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We consider the simplest instabilities involving multiple unstable electrostatic
plasma waves corresponding to four-dimensional systems of mode amplitude equa-
tions. In each case, the coupled amplitude equations are derived up to third-order
terms. The nonlinear coefficients are singular in the limit in which the linear growth
rates vanish together. These singularities are analysed using techniques developed
in previous studies of a single unstable wave. In addition to the singularities familiar
from the single-mode problem, there are new singularities in coefficients coupling
the modes. The new singularities are most severe when the two waves have the
same linear phase velocity and satisfy the spatial resonance condition k2 = 2k1. As
a result, the short-wave mode saturates at a dramatically smaller amplitude than
that predicted for the weak-growth-rate regime on the basis of single-mode theory.
In contrast, the long-wave mode retains the single-mode scaling. If these resonance
conditions are not satisfied then both modes retain their single-mode scaling and
saturate at comparable amplitudes.

1. Introduction
Recently, we presented a detailed analysis of the amplitude equation for a single
unstable electrostatic mode in an unmagnetized Vlasov plasma (Crawford and Ja-
yaraman 1997; henceforth referred to as (I)). The analysis reveals a fundamental
difficulty with the derivation of amplitude equations for this class of problems:
the coefficients in the amplitude equations become singular in the limit in which
the growth rate γ of the unstable wave is allowed to vanish. Although these sin-
gularities can be removed by an appropriate γ-dependent rescaling (see below),
the analysis shows that amplitude equations of this type cannot be truncated
at any finite order (Crawford 1995 a; Crawford and Jayaraman 1996). Nonethe-
less, the scaling identified by the theory predicts the amplitude at which weakly
growing waves will saturate, and hence is of fundamental importance both in
plasma physics and in the closely related problem of shear-flow instability of ideal
fluids.

In view of the importance of the predicted scaling for applications, we investigate
here the effects of including additional unstable modes. We consider only the sim-
plest possibilities, namely those requiring a four-dimensional system of amplitude
equations. There are three such instabilities, distinguished by the symmetry of the
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equilibrium and whether the unstable modes have real or complex eigenvalues. We
find that unless the two modes satisfy a strong resonance condition, the presence of
the second mode does not alter the saturation amplitude of the original mode. How-
ever, in the important resonant case in which the phase velocities of the two modes
are the same and their wavenumbers k1 and k2 satisfy k2 = 2k1, the long-wave mode
dramatically suppresses the saturation amplitude of the short-wave mode.

The amplitude equation defines, in the limit γ → 0+, a kind of singular per-
turbation problem whose detailed features reveal asymptotic scaling behaviour of
the nonlinear wave. This is a key idea behind our approach, and the reader is re-
ferred to (I) for a more detailed discussion. For the single-mode instabilities, there
is only one amplitude A(t), and one seeks a scaling A(t) = γβa(γt) such that the
evolution equation for a(τ ), τ ≡ γt, has a nonsingular limit as γ → 0+. In dissi-
pative problems, the critical eigenvalues are isolated on the imaginary axis, and
β = 1

2 is the generically expected exponent. As a result, in the generic case, the
amplitude equation can be truncated at third order. This is not so for an unsta-
ble electrostatic wave. Here the situation is quite different, because the Vlasov
equation is Hamiltonian and the eigenvalues of the mode merge with a continuous
spectrum on the imaginary axis at criticality, i.e. as γ → 0+. As a consequence,
the nonlinear coefficients in the amplitude equation are singular as γ → 0+, sig-
nalling strong nonlinear effects that saturate the unstable linear growth at excep-
tionally small wave amplitudes. A quantitative signature of this reduction of the
nonlinear wave amplitude is a larger exponent: β = 5

2 for plasmas with multiple
mobile species and β = 2 in the limiting case of infinitely massive (fixed) ions
and mobile electrons. In fact, the analysis presented in (I) showed that setting
β = 5

2 yielded a theory that was finite to all orders in the amplitude expansion as
γ → 0+.

In this paper, we investigate the coupled amplitude equations for two unstable
modes with amplitudes A(t) and B(t). The coupled equations contain the single-
mode instabilities due to excitation of only A or only B, and the previously studied
singular coefficients govern these special cases. There are now separate scalings
possible for each amplitude,

|A(t)| = γβ1
1 a(γ1t), |B(t)| = γβ2

2 b(γ2t), (1)

and we know that βj > 5
2 , j = 1, 2, is required to control the singularities in

the single-mode coefficients. We seek to determine the possible singularities in
the coupling coefficients between A and B that are new; specifically, we wish
to know if these singularities can dominate the single-mode singularities and re-
quire new nonlinear scalings for the instability with two simultaneously growing
waves.

In the remainder of this introduction, we summarize our notation and state
some relevant results about the linearized theory. Section 2 enumerates the possible
instabilities described by four-dimensional systems of amplitude equations. In each
case the general form of the amplitude equations can be anticipated on the basis
of symmetry. Section 2.3 describes the procedure for calculating the coefficients
in these amplitude equations and summarizes the results for the leading terms
through third order. The singularities that arise in these terms in the limit of weak
instability are analysed in Sec. 3, and their consequences are discussed in Sec. 4.
The paper ends in Sec. 5 with a brief conclusion.
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1.1. Notation

We briefly summarize the notation from (I) that will be used. Our model is the
one-dimensional, multispecies Vlasov plasma defined by

∂F (s)

∂t
+ v

∂F (s)

∂x
+ κ(s) E

∂F (s)

∂v
= 0,

∂E

∂x
=
∑
s

∫ ∞
−∞

dv F (s)(x, v, t). (2)

Here x, t and v are measured in units of u/ωe ω−1
e and u respectively, where u is

a chosen velocity scale and ω2
e = 4πe2ne/me. The plasma length is L with periodic

boundary conditions and∫ L/2

−L/2
dx

∫ ∞
−∞

dv F (s)(x, v, t) =
zs ns
ne

L, (3)

where qs = e zs is the charge of species s and κ(s) ≡ qsme/ems. Note that κ(e) =
−1 for electrons and that the normalization (3) for negative species makes the
distribution function negative.

Let F0(v) and f (x, v, t) denote the multicomponent fields for the equilibrium and
perturbation respectively, and let κ denote the matrix of mass ratios:

f ≡

 f (s1)

f (s2)

...

 , F0 ≡

 F
(s1)
0

F
(s2)
0
...

 , κ ≡

 κ(s1) 0 0 . . .
0 κ(s2) 0 . . .
...

...
...

 . (4)

Then the system (2) can be expressed concisely as

∂f

∂t
= L f + N(f ), (5)

where

L f =
∞∑

l=−∞
eilx (Llfl)(v), (6)

(Llfl)(v) =


0 (l = 0)

−il
[
vfl(v) + κ · ηl(v)

∑
s′

∫ ∞
−∞

dv′ f
(s′)
l (v′)

]
(l� 0),

(7)

with ηl(v) ≡ −∂vF0/l
2, and

N(f ) =
∞∑

m=−∞
eimx

∞∑
l=−∞

′ i

l

(
κ · ∂fm−l

∂v

)∑
s′

∫ ∞
−∞

dv′ f
(s′)
l (v′). (8)

In the spatial Fourier expansion (6), l denotes an integer multiple of the basic
wavenumber 2π/L, and a primed summation as in (8) omits the l = 0 term. The
notation κ · ηl(v) or κ · ∂vfm−l denotes matrix multiplication.

An inner product is needed in Sec. 2 to derive the amplitude equation. For two
multicomponent fields of (x, v), e.g. B = (B(s1), B(s2), B(s3), . . .) and D = (D(s1), D(s2),
D(s3), . . .), we define their inner product by

(B,D) ≡
∑
s

∫ L/2

−L/2
dx

∫ ∞
−∞

dv B(s)(x, v)∗D(s)(x, v) =
∫ L/2

−L/2
dx 〈B,D〉, (9)
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where

〈B,D〉 ≡
∑
s

∫ ∞
−∞

dv B(s)(x, v)∗D(s)(x, v). (10)

1.2. Summary of linear theory

The spectral theory for L is well established, and the necessary results are simply
recalled to establish our notation (van Kampen 1955; Case 1959, 1978; van Kampen
and Felderhof 1967; Crawford and Hislop 1989). The eigenvalues λ ≡ −ilz of L
are determined by the roots Λl(z) = 0 of the ‘spectral function’:

Λl(z) ≡ 1 +
∫ ∞
−∞

dv

∑
s κ

(s)η
(s)
l (v)

v − z . (11)

The linear dielectric function εl(z) is obtained on replacing the contour in (11) by
the Landau contour for Im(z) < 0; for Im(z) > 0, Λl(z) and εl(z) are the same
function.

Associated with an eigenvalue λ ≡ −ilz is the multicomponent eigenfunction
Ψ(x, v) = eilx ψ(v), where

ψ(v) = − κ · ηl
v − z . (12)

There is also an associated adjoint eigenfunction Ψ̃(x, v) = eilxψ̃(v)/L satisfying
(Ψ̃,Ψ) = 1 with

ψ̃(v) = − 1
Λ′l(z)

∗(v − z∗) . (13)

Note that all components of ψ̃(v) are the same. The normalization in (13) assumes
that the root of Λl(z) is simple and is chosen so that 〈ψ̃, ψ〉 = 1. The adjoint deter-
mines the projection of f (x, v, t) onto the eigenvector, and this projection defines
the time-dependent amplitude of Ψ, i.e. A(t) ≡ (Ψ̃, f ).

In Sec. 2.3, some of our results are conveniently stated in terms of the re-
solvent operator Rl(w) ≡ (w − Ll)−1, whose general form follows from (7) by
solving (w − Ll)f = g for f (see Crawford and Hislop 1989 and (I)). Here both
g(v) = (g(s1)(v), g(s2)(v), . . .) and f are multi-component fields, and Rl(w) acts by

Rl(w) g =

 (Rl(w) g)(s1)(v)
(Rl(w) g)(s2)(v)

...

 , (14)

where

(Rl(w) g)(s)(v) =
1

il(v − iw/l)

[
g(s)(v)− κ(s)η

(s)
l

Λl(iw/l)

∑
s′

∫ ∞
−∞

dv′
g(s′)(v′)
v′ − iw/l

]
. (15)

2. Amplitude equations: general features
Each of our instabilities can be formulated within a general framework as follows.
The wavenumbers of the unstable modes Ψ2(x, v) and Ψ1(x, v) are given by |k2| >
|k1| > 0, and the corresponding eigenvalues are λj = −ikjzj for j = 1, 2, where
Λkj (zj) = 0. With periodic boundary conditions, each wavenumber is a multiple
of the minimum k, i.e. kj = 2πnj/L with integer nj . We assume that all roots are
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simple, i.e. Λ′kj (zj)� 0; in addition, in the limit Im(z) → 0 of weak growth rates,
the equation for the root is given by

∑
s

κ(s)η
(s)
kj

(vj) = 0, 1 + P
∫ ∞
−∞

dv

∑
s κ

(s)η
(s)
kj

(v)

v − vj
= 0, (16)

where vj = Re(zj) is the phase velocity at criticality. These relations will be impor-
tant for our analysis of the singularities in the nonlinear coefficients.

The four-dimensional eigenspace Eu is spanned by {Ψ1,Ψ∗1 ,Ψ2,Ψ∗2}, and the
components of the distribution function along the unstable eigenvectors are iden-
tified by writing

f (x, v, t) = [A(t)Ψ1(x, v) +B(t)Ψ2(x, v) + c.c.] + S(x, v, t), (17)

where A(t) = (Ψ̃1, f ) and B(t) = (Ψ̃2, f ) are the mode amplitudes and (Ψ̃j , S) = 0.
In (17), Ψ̃j = exp(ikjx) ψ̃j/L is the appropriate adjoint function for zj from (13).

In the (A,B, S) variables, the Vlasov equation (5) becomes

Ȧ = λ1 A + (Ψ̃1,N(f )), (18)

Ḃ = λ2 B + (Ψ̃2,N(f )), (19)

∂S

∂t
= LS + N(f )− [(Ψ̃1,N(f )) Ψ1 + (Ψ̃2,N(f )) Ψ2 + c.c.], (20)

where

(Ψ̃j ,N(f )) = −i
∞∑

l=−∞

′ 1
l
〈∂v ψ̃j , κ · fkj−l〉

∑
s′

∫ ∞
−∞

dv′ f
(s′)
l (v′). (21)

In writing (18) we have used the adjoint relationship (Ψ̃j ,LS) = (L†Ψ̃j , S) =
λj(Ψ̃j , S) = 0, while in (21) an integration by parts shifts the velocity derivative
onto ψ̃.

These coupled equations are equivalent to (5); however, by restricting them to the
unstable manifold, we obtain autonomous equations for A(t) and B(t). The details
of this restriction are discussed in an earlier paper (Crawford 1995 a) and also in
(I). The unstable manifold is tangent to Eu at the equilibrium, and near F0 it can
be described by a function H(x, v,A,A∗, B,B∗). Thus

fu(x, v, t) = [A(t)Ψ1(x, v) +B(t)Ψ2(x, v) + c.c.]

+H(x, v,A(t), A∗(t), B(t), B∗(t)) (22)

represents a distribution function onWu, and the evolution of S is determined from
H, i.e.

S(x, v, t) = H(x, v,A(t), A∗(t), B(t), B∗(t)) =

 H (s1)(x, v,A,A∗, B,B∗)
H (s2)(x, v,A,A∗, B,B∗)

...

 . (23)

When this representation is substituted into (18)–(20), we obtain

Ȧ = λ1 A + (Ψ̃1,N(fu)), (24)

Ḃ = λ2 B + (Ψ̃2,N(fu)), (25)
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∂S

∂t

∣∣∣∣
fu

= LH + N(fu)− [(Ψ̃1,N(fu)) Ψ1 + (Ψ̃2,N(fu)) Ψ2 + c.c.]. (26)

Note that (24) and (25) define an autonomous flow describing the self-consistent
nonlinear evolution of the unstable modes; this is the four-dimensional system that
we study.

Symmetries of the Vlasov–Poisson system (5) and the equilibrium F0(v) are im-
portant qualitative features of the problem. Spatial translation, Ta: (x, v) → (x +
a, v), and reflection, R: (x, v)→ (−x,−v), act as operators on f (x, v, t) in the usual
way: if α denotes an arbitrary transformation then (αf )(x, v) ≡ f (α−1 (x, v)), where
(αf )(x, v) denotes the transformed distribution function. The operators L and N
commute with Ta owing to the spatial homogeneity of F0, and if F0(v) = F0(−v)
then L and N also commute with the reflection operator R. With periodic bound-
ary conditions, x is a periodic coordinate, so Ta and R generate O(2), the symmetry
group of the circle. If only the translation symmetry is present then the group is
SO(2).

The action of translation Ta on f (x, v, t) implies an action on the variables
(A,B, S). We note from (17) that Taf (x, v, t) = f (x− a, v, t) is equivalent to

Ta (A,B, S(x, v)) = (e−ik1aA, e−ik2aB,S(x− a, v)). (27)

The representation of R in the variables (A,B, S) depends on specific details of Ψ1

and Ψ2 in the individual cases discussed below. These symmetries determine the
general form of the amplitude equations (24) and (25) for each of the instabilities
that we consider.

2.1. Instability without reflection symmetry: F0(v)�F0(−v)

When F0(v) lacks reflection symmetry, the generic four-dimensional problem arises
for modes with unequal wavenumbers k2 > k1 > 0 and complex eigenvalues. The
roots, Λkj (zj) = 0, determine the phase velocities vj = ωj/kj and the growth rates
γj of the linear modes from the real and imaginary parts of the eigenvalue λj =
−ikjzj ≡ γj − iωj . The corresponding eigenvectors are

Ψj(x, v) = eikjx ψj(v) = eikjx
(
−
κ · ηkj
v − zj

)
, j = 1, 2. (28)

In this case, the identities Λkj (zj) = Λ−kj (zj) and Λkj (zj)
∗ = Λkj (z

∗
j ) imply the

existence of three additional eigenvectors Ψ∗j , Φj and Φ∗j , where

Φj(x, v) = eikjx ψj(v)∗. (29)

These eigenvectors correspond to eigenvalues λ∗j , −λ∗j and −λj respectively, and fill
out the eigenvalue quartets characteristic of Hamiltonian systems. In the absence of
reflection symmetry, the eigenvalues are typically simple and the four-dimensional
unstable subspace is spanned by {Ψ1,Ψ∗1 ,Ψ2,Ψ∗2}. A beam–plasma system with a
weak beam is the prototypical example of this instability.

Since F0(v) is spatially homogeneous, the amplitude equations (24) and (25) al-
ways have the translation symmetry (27), and we can apply standard results on the
form of such symmetric equations (Golubitsky et al. 1988; Crawford and Knobloch
1991). Hence we know that the right-hand sides of (24) and (25) take the general
forms

Ȧ = r(σ)A + s(σ) (A∗)n2−1Bn1 , (30)

https://doi.org/10.1017/S0022377898006540 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898006540


Coupled electrostatic waves in the limit of weak instability 165

Ḃ = p(σ)B + q(σ)An2 (B∗)n1−1, (31)

where σ = (σ1, σ2, σ3, σ4) denotes the four basic invariants

σ1 = |A|2, σ2 = |B|2, σ3 = An2 (B∗)n1 , σ4 = (A∗)n2Bn1 . (32)

The integers nj refer to the wavenumbers kj = 2πnj/L. We assume that n1 and n2

have no common integer divisors other than unity. If this is not the case then the
integers used in (30)–(32) are obtained from n1 and n2 by factoring out the com-
mon divisor. The complex-valued functions r, s, p, and q are determined from (24)
and (25), but they can depend on the amplitudes only through the four invariants
σ1, σ2, σ3 and σ4.

2.2. Instability with reflection symmetry: F0(v) = F0(−v)

When the equilibrium is reflection-symmetric, the transformation Rf (x, v, t) =
f (−x,−v, t) commutes with L and N in the Vlasov equation. In this setting, the
roots of Λl(z) can be either imaginary or complex, depending on the detailed form
of F0(v), and correspondingly we may encounter instabilities due to either real or
complex eigenvalues.

2.2.1. Real eigenvalues. The description for real eigenvalues is quite similar to the
examples without symmetry and we use the same notation (28) for the unstable
eigenvectors Ψ1(x, v) and Ψ2(x, v). In this case, however, both linear phase velocities
are zero. In addition, each of the real eigenvalues λ1 and λ2 has multiplicity two
since the states RΨ1 = Ψ∗1 and RΨ2 = Ψ∗2 are also eigenvectors. The translation
symmetry (27) still holds, as does the reflection symmetry given by

R (A,B, S(x, v)) = (A∗, B∗, S(−x,−v)). (33)

The form of the amplitude equations (24) and (25) is the same except that the
functions r, s, p and q in (30) and (31) are now real-valued and depend on only
three invariants σ1, σ2, and σ+ ≡ σ3 + σ4. This model applies, for example, to a
reflection-symmetric two-stream distribution with instability at two wavenumbers.

2.2.2. Complex eigenvalues. An instability in a reflection-symmetric system with
complex eigenvalues likewise yields eigenvalues of multiplicity two. If only one
wavelength is involved, these result in a four-dimensional problem, and provide an
additional example of what may be called a one-mode instability; cf. (I). Such an
instability arises, for example, in a beam–plasma system with counterpropagating
beams (Demeio and Zweifel 1990).

In the notation of our general framework, we let k1 = −k2 = k > 0 and z1 = −z2 =
z0. Then Λk(z0) = 0 implies Λ−k(−z0) = 0, and these roots correspond to reflection-
related eigenvectors for the eigenvalue λ = −ikz0, i.e. λ = −ik1z1 = −ik2z2:

Ψ1(x, v) = eikx ψ1(v) = eikx
(
−κ · ηk(v)

v − z0

)
, (34)

Ψ2(x, v) = (RΨ1)(x, v) = e−ikx ψ1(−v) = e−ikx
(
−κ · ηk(v)

v + z0

)
. (35)

These solutions describe oppositely propagating linear waves with phase velocities
v1 = −v2 = ω/k, where z0 = v1 + iγ/k. In contrast to the previous examples, where
both z1 and z2 sit in the upper half-plane (corresponding to positive wavenumbers),
in this case z2 falls in the lower half-plane.
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Now the mode amplitudes in (17) transform according to (27), and applying R
to (17) yields

R (A,B, S(x, v)) = (B,A, S(−x,−v)). (36)

The O(2) symmetry generated by R and Ta implies amplitude equations of the
form (

Ȧ
Ḃ

)
= P (µ1, µ2, µ

∗
2)
(
A
B

)
+Q(µ1, µ2, µ

∗
2)
(
B∗

A∗

)
, (37)

where P and Q are functions of the invariants µ1 ≡ |A|2 + |B|2 and µ2 = AB, with
P (0, 0, 0) = λ and Q(0, 0, 0) = 0. In this case, a further simplification is possible;
terms that do not commute with the ‘phase-shift’ symmetry (A,B)→ (eiφA, eiφB),
can be removed by near-identity coordinate changes, (A,B) ≡ (A′+Φ1(A′, B′), B′+
Φ2(A′, B′)), to obtain the normal form(

Ȧ
Ḃ

)
= R(µ1, µ3)

(
A
B

)
+ S(µ1, µ3)(|A|2 − |B|2)

(
A
−B

)
, (38)

where µ3 ≡ (|A|2 − |B|2)2 and we have dropped the primes on (A′, B′) (Golubitsky
et al. 1988; Crawford and Knobloch 1991).

2.3. Amplitude expansions

We wish to study the nonlinear terms (21) in the amplitude equations (24) and (25).
The Fourier components fl follow from (22),

ful (v) = Aψ1(v)δl,k1 +A∗ψ1(v)∗δl,−k1 +Bψ2(v)δl,k2 +B∗ψ2(v)∗δl,−k2 +Hl(v), (39)

and the amplitude expansion of Hl(v) begins with second-order terms,

Hl(v) = [h1(v)|A|2 + h2(v)|B|2] δl,0 + h3(v)BA∗δl,k2−k1 + h3(v)∗B∗Aδl,k1−k2

+h4(v)A2δl,2k1 + h4(v)∗(A∗)2δl,−2k1

+h5(v)ABδl,k2+k1 + h5(v)∗A∗B∗δl,−k2−k1

+h6(v)B2δl,2k2 + h6(v)∗(B∗)2δl,−2k2 + O(3). (40)

Thus the nonlinear terms (21) can be written out in terms of the coefficients hi(v)
in (40), neglecting terms that are higher than third order in the amplitudes:

(Ψ̃1,N(fu)) = r1(0)A|A|2 + r2(0)A|B|2 + δk2,2k1s(0)A∗B + δk2,3k1s(0)(A∗)2B

+δk2,−k1{P2(0)A2B + (Q1(0) + P3(0))B∗|A|2 +Q3(0)A∗(B∗)2 +Q1(0)B∗|B|2}, (41)

with Taylor coefficients

r1(0) = − i

k1
[〈∂vψ̃1, κ · (h1 − h4)〉 + 1

2 Γ4〈∂vψ̃1, κ · ψ∗1 〉], (42)

r2(0) = −i
[
〈∂vψ̃1, κ · h2〉

k1
+
〈∂vψ̃1, κ · (h∗3 − h5)〉

k2
− Γ∗3
k2 − k1

〈∂vψ̃1, κ · ψ2〉

+
Γ5

k1 + k2
〈∂vψ̃1, κ · ψ∗2 〉

]
, (43)
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s(0) =



− i

(
〈∂vψ̃1, κ · ψ∗1 〉

k2
− 〈∂vψ̃1, κ · ψ2〉

k1

)
(k2 = 2k1),

− i

(
〈∂vψ̃1, κ · h∗4〉

k2
− 〈∂vψ̃1, κ · h3〉

k1

+Γ3
〈∂vψ̃1, κ · ψ∗1 〉

k2 − k1
− Γ∗4〈∂vψ̃1, κ · ψ2〉

2k1

)
(k2 = 3k1),

(44)

P2(0) = −i
(
〈∂vψ̃1, κ · h5〉

k1
+
〈∂vψ̃1, κ · h4〉

k2
+

Γ4〈∂vψ̃1, κ · ψ2〉
2k1

)
, (45)

Q1(0) +P3(0) = −i
[
〈∂vψ̃1, κ · (h∗5 − h∗3)〉

k1
− 〈∂vψ̃1, κ · h1〉

k2
+

Γ∗3〈∂vψ̃1, κ · ψ∗1 〉
k1 − k2

]
, (46)

Q3(0) = i

[
〈∂vψ̃1, κ · (h∗6 − h∗5)〉

k1
+

Γ∗6〈∂vψ̃1, κ · ψ∗1 〉
2k2

]
, (47)

Q1(0) = −i
[
〈∂vψ̃1, κ · (h∗6 − h2)〉

k2
− Γ∗6〈∂vψ̃1, κ · ψ2〉

2k2

]
, (48)

where Γj ≡
∑
s

∫
dv h

(s)
j (v), and

(Ψ̃2,N(fu)) = p1(0)B|A|2 + p2(0)B|B|2 + δk2,2k1q(0)A2 + δk2,3k1q(0)A3

+δk2,−k1{P2(0)AB2 + [Q1(0) + P3(0)]A∗|B|2

+Q3(0)(A∗)2B∗ +Q1(0)A∗|A|2}, (49)

with coefficients

p1(0) = −i
[
〈∂vψ̃2, κ · (h3 − h5)〉

k1
+
〈∂vψ̃2, κ · h1〉

k2
+

Γ3〈∂vψ̃2, κ · ψ1〉
k2 − k1

+
Γ5〈∂vψ̃2, κ · ψ∗1 〉

k2 + k1

]
, (50)

p2(0) = − i

k2
[〈∂vψ̃2, κ · (h2 − h6)〉 + 1

2 Γ6〈∂vψ̃2, κ · ψ∗2 〉], (51)

q(0) =


−i 〈∂vψ̃2, κ · ψ1〉

k1
(k2 = 2k1),

−i
(
〈∂vψ̃2, κ · h4〉

k1
+

Γ4〈∂vψ̃2, κ · ψ1〉
2k1

)
(k2 = 3k1).

(52)

In (41) and (49), we abbreviate the notation of Sec. 2, letting rj(0) denote ∂σjr(0),
Pj(0) denote ∂µjP (0), and so forth. For an instability with complex eigenvalues
and a reflection symmetry, the wavenumbers satisfy k2 = −k1, and the Γ5 terms
in r2(0) and p1(0) are omitted. In addition, the reflection symmetry (36) implies
various identities: r1(0) = p2(0), r2(0) = p1(0), h1(v) = h2(−v), h3(v) = h3(−v)∗,
h4(v) = h6(−v) and h5(v) = h5(−v), and these relate the cubic terms in (41) and
(49) as shown.

The coefficients hi(v) follow from the second-order terms in (26). On the left-hand
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side of (26), we have

∂S

∂t

∣∣∣∣
fu

=
(
∂H

∂A
Ȧ +

∂H

∂B
Ḃ + c.c.

)
=
(
∂H

∂A
λ1A +

∂H

∂B
λ2B + c.c.

)
+ O(3), (53)

with the partial derivatives evaluated using (40). On the right-hand side of (26),
the leading terms are found in LH and

N(fu) =
i|A|2
k1

κ · ∂v(ψ∗1 − ψ1) +
i|B|2
k2

κ · ∂v(ψ∗2 − ψ2)

+
[
iA2

k1
κ · ∂vψ1e

i2k1x +
iB2

k2
κ · ∂vψ2e

i2k2x

+iAB
(
κ · ∂vψ2

k1
+
κ · ∂vψ1

k2

)
ei(k1+k2)x

+iAB∗
(
κ · ∂vψ∗2
k1

− κ · ∂vψ1

k2

)
ei(k1−k2)x + c.c.

]
+ O(3). (54)

The second-order solution of (26) determines the coefficients in (40):

h1(v) =
iκ · ∂v(ψ∗1 − ψ1)

2γ1k1
, h2(v) =

iκ · ∂v(ψ∗2 − ψ2)
2γ2k2

, (55)

h3(v) = i Rk2−k1 (λ
∗
1 + λ2)I3(v), h4(v) = i R2k1 (2λ1)I4(v), (56)

h5(v) = i Rk2+k1 (λ1 + λ2)I5(v), h6(v) = i R2k2 (2λ2)I6(v), (57)

where Rl(w) denotes the resolvent operator (15), and

I3(v) ≡ κ · ∂vψ∗1
k2

− κ · ∂vψ2

k1
+ i s(0)ψ1 δk2,2k1 , I5(v) ≡ κ · ∂vψ1

k2
+
κ · ∂vψ2

k1
(58)

I4(v) ≡ κ · ∂vψ1

k1
+ i q(0)ψ2 δk2,2k1 , I6(v) ≡ κ · ∂vψ2

k2
. (59)

These expressions are valid for each of the three instabilities that we consider –
with one exception. In the case of complex eigenvalues and reflection symmetry,
when k1 + k2 = 0, the result for h5(v) in (57) is replaced by

h5(v) = −I5(v)
2kz0

(k1 + k2 = 0) (60)

in the notation of Sec. 2.2.2.
Note that (55) implies Γ1 = Γ2 = 0 in general, and (60) forces Γ5 = 0 for this

specific type of instability. Following (I), we can re-express (Γj , hj), j = 3, 4, 5, 6, in
(55)–(57) more conveniently as

Γj =
1/lj

Λlj (zj)

∫ ∞
−∞

dv
∑
s I

(s)
j (v)

v − zj
, hj(v) =

Ij(v)
lj(v − zj)

− Γj
κ · ηlj (v)
v − zj

, (61)

where

l3 = k2 − k1, z3 =
k2z2 − k1z

∗
1

k2 − k1
,

l4 = 2k1, z4 = z1,

 (62)

l5 = k2 + k1, z5 =
k2z2 + k1z1

k2 + k1
,

l6 = 2k2, z6 = z2.

 (63)
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2.4. Previous results for the single-mode instabilities

For A = 0 in (30) and (31), we recover the single-mode instability Ḃ = p(|B|2)B =
[λ2 + p2(0)|B|2 + . . .]B previously considered in Crawford and Jayaraman (1996)
and (I); the asymptotic form of the cubic coefficient is

p2(0) =
1
γ4

2
[c(k2, z2)− γ2 d(k2, z2) + O(γ2

2 )], (64)

with the nonsingular functions c and d defined by

c(k2, z2) = − k2

4Λ′k2
(z2)

∑
s

′
κ(s)(1− κ(s)2) Im

(∫ ∞
−∞

dv
η

(s)
k2

v − z2

)
, (65)

d(k2, z2) =
1
4
− 1

4Λ′k2
(z2)

∑
s

′
κ(s)(1− κ(s)2)

∫ ∞
−∞

dv
η

(s)
k2

(v − z2)2 , (66)

where the primed species sum omits the electrons (see (I)). For n1 > 1 in (30) and
(31), setting B = 0 determines a single-mode instability at the longer wavelength:
Ȧ = r(|A|2)A = [λ1 + r1(0)|A|2 + . . .]A. The asymptotic form of r1(0) follows from
(64)–(66) with the replacements (γ2, k2, z2) → (γ1, k1, z1). We also reduce to this
previously studied case on setting either A = 0 or B = 0 in (38); these two limits
correspond to single-mode instabilities in the form of travelling waves propagating
in the positive and negative x directions respectively.

3. Singularities in the mode–mode couplings
The central result of the single-mode analysis proves that setting βj = 5

2 in (1) yields
rescaled amplitude equations for a(τ ) and b(τ ) that are finite to all orders (see (I)).
When there are two unstable modes additional coupling terms between the modes
are present that have not been previously considered. In particular, in the expan-
sions (41) and (49) we find four such couplings (q(0), s(0), p1(0), r2(0)) for instabilities
with k2 > k1 > 0 (cf. Secs 2.1–2.2.1), and five couplings (p1(0), Q1(0), P2(0), Q3(0),
Q1(0) +P3(0)) for an instability with k2 + k1 = 0 (cf. Sec. 2.2.2). The singularities of
such mode-coupling terms will determine if the presence of a second unstable wave
can alter the nonlinear scaling associated with single-wave instabilities.

This question needs to be formulated carefully to avoid ‘trivial’ limits, since there
are now two distinct linear growth rates γ1 and γ2. If one growth rate vanishes while
the second remains bounded above zero then only the singularities associated with
the resonant denominators of the first mode will emerge. This effectively recovers
the singularity structure of the single-mode problem, even though both mode ampli-
tudes are nonzero. The more interesting limit arises when all resonant denominators
come into play, which requires both growth rates to vanish simultaneously. Thus
we set γ1 = γ2 ≡ γ in the following discussion; in practice, this arrangement would
be hard to realize experimentally, but could be achieved in a numerical simulation
by simultaneously adjusting the parameters of the equilibrium and the length of
the system.

The origin of the singularities is the same as in the single-mode problem: poles
from resonant denominators can straddle the contour of integration and produce
pinching singularities as γ → 0+. Following the methodology of (I), the worst
possible singularity of a given integral can be estimated by simply counting the total
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number of poles (including multiplicity). This gives an upper bound on the possible
divergence of a given integral, which must be checked by a detailed evaluation
once the most-divergent integrals have been identified. Ultimately, we are most
interested in possible singularities that are stronger than those already identified
in the single-mode subsystem (64). For example, third-order terms with divergences
weaker than the γ−4 singularity of (64) are clearly subdominant and cannot alter
the βj = 5

2 scaling forced by the single-mode singularities.
In Secs 3.1–3.3, we assume that the single-mode problems exhibit the γ−4 cubic

singularity in (64), i.e.∑
s

′
κ(s)(1− κ(s)2) η(s)

kj
(vj)� 0, j = 1, 2, (67)

for modes k1 and k2 respectively. This is simply the condition that in (65), c(kj ,
vj + i0)� 0, j = 1, 2. Special limits, such as infinitely massive ions, for which the
single-mode system is less singular are discussed in Sec. 3.4. Tables 1 and 2 below
provide a summary of the asymptotic behaviours of the second- and third-order
coupling coefficients.

3.1. The universal couplings p1(0) and r2(0)

The coefficients r2(0) and p1(0) are present at third order for each instability, and
their asymptotic singularities are fundamental. We discuss the three types of in-
stabilities separately.

3.1.1. F0(v)�F0(−v), complex eigenvalues. For instabilities without reflection sym-
metry (Sec. 2.1), we have k2 +k1 > 0 for two positive and unequal wavenumbers. We
first identify integrals in r2(0) and p1(0) with poles above and below the contour;
terms without this feature are manifestly free of pinching singularities and will be
finite as γ → 0+. In addition, singularities weaker than γ−4 are subdominant.

From (62) and (63), Im(zj) > 0 for j = 1, . . . , 6, so ψ1(v) and ψ2(v) have poles only
in the upper half-plane as do the conjugated adjoints ψ̃j(v)∗; thus 〈∂vψ̃1, κ ·ψ2〉 and
〈∂vψ̃2, κ ·ψ1〉 are nonsingular. Similarly, I5(v) and h5(v) have poles only in the upper
half-plane; thus the integral in (61) for Γ5 is nonsingular; in addition, Λl5 (z5) =
Λk2+k1 (z5) is of order unity as γ → 0 since there are no modes at wavenumber
k2 +k1 by assumption. Hence Γ5 and 〈∂vψ̃1, h5〉 are both nonsingular. The integrals
〈∂vψ̃1, κ ·ψ∗2 〉 and 〈∂vψ̃2, κ ·ψ∗1 〉 are nonsingular unless v1 = v2, in which case γ−2 is
their worst possible divergence, so the terms involving Γ5 are subdominant.

Similarly, in

〈∂vψ̃1, κ · h2〉 =
i

2γk2
(〈∂vψ̃1, κ

2 · ∂vψ∗2 〉 − 〈∂vψ̃1, κ
2 · ∂vψ2〉), (68)

the second integral is nonsingular, and the first integral 〈∂vψ̃1, κ
2 · ∂vψ∗2 〉 is nonsin-

gular unless v2 = v1, in which case there is a γ−3 singularity. This conclusion applies
equally to the corresponding terms in 〈∂vψ̃2, κ · h1〉; thus these terms contribute at
most a γ−4 singularity to r2(0) and p1(0) respectively.

Discarding these terms, we must still consider the asymptotic behaviour due to
h3 and Γ3:

r2(0) = −i
(
〈∂vψ̃1, κ · h∗3〉

k2
− Γ∗3〈∂vψ̃1, κ · ψ2〉

k2 − k1

)
+ . . . , (69)

https://doi.org/10.1017/S0022377898006540 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898006540


Coupled electrostatic waves in the limit of weak instability 171

p1(0) = −i
(
〈∂vψ̃2, κ · h3〉

k1
+

Γ3〈∂vψ̃2, κ · ψ1〉
k2 − k1

)
+ . . . , (70)

where

Γ3 =
1/l3

Λl3 (z3)

∫ ∞
−∞

dv

v − z3

∑
s

[
κ(s)∂vψ

(s)
1

∗

k2
− κ(s)∂vψ

(s)
2

k1
+ i s(0)ψ(s)

1 δk2,2k1

]
, (71)

〈∂vψ̃1, κ · h∗3〉 =
〈
∂vψ̃1,

κ · I∗3
l3(v − z∗3 )

〉
− Γ∗3

〈
∂vψ̃1,

κ2 · ηl3
v − z∗3

〉
, (72)

〈∂vψ̃2, κ · h3〉 =
〈
∂vψ̃2,

κ · I3

l3(v − z3)

〉
− Γ3

〈
∂vψ̃2,

κ2 · ηl3
v − z3

〉
. (73)

For (69) and (70), we discuss the instabilities with k2 � 2k1 and k2 = 2k1 sepa-
rately; the latter case is more interesting, since there can be new singularities when
the modes have the same phase velocity, e.g. in a beam–plasma instability with a
sufficiently cold beam (Crawford 1995 b).

When k2� 2k1, the third term in (71) is absent and the second term is manifestly
nonsingular; from (62),

z3 =
k2v2 − k1v1

k2 − k1
+ i

2γ
k2 − k1

, (74)

so the first term in (71) has a pinching singularity only if v2 = v1 and this possibility
yields a divergence of γ−2. Also, Λl3 (z3) ≡ Λk2−k1 (z3) is of order unity as γ → 0 since
there are no roots with Im(z) > 0 for wavenumbers other than k2 and k1; hence
the Γ3 terms in (69) and (70) are subdominant. The second term in (73) exhibits
only the singularities of Γ3 and may be dropped, while the second term in (72) has
an additional factor with a pinching singularity similar to Γ3, except that the roles
of z1 and z3 are reversed, and gives an overall divergence of at most γ−4 (when
v2 = v1). The remaining terms in (72) and (73) are〈

∂vψ̃1,
κ · I∗3

l3(v − z∗3 )

〉
=
〈
∂vψ̃1,

κ2 · ∂vψ1

k2l3(v − z∗3 )

〉
−
〈
∂vψ̃1,

κ2 · ∂vψ∗2
k1l3(v − z∗3 )

〉
, (75)〈

∂vψ̃2,
κ · I3

l3(v − z3)

〉
=
〈
∂vψ̃2,

κ2 · ∂vψ∗1
k2l3(v − z3)

〉
−
〈
∂vψ̃2,

κ2 · ∂vψ2

k1l3(v − z3)

〉
; (76)

in all cases there are five poles in the integrand and hence a maximum possible
γ−4 divergence. A closer examination shows that if v2 = v1 then this singularity is
realized by the first term in (76) and both terms in (75); in any event, we do not
encounter a singularity in r2(0) or p1(0) that dominates those found at third order
in the single-mode equations, i.e. a singularity stronger than γ−4.

When k2 = 2k1, Λl3 (z3) ≡ Λk1 (z3) with

z3 = (2v2 − v1) + i
2γ
k1
. (77)

Thus, when v2 = v1, we have z3 = z1 + iγ/k1, and Λl3 (z3) is O(γ) as γ → 0+; if
v2 � v1 then Λl3 (z3) is still of order one. Thus, with equal phase velocities, the
singularity of Γ3 is increased to γ−3 (including the presence of the third term in
(71) which has a γ−2 divergence in s(0)); nevertheless, the Γ3 terms in (69) and
(70) are still subdominant. The second term in (73) can be neglected for similar
reasons. However, the second term in (72) now has an apparent divergence of γ−5
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when v2 = v1; such a singularity would not be absorbed by the scalings used to
remove the γ−4 singularities characteristic of the single-mode problem. We shall
evaluate this term more precisely shortly. The first terms in (72) and (73) contain
extra contributions from the third term in (71):〈
∂vψ̃1,

κ · I∗3
l3(v − z∗3 )

〉
=
〈
∂vψ̃1,

κ2 · ∂vψ1

k2l3(v − z∗3 )

〉
−
〈
∂vψ̃1,

κ2 · ∂vψ∗2
k1l3(v − z∗3 )

〉
−i s(0)∗

〈
∂vψ̃1,

κ · ψ∗1
l3(v − z∗3 )

〉
, (78)〈

∂vψ̃2,
κ · I3

l3(v − z3)

〉
=
〈
∂vψ̃2,

κ2 · ∂vψ∗1
k2l3(v − z3)

〉
−
〈
∂vψ̃2,

κ2 · ∂vψ2

k1l3(v − z3)

〉
+i s(0)

〈
∂vψ̃2,

κ · ψ1

l3(v − z3)

〉
. (79)

Our previous discussion of the first two terms in (78) and (79) is unchanged, and
the new term in (79) shows only the γ−2 singularity in s(0) (as determined from
(87) below). This singularity is also present in the third term of (78), but now s(0)∗

multiplies an integral that has an apparent singularity of γ−3, giving a second term
with overall γ−5 divergence.

The foregoing discussion shows that there are new singularities in the coupling
coefficients and that these singularities are most severe when k2 = 2k1 and v1 = v2.
In this resonant case, the p1(0) singularity never exceeds γ−4, but we have identified
two contributions to 〈∂vψ̃1, h

∗
3〉 in the cubic coefficient r2(0) whose singularities

appear to dominate the γ−4 divergence characteristic of the cubic terms of the
single-mode problem. We proceed to a detailed evaluation of these exceptional terms
that shows that the γ−5 singularities are typically present.

For the second term in (72) the calculation of the integrals using partial fraction
expansions (cf. (I)) yields the following asymptotic forms when v2 = v1:

Γ3 =
1
γ3

[
2πk2

1

9Λ′k1
(v1)

∑
s

′
κ(s)(1 + κ(s))η(s)

k1
(v1) + O(γ)

]
, (80)

〈
∂vψ̃1,

κ2 · ηl3
(v − z∗3 )

〉
=

1
γ2

[
2πi k2

1

9Λ′k1
(v1)

∑
s

′
κ(s)(1 + κ(s))η(s)

k1
(v1) + O(γ)

]
, (81)

where the primed species summation excludes the electrons. In writing (81), we
have used the dispersion relation (16). Given the assumption (67) on the single-
mode problem, we expect

∑
s
′κ(s)(1 + κ(s))η(s)

k1
(v1)� 0 to hold typically; hence the

γ−5 singularity is generally present. Finally, the third term in (78) contains a γ−2

singularity from s(0)∗, see (87), while a partial fraction expansion of the integral
yields 〈

∂vψ̃1,
κ · ψ∗1

(v − z∗3 )

〉
=

1
γ3

[
− 5πk3

1

18Λ′k1
(v1)

∑
s

′
κ(s)(1 + κ(s))η(s)

k1
(v1) + O(γ)

]
. (82)

Thus the third term in (78) also realizes a γ−5 singularity. These singularities require
a shift in the scaling exponents that characterize the single-mode instability; this
point is discussed below in Sec. 4.
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Table 1. Generic singularities of the couplings and scaling exponents.

Instability Resonance q s r1† r2 p1 p2† (β1, β2)

F0(v)�F0(−v) k2� 2k1, v2� v1 — — γ−4 γ−1 γ−1 γ−4 ( 5
2 ,

5
2 )

k2 > k1 > 0 v2 = v1 — — γ−4 γ−4 γ−4 γ−4 ( 5
2 ,

5
2 )

λ1, λ2 complex
k2 = 2k1, v2� v1 O(1) γ−2 γ−4 γ−2 γ−2 γ−4 ( 5

2 ,
5
2 )

v2 = v1 O(1) γ−2 γ−4 γ−5 γ−4 γ−4 ( 5
2 , 3)

k2 = 3k1, v2� v1 O(1) γ−4 γ−4 γ−1 γ−1 γ−4 ( 5
2 ,

5
2 )

v2 = v1 O(1) γ−4 γ−4 γ−4 γ−4 γ−4 ( 5
2 ,

5
2 )

F0(v) = F0(−v) k2� 2k1 — — γ−4 γ−4 γ−4 γ−4 ( 5
2 ,

5
2 )

k2 > k1 > 0
λ1, λ2 real, k2 = 2k1 O(1) γ−2 γ−4 γ−5 γ−4 γ−4 ( 5

2 , 3)
multiplicity-two

k2 = 3k1 O(1) γ−4 γ−4 γ−4 γ−4 γ−4 ( 5
2 ,

5
2 )

† Single mode.

3.1.2. F0(v) = F0(−v), real eigenvalues. For reflection-symmetric instabilities with
real eigenvalues (Sec. 2.2.1), we have v1 = v2 = 0 and k2 + k1 > 0 for two positive
and unequal wavenumbers. The previous analysis is applicable here, and we obtain
the same conclusions with one modification. Since the condition v1 = v2 is automat-
ically satisfied, the ‘spatial resonance’, k2 = 2k1, is sufficient to obtain the extra
singularities noted above. These results are summarized in Table 1.

3.1.3. F0(v) = F0(−v), complex eigenvalues. For reflection-symmetric instabilities
with complex eigenvalues (Sec. 2.2.2), we have v1 = −v2 and k2 + k1 = 0. These
conditions rule out the presence of k2 = 2k1 or k2 = 3k1 resonances, and imply that
p1(0) = r2(0), where

p1(0) = −i
[
〈∂vψ̃2, κ · (h3 − h5)〉

k1
+
〈∂vψ̃2, κ · h1〉

k2
+

Γ3〈∂vψ̃2, κ · ψ1〉
k2 − k1

]
, (83)

with h5 defined in (60).
From z1 = −z2 = z0 we now have z1 in the upper half-plane (k1 > 0) and z2 in

the lower half-plane (k2 < 0) along with z3 = −iγ/k1. The eigenfunctions ψ1(v) and
ψ̃1(v)∗ have poles in the upper half-plane that approach v1 as γ → 0+, while the
poles of ψ2(v) and ψ̃2(v)∗ are in the lower half-plane and approach v2 as γ → 0+.
The integrals 〈∂vψ̃1, κ ·ψ2〉 and 〈∂vψ̃2, κ ·ψ1〉 are still nonsingular although they now
involve poles above and below the contour. The relation v1 = −v2 ensures that no
pinching singularity develops. Similarly, I5(v) and h5(v) have poles on each side of
the contour, but no pinch can develop in the integrals 〈∂vψ̃1, κ·h5〉 and 〈∂vψ̃2, κ·h5〉.
In

〈∂vψ̃1, κ · h2〉 =
i

2γk2
(〈∂vψ̃1, κ

2 · ∂vψ∗2 〉 − 〈∂vψ̃1, κ
2 · ∂vψ2〉), (84)

the first integral 〈∂vψ̃1, κ
2 · ∂vψ∗2 〉 only has poles in the upper half-plane, while the

second integral has poles above and below the contour but no pinch; thus this term
may also be dropped as well as the corresponding term 〈∂vψ̃2, κ · h1〉 in p1(0).
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Table 2. Generic singularities of the couplings and scaling exponents

Instability Q1 P2 Q3 (Q1 + P3) r1† r2 p1 p2† (β1, β2)

F0(v) = F0(−v) γ−1 O(1) γ−3 γ−4 γ−4 γ−1 γ−1 γ−4 ( 5
2 ,

5
2 )

k2 + k1 = 0
λ1 complex,
multiplicity-two

† Single mode

Discarding these manifestly nonsingular terms, we must still reconsider the re-
maining terms in (69)–(73). The previous analysis given in Sec. 3.1.1 requires rela-
tively minor modifications to allow for the relation v1 = −v2 and the shifted location
of the poles z2 and z3. In (71), Λl3 (z3) ≡ Λ−2k1 (z3) is of order one as γ → 0+, and
the integrals are free of pinching singularities since z3 is purely imaginary and
can never converge to either z1 or z2. Thus the second terms in (69) and (70) are
nonsingular as are the second terms in (72) and (73). The final integrals in the
first terms of (72) and (73), written out in (75) and (76), are also manifestly free
of pinching singularities. In summary, the coupling coefficients p1(0) and r2(0) for
instabilities with complex coefficients and reflection symmetry are identical, and
exhibit singularities due to the explicit γ−1 factor in 〈∂vψ̃1, κ · h2〉 only.

3.2. The couplings Q1(0), P2(0), Q3(0) and Q1(0) + P3(0)

For reflection-symmetric instabilities with complex eigenvalues (Sec. 2.2.2), there
are four additional O(2)-symmetric couplings at third order. Although these terms
can be removed by a coordinate transformation to obtain the normal form in (38),
it is important to consider their asymptotic behaviour.

The singularities for the couplings in this instablity are summarized in Table 2.
P2(0) is nonsingular and the singularities of Q1(0) and Q3(0) are subdominant. The
strongest singularity occurs in Q1(0) + P3(0) due to the integral

〈∂vψ̃1, κ · h1〉 =
i

2γk1
(〈∂vψ̃1, κ

2 · ∂vψ∗1 〉 − 〈∂vψ̃1, κ
2 · ∂vψ1〉), (85)

whose first term 〈∂vψ̃1, κ
2 ·∂vψ∗1 〉 has a γ−3 singularity, giving an overall singularity,

of γ−4 for Q1(0) + P3(0).

3.3. The spatial resonances: q(0) and s(0)

When k2 = 2k1 and k2 = 3k1, there are additional couplings at second and third
orders, respectively. We first consider q(0) and s(0) for the k2 = 2k1 resonance,
noting that the two integrals 〈∂vψ̃1, κ · ψ2〉 and 〈∂vψ̃2, κ · ψ1〉 have poles at z1 and
z2 and are free of pinching singularities in all cases. Thus q(0) is nonsingular, as is
the second term in s(0). The first term in s(0) was evaluated in (I),

〈∂vψ̃1, κ · ψ∗1 〉 =
(
ik1

2γ1

)2
[

2i
Λ′k1

(z1)

∑
s

′
κ(s)(1 + κ(s)) Im

∫ ∞
−∞

dv η
(s)
k1

v − z1
+ O(γ1)

]
, (86)

where the primed species sum omits the electrons; this determines the singularity
of s(0),

s(0) =
1
γ2

[
− πk2

1

2Λ′k1
(z1)

∑
s

′
κ(s)(1 + κ(s)) η(s)

k1
(v1) + O(γ)

]
. (87)
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Table 3. Summary of the singularities of the couplings for fixed ions.

Instability Resonance q s r1† r2 p1 p2† (β1, β2)

F0(v)�F0(−v) k2� 2k1, v2� v1 — — γ−3 γ−1 γ−1 γ−3 (2, 2)

k2 > k1 > 0 v2 = v1 — — γ−3 γ−3 γ−3 γ−3 (2, 2)
λ1, λ2 complex

k2 = 2k1, v2� v1 O(1) γ−1 γ−3 γ−1 γ−1 γ−3 (2, 2)

v2 = v1 O(1) γ−1 γ−3 γ−4 γ−3 γ−3 (2, 5
2 )

k2 = 3k1, v2� v1 O(1) γ−3 γ−3 γ−1 γ−1 γ−3 (2, 2)

v2 = v1 O(1) γ−3 γ−3 γ−3 γ−3 γ−3 (2, 2)

F0(v) = F0(−v) k2� 2k1 — — γ−3 γ−3 γ−3 γ−3 (2, 2)
k2 > k1 > 0
λ1, λ2 real, k2 = 2k1 O(1) γ−1 γ−3 γ−4 γ−3 γ−3 (2, 5

2 )
multiplicity-two

k2 = 3k1 O(1) γ−3 γ−3 γ−3 γ−3 γ−3 (2, 2)

† Single mode.

For the k2 = 3k1 resonance q(0) is again readily seen to be nonsingular, and we
omit the details. For s(0) in (44), the integral 〈∂vψ̃1, κ · h∗4〉 contains a contribution〈

∂vψ̃1,
κ · I∗4
v − z∗1

〉
= O(γ−4) (88)

if v2� v1. When v2 = v1 there are additional singularities, but none stronger than
γ−4. These conclusions are summarized in Table 1.

3.4. Special limits: coupling singularities with fixed ions

In the various explicit asymptotic formulae, such as (64), (80)–(82) and (87), the
leading term vanishes if the ion masses are treated as infinite since κ(s) → 0 in this
limit. In (I), this suppression of the leading singularity was shown to be a general
feature of the integrals that appear in the amplitude equations. For the single-mode
instability, the cubic coefficient p1(0) has a γ−3 singularity when the ions are fixed,
and the modified single-mode scalingA(t) = γ2a(γt) suffices to render the amplitude
expansion finite (see Crawford 1995 a and (I)).

It is straightforward to adapt the results of the previous sections to the case of
infinitely massive ions: with only a few exceptions among terms that are already
subdominant, the generic divergence is reduced by one factor of γ−1. For our pur-
poses, it is suffices to summarize in Table 3 the resulting changes to Table 1 when
the electrons are the only mobile species.

4. Nonlinear scalings
In this section, we make use of the leading-order behaviour of the coupling co-
efficients identified in the preceding section to determine the scaling of the satu-
ration amplitude of the two competing modes with the growth rate γ. We first
consider this question for the coefficient singularities listed in Table 1, i.e. for
instabilities with k2 > k1 > 0. Following (I), we introduce scaled amplitudes
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A(t) ≡ γβ1a(γt) exp[−iθ1(t)] and B(t) ≡ γβ2a(γt) exp[−iθ2(t)] for γ > 0 and rewrite
(24) and (25) using the expansions in (41) and (49):

da

dτ
= a + γβ2−1 Re[s(0) ei(2θ1−θ2)]ab δk2,2k1 + γ2β1−1 Re[r1(0)]a3

+γ2β2−1 Re[r2(0)]ab2 + γβ2+β1−1 Re[s(0) ei(3θ1−θ2)]a2b δk2,3k1 + . . . , (89)

db

dτ
= b + γ2β1−β2−1 Re[q(0) e−i(2θ1−θ2)]a2 δk2,2k1 + γ2β1−1 Re[p1(0)]a2 b

+γ3β1−β2−1 Re[q(0) e−i(3θ1−θ2)]a3 δk2,3k1 + γ2β2−1 Re[p2(0)] b3 + . . . , (90)

dθ1

dt
= ω1 − γβ2 Im[s(0) ei(2θ1−θ2)] b δk2,2k1 − γ2β1 Im[r1(0)]a2

−γ2β2 Im[r2(0)] b2 − γβ2+β1 Im[s(0) ei(3θ1−θ2)] ab δk2,3k1 + . . . , (91)

dθ2

dt
= ω2 − γ2β1−β2 Im[q(0) e−i(2θ1−θ2)]

a2

b
δk2,2k1 − γ2β1 Im[p1(0)]a2

−γ2β2 Im[p2(0)] b2 − γ3β1−β2 Im[q(0) e−i(3θ1−θ2)]
a3

b
δk2,3k1 + . . . . (92)

If possible, the choice of β1 and β2 should be made so that each term is finite as
γ → 0+ and there is a formal balance between linear and nonlinear terms in (89)
and (90).

In Table 1, we focus initially on the instabilities with k2� 2k1. The γ−4 singu-
larities of the single-mode coefficients r1(0) and p2(0) in (89) and (90) require that
β1 > 5

2 and β2 > 5
2 . These exponents are large enough to ensure a finite limit for

each term in (91) and (92); in fact, the phase equations reduce to θj = ωj + O(γ),
j = 1, 2. In (89) and (90), the minimal choice βj = 5

2 suffices to control the singu-
larities in the mode couplings r2(0) and p1(0) as well, and the amplitude equations
reduce to

da

dτ
= a + Re[c(k1, v1 + i0)]a3 + γ4 Re[r2(0)]ab2

+γ4 Re[s(0) ei(3θ1−θ2)]a2b δk2,3k1 + . . . , (93)

db

dτ
= b + γ4 Re[p1(0)]a2b + Re[c(k2, v2 + i0)] b3

+γ4 Re[q(0) e−i(3θ1−θ2)]a3 δk2,3k1 + . . . , (94)

with the c(kj , zj) defined in (65). In these variables, the linear growth rates are
unity, and the single-mode terms a3 and b3 are O(1) in γ. If v2 = v1 then the cou-
pling coefficients γ4r2(0) and γ4p1(0) are also O(1), but otherwise these terms are
subdominant. When it is present, the resonant term γ4s(0) ei(3θ1−θ2) is formally
O(1); however, the phases in the exponential evolve on the fast time scale t = τ/γ,
and therefore the exponential oscillates very rapidly as γ → 0+ unless the linear
frequencies are resonant: 3ω1 = ω2. Such a rapid oscillation allows the term to be
time-averaged and neglected; but when 3ω1 = ω2, the phase is stationary and this
O(1) term cannot be eliminated by time-averaging. Note that, given the spatial res-
onance k2 = 3k1, the frequency resonance is equivalent to assuming that the linear
phase velocities are equal: v2 = v1. The second resonant term, γ4q(0) e−i(3θ1−θ2), is
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formally O(γ4), but nevertheless has a qualitatively important effect on the dy-
namics near b = 0 as discussed below. Thus the asymptotic equations (93) and (94)
are correct when v2 = v1, but if v2� v1, they simplify to

da

dτ
= a + Re[c(k1, v1 + i0)]a3 + . . . , (95)

db

dτ
= b + Re[c(k2, v2 + i0)] b3 + γ4 Re[q(0) e−i(3θ1−θ2)]a3 δk2,3k1 + . . . . (96)

This system describes the evolution of the waves as if they were noninteract-
ing; indeed, their mutual dynamics is essentially the ‘superposition’ of the two
single-mode amplitude equations save for the very weak resonant term in (96). For
k2 � 2k1, our principal conclusion is that no change from the scaling exponents
predicted by the single-mode singularities is indicated.

The resonance k2 = 2k1 is special: the s(0) resonant term now occurs at second
order with a γ−2 singularity and, if v2 = v1, the singularity in r2(0) jumps to γ−5.
In addition, v2 = v1 implies a frequency resonance 2ω1 = ω2 that suppresses the
oscillation of the quadratic term. If we keep β2 = 5

2 in (89) then this quadratic
term retains a γ−1/2 singularity that cannot be erased by time averaging. Similarly
the cubic term γ4 Re[r2(0)]ab2 would retain a γ−1 singularity. In this situation, the
scaling exponent for the short-wavelength mode must be increased to β2 = 3 to
obtain a sensible asymptotic limit. The amplitude equations now reduce to

da

dτ
= a + γ2 Re[s(0) ei(2θ1−θ2)]ab + Re[c(k1, v1 + i0)]a3 + γ5 Re[r2(0)]ab2 + . . . , (97)

db

dτ
= b + γRe[q(0) e−i(2θ1−θ2)]a2 + γ4 Re[p1(0)]a2b + . . . ; (98)

in these variables the growth rates are again unity and all terms shown are O(1)
in γ except for γRe[q(0)e−i(2θ1−θ2)]a2, which is O(γ) but is nevertheless important
for the asymptotic dynamics as explained below. When k2 = 2k1 but v2� v1, the
quadratic term in (97) can be removed by time averaging, and the singularity of
r2(0) and p1(0) drops to γ−2; in this case the single-mode scalings suffice to control
the singularities in (89) and (90), and the amplitude equations simplify to

da

dτ
= a + Re[c(k1, v1 + i0)]a3 + . . . , (99)

db

dτ
= b + γRe[q(0) e−i(2θ1−θ2)]a2 + Re[c(k2, v2 + i0)] b3 + . . . . (100)

In the resonant regime, k2 = 2k1 and v2 = v1, the long-wavelength mode saturates
at a O(γ5/2) amplitude while the short-wavelength mode saturates at a much smaller
O(γ3) amplitude, i.e. the presence of the long mode results in a dramatic suppression
of the amplitude of the short mode. Because of the β2 = 3 scaling required for the
short-wave mode, the equation for b(τ ) is dominated by the interaction with the
long-wave mode a(τ ). In particular, in the rescaled equation (98), the single-mode
terms appear at higher order, and hence are omitted. On the other hand, we have
retained the O(γ) term a2. Although formally small, this term exerts a profound
effect on the resulting dynamics. This is because it destroys the invariance of the
subspace b = 0. This term therefore plays the role of a ‘noise’ term that continuously
forces the short mode. This observation holds equally for the resonant a3 term in
(94).
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The singularities summarized in Table 2 refer to an instability of a reflection-
symmetric equilibrium involving complex eigenvalues. All the couplings in Table
2 are third-order terms, and none of the divergences are stronger than the γ−4

singularities of the single-mode couplings. Thus the single-mode exponents βj = 5
2

will control all singularities in the amplitude equations to third order, and the
rescaled equations have the form

da

dτ
= a + Re[c(k1, v1 + i0)]a3 + γ4 Re[ei(θb+θa)(Q1(0) + P3(0))]ba2 + . . . , (101)

db

dτ
= b + Re[c(k2, v2 + i0)] b3 + γ4 Re[ei(θb+θa)(Q1(0) + P3(0))]ab2 + . . . . (102)

The joint conditions k2 +k1 = 0 and v2 = −v1 characteristic of this instability imply
that ω2 = ω1; hence the exponentials in the mode-coupling terms are rapidly oscil-
lating, and we expect these terms to have a negligible effect on the time-averaged
evolution. In effect, the coupled system (101), (102) reduces to (95), (96), and we
recover the superposition picture of the two single-mode amplitude equations but
without the resonant a3 term.

If the ions are taken to be infinitely massive then Table 3 replaces Table 2, and the
scaling associated with the single mode instabilities becomes βj = 2. The re-analysis
of (89) and (90) leads similar conclusions, although with quantitative differences.
Only for the resonance k2 = 2k1 and v2 = v1 are the single-mode scalings altered,
and again the short-wavelength mode is suppressed; in this case, we find that β2

increases to β2 = 5
2 . When v2 � v1, we again find that the amplitude equations

decouple as in (95) and (96).

5. Discussion
In this paper, we have investigated the interaction between two weakly unstable
electrostatic waves in an unmagnetized plasma. Such growing modes are defined
unambiguously by eigenfunctions of the linear theory; Landau-damped collective
modes are properly thought of as part of the continuum, and hence are not decaying
‘modes’ in the present sense (Crawford and Hislop 1989). For the growing modes
discussed here, the theory provides a self-consistent description that includes the
nonlinear effects of wave–particle resonance. Such a formulation, while more com-
plex, captures phenomena that are absent from conventional formulations involving
wave interactions (Porkolab and Chang 1978).

The wave–wave interaction is described by coupled amplitude equations consis-
tent with the assumed translation invariance of the system and any symmetry of
the unstable velocity distribution function. The coupling coefficients exhibit new
singularities in the weakly unstable limit, but, except in the case of the two-to-one
spatial resonance, do not alter the scaling for the saturation amplitude identified
in single-mode theory – at least through third order in the mode amplitudes. In
the special but important case of two-to-one spatial resonance, the overlap of veloc-
ity resonances and spatial resonance modifies the scaling, resulting in a dramatic
suppression of the short-wave mode.

In the absence of velocity overlap and the two-to-one spatial resonance, the single-
mode scaling shows that the two waves evolve as a simple superposition of the
individual instabilities. This picture is qualitatively consistent with the numerical
results obtained by Demeio and Zweifel (1990) for beam–plasma instabilities with
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reflection symmetry. In addition, it agrees more quantitatively with the analysis
of Buchanan and Dorning (1993), who constructed superpositions of BGK modes
as candidates for the asymptotic states produced in numerical simulations. In par-
ticular, these authors found that a consistent construction to leading order in the
amplitude of the individual BGK modes required unequal phase velocities – an
assumption analogous to our v2� v1 condition. Our results suggest a precise con-
nection between the initial value problem for the unstable waves and the superposed
BGK states of Buchanan and Dorning.

The significance of resonance overlap, such as v2 = v1, in the single-particle phase
space is well established from studies of particle motion in fields produced by large-
amplitude waves. In these studies, the appearance of chaotic particle trajectories
is investigated, but the self-consistent modification of the wave evolution by the
particles is routinely neglected (Chirikov 1979; Lichtenberg and Lieberman 1983;
Escande 1985). The situation we consider does not allow this simplifying approxi-
mation, since the resonant particles drive the linear instability and also dominate
the nonlinear evolution of the waves. It is striking to discover that resonance over-
lap has a profound effect on the dynamics of the waves, in addition to its better
known consequences for the associated particle dynamics.

Our prediction that resonant interaction with a longer-wavelength mode can
modify the nonlinear scaling of a short-wavelength mode may be amenable to ex-
perimental test. The single-mode scaling for fixed ions was detected experimen-
tally in measurements on an electron beam injected through a travelling-wave tube
(Tsunoda et al. 1987). The tube plays the role of the nonresonance electrons and
supports a propagating wave that couples to the resonant particles in the beam. If
the electron beam is sufficiently cold then the unstable waves satisfy the approxi-
mate dispersion relation ω(k) = vpk with constant vp, and hence always have equal
phase velocities (Crawford 1995 b). Under these conditions, one should measure the
scaling of a single mode launched at k2 and then repeat the measurement when a
second wave is launched simultaneously at k1 = 1

2k2.
The possibility remains that singularities in the higher-order coupling coefficients

could modify these conclusions and force new scalings for other spatial resonances
as well. However, in the study of singular amplitude equations in other problems,
it is commonly found that the dominant singularities appear in the low-order non-
linear terms (see (I) and Crawford and Davies 1997). In addition, the fact that the
k2 = 3k1 spatial resonance does not shift the scalings may signify that resonances
other than k2 = 2k1 will generally leave the single-mode scalings undisturbed. These
speculations can be tested by examining the singularities in the amplitude expan-
sions to all orders. Such an investigation may be feasible using the techniques of
(I).

Acknowledgement

This work was supported by NSF Grant PHY-9423583.

References

Buchanan, M. and Dorning, J. J. 1993 Superposition of nonlinear plasma waves. Phys. Rev.
Lett. 70, 3732–3735.

Case, K. 1959 Plasma oscillations. Ann. Phys. (NY) 7, 349–364.
Case, K. 1978 Plasma oscillations. Phys. Fluids 21, 249–257.

https://doi.org/10.1017/S0022377898006540 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898006540


180 J. D. Crawford and E. Knobloch

Chirikov, B. V. 1979 A universal instability of many-dimensional oscillator systems. Phys.
Rep. 52, 263–379.

Crawford, J. D. 1995 a Amplitude equations for electrostatic waves: universal singular be-
havior in the limit of weak instability. Phys. Plasmas 2, 97–128.

Crawford, J. D. 1995 b Appearance of inflection point modes in beam–plasma systems. Phys.
Lett. 209A, 356–361.

Crawford, J. D. and Davies, K. T. R. 1997 Phase dynamical models of globally coupled
oscillators: singularities and scaling with arbitrary coupling. Submitted to Physica D.
Preprint, patt-sol/9701006 at LANL archives.

Crawford, J. D. and Hislop, P. 1989 Application of the method of spectral deformation to
the Vlasov–Poisson model. Ann. Phys. (NY) 189, 265–317.

Crawford, J. D. and Jayaraman, A. 1996 Nonlinear saturation of an electrostatic wave:
mobile ions modify trapping scaling. Phys. Rev. Lett. 77, 3549–3552.

Crawford, J. D. and Jayaraman, A. 1997 (referred to as (I)) Amplitude equations for elec-
trostatic waves: multiple species. Submitted to J. Math. Phys. Available from the Los
Alamos archives at http://xxx.lanl.gov/abs/patt-sol/9706001.

Crawford, J. D. and Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in
fluid dynamics. Annu. Rev. Fluid Mech. 23, 341–387.

Demeio, L. and Zweifel, P. F. 1990 Numerical simulations of perturbed Vlasov equilibria.
Phys. Fluids B2, 1252–1255.

Escande, D. F. 1985 Stochasticity in classical Hamiltonian systems: universal aspects. Phys.
Rep. 121, 165–261.

Golubitsky, M., Stewart, I. and Schaeffer, D. G. 1988 Singularities and Groups in Bifurcation
Theory, Vol. II. Springer-Verlag, New York.

Lichtenberg, A. J. and Lieberman, M. A. 1983 Regular and Stochastic Motion. Springer-Verlag,
New York.

Porkolab, M. and Chang, R. P. H. 1978 Nonlinear wave effects in laboratory plasmas: a
comparison between theory and experiment. Rev. Mod. Phys. 50, 745–795.

Tsunoda, S. I., Doveil, F. and Malmberg, J. H. 1987 Nonlinear interaction between a warm
electron beam and a single wave. Phys. Rev. Lett. 59, 2752–2755.

van Kampen, N. G. 1955 On the theory of stationary waves in plasmas. Physica 21, 949–963.
van Kampen, N. G. and Felderhof, B. U. 1967 Theoretical Methods in Plasma Physics. North-

Holland, Amsterdam.

https://doi.org/10.1017/S0022377898006540 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898006540

