
,

Z1
n =−

2
3(2 sinh(η0)n+ sinh(η0)+ 3 cosh(η0))

√
2e(n+(1/2))η0 sinh(η0).


(A 7)
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The expressions for force and torque acting on the swimmer due to all the squirming
modes can be readily obtained by integrating the traction vector and the first moment
of the traction vector on the surface of the swimmer. As these expressions are lengthy,
we do not report them here.

A.2. B2 squirming mode
For B2 squirming mode, the boundary condition at the surface of the swimmer is given
by

us
=

(
cos2(θz)−

sin2(θz)

2

)
sin(θ) cos(θ)iθ

+ sin(θz) cos(θz){[−cos2(θ)+ sin2(θ)] cos(φ − φx)iθ + cos(θ) sin(φ − φx)iφ}

+
sin2(θz)

2
{−cos(θ) sin(θ) cos(2φ − 2φx)iθ + sin(θ) sin(2φ − 2φx)iφ}. (A 8)

We split this problem into three subproblems, with the boundary condition on the
swimmer for each subproblem given by

Subproblem 0: us
0 = sin(θ) cos(θ)iθ ,

Subproblem 1: us
1 = (−cos2(θ)+ sin2(θ)) cos(φ − φx)iθ + cos(θ) sin(φ − φx)iφ,

Subproblem 2: us
2 =−cos(θ) sin(θ) cos(2φ − 2φx)iθ + sin(θ) sin(2φ − 2φx)iφ,


(A 9)

so that the flow field due to B2 mode is given by

{u, p} =
(

cos2 θz −
sin2 θz

2

)
{u, p}0 + sin θz cos θz{u, p}1 +

sin2(θz)

2
{u, p}2, (A 10)

where again {}k denote the variables corresponding to kth subproblem.

A.2.1. Subproblem 0
In this case, the boundary condition on the swimmer can be rewritten in terms of

cylindrical coordinates as

us = ρ(z+ l)2, vs = 0, ws =−ρ
2(z+ l). (A 11a−c)

Thus, the non-zero terms in the general solution are those only with m= 0 and α0= 0.
Using this equation, we obtain

X0
n =−

8
√

2
15

sinh(η0)e(n+(1/2))η0

×

(
(n2
+ n+ 4) cosh2(η0)+ (4n+ 2) sinh(η0) cosh(η0)−

(
n+

1
2

)2
)
,

Z0
n =

8
√

2
15

sinh(η0)e(n+(1/2))η0

×

(
(n+ 1

2)(n
2
+ n+ 6) cosh2(η0)

+
9
2 sinh(η0) cosh(η0)(n2

+ n+ 2
3)− (n+

1
2)(n

2
+ n+ 3)

)
,

Y0
n = 0.


(A 12)
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A.2.2. Subproblem 1
In this case, the boundary condition on the swimmer can be rewritten in terms of

cylindrical coordinates as

us = [−(z+ l)3 + ρ2(z+ l)] cos(φ − φx),

vs = (z+ l) sin(φ − φx),

ws = [(z+ l)2ρ − ρ3
] cos(φ − φx).

 (A 13)

Thus, the non-zero terms in the general solution are those only with m= 1 and α1 =

−φx. Using this equation, we obtain

X1
n =

8
15 e1/2(2n+1)η0

√
2(2 sinh(η0)n+ sinh(η0)+ 5 cosh(η0))(sinh(η0))

2,

Y1
n =−

2
√

2
15

e1/2η0(2n−5)

(
e6η0n3

+ 6e6η0n2
+ 11e6η0n− 3e4η0n3

+ 6e6η0 − 9e4η0n2

+ 3e4η0n+ 3e2η0n3
+ 9e4η0 − 12e2η0n− n3

+ 3n2
− 2n

)
,

Z1
n =−

√
2e1/2η0(2n−5)

15

(
2e6η0n2

+ 10e6η0n+ 12e6η0 − 6e4η0n2
− 14e4η0n− 13e4η0

+ 6e2η0n2
− 2e2η0n+ 5e2η0 − 2n2

+ 6n− 4

)
.


(A 14)

A.2.3. Subproblem 2
In this case, the boundary condition on the swimmer can be rewritten in terms of

cylindrical coordinates as

us =−(z+ l)2ρ cos(2φ − 2φx),

vs = ρ sin(2φ − 2φx),

ws = ρ
2(z+ l) cos(2φ − 2φx).

 (A 15)

Thus, the non-zero terms in the general solution are those only with m= 2 and α2 =

−2φx. Using this equation, we obtain

X2
n =−

8
√

2 sinh3(η0)e(n+(1/2))η0

15
,

Y2
n =

8
√

2
15

sinh(η0)e(n+(1/2))η0

×

(
(n2
+ n+ 4) cosh2(η0)+ (4n+ 2) sinh(η0) cosh(η0)

− n2
− n+ 7

2

)
,

Z2
n =

4
√

2e(n+(1/2))η0(2 sinh(η0)n+ 5 cosh(η0)+ sinh(η0)) sinh2(η0)

15
.


(A 16)

Appendix B. Point force singularities
B.1. Source dipole

uD(x; δ)=−
δ

R3
+

3(δ · x)
R5

x; R= |x|,

pD(x; δ)= 0.

 (B 1)
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FIGURE 11. (Colour online) Vector fields of (1θ̄z, 1z̄) (their definitions being given in the
main text) along with the contours of

√
(1θz)

2
+ (1z)2 obtained using the MOR, for (a)

puller swimmer (B2/B1 = 4), (b) pusher swimmer (B2/B1 =−4) and (c) neutral swimmer
(B2/B1 = 0). The values of parameters used in these plots are α/β = 0.01, α + β = 20,
λ= 1, tin = 0.

B.2. Stresslet

uss(x; γ , δ)=
[
−

γ · δ

R3
+

3(γ · x)(δ · x)
R5

]
x,

pss(x; γ , δ)= 2
[
−

γ · δ

R3
+

3(γ · x)(δ · x)
R5

]
.

 (B 2)

B.3. Source quadrupole

uD4(x; δ, γ )= γ · ∇[uD(x; δ)]

=
3δ(γ · x)+ 3(δ · γ )x+ 3γ (δ · x)

R5
−

15(δ · x)(γ · x)x
R7

,

pD4(x; δ, γ )= γ · ∇pD(x; δ)= 0.

 (B 3)
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FIGURE 12. (Colour online) Change in (a) swimmer position 1z and (b) orientation 1θz
in one time period for α/β= 0.01, 1 and 10, B2/B1= 4, λ= 1, α+β= 20, θz= 3π/8. The
lines indicate the bipolar coordinate results and the symbols indicate the MOR results.
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FIGURE 13. (Colour online) Change in (a) swimmer position 1z and (b) orientation 1θz
in one time period for λ= 10−3, 1 and 10, α/β = 1, α + β = 20, θz = 3π/8, B2/B1 = 4.
The lines indicate bipolar coordinate results and the symbols indicate the MOR results.

Appendix C. Instantaneous velocities of a time-reversible squirmer: method of
reflections

We present the changes in the position and orientation of the swimmer in one time
period, obtained using the method of reflections, in figures 11–13. We also compare
these results with those obtained using bipolar coordinates for various values of B2/B1,
α/β and λ.
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