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THE VALUE OF UNCERTAINTY
UNDER LIMITED COMMITMENT

JUNICHI FUJIMOTO
University of Tokyo

In this paper, I analyze an optimal loan contract between a risk-neutral financial
intermediary and a risk-averse household, where the household receives a stochastic
endowment stream that grows over time and is unable to commit to the contract. I examine
the household’s welfare in the equilibrium contract, and find that, first, under sufficiently
rapid endowment growth, the presence of uncertainty in endowment may improve the
household’s welfare through relaxation of its commitment problem, and second, regardless
of the endowment growth rate, the household’s welfare is nonincreasing in the persistence
of endowment. Numerical analysis suggests that welfare improvement from uncertainty
may occur under reasonable parameters. These results have potentially important practical
implications—for example, for developing countries that rely on external borrowing.

Keywords: Long-Term Contracts, Risk Sharing, Consumption Smoothing, Limited
Commitment

1. INTRODUCTION

This paper analyzes an optimal loan contract between a risk-neutral financial
intermediary and a risk-averse household. The household receives a stochastic
endowment stream that grows over time, and discounts the future at a potentially
different rate from the financial intermediary. The financial intermediary commits
to the contract, but in any period, the household has an outside option to walk
away from the contract and to live in autarky thereafter. The problem is thus one
of one-sided commitment.

In the canonical model of lending with one-sided commitment, analyzed, for
example, in Ljungqvist and Sargent (2004),1 the two parties of the contract discount
the future at the same rate, and endowment is drawn from the same finite discrete
distribution in every period. The household’s consumption path in an optimal
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contract then obeys the following simple rule: When the household receives the
highest-ever endowment, consumption rises to satisfy the household’s participa-
tion constraint, that is, to prevent the household from reneging on the contract.
Otherwise, consumption stays constant. Thus, the household eventually experi-
ences the highest possible endowment, and consumption is completely stabilized
thereafter.

This paper extends the canonical model by adding two sources of
nonstationarity—because of endowment growth, the household’s value of au-
tarky, and thus its incentive to renege on the contract, in a given state of nature
evolves over time, and because of different time-discount factors between
the two parties of the contract, constant consumption is not optimal even when the
participation constraint does not bind. This paper then examines how the nature
of the endowment process affects the household’s welfare. The resulting analysis
relates to two studies in particular. The first, Krueger and Perri (2006), analyzes
risk sharing between two ex ante identical risk-averse households and shows that
increased idiosyncratic income risk may improve consumption risk sharing by
reducing the households’ autarky values and thereby relaxing the participation
constraints. The second, Krueger and Uhlig (2006), allows an agent to enter a new
contract with any competing principal2 after reneging on the original contract, and
examines how the relative patience of agents and principals affects the degree of
risk sharing achieved.

The key novelty of this paper, with respect to the two studies described in
the preceding, lies in addressing two distinct roles of a contract. The first is risk
sharing, or consumption smoothing across different states of nature, which is the
focus of attention in the limited commitment literature.3 If this is the only role per-
formed by a contract, as with the canonical model, clearly the allocation under no
uncertainty is the first-best allocation. Introducing nonstationarity into the model,
however, creates a potential second role for a contract, namely intertemporal
consumption smoothing, or consumption smoothing over time. That is, an optimal
contract attempts to front- or back-load the household’s consumption relative to
endowment, depending on the relative discount factors of the two sides of the
contract, as well as on the endowment growth rate.

The presence of this second role makes the welfare analysis more interesting,
because it now involves weighing the two distinct roles of a contract. Such anal-
ysis is, however, not explored in existing studies. In Krueger and Perri (2006)’s
environment with two symmetric households, there is no gain from intertem-
poral consumption smoothing, and thus the first-best outcome is perfect risk
sharing. Therefore, although greater variance of income may locally improve
welfare through better risk sharing, the presence of uncertainty never generates
strict welfare improvement with respect to an economy without uncertainty. The
situation is different in Krueger and Uhlig (2006), but Krueger and Uhlig (2006)
focuses on how the relative patience of agents and principals affects risk sharing,
and does not address its impact on welfare through consumption smoothing over
time.
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In contrast, the present paper considers an environment in which both roles of a
contract are relevant, and examines how the variance and persistence of endowment
affect the household’s welfare. There are two main analytical results. First, under
sufficiently rapid endowment growth, the presence of uncertainty in endowment
may improve welfare over the deterministic case. This is because the mechanism
by which uncertainty relaxes an agent’s participation constraints, as discussed in
Krueger and Perri (2006), may also improve intertemporal consumption smooth-
ing. This effect is strong under rapid endowment growth, when the household
derives high potential benefit from transferring resources from future to present,
but has limited capacity to do so because of its temptation to walk away from the
contract in the future. Second, regardless of endowment growth, the household’s
welfare is nonincreasing4 in the persistence of endowment. Intuitively, greater
persistence of endowment increases the household’s value of autarky, and hence
tightening the participation constraint, in the state of nature with high endowment,
whereas it has the opposite effect in the state of nature with low endowment.
The former effect turns out to dominate the latter; hence the optimal contract
becomes less efficient as endowment becomes more persistent. The challenge in
formalizing this intuition is that assessing the effect of parameters on welfare is not
straightforward in nonstationary environments, where the participation constraint
in a given state that is, for example, currently slack may bind in the future. One
of the contributions of this paper is to overcome this difficulty by examining how,
depending on the parameters, the value of walking away from the contract relative
to staying in it evolves over time and by providing separate proofs according
to these patterns. Finally, this paper conducts numerical analyses and shows,
among other results, that welfare improvement from uncertainty can occur under
economic fluctuations of plausible magnitude, and that the effect can be sizeable
when endowment grows rapidly and is highly variable.

The preceding discussion presumes that the interest rate is exogenous. Thus, it
does not extend to a general equilibrium model with ex ante identical and infinitely
lived households, in which endogenous interest rate adjustments eliminate the
benefit from intertemporal consumption smoothing. Addressing the intertemporal
consumption smoothing role of a contract is nevertheless important for several rea-
sons. First, analysis of a limited-commitment environment in partial equilibrium,
such as has been explored frequently in literature, is interesting in its own right.
Second, the environment of this paper can be interpreted as a borrowing problem
of a small open economy, as in Worrall (1990). Third, in overlapping-generations
models in which intertemporal consumption smoothing through intergenerational
transfer is possible, endogenous interest rate adjustments eliminate the benefit
from intertemporal consumption smoothing only in the generationally autarkic
equilibrium.

In addition to the studies mentioned earlier, this paper is related to the liter-
ature on sovereign debt with noncontingent repayment. In particular, Eaton and
Gersovitz (1981) considers an example in which the sovereign borrower’s output
grows over time and examines the implications of output growth rate and income
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variability. Eaton and Gersovitz (1981) considers, however, only a one-period debt,
which substantially limits the amount of intertemporal consumption smoothing
achieved through borrowing. Eaton and Gersovitz (1981) also mainly focuses on
the amount of sustainable debt, and does not discuss welfare implications, as in
the present paper.

2. MODEL

2.1. Basic Environment

Time is discrete and is indexed by t = 0, 1, . . . , and there is a single perishable
good. There are two types of agent in the economy. Households are infinitely lived,
have a constant relative risk aversion (CRRA) period utility over consumption,
and discount the future with discount factor β ∈ (0, 1). Thus, letting Ct be a
household’s consumption in period t , the household’s expected lifetime utility is

E

∞∑
t=0

βtu (Ct ) , (1)

where E is the unconditional expectation operator, and u (Ct) = C1−σ
t / (1 − σ)

(σ > 0, σ �= 1). Financial intermediaries are risk-neutral, and unlike households,
have access to an external financial market, where they can borrow or lend at a
constant interest rate r > 0.

In period t , a household receives an endowment Yt (st ), which is publicly
observable, grows over time, and depends on st ∈ {H,L}, the state in period t .
That is,

Yt (st ) =
{

(1 + g)t yH if st = H (high state),
(1 + g)t yL if st = L (low state),

where yH ≥ yL ≥ 0. The state st follows a first-order Markov process such that
Pr (st+1 = H |st = H) = 1−pH , Pr (st+1 = L|st = L) = 1−pL, where pL, pH ∈
(0, 1). In other words, ps denotes the probability that the state switches from its
current value, s. Given such a transition matrix, the stationary distribution is

(πH , πL) =
(

pL

pH + pL

,
pH

pH + pL

)
. (2)

The initial state s0 is drawn from the stationary distribution, or Pr (s0 = s) = πs

for s = {H,L}, and thus the unconditional probability of the state being s is πs

for all t . The fluctuation in endowment described earlier is the only source of
uncertainty.5

A household and a financial intermediary engage in a long-term loan contract
before s0 is realized: the household promises to offer its endowment stream to the
financial intermediary, and receives in return a consumption stream. The financial
intermediary commits to the contract, whereas in any t , after observing Yt , the
household can walk away from the contract, which results in permanent exclusion
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from the loan market. The loan market is competitive; hence, at equilibrium,
risk-neutral financial intermediaries make zero expected profit.

Throughout this paper, I make parameter restrictions

r > g ≥ 0, (3)

β (1 + r)1−σ < 1. (4)

Because β > 0 and σ > 0, (3) and (4) imply that

β (1 + g)1−σ < 1. (5)

These conditions guarantee that optimization problems in the model are well
defined.

2.2. Optimal Contract

For the remainder of this paper, an optimal contract implies a feasible contract, or
a contract from which the household never chooses to walk away, that minimizes
the financial intermediary’s expected cost Q of providing a given initial promised
value (expected discounted lifetime utility) V0 to the household. Because the
financial intermediary’s revenue is determined exogenously, such a contract also
maximizes its expected profit. An equilibrium contract is thus an optimal contract
whose expected cost equals expected revenue.

Hence, letting st = (s0, s1, . . . , st ) denote history, an optimal contract is a
stream of consumption {C(st )}, t = 0, 1, . . . that solves, for a given V0, the
following problem:

Q(V0) = min
C(st )≥0, ∀st

E

∞∑
t=0

βtC(st ), (6)

s.t. E

∞∑
t=0

βtu(C(st )) ≥ V0, (7)

Et

[ ∞∑
τ=t

βτ−t u(C(sτ |st ))
∣∣st

]
≥ V Aut

t (st ) ∀st . (8)

Here, {C(sτ |st )}, τ = t, t + 1, . . . is a continuation of C(st ) following history
st . Constraint (7) requires that the contract provide the household at least V0.
The participation constraint (8) requires that following all possible history st , the
household’s continuation value in the contract be at least as large as the value of
autarky V Aut

t (st ), given by

V Aut
t (st ) = Et

[ ∞∑
τ=t

βτ−t u (Yτ (sτ )) |st

]
. (9)
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Here, Et is the expectation operator conditional on information available in period
t . Thus, V Aut

t (st ) is the household’s expected discounted utility from consuming
endowment thereafter, in period t , when the state is st . Given the assumptions
on the processes of Yt (st ) and st , V Aut

t (st ) depends only on st , not on the entire
history st . An optimal contract never terminates, so period t is identified as the t th
period of the contract.6

Let R denote the expected discounted revenue from a contract. Then

R = E

∞∑
t=0

(1 + r)−t Yt (st ) . (10)

In an equilibrium contract, V0 is determined such that

Q(V0) = R. (11)

2.3. Recursive Optimal Contract

To analyze an optimal contract, it is convenient to consider a recursive formulation
of the preceding problem.7 Define γ ≡ 1 − β (1 + g)1−σ . Obviously γ < 1 and,
from (5), γ > 0. Then, in state s ∈ {H,L}, the financial intermediary solves

qs (v) = min
c,v′

s ,v
′−s

c + 1 + g

1 + r

[
(1 − ps) qs

(
v′

s

) + psq−s

(
v′

−s

)]
, (12)

v = u (c) + (1 − γ )
[
(1 − ps) v′

s + psv
′
−s

]
, (13)

v′
s ′ ≥ vAut

s ′ , s ′ = {s,−s}, (14)

where −s = H if s = L, and vice versa. Here, qs (v) is the financial intermedi-
ary’s cost of providing the household promised value v when the current state is s,
whereas c is the household’s current consumption, v′

s ′ is the promised value next
period in state s ′, and vAut

s is the value of autarky in state s. Cost and consumption
are detrended by (1 + g)t , and utility-related terms are detrended by (1 + g)(1−σ)t ;
for example, vAut

s = (1 + g)−(1−σ)t V Aut
t (s) = V Aut

0 (s). Henceforth, the analy-
sis proceeds using this recursive formulation, and unless mentioned otherwise,
variables refer to the detrended values.8

The autarky values in the high and low states, vAut
H and vAut

L , are expressed as

vAut
H = u (yH ) + (1 − γ )

[
(1 − pH) vAut

H + pHvAut
L

]
, (15)

vAut
L = u (yL) + (1 − γ )

[
pLvAut

H + (1 − pL) vAut
L

]
, (16)
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which yield

vAut
H = [γ + (1 − γ ) pL] u (yH ) + (1 − γ ) pHu (yL)

γ [γ + (1 − γ ) (pH + pL)]
, (17)

vAut
L = (1 − γ ) pLu (yH ) + [γ + (1 − γ ) pH ] u (yL)

γ [γ + (1 − γ ) (pH + pL)]
. (18)

Clearly, (17) and (18) imply that vAut
H ≥ vAut

L because yH ≥ yL. Moreover,
vAut

H = vAut
L only in special cases, namely, when yH = yL, or when σ > 1 and

yL = 0 (which implies that u (yL) = −∞). Thus, unless otherwise noted, the
discussion that follows presumes that vAut

H > vAut
L .

Using this recursive formulation, Q(V0) can be written as

Q(V0) = min
v0

H , v0
L

πHqH

(
v0

H

) + πLqL

(
v0

L

)
(19)

s.t. V0 = πH v0
H + πLv0

L, (20)

v0
H ≥ vAut

H , v0
L ≥ vAut

L . (21)

Krueger (1999) and Krueger and Uhlig (2006)9 show that the standard dynamic
programming argument can be applied to this type of environment to establish that
the cost function qs is increasing, strictly convex, and continuously differentiable,
and therefore so is Q.

2.4. Properties of an Optimal Contract

In this subsection, I present the key properties of an optimal contract.10

Path of consumption and the promised value. First, consider the continuation
problem given by (12)–(14), which concerns choosing current consumption and
the next period’s promised values in the two states. Combining the first-order
conditions with the envelope condition,

θs ′ = 1 + g

1 + r

[
∂qs ′(v′

s ′)

∂v
− (1 − γ ) (1 + r)

1 + g

∂qs (v)

∂v

]
, s ′ = {s,−s} , (22)

∂qs (v)

∂v
= 1

u′ (c)
, (23)

where θs ′ is proportional to the Lagrange multiplier for the participation constraint
(14) in state s ′. Let μ ≡ [β (1 + r)]1/σ − 1. Then, because γ = 1 −β (1 + g)1−σ ,

(1 − γ ) (1 + r)

1 + g
=

(
1 + μ

1 + g

)σ

. (24)
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Also, (4) and 1+μ
1+r

= [β(1+ r)1−σ ]1/σ imply that r > μ. The path of consumption
and the promised value can be analyzed using (22)–(24). In the following, for
s ∈ {H,L}, let cAut

s be consumption in an optimal contract when the state is s and
the promised value is vAut

s .
First, suppose the participation constraint (14) does not bind in state s ′ next

period. Then θs ′ = 0, so (22) yields

∂qs ′(v′
s ′)

∂v
= (1 − γ ) (1 + r)

1 + g

∂qs (vs)

∂v
, (25)

which determines v′
s ′ . In particular, setting s ′ = s in (25) and noting (24), g > μ

implies ∂qs

(
v′

s

)
/∂v < ∂qs(vs)/∂v, and thus v′

s < vs , because qs is convex.
Conversely, g = μ implies v′

s = vs , and g < μ implies v′
s > vs . Thus, when the

state remains unchanged and the participation constraint is slack, the promised
value falls if g > μ, remains constant if g = μ, and rises if g < μ.

Also, letting cs ′ be consumption next period in state s ′, θs ′ = 0 and (22)–(24)
yield

cs ′

c
=

[
(1 − γ ) (1 + r)

1 + g

]1/σ

= 1 + μ

1 + g
. (26)

Thus, when the participation constraint does not bind, consumption in an optimal
contract grows at a rate μ−g

1+g
, which corresponds to nondetrended consumption

growing at a rate μ.
Next, suppose the participation constraint (14) binds in state s ′ next period.

Then v′
s ′ = vAut

s ′ , so by definition, cs ′ = cAut
s ′ . Because θs ′ > 0, (22) and (23)

imply that v′
s ′ and cs ′ exceed the values they would attain if (14) were slack, as

determined by (25) and (26).
This argument leads to the following two lemmas.

LEMMA 1. cAut
H ≥ cAut

L with equality if and only if vAut
H = vAut

L .

Proof. See Appendix B.

LEMMA 2. Consider an optimal contract whose current consumption is c. In
state s ′ ∈ {H,L} next period, the participation constraint (14) binds if and only if
c(1+μ)/(1+g) < cAut

s ′ , and consumption cs ′ equals max{c(1+μ)/(1+g), cAut
s ′ }.

Proof. Let s be the current state, and c′
s ′,uc and v′

s ′,uc be, respectively, un-
constrained (i.e., when (14) is not imposed) optimal consumption and the
promised value, in state s ′ next period. From the preceding argument, c′

s ′,uc =
c(1 + μ)/(1 + g), and v′

s ′,uc is determined by
∂qs′ (v′

s′ ,uc
)

∂v
= (1−γ )(1+r)

1+g
∂qs (vs )

∂v
. Now,

(14) binds in state s ′ next period if and only if v′
s ′,uc < vAut

s ′ , and when it does,
the promised value v′

s ′ equals vAut
s ′ . Thus, v′

s ′ = max{v′
s ′,uc, vAut

s ′ }. Then from (23),
v′

s ′,uc < vAut
s ′ if and only if c′

s ′,uc < cAut
s ′ , and cs ′ = max{c′

s ′,uc, cAut
s ′ }.
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t

PC in high state
begins to bind

switches to low state

switches to high state

0

PC slack

PC binding

log Aut
Hc

log Aut
Lc

clog

FIGURE 1. Consumption path (g > μ).

Using these results, Figure 1 depicts the path of log c for g > μ, which turns
out to be the more interesting case.11 Here, log c is denoted by dashed lines
when the participation constraint (14) is slack, and by thick solid lines when it
is binding. The two solid flat lines correspond to log cAut

H and log cAut
L . Note that

from Lemma 2, log c ≥ log cAut
s in state s, and that from (26), dashed lines have

slope log 1+μ
1+g

< 0. Thus, even if the participation constraint is initially slack in
both states, it may eventually bind in either state.

Figure 2 shows the path of log c for g < μ, assuming that initially the state is low
and c ∈ [cAut

L , cAut
H ). Thus, log c ≥ log cAut

L in all periods because the dashed lines
have slope log 1+μ

1+g
> 0, so from Lemma 2, the participation constraint in the low

state never binds. Moreover, once log c reaches log cAut
H , either from a move along

this dashed line or from a jump following the first realization of the high state,
the participation constraint in the high state never binds thereafter. The situation
for g = μ, including the canonical model in which g = 0 and β (1 + r) = 1, is
similar. This time, the dashed line becomes flat, so that log c is constant until the
first realization of the high state, when it jumps to log cAut

H , and remains there.

Initial promised values in the two states. Next, consider the problem given
by (19)–(21), which concerns choosing the initial promised values in the two
states, v0

H and v0
L = 1

πL

(
V0 − πHv0

H

)
. Let V Aut ≡ πHvAut

H + πLvAut
L be the

household’s ex ante welfare from autarky, and let V FB be the welfare from the
first-best contract, achieved under full commitment. The equilibrium contract does
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clog

t

switches to high state

0

PC slack

PC binding

log Aut
Hc

log Aut
Lc

FIGURE 2. Consumption path (g < μ).

no worse than autarky and no better than the first-best contract, so it suffices to
consider V0 ∈ [V Aut, V FB].

From the first-order conditions,

θ0
H − θ0

L = ∂qH

(
v0

H

)
∂v

− ∂qL

(
v0

L

)
∂v

, (27)

where θ0
s ≥ 0 is proportional to the Lagrange multiplier for the initial participation

constraint (21) in state s. The condition for v0
H and v0

L thus depends on whether
(21) binds. Clearly, (21) is more likely to bind for small V0, and as shown next, it
may bind only in the high state.

LEMMA 3. For V0 ≥ V Aut, the initial participation constraint (21) in the low
state is slack.

Proof. Because (20) and V0 ≥ V Aut require v0
s ≥ vAut

s for at least one s ∈
{H,L}, (21) may bind in at most one state. Suppose (21) binds in the low state.

Then θ0
H = 0, θ0

L > 0, and v0
L = vAut

L , so from (27),
∂qH (v0

H )
∂v

<
∂qL(vAut

L )
∂v

. Then,

because vAut
H ≤ v0

H and qH is convex,
∂qH (vAut

H )
∂v

<
∂qL(vAut

L )
∂v

. Thus, from (23),
cAut
H < cAut

L , which contradicts Lemma 1.
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0V

Aut
Hv

AutV V

0
Lv

Aut
Lv

0
Hv

Lv

At t=0, PC binds and consumption
is greater in the high state

At t=0, PC is slack and consumption
is the same in both states

FIGURE 3. v0
H and v0

L as functions of V 0.

Now, let Ṽ ≡ πHvAut
H + πLṽL, where ṽL is defined by

∂qH

(
vAut

H

)
∂v

= ∂qL (ṽL)

∂v
. (28)

Given (23), ṽL is such that if the state is low and the promised value is ṽL, then
current consumption is cAut

H . Because cAut
H ≥ cAut

L , (23) implies that ṽL ≥ vAut
L ; if

vAut
H > vAut

L , then cAut
H > cAut

L , so ṽL > vAut
L . The condition for v0

H and v0
L is then

described as follows.
If V0 ∈ [V Aut, Ṽ ), (21) binds in the high state, so θ0

H > 0 and θ0
L = 0. Thus,

from (27),
∂qH

(
v0

H

)
∂v

>
∂qL

(
v0

L

)
∂v

, v0
H = vAut

H , (29)

so from (23), initial consumption is higher in the high state. Conversely, if V0 ∈
[Ṽ , V FB], (21) does not bind, so θ0

H = θ0
L = 0. Thus, (27) yields

∂qH

(
v0

H

)
∂v

= ∂qL

(
v0

L

)
∂v

, (30)

so from (23), initial consumption is the same in both states.
Figure 3 shows how v0

H and v0
L vary with V0. For V0 ∈ [

V Aut, Ṽ
]
, v0

H is constant
at vAut

H ; hence v0
L increases linearly from vAut

L to ṽL. For V0 ≥ Ṽ , both v0
H and v0

L

increase with V0.

https://doi.org/10.1017/S1365100514000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000054


1726 JUNICHI FUJIMOTO

As shown above, for V0 ∈ [Ṽ , V FB], consumption in the initial period, t = 0, is
the same in both states. Then, from Lemma 2, whether the participation constraint
(14) binds in the next period, t = 1, is independent of s0. Moreover, the promised
value in state s ′ next period is vAut

s ′ if (14) binds, and is determined by (25)
otherwise. Thus, given (30), the promised value next period depends only on s1,
and not on s0. Lemma 4 generalizes this result.

LEMMA 4. For any t ∈ {0, 1, . . .}, suppose the participation constraint in
neither state binds up to period t . Then, consumption in period t is the same in
both states, and the promised values in period t + 1 depend only on st+1 and not
on st , the history up to period t .

Proof. See Appendix B.

3. UNCERTAINTY AND WELFARE

I now discuss how endowment uncertainty, in terms of variance and persistence,
affects the household’s welfare. More precisely, I first consider an increase in the
mean-preserving spread by setting yH and yL as

yH = 1 + πL

πH

α, (31)

yL = 1 − α, (32)

and varying α in α ∈ [0, 1]. Then, because the unconditional probability of state
s is πs for all t , the unconditional expectation of Yt (st ) equals (1 + g)t for all t ,
which in turn implies that R = 1+r

r−g
. Second, to analyze the effect of persistence,

I assume that

pH = p · p̃H , (33)

pL = p · p̃L, (34)

where p̃H , p̃L are positive constants and 0 ≤ p ≤ min{ 1
p̃H

, 1
p̃L

}. Then, as p varies,
pH and pL vary proportionately, keeping πH and πL unchanged.

Given these assumptions, the variance of endowment ys is α2 πL

πH
= α2 p̃H

p̃L
,

whereas the first lagged autocorrelation of ys is 1 −pH −pL = 1 −p (p̃H + p̃L).
Thus, a rise in α and p, respectively, raises the variance of ys and lowers the
persistence of ys , independent of the other parameter. Therefore, the effect of
variance and persistence on the household’s welfare can be analyzed by varying,
respectively, α and p.

Note that the channel through which α and p affect the household’s welfare
is affecting the household’s values of autarky, and accordingly the participation
constraints, in the two states. As an implication, V FB is independent of α and p.
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3.1. Welfare Effect of Variance of Endowment

Role of growth rate. I first discuss the effect of α. Let V U (α) denote the
household’s ex ante welfare, or expected lifetime utility before realization of
s0, from an equilibrium contract, and let V C ≡ V U (0) be the corresponding
welfare without uncertainty. Also, I write V Aut as V Aut (α) when emphasizing its
dependence on α.

In what follows, I examine whether the presence of uncertainty can be welfare-
improving, formally defined in the following sense.

DEFINITION 1. Uncertainty is welfare-improving if V U (α) > V C for some
α ∈ (0, 1].

The following proposition describes key relations between endowment growth
and welfare-improving uncertainty.

PROPOSITION 1. (1) When g ≤ μ, V C = V FB; thus uncertainty can be
welfare-improving only when g > μ. (2) When g > μ, V C = V Aut (0); when
α = 0, consumption and endowment streams coincide in an equilibrium contract.

Proof. See Appendix B.

Proposition 1(1) implies that g > μ is a necessary condition for uncertainty
to be welfare-improving, because if g ≤ μ, the first-best consumption path,
which satisfies Ct+1/Ct = 1 + μ and

∑∞
t=0 (1 + r)−t Ct = R, can be sustained

under certainty. In stark contrast, Proposition 1(2) states that when g > μ, an
equilibrium contract does no better than autarky when there is no endowment
uncertainty.

Intuitively, when g ≤ μ, an optimal contract seeks to backload consumption
relative to endowment. Therefore, under certainty, the household is a lender and
has no incentive to renege on the contract; hence the first-best consumption path
can be achieved. Conversely, when g > μ, an optimal contract seeks to frontload
consumption, so consumption is initially relatively high compared to endowment,
and later becomes relatively low. But because the household cannot commit to
the contract, the contract must always provide the household at least its value of
autarky. Thus, in the absence of uncertainty, the financial intermediary is unable
to generate profits during what should be the low-consumption phase; hence the
high-consumption phase cannot exist under the zero-profit condition—in other
words, the household is a borrower with no incentive for repayment. Thus it
cannot borrow at all.

When there is uncertainty, however, the risk-sharing role makes the con-
tract valuable to the household even in the low-consumption phase, which
allows the financial intermediary to make profits in the late stages of the
contract. As a result, some frontloading of consumption can be achieved,
which may lead to welfare improvement over the certainty case. In the fol-
lowing, I derive a simple, sufficient condition for uncertainty to be welfare-
improving.
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Local welfare improvement from α. The analysis proceeds by examining how
α affects the values of autarky, written as vAut

H (α) and vAut
L (α) when emphasizing

their dependence on α. Further, let vAut ≡ vAut
H (0) = vAut

L (0). I begin with a
condition under which uncertainty locally improves welfare.12

LEMMA 5. If g > μ, there exists α0 ∈ [0, 1) such that V U (α) is increasing in
α for α ∈ [α0, 1).

Proof. Let g > μ. Then Lemma 2 implies that consumption grows at a rate
μ−g
1+g

< 0 when the participation constraint does not bind, and thus the partic-
ipation constraint in either state may eventually bind. Therefore, if the partic-
ipation constraint in one state is relaxed without that in the other state being
tightened, an optimal contract achieves a more efficient allocation with the same
cost. Thus, a sufficient condition for V U (α) to be locally increasing in α is that
∂vAut

s (α)/∂α ≤ 0 for s = {H,L}, with strict inequality for at least one s. I show
later that there exists α1 ∈ (0, 1) such that this sufficient condition holds for any
α ∈ [α1, 1). Thus, V U (α) is increasing in α at least for α ∈ [α1, 1), and thus there
must exist α0 ∈ [0, α1] such that V U (α) is increasing in α for α ∈ [α0, 1).

Differentiating (17) and (18) with respect to α and noting that πL/πH = pH/pL,

∂vAut
H

∂α
= pH

pL

[γ + (1 − γ ) pL] u′ (yH ) − (1 − γ ) pLu′ (yL)

γ [γ + (1 − γ ) (pH + pL)]
, (35)

∂vAut
L

∂α
= (1 − γ ) pHu′ (yH ) − [γ + (1 − γ ) pH ] u′ (yL)

γ [γ + (1 − γ ) (pH + pL)]
. (36)

Note from (31) and (32) that α = 0 implies that yH = yL = 1, whereas α = 1
implies that yH = 1 + πL

πH
and yL = 0. Then, because γ ∈ (0, 1), (35) implies

∂vAut
H /∂α > 0 at α = 0, but ∂vAut

H /∂α < 0 at α = 1 as u′ (yL) = u′ (0) = ∞.
Further, (35) yields ∂2vAut

H /∂α2 < 0, so there is a unique α ∈ (0, 1) such that
∂vAut

H /∂α = 0, denoted as α1. Thus, ∂vAut
H /∂α ≤ 0 if and only if α ≥ α1.

On the other hand, (36) implies ∂vAut
L /∂α < 0 for any α ∈ [0, 1], because

u′ (yL) ≥ u′ (yH ) > 0 . Thus, for α ≥ α1, ∂vAut
H /∂α ≤ 0 and ∂vAut

L /∂α < 0, so
the sufficient condition holds, completing the proof.

Figure 4 illustrates how vAut
L and vAut

H vary with α. As shown in the preceding,
vAut

L always decreases in α, because a rise in α lowers current autarky consumption,
1 −α. In contrast, vAut

H initially increases in α, but decreases in α beyond a certain
value, denoted as α1. This is because a rise in α has two opposing effects on vAut

H :
to increase current consumption, and to worsen the future outcome in the low
state. For sufficiently large α, the second effect dominates, so that vAut

H decreases
in α, and a rise in α lowers both vAut

L and vAut
H , increasing the household’s welfare

V U (α). Krueger and Perri (2006) resorts to this mechanism to show that a rise in
household income dispersion may lead to a fall in consumption dispersion.
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FIGURE 4. Autarky values and α.

Sufficient condition for welfare improvement. The discussion thus far suggests
that whether uncertainty is welfare-improving can be checked by comparing V C =
V U (0) and V U (1). This comparison delivers a sufficient condition, as summarized
in the following proposition.

PROPOSITION 2. Uncertainty is welfare-improving if g > μ and vAut
H (1) ≤

vAut.

Proof. As stated in Proposition 1(1), g > μ is a necessary condition for uncer-
tainty to be welfare-improving. Uncertainty is welfare-improving if, in addition,
the participation constraint is weakly less stringent at α = 1 than at α = 0 in both
states, and strictly so in at least one state. This is true if vAut

H (1) ≤ vAut, because
vAut

L (1) < vAut always holds, because ∂vAut
L /∂α < 0 for α ∈ [0, 1].

Note that for any r > 0 satisfying (4), there exists g > μ satisfying (3), because
r > μ, as argued before. When the sufficient condition stated in Proposition 2 is
satisfied, V U (1) > V U (0) = V C . Then the continuity of V U (α), which follows
from that of Q, guarantees the existence of α2 ∈ (α0, 1) such that V U (α) > V C

for all α > α2. This sufficient condition can be written as a condition for g that
allows easier economic interpretation.

PROPOSITION 3. If σ > 1 or 1−β(1+r)1−σ (1−pL)

1−β(1+r)1−σ (1−pH −pL)
≤ 1

(1+pH /pL)1−σ , there exists
g∗ < r such that uncertainty is welfare-improving for g > g∗.
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Proof. If σ > 1, then vAut
H (1) = −∞ < vAut, so the sufficient condition given

in Proposition 2 holds for g > g∗ = μ. If σ < 1, then the condition vAut
H (1) ≤

vAut becomes

1 − β (1 + g)1−σ (1 − pL)

1 − β (1 + g)1−σ (1 − pH − pL)
≤ 1(

1 + pH

pL

)1−σ
. (37)

For σ < 1, the left-hand side (LHS) of (37) is decreasing in g, and there exists g̃

such that (37) holds for g ≥ g̃. The condition 1−β(1+r)1−σ (1−pL)

1−β(1+r)1−σ (1−pH −pL)
< 1

(1+pH /pL)1−σ ,

which holds at least for β (1 + r)1−σ close to 1, guarantees g̃ < r . Accordingly,
the sufficient condition holds for g > g∗ = max {μ,g̃}, where such a g satisfying
(3) exists because g∗ < r .

Proposition 3 implies that uncertainty is welfare-improving for sufficiently large
g, under some technical condition that makes such values of g compatible with
parameter restriction (3). For σ > 1, vAut

H (1) < vAut always holds, so the condition
g > μ (which clearly holds for sufficiently large g), necessary for uncertainty to
be welfare-improving, is also sufficient. For σ < 1, a rise in g reduces, in a relative
sense, the household’s autarky value in the high state by increasing the importance
of future utility; thus vAut

H (1) ≤ vAut holds for large enough g.
It should be noted, however, that vAut

H (1) ≤ vAut is not a necessary condition
for uncertainty to be welfare-improving. This is because, even if vAut

H (1) > vAut,

relaxation of the participation constraint in the low state may more than offset
its tightening in the high state. Thus, sharper predictions on welfare gains from
uncertainty require numerical analysis, which is addressed in Section 4.

3.2. Welfare Effect of Persistence of Endowment

I now turn to the effect of p. The following corollary to Proposition 3 illustrates
how p affects the sufficient condition for uncertainty to be welfare-improving.

COROLLARY 1. g∗ is nonincreasing in p.

The proof is immediate from observing that the LHS of (37) is decreasing in
p, whereas pH/pL on the right-hand side (RHS) is independent of p. When the
endowment process is highly persistent (i.e., low p), the value of autarky in
the high state is high, requiring a large value of g for this value to be smaller than
the value of autarky under no uncertainty.

The following proposition describes the direct effect of p on welfare and is one
of the main findings of this paper.

PROPOSITION 4. V U (α) is nondecreasing in p. If g > μ, it is increasing in
p, unless α ≤ (1 + 1+μ

1+g
πL

πH
)−1( g−μ

1+g
), or σ > 1 and α = 1.

Proof. See Appendix B.
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Proposition 4 implies that, regardless of the relative magnitude of g and μ,
V U (α) is always nondecreasing in p, or equivalently, nonincreasing in the persis-

tence of endowment. It follows from (17) and (18) that πH
∂vAut

H

∂p
= −πL

∂vAut
L

∂p
≤ 0,

with strict inequality if vAut
H > vAut

L . Thus, a larger p relaxes the participation
constraint in the high state and tightens it in the low state. The positive welfare
effect of p indicates that the former effect dominates the latter. If g ≤ μ, this
result is immediate because, as suggested by Figure 2, the participation constraint
in the low state never binds in the equilibrium contract; hence there is no cost from
tightening it.13 Thus, V U (α) is nondecreasing in p, and it is in fact increasing
in p, so long as the participation constraint in the high state binds at t = 0. The
situation differs for g > μ, where the participation constraint in the low state binds
in the future with positive probability (except for the case of σ > 1 and α = 1,
which implies that vAut

L = −∞). Thus, proving the result for this case requires a
much more detailed analysis, which involves formally evaluating the cost (benefit)
of tightening (relaxing) the participation constraints that are currently slack but
that may eventually bind. Intuitively, the proof proceeds by establishing different
properties of ∂Q(V0)/∂p for relatively small and large V0, and by consolidating
these implications to show that ∂Q(V0)/∂p ≤ 0.

That the household’s welfare is never increasing in the persistence of endowment
is an interesting result, and that this can be proved even for g > μ is remarkable,
given the complexity caused by repeatedly binding participation constraints. Note
that the situation in which the state deterministically alternates between high and
low14 can be considered a limiting case as p → 1/p̃H = 1/p̃L. Because V C is
independent of p, such an environment has the highest chance that V U (α) > V C .

4. NUMERICAL ANALYSIS

This section sets forth the numerical analysis.15 The analysis allows examination
of the exact relation between α and V U (α), which cannot be done analytically.
It also provides an idea of the magnitude of the welfare effect of α and p, or the
variance and persistence of endowment, under realistic parameters.

In all examples that follow, the model period corresponds to one quarter, r =
0.01, and β = 1/ (1 + r). This implies that μ = 0, so g > μ for any g > 0.

4.1. Welfare Effect of Variance of Endowment

I first show how the household’s welfare varies with α. The parameter values are
g = 0.005 (2% annual growth) and pH = pL = 0.06, and for risk aversion σ ,
two different values, 0.5 and 2, are used for comparison. To facilitate quantitative
evaluation of welfare, Figure 5 plots consumption-equivalent variations of welfare
gain of V U (α), relative to V C . More specifically, the vertical axis corresponds to
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FIGURE 5. Welfare gain relative to certainty case (consumption-equivalent variations
in %).

δ expressed as a percentage, where δ solves

V U (α) =
∞∑
t=0

(1 − γ )t u (1 + δ) . (38)

Figure 5 shows that for both σ = 0.5 and 2, V U (α) < V C for α close to 0, and
V U (α) > V C for sufficiently large α. Also, the range of α for which V U (α) > V C

is wider for σ = 2. Figure 5 also shows that when σ = 0.5, the impact of α on
welfare, either positive or negative, is not so large. However, the welfare gain
from uncertainty can be substantial when σ = 2—in this example, close to 34%
of flow consumption in the certainty case, as α approaches 1. These effects of
σ can be understood as follows. A rise in σ reduces the household’s autarky
values under uncertainty through an increase in risk aversion, and increases the
benefit of consumption frontloading through a reduction in intertemporal elasticity
of substitution (IES). Both these channels increase the value of uncertainty. To
examine the strength of each channel, I compute corresponding consumption-
equivalent variations for the first-best welfare, V FB, and find the value to be
13% and 34% for σ = 0.5 and 2, respectively. These values represent the max-
imum benefit of intertemporal consumption reallocation, determined by the IES.
Figure 5 indicates that as α → 1, this maximum benefit is achieved for σ = 2,
whereas in the case of σ = 0.5, the welfare gain in terms of consumption is ap-
proximately 9%, considerably lower than in the first best contract. This difference
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FIGURE 6. Welfare cost of 2% lower growth.

arises because as α → 1, participation constraints cease to bind if and only if
σ > 1.

At the country level, however, α cannot be very large. For example, for U.S.
quarterly real GDP per capita between 1969Q1 and 2012Q2, the standard deviation
is 1.60% and the first autocorrelation coefficient is 0.88. Assuming high and low
states to be symmetric, this corresponds to α = 0.016, and as assumed for Figure 5,
pH = pL = 0.06.16 For values of α of this magnitude, the presence of uncertainty
indeed leads to welfare losses for both values of σ , although they are negligible,
as observed from Figure 5.

The welfare gain from uncertainty, however, can be considerably greater than in
the example preceding when the difference between g and μ = [β (1 + r)]1/σ −1
is large, because this creates a greater benefit from intertemporal consumption
smoothing. Given the restriction r > g, this occurs when g is close to r . For
α = 0.016, pH = pL = 0.06, and σ = 2, welfare turns out to be higher than
under no uncertainty for g greater than approximately 0.0085, or 3.4% annual
growth rate. Therefore, business cycle fluctuations may still improve welfare,
especially in developing countries with fast-growing and volatile output. These
are typically also the countries that are most appropriate to analyze using a small
open economy setup, which assumes an exogenous interest rate.

4.2. Cost of Slower Growth

The discussion thus far suggests that the difference in endowment growth rates
may have a disproportionately large effect on welfare. Figure 6 shows this more
explicitly. Here, pH = pL = 0.06, as in Figure 5, and σ = 2. The vertical
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FIGURE 7. Welfare effect of p (σ = 0.5).

axis corresponds to the difference in welfare for g = 0.0075 and g = 0.0025,
for different values of α, where welfare is measured as the permanent per-
centage increase in endowment for g = 0.0025 under certainty. Accordingly,
Figure 6 shows how the cost of 2% lower annual endowment growth, converted
into the fraction of consumption flows in a deterministic economy with 1% annual
growth, varies with α. Note that the cost becomes substantial when the variance of
endowment is high. In this example, the cost of a 2% lower growth rate, for α close
to 1, is more than five times higher than that for α = 0, or under no uncertainty.
This is because slow growth has the indirect cost of damping, or even eliminating,
the positive effect of uncertainty on welfare. Put differently, uncertainty may be a
beneficial commitment device under fast growth, but it becomes a pure nuisance
as the growth rate declines.

4.3. Welfare Effect of Persistence of Endowment

I now turn to the impact of persistence of endowment on welfare. Figures 7 and
8 plot the welfare gain of uncertainty, again measured in terms of consumption
as in Figure 5, for p = {0.01, 0.05, 0.25} and p̃H = p̃L = 1 (i.e., pH =
pL = {0.01, 0.05, 0.25}). The remaining parameters are the same as in Figure 5:
g = 0.005, and σ = {0.5, 2}. As stated in Proposition 4, V U (α) is independent of
p for α very close to 0 for both values of σ , as well as for α = 1 when σ = 2 > 1;
for all other values of α, V U (α) is increasing in p.

Interestingly, for both values of σ , raising the switching probability by five
times, from 0.01 to 0.05, has a much larger impact on welfare than increasing it
from 0.05 to 0.25. Intuitively, when endowment is highly persistent, the incentive
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FIGURE 8. Welfare effect of p (σ = 2).

to walk away from the contract in the high state becomes very strong, because
switching to the low state is rather unlikely. As a result, the path of consumption
cannot deviate much from that of endowment. In such an environment, lowering
the persistence of endowment has a large positive impact on welfare through
enabling more intertemporal consumption smoothing.

5. CONCLUSION

In this paper, I have examined the welfare implications of endowment uncer-
tainty in a contracting problem between a risk-neutral financial intermediary and
a risk-averse household, where the latter cannot commit to the contract. Allowing
for endowment growth and different discount factors between the two sides of
the contract leads to a number of novel implications. Through both analytical
and numerical analysis, I have shown that if the growth rate of the household’s
endowment is sufficiently high, the presence of uncertainty in the household’s en-
dowment may improve its welfare compared to the case of deterministic growth.
This is because, in such an environment, uncertainty makes the contract valuable
by imparting to it the role of risk sharing, which in turn helps to achieve better
intertemporal consumption smoothing by relaxing the household’s commitment
problem. I have also shown that slower growth may have a disproportionately
large effect on welfare, through undermining the positive effect of uncertainty on
welfare. Finally, I have shown that the household’s welfare is always nonincreasing
in the persistence of endowment, and strictly so for most parameter values.

There are several potential extensions and applications of this paper. In terms of
theory, the present model assumes CRRA utility for the household, which forces
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the IES to be the reciprocal of the degree of risk aversion. Conducting welfare
analysis under recursive preferences [Epstein and Zin (1989); Weil (1990)], which
allow disentanglement of these factors, would be an interesting extension. On the
application side, the model framework may be used to explore the implications of
growth with respect to topics to which a limited commitment approach has been
applied, such as international lending under risk of default and implicit insurance
arrangements in village economies.17

NOTES

1. Ljungqvist and Sargent (2004, Ch. 19) refers to the canonical model as the “villager-
moneylender” model and analyzes it in detail. Ljungqvist and Sargent (2004) attributes the model
to Thomas and Worrall (1988) and Kocherlakota (1996), although it is closer to the sovereign debt
model of Worrall (1990). Worrall (1990) also briefly discusses the case where the two sides of the
contract have different discount factors.

2. The agent and the principal in Krueger and Uhlig (2006) correspond, respectively, to the house-
hold and the financial intermediary in this paper.

3. There is a vast literature on the limited commitment environment. Thomas and Worrall (1988)
explores optimal wage contracts to which neither the firm nor the worker can commit. Kocherlakota
(1996) examines efficient risk sharing between two symmetric agents who lack commitment ability.
Kehoe and Levine (1993) and Alvarez and Jermann (2000) discuss how optimal allocations under
limited commitment can be decentralized. Of the two roles mentioned here, only risk sharing plays a
part in these papers.

4. Throughout this paper, increasing (decreasing) implies strictly increasing (decreasing), and
nondecreasing (nonincreasing) implies weakly increasing (decreasing).

5. Because the contract of a given household has no effect on the contracts of other households,
in this paper it suffices to analyze a contract between a single household and a single financial
intermediary. The cross-sectional distribution of household endowment is therefore irrelevant.

6. With this terminology, t = 0 corresponds to the initial, or the 0th, period of the contract.
7. The recursive formulation here largely follows the “villager-moneylender” model in Ljungqvist

and Sargent (2004, Ch. 19), which corresponds to the case of g = 0, β (1 + r) = 1, and an i.i.d.
endowment process. However, I define conditional value functions and promised values as in Krueger
and Uhlig (2006), which turns out to be more convenient for some of the analyses that follow. The idea
of using promised utilities as state variables dates back to Abreu et al. (1986) and Spear and Srivastava
(1987).

8. For example, I simply state consumption and promised value to refer to the detrended values
of these variables. When referring to nondetrended variables, I explicitly state, e.g., “nondetrended
consumption.”

9. As discussed in these papers, using the standard dynamic programming argument requires
adequately bounding the range of promised values to make the one-period return function bounded.
However, as analyzed in Section 2.4, the promised values may grow without bound, depending on the
parameters, which may appear to be a problem. In such case, however, the participation constraints
never bind in the future for sufficiently large promised values. The cost functions can thus be computed
directly using the unconstrained optimal growth rate of consumption, which allows sidestepping this
issue.

10. More details on the derivations of key equations in this subsection are provided in Appendix A.
11. In Figure 1 and subsequent figures, “PC” stands for “participation constraint.”
12. More details on the derivations of some of the equations and on some of the claims to be

presented in Lemma 5 and Proposition 4 are available upon request.
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13. Kehoe and Levine (2001) shows, in a stationary environment (corresponding to g = μ = 0
here), a similar result in the limited commitment environment with two symmetric agents.

14. Eaton and Gersovitz (1981) provides an analysis of noncontingent sovereign debt for such an
environment.

15. Instead of computing qs from (12)–(14) via the value function iteration, I use the properties
of an optimal contract, discussed in Section 2.4, to obtain the set of equations that define Q(V0) and
solve these equations for the exact solution. This procedure has several computational advantages,
because it does not require a minimization operation and is free of the need to choose the appropriate
range and number of grids. The precise procedure for computing Q(V0) and V U , which is tedious
but straightforward, is available upon request. Although the analysis that follows assumes g > μ, this
computational procedure is especially useful for the g < μ case, where the ever-increasing promised
value causes difficulty in setting the grid range.

16. The quarterly real GDP per capita series is logged and filtered using the Hodrick–Prescott filter,
with a smoothing parameter of 1,600, before these statistics are computed. Model parameters α, pH ,
and pL are such that assuming pH = pL, the percentage deviation of ys from its steady state value of
1 will have the same standard deviation and first lagged autocorrelation as in the data.

17. See, e.g., Kehoe and Perri (2002) for the former application, and Ligon et al. (2002) for the
latter.

18. More details on the derivations of some of the equations in Appendix B, which are straightforward
but lengthy, are available upon request.

19. For V̂0 defined here, let N̂ be the counterpart of N , that is, the first t such that v̂t
L = vAut

L .

Then N̂ = N or N̂ = N − 1; the latter occurs when the sequence
{
v̂t
L

}N−1
t=0 satisfies (B.14) with

v̂N−1
L = vAut

L .
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APPENDIX A: FIRST-ORDER AND ENVELOPE
CONDITIONS

I provide further details on the first-order and envelope conditions of the two problems
in Section 2.4, which yields key equations, (22), (23), and (27). Further, I combine these
conditions to obtain several equations that are used in the proofs in Appendix B.

A.1. CONTINUATION PROBLEM

The Lagrangian for the problem given by (12)–(14) can be written as

L = c + 1 + g

1 + r

[
(1 − ps) qs

(
v′

s

) + psq−s

(
v′

−s

)]
+ λ

{
v − u (c) − (1 − γ )

[
(1 − ps) v′

s + psv
′
−s

]}
+ (1 − ps) θs

(
vAut

s − v′
s

) + psθ−s

(
vAut

−s − v′
−s

)
, (A.1)

where λ is the Lagrange multiplier for the promise-keeping constraint (13), and θs′ , s ′ ∈
{s,−s}, is proportional to the Lagrange multiplier for the participation constraint (14) in
state s ′.

Therefore, the first-order conditions are

1 = λu′ (c) , (A.2)

1 + g

1 + r

∂qs′
(
v′

s′
)

∂v
= λ (1 − γ ) + θs′ , s ′ ∈ {s,−s} , (A.3)

and the envelope condition with respect to v is

∂qs (v)

∂v
= λ. (A.4)

Combining (A.3) and (A.4) yields (22), whereas combining (A.2) and (A.4) yields (23).
Moreover, by complementary slackness,

θs′
(
vAut

s′ − v′
s′
) = 0, s ′ ∈ {s,−s} . (A.5)
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Finally, the envelope condition with respect to p is

∂qs (v)

∂p
= 1 + g

1 + r

[
(1 − ps)

∂qs

(
v′

s

)
∂p

+ ps

∂q−s

(
v′

−s

)
∂p

]

− p̃s

1 + g

1 + r

(
qs

(
v′

s

) − q−s

(
v′

−s

)) + p̃s (1 − γ ) λ
(
v′

s − v′
−s

)

− p̃sθs

(
vAut

s − v′
s

) + p̃sθ−s

(
vAut

−s − v′
−s

) + (1 − ps) θs

∂vAut
s

∂p
+ psθ−s

∂vAut
−s

∂p
. (A.6)

Substituting (22), (A.4), and (A.5) into (A.6) yields

∂qs (v)

∂p
= 1 + g

1 + r

[
(1 − ps)

∂qs

(
v′

s

)
∂p

+ ps

∂q−s

(
v′

−s

)
∂p

]

− p̃s

1 + g

1 + r

(
qs

(
v′

s

) − q−s

(
v′

−s

)) + p̃s (1 − γ )
∂qs (v)

∂v

(
v′

s − v′
−s

)

+ (1 − ps)

[
1 + g

1 + r

∂qs

(
v′

s

)
∂v

− (1 − γ )
∂qs (v)

∂v

]
∂vAut

s

∂p

+ ps

[
1 + g

1 + r

∂q−s

(
v′

−s

)
∂v

− (1 − γ )
∂qs (v)

∂v

]
∂vAut

−s

∂p
. (A.7)

A.2. INITIAL PROBLEM

The Lagrangian for the problem given by (19)–(21) can be written as

L = πH qH

(
v0

H

) + πLqL

(
v0

L

) + λ0
(
V0 − πH v0

H − πLv0
L

)
+ πH θ 0

H

(
vAut

H − v0
H

) + πLθ 0
L

(
vAut

L − v0
L

)
, (A.8)

where λ0 is the Lagrange multiplier for the promise-keeping constraint (20), and θ0
H and

θ 0
L are proportional to the Lagrange multipliers for the participation constraint (21). The

first-order conditions are

∂qH

(
v0

H

)
∂v

= λ0 + θ0
H , (A.9)

∂qL

(
v0

L

)
∂v

= λ0 + θ0
L, (A.10)

which yield (27). Further, the envelope condition with respect to p is

∂Q (V0)

∂p
= πH

∂qH

(
v0

H

)
∂p

+ πL

∂qL

(
v0

L

)
∂p

+ πH θ 0
H

∂vAut
H

∂p
+ πLθ 0

L

∂vAut
L

∂p
. (A.11)
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APPENDIX B: PROOFS

B.1. PROOF OF LEMMA 1

If vAut
H = vAut

L , then there is no reason to make consumption contingent on realization of
the state; hence cAut

H = cAut
L . Thus, let vAut

H > vAut
L in the following, and write18

vAut
H = u

(
cAut
H

) + (1 − γ )
[
(1 − pH ) v′

H + pH v′
L

]
, (B.1)

vAut
L = u

(
cAut
L

) + (1 − γ )
[
pLv′′

H + (1 − pL) v′′
L

]
. (B.2)

Here, v′
s′ (v′′

s′ ), s ′ ∈ {H, L}, is the optimal promised value next period in state s ′, when the
current state is high (low) and the promised value is vAut

H (vAut
L ).

Now, suppose the claim is false, so that cAut
L ≥ cAut

H . Then (23) implies that

∂qL

(
vAut

L

)
∂v

= 1

u′ (cAut
L

) ≥ 1

u′ (cAut
H

) = ∂qH

(
vAut

H

)
∂v

. (B.3)

Given (25), (B.3) implies v′′
H ≥ v′

H and v′′
L ≥ v′

L. In the following, I use these results to
derive contradictions separately for g > μ and g ≤ μ.

Suppose g > μ. Then cAut
H (1 + μ) / (1 + g) < cAut

H ≤ cAut
L . Thus, Lemma 2 implies that

if the current state is high and the promised value is vAut
H , the participation constraint binds

in both states next period; hence v′
H = vAut

H and v′
L = vAut

L . But then,

vAut
H = u

(
cAut
H

) + (1 − γ )
[
(1 − pH ) vAut

H + pH vAut
L

]
< u

(
cAut
H

) + (1 − γ ) vAut
H ,

hence u
(
cAut
H

)
> γvAut

H . On the other hand, v′′
H ≥ vAut

H and v′′
L ≥ vAut

L , which implies that

vAut
L ≥ u

(
cAut
L

) + (1 − γ )
[
pLvAut

H + (1 − pL) vAut
L

]
> u

(
cAut
L

) + (1 − γ ) vAut
L ,

hence γ vAut
L > u(cAut

L ). Thus, γ vAut
L > u(cAut

L ) ≥ u(cAut
H ) > γ vAut

H , which is a contradiction.
Next, suppose that g ≤ μ. Then, if the current state is low and the promised value

is vAut
L , consumption grows forever from cAut

L at a rate μ−g

1+g
≥ 0, regardless of the

subsequent realization of the state, which in turn implies that v′′
H = v′′

L. This is seen
by noting that given cAut

L ≥ cAut
H and 1+μ

1+g
≥ 1, applying Lemma 2 repeatedly im-

plies that the participation constraint never binds in either state. But then cAut
L ≥ cAut

H ,
v′′

L = v′′
H ≥ v′

H , and v′′
H = v′′

L ≥ v′
L, and thus (B.1) and (B.2) imply vAut

L ≥ vAut
H , which is a

contradiction. �

B.2. PROOF OF LEMMA 4

As argued in the main text, the claim holds for t = 0. Suppose, for some τ ∈ {0, 1, . . .},
that the participation constraint in neither state binds up to period τ + 1, and that the claim
holds for t = τ . Then consumption in period τ can be denoted as cτ , and the promised
values in period τ + 1 can be denoted as vτ+1

s , s ∈ {H,L}.
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In period τ + 1, the participation constraint in neither state binds by hypothesis, so from
Lemma 2, consumption is cτ (1 + μ) / (1 + g) in both states. From (23), this implies that
∂qH

(
vτ+1

H

)
/∂v = ∂qL

(
vτ+1

L

)
/∂v; hence from the same argument as for the claim for t = 0,

the promised value in period τ +2 depends only on sτ+2. The claim thus holds for t = τ +1,
so by induction, it holds for any t ∈ {0, 1, . . .}. �

B.3. PROOF OF PROPOSITION 1

Let α = 0. Because there is no uncertainty, I drop the subscript indicating states, to write,
for example, y, v0, and vAut. Then the continuation problem (12)–(14) becomes

q (v) = min
c,v′ c + 1 + g

1 + r
q

(
v′) , (B.4)

s.t. v = u (c) + (1 − γ ) v′, (B.5)

v′ ≥ vAut. (B.6)

The initial problem (19)–(21) becomes trivial, with v0 = V0 and Q (V0) = q
(
v0

)
. Because

V0 ≥ V Aut (0) in an equilibrium contract and V Aut (0) = vAut, it follows that v0 ≥ vAut.
Combining the first-order and envelope conditions of the problem (B.4)–(B.6) and noting
(24),

θ = 1 + g

1 + r

[
∂q (v′)

∂v
−

(
1 + μ

1 + g

)σ
∂q (v)

∂v

]
, (B.7)

where θ is the Lagrange multiplier on the participation constraint (B.6).
First, suppose that g ≤ μ. If θ = 0, then (B.7) implies that ∂q(v′)/∂v ≥ ∂q (v)/∂v and

thus v′ ≥ v, because q is convex. Thus, the participation constraint (B.6) never binds if
v0 ≥ vAut, which holds as argued earlier. Therefore, the first-best contract can be sustained
under certainty and thus uncertainty is never welfare-improving, which proves Proposition
1(1).

Next, suppose that g > μ. If θ = 0, then (B.7) implies that ∂q (v′)/∂v < ∂q (v)/∂v

and thus v′ < v. Thus, if v = vAut, the participation constraint (B.6) binds in the next
period and v′ = vAut. But then vAut = u

(
cAut

)+ (1 − γ ) vAut and thus cAut = y = 1, which
implies that for V0 = V Aut (0), Q (V0) = q

(
vAut

) = R. Therefore, an optimal contract
with V0 = V Aut (0), in which consumption always equals endowment, costs R, and is thus
an equilibrium contract. Thus, V C = V Aut (0), which proves Proposition 1(2). �

B.4. PROOF OF PROPOSITION 4

As argued in Section 2.3, if α = 0 or σ > 1 and α = 1, then vAut
H = vAut

L . In this special
case, clearly p has no effect on V U (α). The proof that follows assumes that vAut

H > vAut
L ,

which implies that ṽL > vAut
L and thus Ṽ > V Aut, and resorts to different arguments for

g ≤ μ and g > μ.
Proof for g ≤ μ. Suppose g ≤ μ. Then the participation constraint in the low state never

binds for V0 ≥ V Aut, as will be explained. From Lemma 3, it does not bind for t = 0.
From Lemma 2, the same applies for t > 0, because initial consumption is no less than cAut

L

and (1 + μ) / (1 + g) ≥ 1. That V U (α) is nondecreasing in p is then immediate, because
a rise in p relaxes the participation constraint in the high state because ∂vAut

H /∂p < 0,
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without any cost from tightening it in the low state. Indeed, V U (α) is increasing in p if
V U (α) ∈ [V Aut, Ṽ ), in which case the initial participation constraint in the high state binds.

Proof for g > μ. Now, suppose g > μ. Then, as argued in Section 2.4, the participation
constraint in either state may eventually bind, which complicates the proof. To prove the

claim, it suffices to show that ∂Q (V0)/∂p ≤ 0, with strict inequality for α ∈
((

1 +
1+μ

1+g

πL

πH

)−1( g−μ

1+g

)
, 1

)
. To see this, write Q (V0) and V U (α) as Q (V0, p) and V U (α, p),

to emphasize their dependence on p. Then, for any p̃ > p > 0, ∂Q (V0)/∂p < 0 and
(11) imply that R = Q

(
V U (α, p) , p

) = Q
(
V U (α, p̃) , p̃

)
< Q

(
V U (α, p̃) , p

)
; hence

V U (α, p) < V U (α, p̃).
The first step is to obtain an operational expression for ∂Q (V0)/∂p. From (2), (33), and

(34),
πH

πL

= pL

pH

= p̃L

p̃H

. (B.8)

Also, (17) and (18) yield

− 1

p̃H

∂vAut
H

∂p
= 1

p̃L

∂vAut
L

∂p
= 1 − γ

1 − (1 − γ ) (1 − pH − pL)

(
vAut

H − vAut
L

)
, (B.9)

which allows converting the terms involving ∂vAut
L /∂p and vAut

H − vAut
L into those involving

∂vAut
H /∂p.

Now, (B.8) and the first equality in (B.9) imply that πH
∂vAut

H

∂p
= −πL

∂vAut
L

∂p
, and thus

πH θ 0
H

∂vAut
H

∂p
+ πLθ 0

L

∂vAut
L

∂p
= πH

(
θ 0
H − θ0

L

) ∂vAut
H

∂p
, (B.10)

so noting (27) and substituting into (A.11),

∂Q (V0)

∂p
= πH

∂qH

(
v0

H

)
∂p

+ πL

∂qL

(
v0

L

)
∂p

+ πH

(
∂qH

(
v0

H

)
∂v

− ∂qL

(
v0

L

)
∂v

)
∂vAut

H

∂p
. (B.11)

The remaining proof proceeds as follows. Lemmas A1 and A2 resort to (B.11) to
show different properties of ∂Q(V0)/∂p for relatively low and high values of V0, taking
advantage of the fact that v0

H = vAut
H for V0 ∈ [V Aut, Ṽ ], and that the initial participation

constraint is slack for V0 ∈ [Ṽ , V FB]. By noting that both these properties hold at V0 = Ṽ ,
Lemmas A3–A6 show that ∂Q(V0)/∂p ≤ 0 for V0 ∈ [V Aut, Ṽ ]. The result easily extends
to V0 ∈ [Ṽ , V FB].

I begin by defining the following variables.

DEFINITION B.1. For any V0 ∈ [V Aut, Ṽ ], let
{
vt

L

}∞
t=0

be the path of promised values
in the optimal contract when st = L for all t = 0, 1, . . . , and let N ≥ 0 be the first t such
that vt

L = vAut
L . In particular, let Ñ > 0 be the value of N when V0 = Ṽ .

Clearly, N is nondecreasing in V0 and N ∈ {
0, 1, . . . , Ñ

}
, where N = 0 if and only if

V0 = V Aut. Thus, Ñ > 0 follows from Ṽ > V Aut. Because g > μ, the argument in Section
2.4 implies that

{
vt

L

}∞
t=0

is a nonincreasing sequence, where vt
L = vAut

L for t = N,N+1, . . .,
and for N > 0, vt

L > vt+1
L for t = 0, 1, . . . , N − 1.

These variables play key roles in the proof of Lemma A1, which concerns V0 ∈ [V Aut, Ṽ ].
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LEMMA A1. For any V0 ∈ [V Aut, Ṽ ], ∂Q(V0)/∂p is nondecreasing in V0, and is
increasing in V0 in the range of V0 such that N > 1.

Proof. Note that if the current state is low and the promised value is v ≤ ṽL, then current
consumption c satisfies c ≤ cAut

H ; hence given g > μ and Lemma 2, the participation
constraint in the high state binds next period.

Take any V0 ∈ (V Aut, Ṽ ]. Then v0
H = vAut

H and v0
L ≤ ṽL, as shown in Section 2.4. In

the following, for any V̂0 ∈ [V Aut, V0), write v̂0
H and v̂t

L to denote v0
H and vt

L. Because
v0

H = v̂0
H = vAut

H , (B.11) yields

∂Q (V0)

∂p
− ∂Q(V̂0)

∂p
= πL

(
∂qL

(
v0

L

)
∂p

− ∂qL

(
v̂0

L

)
∂p

)

− πH

(
∂qL

(
v0

L

)
∂v

− ∂qL

(
v̂0

L

)
∂v

)
∂vAut

H

∂p
. (B.12)

The proof proceeds by evaluating (B.12). To make this evaluation feasible, I first consider
V̂0 sufficiently close to V0 such that the path of v̂t

L exhibits a pattern similar to that of vt
L,

and then extend the result to smaller V̂0 by repeating the argument.
First, suppose N > 1. When st = L for all t = 0, 1, . . ., the participation constraint in

the low state does not bind, at least up to N − 1, because vN−1
L > vAut

L . Thus, (25) implies
that

1 + g

1 + r

∂qL

(
vt+1

L

)
∂v

= (1 − γ )
∂qL

(
vt

L

)
∂v

, t = 0, 1, . . . , N − 2. (B.13)

Now, take any V̂0 < V0 such that the sequence
{
v̂t

L

}N−1

t=0
satisfies19

1 + g

1 + r

∂qL

(
v̂t+1

L

)
∂v

= (1 − γ )
∂qL

(
v̂t

L

)
∂v

, t = 0, 1, . . . , N − 2. (B.14)

Then
{
vt

L

}N−1

t=0
and

{
v̂t

L

}N−1

t=0
are decreasing sequences. Moreover, ṽL ≥ vt

L > v̂t
L ≥ vAut

L for
t = 0, 1, ..., N − 1, and vt

L = v̂t
L = vAut

L for t = N, N + 1, . . ..
I evaluate the RHS of (B.12) recursively. Let s = L in (A.7). If v = vN−1

L , then the
participation constraint in the high state binds next period and thus v′

H = vAut
H , whereas by

definition, v′
L = vN

L = vAut
L . Similarly, if v = v̂N−1

L , then v′
H = vAut

H and v′
L = v̂N

L = vAut
L ,

so

∂qL

(
vN−1

L

)
∂p

− ∂qL

(
v̂N−1

L

)
∂p

= −p̃L (1 − γ )
(
vAut

H − vAut
L

) (
∂qL

(
vN−1

L

)
∂v

− ∂qL

(
v̂N−1

L

)
∂v

)

− (1 − pL) (1 − γ )

(
∂qL

(
vN−1

L

)
∂v

− ∂qL

(
v̂N−1

L

)
∂v

)
∂vAut

L

∂p

− pL (1 − γ )

(
∂qL

(
vN−1

L

)
∂v

− ∂qL

(
v̂N−1

L

)
∂v

)
∂vAut

H

∂p

= πH

πL

(
∂qL

(
vN−1

L

)
∂v

− ∂qL

(
v̂N−1

L

)
∂v

)
∂vAut

H

∂p
, (B.15)
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where the second equality follows by substituting for vAut
H − vAut

L and ∂vAut
L /∂p from (B.9)

and noting (B.8).
Again, let s = L in (A.7). If v = vN−2

L , then v′
H = vAut

H and v′
L = vN−1

L , whereas if
v = v̂N−2

L , then v′
H = vAut

H and v′
L = v̂N−1

L . Thus, in the expressions for ∂qL

(
vN−2

L

)
/∂p and

∂qL

(
v̂N−2

L

)
/∂p, the terms involving ∂vAut

L /∂p cancel out given (B.13) and (B.14), so that

∂qL

(
vN−2

L

)
∂p

− ∂qL

(
v̂N−2

L

)
∂p

= (1 − pL)
1 + g

1 + r

(
∂qL

(
vN−1

L

)
∂p

− ∂qL

(
v̂N−1

L

)
∂p

)
− p̃L

1 + g

1 + r

(
qL

(
vN−1

L

) − qL

(
v̂N−1

L

))

+ p̃L (1 − γ )

[
∂qL

(
vN−2

L

)
∂v

(
vN−1

L − vAut
H

) − ∂qL

(
v̂N−2

L

)
∂v

(
v̂N−1

L − vAut
H

)]

− pL (1 − γ )

(
∂qL

(
vN−2

L

)
∂v

− ∂qL

(
v̂N−2

L

)
∂v

)
∂vAut

H

∂p
. (B.16)

Using (B.8), (B.9), and (B.13)–(B.15), one may rewrite (B.16) as

∂qL

(
vN−2

L

)
∂p

− ∂qL

(
v̂N−2

L

)
∂p

= πH

πL

(
∂qL

(
vN−2

L

)
∂v

− ∂qL

(
v̂N−2

L

)
∂v

)
∂vAut

H

∂p

+ p̃L

1 + g

1 + r

[
∂qL

(
vN−1

L

)
∂v

(
vN−1

L − vAut
L

) − (
qL

(
vN−1

L

) − qL

(
vAut

L

))]

− p̃L

1 + g

1 + r

[
∂qL

(
v̂N−1

L

)
∂v

(
v̂N−1

L − vAut
L

) − (
qL

(
v̂N−1

L

) − qL

(
vAut

L

))]
. (B.17)

On the RHS of (B.17), the strict convexity of qL and vN−1
L > v̂N−1

L ≥ vAut
L imply that the

last two lines combined are strictly positive. This can be observed in Figure B.1, in which

the length of CE (= AE −AC) is
∂qL(vN−1

L )

∂v
(vN−1

L −vAut
L )− (qL(vN−1

L )−qL(vAut
L )), and the

length of CD (= BD −BC) is
∂qL(v̂N−1

L )

∂v
(v̂N−1

L −vAut
L )− (qL(v̂N−1

L )−qL(vAut
L )). Therefore,

∂qL

(
vN−2

L

)
∂p

− ∂qL

(
v̂N−2

L

)
∂p

>
πH

πL

(
∂qL

(
vN−2

L

)
∂v

− ∂qL

(
v̂N−2

L

)
∂v

)
∂vAut

H

∂p
. (B.18)

Following the same argument and noting (B.18), one obtains

∂qL

(
vt

L

)
∂p

− ∂qL

(
v̂t

L

)
∂p

>
πH

πL

(
∂qL

(
vt

L

)
∂v

− ∂qL

(
v̂t

L

)
∂v

)
∂vAut

H

∂p

+ p̃L

1 + g

1 + r

[
∂qL

(
vt+1

L

)
∂v

(
vt+1

L − vAut
L

) − (
qL

(
vt+1

L

) − qL

(
vAut

L

))]
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vAut
Lv 1ˆN

Lv − 1−N
Lv

)(vqL

A

B

E

C

D

FIGURE B.1. Proof of Lemma A1.

− p̃L

1 + g

1 + r

[
∂qL

(
v̂t+1

L

)
∂v

(
v̂t+1

L − vAut
L

) − (
qL

(
v̂t+1

L

) − qL

(
vAut

L

))]

>
πH

πL

(
∂qL

(
vt

L

)
∂v

− ∂qL

(
v̂t

L

)
∂v

)
∂vAut

H

∂p

for t = N − 3, and similarly for t = N − 4, N − 5, . . . , 0. Thus, the inequality for t = 0
and (B.12) yield

∂Q (V0)

∂p
− ∂Q(V̂0)

∂p
> 0. (B.19)

This argument shows (B.19) for V̂0, whose associated sequence {v̂t
L}N−1

t=0 satisfies (B.14);
note that v̂N−1

L = vAut
L for the smallest such V̂0. To extend this result, set V0 to this smallest

V̂0, redefine variables such as N and V̂0 accordingly, and repeat the preceding argument for
N > 1. It then follows that (B.19) holds for any V0 ∈ (V Aut, Ṽ ] and V̂0 ∈ [V Aut, V0) such

that 1+g

1+r

∂qL(v̂t+1
L )

∂v
= (1 − γ )

∂qL(v̂t
L)

∂v
holds at least for t = 0.

Finally, suppose N = 1. Take any V̂0 ∈ [V Aut, V0). The argument leading to (B.15) does
not hinge on N > 1, so setting N = 1 in (B.15) and substituting into (B.12),

∂Q (V0)

∂p
− ∂Q(V̂0)

∂p
= 0. (B.20)

Summarizing these results, ∂Q(V0)/∂p is nondecreasing in V0 for all V0 ∈ [V Aut, Ṽ ],
and is increasing in V0 in the range of V0 such that N > 1.
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The next lemma concerns V0 ∈ [Ṽ , V FB] and is stated using the variables defined next.

DEFINITION B.2. For any V0 ∈ [Ṽ , V FB], let {vt
H , vt

L}M
t=0 be the path of promised

values in the high and low states up to the Mth period of the optimal contract and
V t

0 ≡ πH vt
H + πLvt

L, where M > 0 is the first t such that the participation constraint in
the high state binds.

For V0 ∈ [Ṽ , V FB], the initial participation constraint is slack, so M > 0. Then, from
Lemma 4, the promised values for t = 0, 1, . . . , M depend only on st . Thus {vt

H , vt
L}M

t=0

are well defined, and for V0 = Ṽ , {vt
L}M

t=0 in Definition B.2 are consistent with those in
Definition B.1.

LEMMA A2. For any V0 ∈ [Ṽ , V FB], ∂Q(V0)

∂p
= ( 1+g

1+r
)M ∂Q(V M

0 )

∂p
and V M

0 ∈ [V Aut, Ṽ ).

Proof. Take any V0 ∈ [Ṽ , V FB]. Then v0
H and v0

L = 1
πL

(V0 − πH v0
H ) satisfy (30).

Substituting (30) into (B.11) and using (A.7) to evaluate ∂qH (v0
H )/∂p and ∂qL(v0

L)/∂p,

∂Q (V0)

∂p
= 1 + g

1 + r

[
πH

∂qH

(
v1

H

)
∂p

+πL

∂qL

(
v1

L

)
∂p

+πH

(
∂qH

(
v1

H

)
∂v

− ∂qL

(
v1

L

)
∂v

)
∂vAut

H

∂p

]
.

(B.21)

Now, because V0 ∈ [Ṽ , V FB], initial consumption is the same in both states. Then
at t = 1, if the participation constraint in the high state binds, Lemma 2 implies that
consumption must be greater in the high state; hence, from (23),

∂qH

(
v1

H

)
∂v

>
∂qL

(
v1

L

)
∂v

, v1
H = vAut

H . (B.22)

Otherwise, (25) and (30) imply that

∂qH

(
v1

H

)
∂v

= ∂qL

(
v1

L

)
∂v

. (B.23)

Comparing (B.22) and (B.23) with (29) and (30), one observes that for an optimal contract
that provides the household V 1

0 instead of V0, the initial promised values in the high and
low state are, respectively, v1

H and v1
L. Thus, from (B.11),

∂Q
(
V 1

0

)
∂p

= πH

∂qH

(
v1

H

)
∂p

+ πL

∂qL

(
v1

L

)
∂p

+ πH

(
∂qH

(
v1

H

)
∂v

− ∂qL

(
v1

L

)
∂v

)
∂vAut

H

∂p
. (B.24)

From (B.21) and (B.24), ∂Q(V0)

∂p
= 1+g

1+r

∂Q(V 1
0 )

∂p
. This proves the first part of the claim if

M = 1.
If M > 1, take any t ∈ {2, 3, . . . , M}. From the definition of M and Lemma

4, consumption in the (t − 1)th period is the same in both states; hence from (23),
∂qL(vt−1

L )/∂v = ∂qH (vt−1
H )/∂v. Combining with vt−1

H ≥ vAut
H and (28), one obtains

vt−1
L ≥ ṽL because

∂qL

(
vt−1

L

)
∂v

= ∂qH

(
vt−1

H

)
∂v

≥ ∂qH

(
vAut

H

)
∂v

= ∂qL (ṽL)

∂v
, (B.25)
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hence V t−1
0 ∈ [Ṽ , V FB]. Thus, letting V t−1

0 and V t
0 play the role of V0 and V 1

0 in the preceding

argument,
∂Q(V t−1

0 )

∂p
= 1+g

1+r

∂Q(V t
0 )

∂p
for any t ∈ {2, 3, . . . , M}; hence ∂Q(V0)

∂p
= ( 1+g

1+r
)M ∂Q(V M

0 )

∂p
.

For the second part of the claim, V M
0 ≥ V Aut is obvious. For t = M , the participation

constraint in the high state binds, and thus vM
H = vAut

H , and given Lemma 2, consumption is
greater in the high state. Thus from (23), ∂qL(vM

L )/∂v < ∂qH (vM
H )/∂v, so combining with

(28),

∂qL

(
vM

L

)
∂v

<
∂qH

(
vM

H

)
∂v

= ∂qH

(
vAut

H

)
∂v

= ∂qL (ṽL)

∂v
. (B.26)

Therefore, vM
L < ṽL and thus V M

0 < Ṽ , completing the proof.

Next, Lemma A3 describes an important implication of Ñ = 1. Using this result, Lemma
A4 obtains the parameter conditions that determine whether Ñ > 1 or Ñ = 1, which affects
∂Q(V0)/∂p, as shown in Lemmas A5 and A6.

LEMMA A3. If Ñ = 1, then v′
H = vAut

H and v′
L = vAut

L in (B.1), and cAut
H = yH =

1 + πL

πH
α.

Proof. Suppose Ñ = 1. Let V0 = Ṽ , and let {vt
H , vt

L}M
t=0 be as in Definition B.2. From

the definition of Ṽ , initial consumption is cAut
H in both states. Thus, given g > μ and

Lemma 2, the participation constraint in the high state binds at t = 1; hence M = 1 and
v1

H = vAut
H . Further, v1

L = vAut
L from the definition of Ñ .

Thus, v1
H = vAut

H and v1
L = vAut

L regardless of s0, and in particular, for s0 = H . Because
v0

H = vAut
H , this implies that if the current state is high and the promised value is vAut

H , then
the promised value in state s ′ ∈ {H,L} next period is vAut

s′ . Thus, v′
H = vAut

H and v′
L = vAut

L

in (B.1), and comparing the resulting expression with (15) yields cAut
H = yH = 1 + πL

πH
α.

LEMMA A4. Let α̃ ≡ (1 + 1+μ

1+g

πL

πH
)−1( g−μ

1+g
). Then Ñ > 1 if α ∈ (α̃, 1) or σ ∈ (0, 1)

and α = 1, and Ñ = 1 if α ∈ [0, α̃].

Proof. The proof is made by deriving the condition under which Ñ = 1. For V0 = Ṽ ,
initial consumption is cAut

H in both states. Then, because vÑ−1
L > vAut

L and vÑ
L = vAut

L ,
Lemma 2 implies that Ñ is the smallest t such that cAut

H ( 1+μ

1+g
)t ≤ cAut

L . Thus, Ñ = 1 is

equivalent to cAut
H ( 1+μ

1+g
) ≤ cAut

L . It remains to express this condition using the parameters of
the model.

Given g > μ, Lemma 2 implies that if the current state is low and the promised value is
vAut

L , the participation constraint binds in both states next period. Thus, in (B.2), v′′
H = vAut

H

and v′′
L = vAut

L , so comparing the resulting expression with (16) yields cAut
L = yL = 1 − α.

Now, if Ñ = 1, then cAut
H = yH = 1 + πL

πH
α from Lemma A3. Substituting for cAut

H and

cAut
L in cAut

H ( 1+μ

1+g
) ≤ cAut

L yields α ≤ (1 + 1+μ

1+g

πL

πH
)−1( g−μ

1+g
) = α̃. Thus, Ñ = 1 if α ≤ α̃, and

Ñ > 1 otherwise; the case of σ > 1 and α = 1 is excluded by assuming vAut
H > vAut

L .

LEMMA A5. If Ñ > 1, then ∂Q(V0)/∂p < 0 for all V0 ∈ [V Aut, Ṽ ].

Proof. Suppose Ñ > 1. Let V0 = Ṽ , and let V 1
0 < V0 be as in Definition B.2. Then

M = 1, and

1 + g

1 + r

∂Q
(
Ṽ

)
∂p

>
1 + g

1 + r

∂Q
(
V 1

0

)
∂p

= ∂Q
(
Ṽ

)
∂p

, (B.27)
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where the inequality is from Lemma A1, and the equality is from Lemma A2. Thus, given
r > g [equation (3)], ∂Q(Ṽ )/∂p < 0. Then from Lemma A1, ∂Q(V0)/∂p < 0 for any V0 ∈
[V Aut, Ṽ ].

LEMMA A6. If Ñ = 1, then ∂Q(V0)/∂p = 0 for all V0 ∈ [V Aut, Ṽ ].

Proof. Suppose Ñ = 1. Then N = 1 for any V0 ∈ (V Aut, Ṽ ]; hence (B.20) holds
for any V0 ∈ (V Aut, Ṽ ] and V̂0 ∈ [V Aut, V0). Thus, ∂Q(V0)/∂p is independent of V0 for
V0 ∈ [V Aut, Ṽ ], so it suffices to show that ∂Q(V0)/∂p = 0 for any one V0 ∈ [V Aut, Ṽ ].

Let V0 = V Aut. Clearly, v0
H = vAut

H and v0
L = vAut

L . First, let s = L and v = vAut
L in (A.7).

From g > μ and Lemma 2, the participation constraint binds in both states next period;
hence v′

H = vAut
H and v′

L = vAut
L . Next, let s = H and v = vAut

H in (A.7). Then v′
H and v′

L

coincide with those in (B.1), so from Ñ = 1 and Lemma A3, v′
H = vAut

H and v′
L = vAut

L .
Substituting the resulting expressions into (B.11) and rearranging using (B.8) and (B.9)
yields

∂Q
(
V Aut

)
∂p

= 1 + g

1 + r

∂Q
(
V Aut

)
∂p

. (B.28)

Thus, given r > g [equation (3)], ∂Q(V0)/∂p = 0 for V0 = V Aut, completing the proof.

To complete the proof of Proposition 4, take any V0 ∈ [Ṽ , V FB]. From Lemma A2,
∂Q(V0)

∂p
= ( 1+g

1+r
)M ∂Q(V M

0 )

∂p
and V M

0 ∈ [V Aut, Ṽ ). Thus, if α ∈ (α̃, 1) or σ ∈ (0, 1) and

α = 1, then Ñ > 1 from Lemma A4, so ∂Q(V0)

∂p
= ( 1+g

1+r
)M ∂Q(V M

0 )

∂p
< 0 from Lemma

A5. If α ∈ [0, α̃], then Ñ = 1 from Lemma A4, so ∂Q(V0)

∂p
= ( 1+g

1+r
)M ∂Q(V M

0 )

∂p
= 0 from

Lemma A6. �
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